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Abstract. The aim of this paper is to analyze a formulation of the eddy current problem in terms

of a time-primitive of the electric field in a bounded domain with input current intensities or voltage

drops as source data. To this end, we introduce a Lagrange multiplier to impose the divergence-free

condition in the dielectric domain. Thus, we obtain a time-dependent weak mixed formulation leading

to a degenerate parabolic problem which we prove is well-posed. We propose a finite element method for

space discretization based on Nédélec edge elements for the main variable and standard finite elements

for the Lagrange multiplier, for which we obtain error estimates. Then, we introduce a backward Euler

scheme for time discretization and prove error estimates for the fully discrete problem, too. Finally,

the method is applied to solve a couple of test problems.

Résumé. L’objectif de cet article est d’analyser une formulation du problème des courants de Fou-

cault, écrite en fonction d’une primitive en temps du champ électrique, dans un domaine borné, et

étant les intensités du courant ou les chutes de potentiel les sources données du problème. À ce pro-

pos, nous introduisons un multiplicateur de Lagrange pour imposer la condition de divergence nulle

dans le domain diélectrique et nous obtenons une formulation faible mixte conduisant à un problème

parabolique dégénéré, pour lequel l’existence et l’unicité d’une solution sont démontrées. Nous pro-

posons une discretisation spatiale du problème, basée sur des éléments finis d’arête de Nédélec pour

la variable principale et sur des éléments finis nodaux standard pour le multiplicateur de Lagrange.

Nous obtenons des estimations d’erreur pour cette discrétisation. Nous introduisons ensuite un schéma

d’Euler implicite pour la discretisation en temps et nous démontrons des estimations d’erreur por le

problème complètement discretisé. Finalement, la méthode est appliquée à la résolution de quelques

problèmes test.
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Introduction

The goal of this paper is to analyze a time-dependent eddy current problem defined in a three-dimensional
bounded domain including conducting and dielectric materials, subject to source boundary conditions feasible
from the physical point of view. This model arises in applications where the problem is reduced to a bounded
domain and it is necessary to link the electromagnetic fields with sources provided by an external circuit by
means of current intensities or voltage drops (see, for instance, [9, 16]). Both cases of source data will be
separately analyzed in domains with a rather complex geometry, which allows modeling a great variety of
applications.

In the literature, we can find some papers related to the numerical analysis of the three-dimensional time-
dependent eddy current model in bounded domains containing conducting and dielectric materials [1, 5, 11, 19,
20, 24]. Most of these articles deal with the case where the conducting materials are strictly contained in the
computational domain and the source current is imposed in an inner subdomain. These formulations involve
natural and/or essential boundary conditions which differ depending on the primary unknown.

In order to consider sources provided by external circuits, the authors of this paper have recently analyzed
in [5] a transient eddy current problem where the input current intensities are imposed in terms of source
boundary conditions. The problem is written in terms of the magnetic field, which must satisfy the curl-free
condition in the dielectric domain. At the discrete level, a magnetic scalar potential is introduced in the dielectric
domain, which allows an important saving in computational effort. However, this formulation requires to build
“cutting” surfaces to make the dielectric domain simply connected. These cutting surfaces can be difficult to
build in complex geometries.

The present paper analyzes a formulation of the problem based on the time-primitive of the electric field
and a Lagrange multiplier to impose the divergence-free constraint of the electric displacement. Although the
computer cost is significantly more expensive than that of the method proposed in [5], it does not need of
cutting surfaces, which is a significant advantage in case of complex geometries.

The time primitive of the electric field has been introduced in the literature of electrical engineering in [12]
and it is usually known as modified magnetic vector potential. This potential has been used later by other
authors (see, for instance, [17, 18, 22]) which usually couple this vector field with different unknowns in the
dielectric part.

The same variable, the time-primitive of the electric field, has been used as the main unknown in the analysis
of transient eddy current problems with inner current sources and standard essential and natural boundary
conditions in [1, 11]. In the present paper, we obtain a degenerate parabolic problem as in these references;
however, we cannot use the same arguments to prove the well-posedness of continuous and discrete problems
due to the presence of the non-local source conditions. Thus, in order to analyze the resulting weak formulation,
we resort to some results obtained in [5].

As in [1], the formulation analyzed in this paper need as a data the normal component of the electric
displacement on the outer boundary. However, we prove that this boundary data has no effect on the value
of the main physical quantities, namely, the magnetic field in the whole domain and the electric field in the
conducting one. Thus, the data actually needed in practice for this formulation reduces to inputs current
intensities or voltage drops.

To discretize the mixed problem we propose a finite element method on tetrahedral meshes based on Nédélec
edge elements for the main variable and standard piecewise linear elements for the Lagrange multiplier. We
prove that this leads to a degenerate algebraic-differential problem, which we prove is well-posed. Then, we
obtain optimal order error estimates for this as well as for a fully discrete problem obtained by an implicit time
discretization.

Let us remark that under the assumption of time-independent electromagnetic coefficients, similar arguments
lead to a formulation in terms of the electric field, too. In principle the techniques in this paper could be tried
to analyze such a formulation, provided further smoothness in time holds for the boundary data.

The outline of the paper is as follows. In Section 1 we introduce the transient eddy current model and state
the geometrical framework for the analysis. In Section 2 we analyze the problem with input current intensities



AN EDDY CURRENT PROBLEM WITH NON-LOCAL SOURCE CONDITIONS 3

as boundary data. We obtain a time-dependent weak mixed formulation of the problem with input current
intensities as boundary data and prove that it is well-posed. We introduce a space discretization based on finite
elements and prove error estimates. We propose a backward Euler scheme for time discretization and obtain
error estimates for the fully discretized problem. In Section 3 we perform a similar analysis for the transient
eddy current problem, but now with voltage drops as boundary data. In Section 4, we report some numerical
results. We present a test with known analytical solution which allows us to confirm the order of convergence
predicted by the theory in both cases, namely, using intensities or voltage drops as source data. Finally, we
apply the method to an application which involves a more complex geometry.

1. Statement of the problem

Three dimensional eddy current problems describe low-frequency electromagnetic phenomena. In this case,
displacement currents may be neglected (see, for instance, [8, Chapter 8]), so that Maxwell’s equations restricted
to a domain Ω become

curlH = J in [0, T ]× Ω, (1.1)

∂t(µH) + curlE = 0 in [0, T ]× Ω, (1.2)

div(µH) = 0 in [0, T ]× Ω, (1.3)

J = σE in [0, T ]× Ω, (1.4)

where E(t,x) is the electric field, H(t,x) the magnetic field, J(t,x) the current density, µ the magnetic
permeability and σ the electric conductivity. Here and thereafter, we use boldface letters to denote vector fields
and variables as well as vector-valued operators.

We assume that Ω is a simply connected three-dimensional bounded domain, which consists of two parts, ΩC

and Ω
D
, occupied by conductors and dielectrics, respectively. We assume that Ω

D
is connected. The domain Ω

is assumed to have a Lipschitz-continuous connected boundary. We denote by Γ
C
, Γ

D
and Γ

I
the open surfaces

such that Γ̄C := ∂ΩC∩ ∂Ω is the outer boundary of the conductor domain, Γ̄D := ∂ΩD∩ ∂Ω that of the dielectric
domain and Γ̄

I
:= ∂Ω

C
∩ ∂Ω

D
the interface between both domains. We also denote by n, n

C
and n

D
the outer

unit normal vectors to ∂Ω, ∂Ω
C
and ∂Ω

D
, respectively. Notice that n

C
= n on Γ

C
, n

D
= n on Γ

D
and n

C
= −n

D

on ΓI.
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Figure 1. Sketch of the domain.

As shown in Figure 1, the disjoint connected components of the conducting domain are of two types: “in-
ductors” which go through the boundary of Ω, and “workpieces” which have their closure included in Ω. We
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denote Ω1
C
, . . . ,ΩN

C
the former and ΩN+1

C
, . . . ,ΩM

C
the latter. Moreover, we assume that each Ωn

C
, n = 1, . . . ,M ,

is simply connected with a connected boundary ∂Ωn
C
. We assume that Γ

I
splits in connected components as

follows: Γ
I
=
⋃M

n=1 Γ
n
I
, where Γn

I
:= Γ

I
∩ ∂Ωn

C
, n = 1, . . . ,M .

We assume that the outer boundary of each inductor, ∂Ωn
C
∩ ∂Ω, n = 1, . . . , N , has two disjoint connected

components, both being the closure of open simply connected surfaces: the current entrance Γn
J
, where the

inductor is connected to a transient electric current source, and the current exit Γn
E
. We denote Γ

J
:= Γ1

J
∪· · ·∪ΓN

J

and ΓE := Γ1
E
∪ · · · ∪ ΓN

E
. Furthermore, we assume that Γ̄n

J
∩ Γ̄m

J
= ∅, Γ̄n

E
∩ Γ̄m

E
= ∅, 1 ≤ m,n ≤ N , m 6= n, and

Γ̄
J
∩ Γ̄

E
= ∅.

We assume that for each inductor, Ωn
C
, n = 1, . . . , N , there exists one connected “cut” surface Σn ⊂ Ω

D
, with

∂Σn ⊂ ∂Ωn
C
∪Γ

D
, such that Ω̃

D
:= Ω

D
\⋃N

n=1 Σn is pseudo-Lipschitz and simply connected (see, for instance, [4]).

We also assume that Σ̄n ∩ Σ̄m = ∅ for n 6= m (see Figure 1). We denote Σ :=
⋃N

n=1 Σn and assume that ΓD and
Γ
D
\ ∂Σ are connected.
We suppose that µ and σ are time-independent and there exist positive constants µ, µ, σ and σ such that

0 < µ ≤ µ(x) ≤ µ, a.e. x ∈ Ω,

0 < σ ≤ σ(x) ≤ σ, a.e. x ∈ ΩC and σ ≡ 0 in ΩD.

We have to complete the model with an initial condition, H(0) = H0, the source terms and suitable boundary
conditions. For the latter, we consider the following ones:

E × n = 0 on [0, T ]× ΓE, (1.5)

E × n = 0 on [0, T ]× Γ
J
, (1.6)

µH · n = 0 on [0, T ]× ∂Ω. (1.7)

Conditions (1.5), (1.6) and (1.7) have been proposed in [9] in a more general setting. They will appear as
natural boundary conditions of our weak formulation of the problem. The former mean that the electric current
density is normal to the current entrance and exit surfaces, whereas the latter means that the magnetic field is
tangential to the boundary of the whole domain Ω.

To consider sources provided by external circuits we have two possibilities: either the intensities of the input
current or the voltage drops most be given for each inductor Ωn

C
, n = 1, . . . , N . In the first case, from (1.4), we

have that
∫

Γn
J

σE · n = In in [0, T ], (1.8)

where In is the current intensity through the surface Γn
J
.

To write down the equation corresponding to the second case, let Vn be the input voltage drop along the
inductor Ωn

C
. It follows from (1.7) and (1.2) that curlE · n = 0 on [0, T ] × ∂Ω. Hence, there exists a surface

potential V (t,x) defined on the boundary of the whole Ω and such that n×E(t,x)× n = −gradτ V (t,x) on
∂Ω, where gradτ denotes the surface gradient (cf. [10]). Moreover, (1.5) and (1.6) imply that V (t,x) must be
constant on each connected component of Γ

J
and Γ

E
. The difference Vn(t) := V |Γn

E
(t) − V |Γn

J
(t) is the voltage

drop along the conductor Ωn
C
. Thus, given Vn, the boundary condition reads

n×E × n = −gradτ V on ∂Ω, with V |Γn
E
− V |Γn

J
= Vn in [0, T ]. (1.9)

Although in a same problem we could consider that voltage drops are known for some inductors and current
intensities for the others, for simplicity we will study each case separately.

We have shown in [5] that equations (1.1)–(1.7) with boundary data (1.8) or (1.9) and initial condition H0

satisfying appropriate assumptions, lead to a well-posed problem. Note that, since the electric conductivity
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coefficient σ vanishes in Ω
D
, we do not have uniqueness of the electric field E in Ω

D
; in fact, if we add to a

solution E the gradient of any function with compact support in Ω
D
, the resulting field also solves (1.1)–(1.7).

Therefore, we must add equations so that E is uniquely determined. With this aim we introduce the following
conditions as in [1, 3] which assumes absence of electric charge in the dielectric domain:

div(ǫE) = 0 in [0, T ]× Ω
D
, (1.10)

ǫE|Ω
D
· n = g on [0, T ]× Γ

D
, (1.11)

∫

Γk
I

ǫE|Ω
D
· n = 0, k = 2, . . . ,M, in [0, T ], (1.12)

where ǫ is the electric permittivity and g is an additional data. Notice that
∫
Γ1
I

ǫE|Ω
D
· n is also fixed. In fact,

from the equations above and Gauss Theorem,
∫
Γ1
I

ǫE|Ω
D
· n = −

∫
Γ
D
g.

Boundary condition (1.11) involves the knowledge of an additional boundary data, the normal trace of ǫE
on Γ

D
, which can be difficult to obtain in practice. However, we prove in the present paper that E|Ω

C
and H

in the whole domain Ω are independent of the value of g. Hence, this allows us to choose, for instance, g = 0
in (1.11) if we are not interested in the electric field in Ω

D
(see Remark 2.5). In such a case, E|Ω

D
is not the

actual electric field but just an auxiliary variable which allows us to compute the typical quantities of interest:
E|Ω

C
and H.

Throughout this paper, we will use standard notation for Sobolev spaces and norms. We will also use the
well known Hilbert spaces H(curl; Ω), H(div; Ω), H0(div

0; Ω), etc. (see, for instance, [4]).
Let us remark that, given η and ς ∈ H−1/2 (∂ΩD), we say that η = ς on Γ, where Γ is an open surface

contained in ∂Ω
D
, if η = ς on H

−1/2
00 (Γ); namely, if 〈η, φ〉∂Ω

D
= 〈ς, φ〉∂Ω

D
∀φ ∈ H

1/2
00 (Γ), where 〈·, ·〉∂Ω

D
denotes

the duality pairing in H−1/2 (∂Ω
D
) × H1/2 (∂Ω

D
). In particular, equation (1.11) must be understood in this

sense. Similarly, equation (1.8) has to be understood as the a duality paring 〈σE(t) · n, 1〉Γn
J
. This paring is

well defined because σE(t) · n = 0 on ΓD (see, [13, Proposition 3.3]). The same happens with equation (1.12).

2. Eddy current problem with input current intensities as source data

The aim of this section is to analyze a formulation in terms of a time-primitive of the electric field of the
transient eddy current problem given by equations (1.1)–(1.8), the latter for n = 1, . . . , N , and (1.10)–(1.12)
with an adequate initial condition H0, under appropriate assumptions of the data. In particular, we assume
that g ∈ L2(0, T ; L2(ΓD)), In ∈ H2(0, T ), n = 1, . . . , N , and the initial data H0 satisfies

H0 ∈ X , 〈curlH0 · n, 1〉Γn
J
= In(0), n = 1, . . . , N, and µH0 ∈ H0(div

0; Ω), (2.1)

where

X := {G ∈ H(curl; Ω) : curlG = 0 in ΩD} .

Let us introduce the time-primitive of the electric field

u(t,x) :=

∫ t

0

E(s,x) ds.

Integrating (1.2) over [0, t] we obtain

µ(x)H(t,x)− µ(x)H0(x) + curlu(t,x) = 0. (2.2)
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Using that u(0,x) = 0, it is easy to write the transient eddy current equations in terms of u as follows:

σ∂tu+ curl

(
1

µ
curlu

)
= curlH0 in [0, T ]× Ω, (2.3)

curlu · n = 0 on [0, T ]× ∂Ω, (2.4)

u× n = 0 on [0, T ]× Γ
C
, (2.5)

div(ǫu) = 0 in [0, T ]× Ω
D
, (2.6)

ǫu(t) · n =

∫ t

0

g(s) ds on Γ
D
, t ∈ [0, T ], (2.7)

〈ǫu|Ω
D
· n, 1〉Γk

I
= 0, k = 2, . . . ,M, in [0, T ], (2.8)

〈σu(t) · n, 1〉Γn
J
=

∫ t

0

In(s) ds, n = 1, . . . , N, t ∈ [0, T ], (2.9)

u(0) = 0 in Ω. (2.10)

Our next goal is to obtain a weak formulation of this problem. With this end, we introduce the following
space:

U := {w ∈ H(curl; Ω) : w × n = 0 on Γ
C
and curlw · n = 0 on ∂Ω}.

Notice that, according to (2.4)–(2.5), we have that u(t) ∈ U at each t ∈ [0, T ]. On the other hand, for all w ∈ U

there exists a unique W ∈ W such that n×w × n = −gradτ W on ∂Ω, where W is defined by

W :=
{
W ∈ H1/2(∂Ω)/R : W |Γn

J
and W |Γn

E
constant, n = 1, . . . , N

}

(see Lemma 2.1 in [7]).
Let Ln : U → R, n = 1, . . . , N , be defined by

Ln(w) := W |Γn
E
−W |Γn

J
, (2.11)

where W ∈ W is the only function in this space such that n ×w × n = −gradτ W on ∂Ω. We have that Ln

are bounded linear functionals. In fact,

|Ln(w)| ≤ 1

|ΓE|1/2
‖w‖L2(Γ

E
) +

1

|ΓJ|1/2
‖w‖L2(Γ

J
) ≤ C ‖W‖H1/2(∂Ω) ≤ C ‖w‖H(curl;Ω),

where, for the last inequality, we have used results from [10, Remark 5.2]. Here and thereafter C denotes a
generic constant not necessarily the same at each occurrence.

The following lemma will be used to impose the boundary conditions involving the input current intensities.
Here and thereafter 〈·, ·〉 denotes the duality pairing 〈·, ·〉

H
−1/2
∂Ω (divτ ;∂Ω)×H

−1/2
∂Ω (curlτ ;∂Ω)

as defined in Section 5

from [10].

Lemma 2.1. For all G ∈ X and W ∈ W we have

〈G× n,gradτ W 〉 =
N∑

n=1

(
W |Γn

E
−W |Γn

J

)
〈curlG · n, 1〉Γn

J
.
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Proof. Let Φn be any smooth function defined in Ω and such that Φn|Ωm
C

= δnm, n = 1, . . . , N , m = 1, . . . ,M .

Then, for G ∈ X ,

〈curlG · n, 1〉Γn
J
+ 〈curlG · n, 1〉Γn

E
= 〈curlG · n,Φn〉∂Ω =

∫

Ω

curlG · gradΦn =

∫

Ωn
C

curlG · gradΦn = 0.

Hence, 〈curlG · n, 1〉Γn
J
= −〈curlG · n, 1〉Γn

E
, n = 1, . . . , N .

Therefore, for W ∈ W, if Ψ ∈ H1(Ω) is such that Ψ|∂Ω = W

〈G× n,gradτ W 〉 = −
∫

Ω

curlG · gradΨ = −〈curlG · n,W 〉∂Ω

= −
N∑

n=1

W |Γn
J
〈curlG · n, 1〉Γn

J
−

N∑

n=1

W |Γn
E
〈curlG · n, 1〉Γn

E

=

N∑

n=1

(
W |Γn

E
−W |Γn

J

)
〈curlG · n, 1〉Γn

J
.

Thus we conclude the proof. �

Now, we are in a position to obtain a weak formulation of (2.3)–(2.10). By testing (2.3) with w ∈ U we have

∫

Ω

σ∂tu ·w +

∫

Ω

1

µ
curlu · curlw −

〈
1

µ
curlu× n,w

〉
=

∫

Ω

curlH0 ·w.

Provided H ∈ X , according to (2.2), 1
µ curlu(t) ∈ X . Then, since W ∈ W, applying Lemma 2.1 we have that

〈
1

µ
curlu(t)× n,w

〉
= −

〈
1

µ
curlu(t)× n,gradτ W

〉

= −
N∑

n=1

(
W |Γn

J
−W |Γn

E

)〈
curl

(
1

µ
curlu(t)

)
· n, 1

〉

Γn
J

= −
N∑

n=1

Ln(w)〈(σ∂tu(t)− curlH0) · n, 1〉Γn
J

=
N∑

n=1

Ln(w)(In(t)− In(0)),

the last equality because of (2.3), (2.1) and (2.9).
Therefore

∫

Ω
C

σ∂tu(t) ·w +

∫

Ω

1

µ
curlu(t) · curlw =

N∑

n=1

Ln(w)(In(t)− In(0)) +

∫

Ω

curlH0 ·w ∀w ∈ U . (2.12)

On the other hand, we introduce the following space to impose (2.6)–(2.8) by means of a Lagrange multiplier:

M(Ω
D
) :=

{
ϕ ∈ H1(Ω

D
) : ϕ|Γ1

I
= 0, ϕ|Γk

I
= constant, k = 2, . . . ,M

}
.
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It is easy to show that, for u(t) ∈ U ,

∫

Ω
D

ǫu(t) · gradϕ =

∫

Γ
D

(∫ t

0

g(s) ds

)
ϕ ∀ϕ ∈ M(Ω

D
) ⇔





div(ǫu(t)) = 0 in Ω
D
,

ǫu(t) · n =
∫ t

0
g(s) ds on Γ

D
,

〈ǫu(t) · n, 1〉Γk
I
= 0, k = 2, . . . ,M.

(2.13)

Thus, we are led to the following problem:

Problem 2.2. Given g ∈ L2(0, T ;L2(Γ
D
)), In ∈ H2(0, T ), n = 1, . . . , N , and H0 satisfying (2.1), find u ∈

L2(0, T ;U) with u|Ω
C
∈ H1(0, T ; HΓ

C
(curl; Ω

C
)) and ξ ∈ L2(0, T ;M(Ω

D
)) such that

∫

Ω
C

σ∂tu(t) ·w +

∫

Ω

1

µ
curlu(t) · curlw +

∫

Ω
D

ǫw · grad ξ(t)

=

N∑

n=1

Ln(w)(In(t)− In(0)) +

∫

Ω

curlH0 ·w ∀w ∈ U ,

∫

Ω
D

ǫu(t) · gradϕ =

∫

Γ
D

(∫ t

0

g(s) ds

)
ϕ ∀ϕ ∈ M(Ω

D
),

u(0) = 0 in Ω.

As stated above, an alternative weak formulation of (1.1)–(1.8) in terms of the magnetic field was analyzed in
[5]. In this reference it was shown (cf. [5, Theorem 3.6]) that there exists a uniqueH ∈ L2(0, T ;X )∩H1(0, T ;HX )
such that

〈curlH(t) · n, 1〉Γn
J
= In(t), n = 1, . . . , N, (2.14)

∫

Ω

µ∂tH(t) ·G+

∫

Ω
C

1

σ
curlH(t) · curlG = 0 ∀G ∈ V , (2.15)

H(0) = H0, (2.16)

where

HX :=
{
G ∈ L2(Ω)3 : curlG = 0 in Ω

D

}
and V :=

{
G ∈ X : 〈curlG · n, 1〉Γn

J
= 0, n = 1, . . . , N

}
.

Moreover, it was shown in Theorem 3.8 of the same reference that defining E
C
(t) := 1

σ curlH(t) in Ω
C
, the

following properties hold true a.e. t ∈ (0, T ):

div(µH(t)) = 0 in Ω, (2.17)

µ∂tH(t) + curlEC(t) = 0 in ΩC, (2.18)

curlH(t) = 0 in ΩD, (2.19)

µH(t) · n = 0 on ∂Ω, (2.20)

E
C
(t)× n = 0 on Γ

C
, (2.21)

〈curlH(t) · n, 1〉Γn
J
= In(t), n = 1, . . . , N. (2.22)

We will use these results to prove that Problem 2.2 also has a unique solution. With this aim, we need to
extend E

C
to the dielectric domain in order to define u as its primitive. Next result shows how this can be

done, taking into account that ∂tH ∈ L2(0, T ; L2(Ω)3), E
C
∈ L2(0, T ; HΓ

C
(curl; Ω

C
)) and g ∈ L2(0, T ; L2(Γ

D
)).
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Lemma 2.3. There exists a unique E
D
∈ L2(0, T ; H(curl; Ω

D
)) which satisfies a.e. t ∈ [0, T ]:

curlE
D
(t) = −µ∂tH(t) in Ω

D
, (2.23)

E
D
(t)× n

D
= −E

C
(t)× n

C
on Γ

I
, (2.24)

div(ǫE
D
(t)) = 0 in Ω

D
, (2.25)

ǫE
D
(t) · n = g(t) on Γ

D
, (2.26)

〈ǫED(t) · n, 1〉Γk
I
= 0, k = 2, . . . ,M. (2.27)

Proof. To prove that this problem is well-posed, let us write E
D
(t) := Ẽ

D
(t) + Ê

D
(t) a.e. t ∈ [0, T ], where

Ẽ
D
(t), Ê

D
(t) ∈ H(curl; Ω

D
) are respective solutions to the following problems:

curl ẼD(t) = 0 in ΩD,

ẼD(t)× nD = 0 on ΓI,

div(ǫẼD(t)) = 0 in ΩD,

ǫẼD(t) · n = g(t) on ΓD,

〈ǫẼD(t) · n, 1〉Γk
I
= 0, k = 2, . . . ,M,

and

curl Ê
D
(t) = −µ∂tH(t) in Ω

D
,

Ê
D
(t)× n

D
= −E

C
(t)× n

C
on Γ

I
,

div(ǫÊ
D
(t)) = 0 in Ω

D
,

ǫÊD(t) · n = 0 on ΓD,

〈ǫÊD(t) · n, 1〉Γk
I
= 0, k = 2, . . . ,M.

It was proved in [13, Theorem 8.4] (see also [14, Lemma 3.2]) that for g(t) ∈ L2(ΓD), the first problem has a

unique solution Ẽ
D
(t) which satisfies

‖Ẽ
D
(t)‖H(curl;Ω

D
) ≤ C‖g(t)‖L2(Γ

D
).

To prove that the second problem is also well-posed, we follow the steps of the proof of [3, Theorem 8.6],
where a similar result was obtained in the harmonic case and for a particular topology. The key point of this
proof is that the term µ∂tH(t, ·) ∈ L2(ΩD)

3. Moreover, we also obtain

‖Ê
D
(t)‖H(curl;Ω

D
) ≤ C

{
‖∂tH(t)‖L2(Ω

D
)3 + ‖E

C
(t)‖H(curl;Ω

C
)

}
.

Thus, we have that E
D
(t) := Ẽ

D
(t) + Ê

D
(t) is a solution to problem (2.23)–(2.27). Furthermore, E

D
∈

L2(0, T ; H(curl; Ω
D
)) because of the above estimates for Ẽ

D
and Ê

D
. Moreover, this problem has at most one

solution as a consequence of [13, Proposition 6.3]. Thus, we conclude the proof. �

Now, we are in a position to conclude the following result.

Theorem 2.4. Problem 2.2 has a unique solution (u, ξ), with Lagrange multiplier ξ ≡ 0.
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Proof. To prove existence, let H ∈ L2(0, T ;X ) ∩ H1(0, T ;HX ) be the solution of (2.14)–(2.16) and let E
C
:=

1
σ curlH|Ω

C
∈ L2(0, T ; HΓ

C
(curl; Ω

C
)), so that (2.17)–(2.22) hold true a.e. t ∈ (0, T ). Let

E(t) :=

{
E

C
(t) in Ω

C
,

E
D
(t) in Ω

D
,

(2.28)

where E
D
∈ L2(0, T ; H(curl; Ω

D
)) is the solution to (2.23)–(2.27) a.e. t ∈ (0, T ). As a consequence of (2.24),

E(t) ∈ H(curl; Ω) a.e. t ∈ (0, T ) and, hence E ∈ L2(0, T ; HΓ
C
(curl; Ω)). Thus, defining

u(t,x) :=

∫ t

0

E(s,x) ds, t ∈ [0, T ], x ∈ Ω, (2.29)

u ∈ L2(0, T ; HΓ
C
(curl; Ω)), too. Moreover, from (2.18) and (2.23) we have that curlE = −µ∂tH in Ω and

integrating in time

curlu = µH0 − µH in [0, T ]× Ω. (2.30)

Therefore, from (2.1) and (2.20) we conclude that u ∈ L2(0, T ;U) and, since ∂tu = E, we have that u|Ω
C
∈

H1(0, T ; HΓ
C
(curl; Ω

C
)).

Our next step is to prove that (u, 0) is a solution to Problem 2.2. With this aim, first we notice that by virtue
of (2.17)–(2.22), the definition of EC(t) and (2.23)–(2.27), it is straightforward to show that u(t,x) satisfies
(2.3)–(2.10). Then, the same steps that lead to (2.12) allow us to prove this expression in our case, which means
that (u, 0) satisfies the first equation of Problem 2.2.

On the other hand, we integrate in time (2.25)–(2.27) and use the fact that u(0) = 0 in Ω, to conclude that
u(t) satisfies the conditions on the right hand side of (2.13), which was shown to be equivalent to the second
equation from Problem 2.2.

Thus, we have proved that (u, 0) is a solution of Problem 2.2. There only remains to prove that this problem
has a unique solution. With this aim let (u, ξ) be a solution of Problem 2.2 with vanishing data g = 0, In = 0,
n = 1, . . . , N , and H0 = 0, namely,

∫

Ω
C

σ∂tu(t) ·w +

∫

Ω

1

µ
curlu(t) · curlw +

∫

Ω
D

ǫw · grad ξ(t) = 0 ∀w ∈ U , (2.31)

∫

Ω
D

ǫu(t) · gradϕ = 0 ∀ϕ ∈ M(Ω
D
), (2.32)

u(0) = 0 in Ω. (2.33)

By taking w = u(t) and ϕ = ξ(t), we obtain

1

2

d

dt

∫

Ω
C

σ|u(t)|2 +
∫

Ω

1

µ
| curlu(t)|2 = 0 a.e. t ∈ [0, T ]

and integrating in time

1

2
σ‖u(t)‖2L2(Ω

C
)3 +

∫ t

0

∫

Ω

1

µ
| curlu(s)|2 ds ≤ 0,

which implies that u(t) = 0 in Ω
C
and curlu(t) = 0 in Ω. From this (2.32) and (2.13), we deduce that u(t) is

a solution of (2.23)–(2.27) with vanishing right hand sides. Hence u(t) ≡ 0 in Ω
D
(see Proposition 6.3 in [13])

and we conclude that u(t) vanishes in the whole domain.
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On the other hand, let ξ̃(t) be the extension of ξ(t) defined by: ξ̃(t)|Ωk
C
= ξ(t)|Γk

I
, k = 1, . . . ,M . Then

grad ξ̃(t) ∈ U and taking w = grad ξ̃(t) in (2.31) we obtain grad ξ(t) = 0 in ΩD. Hence, ξ(t) vanishes because
Ω

D
is connected and ξ(t)|Γ1

I
= 0. �

Remark 2.5. As was shown in the proof of the previous theorem, actually u ∈ H1(0, T ; HΓ
C
(curl; Ω)). Then,

the physical quantities can be recovered from (2.29) and (2.30) as follows:

Ẽ := ∂tu and H̃ := H0 −
1

µ
curlu.

Different choices of the data g lead to different solutions u to Problem 2.2. However only Ẽ|Ω
D
actually depends

on g. In fact, we have shown in the proof of the theorem above that H̃ as defined above is the solution H to

problem (2.14)–(2.16) (which does not depend on g) and Ẽ|Ω
C
= E|Ω

C
= 1

σ curlH|Ω
C
. This is an important

fact because, if we do not know the values of ǫE · n on Γ
D
and we are not interested in computing E in the

dielectric, then we can simply choose g = 0 and compute the magnetic field H in Ω and the electric field E in
ΩC, which are typically the most relevant quantities in physical applications.

2.1. Space discretization

From now on, we assume that Ω, ΩC and ΩD are Lipschitz polyhedra and consider regular tetrahedral
meshes Th of Ω, such that each element K ∈ Th is contained either in Ω

C
or in Ω

D
(h stands as usual for the

corresponding mesh-size). Therefore, T Ω
D

h := {K ∈ Th : K ⊂ Ω
D
} is a mesh of Ω

D
. We employ edge finite

elements to approximate u, more precisely, lowest-order Nédélec finite elements:

N h(Ω) := {wh ∈ H(curl; Ω) : wh|K ∈ N (K) ∀K ∈ Th},

where, for each tetrahedron K,

N (K) :=
{
wh ∈ P3

1 : wh(x) = a× x+ b, a,b ∈ R3, x ∈ K
}
.

On the other hand, we use standard finite elements for the Lagrange multiplier ξ:

Lh(ΩD
) :=

{
ϕh ∈ H1(Ω

D
) : ϕh|K ∈ P1(K) ∀K ∈ T Ω

D

h

}
.

We introduce the following discrete spaces:

Uh := {wh ∈ N h(Ω) : wh × n = 0 on Γ
C
and curlwh · n = 0 on ∂Ω},

Qh :=
{
ϕh ∈ Lh(ΩD

) : ϕh|Γ1
I
= 0, ϕh|Γk

I
= constant, k = 2, . . . ,M

}
.

To discretize Problem 2.2, we consider a convenient way to compute the right hand side for the discrete test
functions. Let

L̃n(wh) :=

∫

Cn

wh · t ∀wh ∈ Uh, (2.34)

where Cn is a simple curve on ∂Ω joining Γn
E

with Γn
J
, n = 1, . . . , N , and t being a unit vector tangent to Cn.

It is easy to see that Ln(wh) = L̃n(wh) for all wh ∈ Uh (cf. [7, Lemma 2.4]).
Then, the space discretization of Problem 2.2 reads as follows:
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Problem 2.6. Given g ∈ L2(0, T ;L2(Γ
D
)), In ∈ H2(0, T ), n = 1, . . . , N , and the initial condition H0 satisfying

(2.1), find uh : [0, T ] → Uh and ξh : [0, T ] → Qh such that

∫

Ω
C

σ∂tuh(t) ·wh +

∫

Ω

1

µ
curluh(t) · curlwh +

∫

Ω
D

ǫwh · grad ξh(t)

=
N∑

n=1

L̃n(wh)(In(t)− In(0)) +

∫

Ω

curlH0 ·wh ∀wh ∈ Uh, (2.35)

∫

Ω
D

ǫuh(t) · gradϕh =

∫

Γ
D

(∫ t

0

g(s) ds

)
ϕh ∀ϕh ∈ Qh, (2.36)

uh(0) = 0 in Ω. (2.37)

To prove that this problem is well-posed we will use the discrete kernel

Kh :=

{
wh ∈ Uh :

∫

Ω
D

ǫwh · gradϕh = 0 ∀ϕh ∈ Qh

}

and the following inf-sup condition.

Lemma 2.7. There exists β > 0 (independent to h) such that

sup
wh∈Uh
wh 6=0

∫
Ω

D
ǫwh · gradϕh

‖wh‖H(curl;Ω)
≥ β‖ϕh‖H1(Ω

D
)3 ∀ϕh ∈ Qh. (2.38)

Proof. For ϕh ∈ Qh let ϕ̃h be its extension to ΩC defined by ϕ̃h|Ωk
C
= ϕh|Γk

I
(constant), k = 1, . . . ,M . Then,

grad ϕ̃h ∈ Uh and

sup
wh∈Uh
wh 6=0

∫
Ω

D
ǫwh · gradϕh

‖wh‖H(curl;Ω)
≥
∫
Ω

D
ǫgrad ϕ̃h · gradϕh

‖grad ϕ̃h‖H(curl;Ω)
≥

ǫ‖gradϕh‖2L2(Ω
D
)3

‖gradϕh‖L2(Ω
D
)3

≥ β‖ϕh‖H1(Ω
D
)3 ,

where we have used Poincaré inequality since, for all ϕh ∈ Qh, ϕh|Γ1
I
= 0. �

Next step is to prove that there exist a particular solution to equation (2.36).

Lemma 2.8. Given g ∈ L2(0, T ;L2(ΓD)), there exists ûh ∈ H1(0, T ;Uh) such that

∫

Ω
D

ǫûh(t) · gradϕh =

∫

Γ
D

(∫ t

0

g(s) ds

)
ϕh ∀ϕh ∈ Qh. (2.39)

Proof. Consider the following auxiliary problem: for each t ∈ [0, T ], find v̂h(t) ∈ K
⊥Uh

h such that

∫

Ω
D

ǫv̂h(t) · gradϕh =

∫

Γ
D

g(t)ϕh ∀ϕh ∈ Qh.

According to [15, Lemma I.4.1(iii)] because of the inf-sup condition (2.38), this problem has a unique solution
and the following estimate holds true:

‖v̂h(t)‖H(curl;Ω) ≤ C ‖g(t)‖L2(Γ
D
), t ∈ [0, T ].
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Now, let ûh(t) :=
∫ t

0
v̂h(s) ds. From the above inequality it is immediate to show that ûh ∈ H1(0, T ;Uh) and

that it satisfies (2.39). �

Now, if we write uh = ũh + ûh, Problem 2.6 is equivalent to finding ũh : [0, T ] → Kh such that

∫

Ω
C

σ∂tũh(t) ·wh +

∫

Ω

1

µ
curl ũh(t) · curlwh

=
N∑

n=1

L̃n(wh)(In(t)− In(0)) +

∫

Ω

curlH0 ·wh −
∫

Ω
C

σ∂tûh(t) ·wh −
∫

Ω

1

µ
curl ûh(t) · curlwh ∀wh ∈ Kh,

(2.40)

ũh(0) = 0 in Ω. (2.41)

In what follows we prove that this problem has a unique solution.

Lemma 2.9. There exists a unique ũh ∈ H1(0, T ;Kh) solution of (2.40)–(2.41).

Proof. Let {Φi}Ki=1 be a basis of Kh such that the last functions furnish a basis {Φi}Ki=K1+1 of the subspace
{wh ∈ Kh : wh = 0 in Ω

D
}. We write

ũh(t,x) =

K∑

i=1

αi(t)Φi(x).

Let α(t) := (αi(t))1≤i≤K and b(t) := (bi(t))1≤i≤K , with

bi(t) :=

N∑

n=1

L̃n(Φi)(In(t)− In(0)) +

∫

Ω

curlH0 ·Φi −
∫

Ω
C

σ∂tûh(t) ·Φi −
∫

Ω

1

µ
curl ûh(t) · curlΦi.

We consider M := (Mij)1≤i,j≤K and K := (Kij)1≤i,j≤K given by

Mij :=

∫

Ω
C

σΦi ·Φj , Kij :=

∫

Ω

1

µ
curlΦi · curlΦj , 1 ≤ i, j ≤ K. (2.42)

Then, (2.40)–(2.41) reads as follows: Find α : [0, T ] → RK such that

Mα′(t) +Kα(t) = b(t),

α(0) = 0.
(2.43)

Because of the degenerate character of the problem, we decompose α(t) as follows:

α(t) =

[
α

1
(t)

α
2
(t)

]
,

with α1(t) := (αi(t))1≤i≤K1
. We use a similar decomposition for b(t) and matrices M and K to write

b(t) =

[
b

1
(t)

b2(t)

]
, M =

[
M

11
0

0 0

]
, K =

[
K11 K12

KT
12

K
22

]
. (2.44)

Provided K22 is invertible, (2.43) is equivalent to

M
11
α′

1
(t) = b

1
(t) + [K

12
K−1

22
KT

12
−K

11
]α

1
(t)−K

12
K−1

22
b

2
(t),

α
1
(0) = 0.
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Therefore, in such a case, the existence and uniqueness of solution of (2.43) follows from the fact that M
11

is
positive definite.

Thus, to conclude that (2.40)–(2.41) has a unique solution, we are going to check that K22 is positive definite.
First notice that

βT
K

22
β =

∫

Ω
D

1

µ

∣∣∣∣∣∣
curl




K∑

i=K1+1

βiΦi



∣∣∣∣∣∣

2

≥ 0.

Let us assume that the expression above vanishes. Then, wh :=
K∑

i=K
1
+1

βiΦi satisfies

wh ∈ N h(ΩD
), (2.45)

curlwh = 0 in ΩD, (2.46)

wh × n = 0 on ΓI, (2.47)
∫

Ω
D

ǫwh · gradϕh = 0 ∀ϕh ∈ Qh. (2.48)

Since Ω
D
\ Σ is pseudo Lipschitz and simply connected, as a consequence of (2.45) and (2.46) there exists

ϑh ∈ Lh(ΩD \ Σ)/R such that wh = g̃radϑh, where

Lh(ΩD
\ Σ) :=

{
̺h ∈ C(Ω

D
\ Σ) : ̺h|K ∈ P1(K) ∀K ∈ T Ω

D

h with [[̺h]]Σn
= constant, n = 1, . . . , N

}
,

with [[·]]Σn
denoting the jump across Σn. From (2.47) we obtain gradτ ϑh = 0 on Γ

I
\ Σ. Thus, ϑh is constant

on Γn
I
\ Σn, which implies that [[ϑh]]Σn

= 0, n = 1, . . . , N , and, whence, ϑh can be extended to a continuous
function in Ω

D
. By setting ϑh|Γ1

I
= 0 we obtain ϑh ∈ Qh and, from (2.48), ϑh is a constant in Ω

D
and then

ŵh = 0 in ΩD. Therefore, we conclude that K22 is positive definite.
Thus, we have shown that (2.43) has a unique solution α ∈ H1(0, T ;RK) and, consequently, (2.40)–(2.41)

also has a unique solution ũh ∈ H1(0, T ;Kh). �

Finally, notice that for any solution to Problem 2.6, the Lagrange multiplier ξh necessarily vanishes, as in
the continuous case.

Lemma 2.10. If (uh, ξh) is a solution to Problem 2.6, then ξh ≡ 0.

Proof. Let ξ̃h be extension to Ω
C
of ξh defined by ξ̃h|Ωk

C
= ξh|Γk

I
, k = 1, . . . ,M . Then, grad ξ̃h ∈ Uh and

L̃n(grad ξ̃h) = 0, n = 1, . . . , N . Furthermore,

∫

Ω
C

σ∂tuh · grad ξ̃h = 0 and

∫

Ω

curlH0 · grad ξ̃h = 0, because

grad ξ̃h vanishes in Ω
C
and curlH0 vanishes in Ω

D
. Hence, taking wh = grad ξ̃h in (2.35), we obtain that∫

Ω
D

ǫ|grad ξh|2 = 0. Therefore, ξh is a constant in Ω
D
and, since ξh|Γ1

I
= 0, we have ξh ≡ 0. �

Now, we are in a position to conclude the following result.

Theorem 2.11. Problem 2.6 has a unique solution (uh, ξh), with uh ∈ H1(0, T ;Uh) and ξh = 0.

Proof. Let uh := ûh + ũh, with ûh and ũh being respective solutions of (2.39) and (2.40)–(2.41), then, for
any ξh : [0, T ] → Qh, (uh, ξh) satisfies (2.35)–(2.37), the first equation only for wh ∈ Kh. Hence, because
of [15, Lemma I.4.1(ii)] and the inf-sup condition (2.38), for each t ∈ [0, T ] there exists a unique ξh(t) ∈ Qh

such that (2.35) holds for all wh ∈ Uh. Moreover, according to Lemma 2.10, ξh = 0. Finally, the uniqueness
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follows from the fact that (uh, ξh) is a solution to Problem 2.6 if and only if ũh = u− ûh is the unique solution
to (2.40)–(2.41) (cf. Lemma 2.9) and ξh = 0. �

Our next goal is to obtain error estimates for this semi-discrete scheme. With this aim, from now on, we
assume that the solution to Problem 2.2 satisfies u ∈ H1(0, T ; Hr(curl; Ω)) for r ∈

(
1
2 , 1
]
, where Hr(curl; Ω) :={

G ∈ Hr(Ω)3 : curlG ∈ Hr(Ω)3
}
. Let IN

h denote the Nédélec interpolant operator. According to [7, Lemma 2.2],

we have that if w ∈ Hr(curl; Ω) ∩ U , then IN
h w ∈ Uh. We decompose the error of u as follows

u(t)− uh(t) = ρh(t)− δh(t), (2.49)

with
ρh(t) := u(t)− IN

h u(t) and δh(t) := IN
h u(t)− uh(t).

First, we prove the following auxiliary error estimate.

Lemma 2.12. Let u be the solution to Problem 2.2 and uh that to Problem 2.6. If u ∈ H1(0, T ; Hr(curl; Ω))
with r ∈

(
1
2 , 1
]
, then there exists a constant C > 0, independent of h, such that

sup
0≤t≤T

‖δh(t)‖2L2(Ω
C
)3 + sup

0≤t≤T
‖ curl δh(t)‖2L2(Ω)3 +

∫ T

0

‖∂tδh(t)‖2L2(Ω
C
)3 dt

≤ C

{
sup

0≤t≤T
‖ curlρh(t)‖2L2(Ω)3 +

∫ T

0

‖∂tρh(t)‖2H(curl;Ω) dt

}
.

Proof. Since ξ = 0 and ξh = 0 (cf. Theorem 2.4 and 2.11), subtracting the first equation in Problem 2.6 from
that in Problem 2.2, we have

∫

Ω
C

σ∂t(u(t)− uh(t)) ·wh +

∫

Ω

1

µ
curl(u(t)− uh(t)) · curlwh = 0 ∀wh ∈ Uh. (2.50)

On the other hand, the assumed regularity of u implies that ∂t
(
IN
h u(t)

)
= IN

h (∂tu(t)) a.e. t ∈ [0, T ] (see
Theorems 111 and 113 from [23]). Then, taking successively wh = δh(t) and wh = ∂tδh(t) and using the
decomposition (2.49), the lemma follows by applying standard arguments for parabolic problems (see, for
instance, [1, Lemma 5.7]). �

Now, we are in a position to prove the following error estimates.

Theorem 2.13. Let u be the solution to Problem 2.2 and uh that to Problem 2.6. If u ∈ H1(0, T ; Hr(curl; Ω))
with r ∈

(
1
2 , 1
]
, then there exists a constant C > 0, independent of h, such that

sup
0≤t≤T

‖u(t)− uh(t)‖2L2(Ω
C
)3 + sup

0≤t≤T
‖ curlu(t)− curluh(t)‖2L2(Ω)3 +

∫ T

0

‖∂t(u(t)− uh(t))‖2L2(Ω
C
)3 dt

≤ C h2r

{
sup

0≤t≤T
‖u(t)‖2Hr(curl;Ω) +

∫ T

0

‖∂tu(t)‖2Hr(curl;Ω) dt

}

≤ C h2r‖u‖2H1(0,T ;Hr(curl;Ω)).

Proof. Classical estimates for the Nédélec interpolant lead to

‖ρh(t)‖H(curl;Ω) ≤ C hr‖u(t)‖Hr(curl;Ω), ‖∂tρh(t)‖H(curl;Ω) ≤ C hr‖∂tu(t)‖Hr(curl;Ω). (2.51)

Thus, the result follows from the decomposition (2.49) by using these estimates and the previous lemma. �
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Remark 2.14. This theorem allows us to obtain error estimates for the physical variables of interest in most
applications, E|Ω

C
and H. For the first one, we define Eh(t,x) := ∂tuh(t,x) and we have the following error

estimate:

∫ T

0

‖E(t)−Eh(t)‖2L2(Ω
C
)3 dt ≤ C h2r‖u‖2H1(0,T ;Hr(curl;Ω)).

To approximate H, we make use of (2.2) and define Hh(t,x) := H0(x)− 1
µ curluh(t,x). Then, we have

sup
0≤t≤T

‖H(t)−Hh(t)‖2L2(Ω)3 ≤ C h2r‖u‖2H1(0,T ;Hr(curl;Ω)).

Remark 2.15. The assumption u ∈ H1(0, T ; Hr(curl; Ω)) does not seem realistic when the magnetic per-
meability of conductor and dielectric are not the same (cf. (2.3)). However, Theorem 2.13 holds true if this
assumption is substituted by u|Ω

C
∈ H1(0, T ; Hr (curl; ΩC)) and u|Ω

D
∈ H1(0, T ; Hr (curl; ΩD)).

2.2. Time discretization

We consider a uniform partition of [0, T ], tk := k∆t, k = 0, . . . ,M , with time step ∆t := T
M . A fully discrete

approximation of Problem 2.2 by means of a backward Euler scheme reads as follows:

Problem 2.16. Find um
h ∈ Uh and ξmh ∈ Qh, m = 1, . . . ,M , such that

∫

Ω
C

σ
um
h − um−1

h

∆t
·wh +

∫

Ω

1

µ
curlum

h · curlwh +

∫

Ω
D

ǫwh · grad ξmh

=

N∑

n=1

L̃n(wh)(In(tm)− In(0)) +

∫

Ω

curlH0 ·wh ∀wh ∈ Uh,

∫

Ω
D

ǫum
h · gradϕh =

∫

Γ
D

(∫ tm

0

g(s) ds

)
ϕh ∀ϕh ∈ Qh,

u0
h = 0 in Ω.

We proceed as for the semi-discrete scheme. First, the same arguments allows us to show that any solution
of Problem 2.16 satisfies ξmh = 0, m = 1, . . . ,M . Secondly, let ûh ∈ H1(0, T ;Uh) be as above so that it satisfies
(2.39). Let û

m
h := ûh(t

m) and um
h = ũ

m
h + û

m
h . Then, it is clear that Problem 2.16 has a unique solution if

only if there exist unique ũ
m
h ∈ Kh, m = 1, . . . ,M , such that

∫

Ω
C

σũm
h ·wh +∆t

∫

Ω

1

µ
curl ũ

m
h · curlwh =

∫

Ω
C

σũm−1
h ·wh −

∫

Ω
C

σ(ûm
h − û

m−1
h ) ·wh

−∆t

∫

Ω

1

µ
curl û

m
h · curlwh +∆t

N∑

n=1

L̃n(wh)(In(tm)− In(0)) + ∆t

∫

Ω

curlH0 ·wh ∀wh ∈ Kh,

with ũ
0
h = 0.

To prove that this problem has a unique solution, we proceed as in the proof of Lemma 2.9. We write ũ
m
h in

the basis {Φi}Ki=1 of Kh, ũ
m
h =

∑K
i=1 α

m
i Φi, and obtain the following matrix form of the problem above:

M̃αm = Mαm−1 +∆tbm,



AN EDDY CURRENT PROBLEM WITH NON-LOCAL SOURCE CONDITIONS 17

with bm ∈ RK beging the vector arising from the right hand side of the problem, M as in (2.42) and

M̃ := M+∆tK =

[
M11 +∆tK11 ∆tK12

∆tKT
12

∆tK22

]
,

where we have used the block matrices from (2.44). Since K is semi-positive definite and M
11

and K
22

are

positive definite, it is easy to check that M̃ is also positive definite. Thus, we conclude that Problem 2.16 has
a unique solution.

Our next goal is to obtain error estimates for this fully-discrete scheme. With this aim, we write

∂tu(tk)−
uk
h − uk−1

h

∆t
=

ρk
h − ρk−1

h

∆t
+

δkh − δk−1
h

∆t
− τ k, (2.52)

where

ρk
h := u(tk)− IN

h u(tk), δkh := IN
h u(tk)− uk

h and τ k :=
u(tk)− u(tk−1)

∆t
− ∂tu(tk).

Lemma 2.17. Let u be the solution to Problem 2.2 and uk
h, k = 1, . . . ,M , that to Problem 2.16. If u ∈

H1(0, T ; Hr(curl; Ω)) with r ∈
(
1
2 , 1
]
, then there exists a constant C > 0, independent of h and ∆t, such that

max
1≤k≤M

‖δkh‖2L2(Ω
C
)3 + max

1≤k≤M
‖ curl δkh‖2L2(Ω)3 +∆t

M∑

k=1

∥∥∥∥∥
δkh − δk−1

h

∆t

∥∥∥∥∥

2

L2(Ω
C
)3

≤ C


 max

1≤k≤M
‖ curlρk

h‖2L2(Ω)3 +∆t

M∑

k=1



‖τ k‖2L2(Ω

C
)3 +

∥∥∥∥∥
ρk
h − ρk−1

h

∆t

∥∥∥∥∥

2

L2(Ω
C
)3






 .

Proof. Since ξ = 0 and ξkh = 0, k = 1, . . . ,M , subtracting the first equation in Problem 2.16 from that in
Problem 2.2, we obtain

∫

Ω
C

σ

(
∂tu(tk)−

uk
h − uk−1

h

∆t

)
·wh +

∫

Ω

1

µ
curl(u(tk)− uk

h) · curlwh = 0 ∀wh ∈ Uh.

Then, using (2.52) and the fact that u(tk) − uk
h = δkh + ρk

h, the lemma follows from standard arguments for
parabolic problems (see, for instance, [1, Lemma 6.1]). �

Now, we are in a position to write one of the main results of this paper.

Theorem 2.18. Let u be the solution to Problem 2.2 and uk
h, k = 1, . . . ,M , that to Problem 2.16. If

u ∈ H1(0, T ; Hr(curl; Ω)) for r ∈
(
1
2 , 1
]
, and u|Ω

C
∈ H2(0, T ; L2(Ω

C
)3), then there exists a constant C > 0,

independent of h and ∆t, such that

max
1≤k≤M

‖u(tk)− uk
h‖2L2(Ω

C
)3 + max

1≤k≤M
‖ curl(u(tk)− uk

h)‖2L2(Ω)3 +∆t
M∑

k=1

∥∥∥∥∥∂tu(tk)−
uk
h − uk−1

h

∆t

∥∥∥∥∥

2

L2(Ω
C
)3

≤ C

{
(∆t)2

∫ T

0

‖∂ttu(t)‖2L2(Ω
C
)3 dt+ h2r sup

0≤t≤T
‖u(t)‖2Hr(curl;Ω) + h2r

∫ T

0

‖∂tu(t)‖2Hr(curl;Ω) dt

}

≤ C
{
(∆t)2‖u‖2H2(0,T ;L2(Ω

C
)3) + h2r‖u‖2H1(0,T ;Hr(curl;Ω))

}
.
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Proof. A Taylor expansion shows that

M∑

k=1

‖τ k‖2L2(Ω
C
)3 =

M∑

k=1

∥∥∥∥∥
1

∆t

∫ tk

tk−1

(tk − s)∂ttu(s) ds

∥∥∥∥∥

2

L2(Ω
C
)3

≤ ∆t

∫ T

0

‖∂ttu(t)‖2L2(Ω
C
)3 dt.

Moreover,

M∑

k=1

∥∥∥∥∥
ρk
h − ρk−1

h

∆t

∥∥∥∥∥

2

L2(Ω
C
)3

≤ 1

∆t

∫ T

0

‖∂tρh(t)‖2L2(Ω
C
)3 dt.

Since u(tk)− uk
h = δkh + ρk

h, the result follows from (2.51), (2.52) and the previous lemma. �

Remark 2.19. As in the semi-discrete scheme, if we approximate the electric field E and the magnetic field

H at each time tk, k = 1, . . . ,M , by taking Ek
h :=

u
k
h−u

k−1
h

∆t and Hk
h := H0 − 1

µ curluk
h, respectively, then

∆t

M∑

k=1

∥∥∥E(tk)−Ek
h

∥∥∥
2

L2(Ω
C
)3

≤ C
{
(∆t)2‖u‖2H2(0,T ;L2(Ω

C
)3) + h2r‖u‖2H1(0,T ;Hr(curl;Ω))

}
,

max
1≤k≤M

‖H(tk)−Hk
h)‖2L2(Ω)3 ≤ C

{
(∆t)2‖u‖2H2(0,T ;L2(Ω

C
)3) + h2r‖u‖2H1(0,T ;Hr(curl;Ω))

}
.

Remark 2.20. The same observation made in Remark 2.15 holds in this case.

3. Eddy current problem with voltage drops as boundary data

The goal of this section is to analyze the transient eddy current problem with voltage drops as boundary
data. We consider equations (1.1)–(1.7) together with (1.9), for n = 1, . . . , N , and (1.10)–(1.12). Notice that
the only difference with respect the problem studied in the previous section is that (1.9) replaces (1.8). As in the
previous section, we assume that the initial data H0 satisfies (2.1) and that g ∈ L2(0, T ;L2(Γ

D
)). Furthermore,

we assume that Vn ∈ H1(0, T ), n = 1, . . . , N .

Let u(t) :=
∫ t

0
E(s) ds as above. Integrating in time (1.9), we have n × u(t) × n = −

∫ t

0
gradτ V (s) ds =

−gradτ

(∫ t

0
V (s) ds

)
on ∂Ω. Thus, according to (2.11), we have that Ln(u(t)) =

∫ t

0
Vn(s) ds, n = 1, . . . , N ,

t ∈ [0, T ].
Therefore, the transient eddy current problem with voltage drops as boundary data written in terms of u is

given by equations (2.3)–(2.8) and

Ln(u(t)) =

∫ t

0

Vn(s) ds, n = 1, . . . , N, t ∈ [0, T ]

(the latter instead of (2.9)), with the initial condition (2.10).
Similar arguments to those used in Section 2 allow us to obtain the following problem:
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Problem 3.1. Given g ∈ L2(0, T ;L2(Γ
D
)), Vn ∈ H1(0, T ), n = 1, . . . , N , and an initial condition H0 satisfying

(2.1), find u ∈ L2(0, T ;U) with u|Ω
C
∈ H1(0, T ; HΓ

C
(curl; Ω

C
)) and ξ ∈ L2(0, T ;M(Ω

D
)) such that

Ln(u(t)) =

∫ t

0

Vn(s) ds, n = 1, . . . , N, a.e. t ∈ [0, T ], (3.1)

∫

Ω
C

σ∂tu(t) ·w +

∫

Ω

1

µ
curlu(t) · curlw +

∫

Ω
D

ǫw · grad ξ(t) =

∫

Ω

curlH0 ·w ∀w ∈ U0, (3.2)

∫

Ω
D

ǫu(t) · gradϕ =

∫

Γ
D

(∫ t

0

g(s) ds

)
ϕ ∀ϕ ∈ M(Ω

D
), (3.3)

u(0) = 0 in Ω, (3.4)

where U0 = {w ∈ U : Ln(w) = 0, n = 1, . . . , N}.
A formulation of the same problem in terms of the magnetic field H was analyzed in [5]. In particular, it

was shown in this reference that equations (1.1)–(1.7) with voltage drops Vn(t), n = 1, . . . , N , as boundary data
lead to a well-posed problem (cf. [5, Remark 3.7]) which consists of finding H ∈ L2(0, T ;X )∩H1(0, T ;HX ) such
that

∫

Ω

µ∂tH(t) ·G+

∫

Ω
C

1

σ
curlH(t) · curlG = −

N∑

n=1

Vn(t)〈curlG · n, 1〉Γn
J

∀G ∈ X , (3.5)

H(0) = H0. (3.6)

Defining E
C
(t) := 1

σ curlH(t) in Ω
C
, the arguments from [5, Theorem 3.8] can be repeated to prove that H(t)

and E
C
(t) satisfy (2.17)–(2.21), a.e. t ∈ (0, T ).

Theorem 3.2. Problem 3.1 has a unique solution (u, ξ) and the Lagrange multiplier ξ vanishes.

Proof. The existence of solution follows by repeating the arguments of the proof of Theorem 2.4. In fact, now
we begin with the solution H of (3.5)–(3.6) (instead of that of (2.14)–(2.16)). Repeating the steps of the proof
of Theorem 2.4, we define E

C
(t) := 1

σ curlH(t) in Ω
C
and show that H(t) and E

C
(t) satisfy (2.17)–(2.21) a.e.

t ∈ (0, T ). Next, we define E
D
(t), t ∈ [0, T ], as the solution of (2.23)–(2.27), E(t) as in (2.28) and u as in (2.29).

Proceeding as in the proof of Theorem 2.4 and using the fact that Ln(w) = 0 for w ∈ U0, we prove that (u, 0)
satisfies (3.2)–(3.4). Thus, to conclude the existence of solution, there only remains to prove that u satisfies
(3.1).

To prove this, note that as a consequence of (2.18), (2.23), (2.24) and (2.20), there exists a function Ṽ

defined in Ω up to a constant, such that Ṽ |∂Ω is a surface potential of the tangential component of E; namely,

n × E × n = −gradτ Ṽ on ∂Ω. On the other hand, (2.21) implies that Ṽ is constant on each connected
component of Γ

J
and Γ

E
.

From (3.5), using successively, the definition of E, a Green’s formula, (2.20), (1.2) and Lemma 2.1, we have

−
N∑

n=1

Vn(t)〈curlG · n, 1〉Γn
J
=

∫

Ω

µ∂tH(t) ·G+

∫

Ω
C

1

σ
curlH(t) · curlG

=

∫

Ω

µ∂tH(t) ·G+

∫

Ω

E(t) · curlG

= 〈E(t)× n,G〉 = −〈gradτ Ṽ (t)× n,G〉

= −
N∑

n=1

(
Ṽ (t)|Γn

J
− Ṽ (t)|Γn

E

)
〈curlG · n, 1〉Γn

J
∀G ∈ X .
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Next, we take as test function Gm ∈ X satisfying 〈curlGm ·n, 1〉Γn
J
= δmn, m,n = 1, . . . , N (see [5, Remark 5.3]

for the existence of such Gm). By so doing, we obtain Ln(E(t)) = Ṽ (t)|Γn
J
− Ṽ (t)|Γn

E
= Vn(t), n = 1, . . . , N ,

from which it follows (3.1).
Finally, the proof of uniqueness of solution is identical to that in Theorem 2.4. �

Remark 3.3. As in Section 2, we conclude that we can use the simplest choice of data g = 0 on Γ
D
without

affecting the quantities of main interest, namely, H in the whole domain Ω and E in the conducting domain
ΩC.

Next step is the space discretization of Problem 3.1. Let Uh and Qh be as in Subsection 2.1. Let U0
h :=

{wh ∈ Uh : L̃n(wh) = 0, n = 1, . . . , N} with L̃n as defined in (2.34). The space-discretization reads as follows:

Problem 3.4. Given g ∈ L2(0, T ;L2(ΓD)), Vn ∈ H1(0, T ), n = 1, . . . , N , and H0 satisfying (2.1), find uh :
[0, T ] → Uh and ξh : [0, T ] → Qh such that

L̃n(uh(t)) =

∫ t

0

Vn(s) ds, n = 1, . . . , N,

∫

Ω
C

σ∂tuh(t) ·wh +

∫

Ω

1

µ
curluh(t) · curlwh +

∫

Ω
D

ǫwh · grad ξh(t) =

∫

Ω

curlH0 ·wh ∀wh ∈ U0
h,

∫

Ω
D

ǫuh(t) · gradϕh =

∫

Γ
D

(∫ t

0

g(s) ds

)
ϕh ∀ϕh ∈ Qh,

uh(0) = 0 in Ω.

To prove that this problem is well-posed, our first step is to build an auxiliary function ǔh ∈ H1(0, T ;Uh)

satisfying L̃n(ǔh(t)) =
∫ t

0
Vn(s) ds, n = 1, . . . , N , t ∈ [0, T ]. To define ǔh, first we choose functions Φm ∈ Uh

such that L̃n(Φm) = δmn, m,n = 1, . . . , N ; such Φm are easy to construct once a basis of Uh is given (see
Remark 4.1 below). Then, we define

ǔh(t) :=
N∑

m=1

∫ t

0

Vm(s) dsΦm. (3.7)

Hence,

L̃n(ǔh(t)) =

N∑

m=1

∫ t

0

Vm(s) ds L̃n(Φm) =

∫ t

0

Vn(s) ds.

Moreover, since Vn ∈ H1(0, T ), n = 1, · · · , N , we conclude that ǔh ∈ H1(0, T ;Uh).
Now, if we write uh = ūh + ǔh, Problem 3.4 is equivalent to finding ūh : [0, T ] → U0

h and ξh : [0, T ] → Qh

such that
∫

Ω
C

σ∂tūh(t) ·wh +

∫

Ω

1

µ
curl ūh(t) · curlwh +

∫

Ω
D

ǫwh · grad ξh(t)

=

∫

Ω
C

σ∂tǔh(t) ·wh −
∫

Ω

1

µ
curl ǔh(t) · curlwh +

∫

Ω

curlH0 ·wh ∀wh ∈ U0
h,

∫

Ω
D

ǫūh(t) · gradϕh =

∫

Γ
D

(∫ t

0

g(s) ds

)
ϕh −

∫

Ω
D

ǫǔh(t) · gradϕh ∀ϕh ∈ Qh,

ūh(0) = 0 in Ω.

The well-posedness of this problem is obtained by following the same arguments used for Problem 2.6 in
Section 2.1. The main difference is that now we need a discrete inf-sup condition similar to (2.38), but taking
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supremum in U0
h instead of Uh. However, for the proof of (2.38) it was used a function wh = grad ϕ̃h which

actually lies in U0
h. Altogether, we conclude that Problem 3.4 has a unique solution.

Next, the arguments in Section 2.1 can be readily adapted to obtain the error estimate. With this aim, we
need the following result.

Lemma 3.5. If w ∈ Hr(curl; Ω) ∩ U then L̃n(IN
h w) = Ln(w), n = 1, . . . , N .

Proof. We recall that for w ∈ U there exists a unique W ∈ W such that n × w × n = −gradτ W on ∂Ω
and Ln(w) = W |Γn

E
−W |Γn

J
, n = 1, . . . , N (cf. (2.11)). On the other hand, for w ∈ Hr(curl; Ω) we have that

w|∂Ω ∈ Hr−1/2(∂Ω)3 and, hence, W ∈ Hr+1/2(∂Ω). Thus, w and W are smooth enough to write

n× IN
h w × n = IN2D

h (n×w × n) = −IN2D

h (gradτ W ) = −gradτ (IL
hW ) on ∂Ω,

where IN2D

h and IL
h denote the two-dimensional Nédélec and Lagrange interpolant operators, respectively. Then,

L̃n(IN
h w) =

∫

Cn

IN
h w · t = −

∫

Cn

gradτ (IL
hW ) · t = IL

hW |Γn
E
− IL

hW |Γn
J
= W |Γn

E
−W |Γn

J
= Ln(w).

Thus we conclude the proof. �

Now we are in a position to prove the following error estimate.

Theorem 3.6. Let u be the solution to Problem 3.1 and uh that to Problem 3.4. If u ∈ H1(0, T ; Hr(curl; Ω))
with r ∈

(
1
2 , 1
]
, then there exists a constant C > 0, independent of h, such that

sup
0≤t≤T

‖u(t)− uh(t)‖2L2(Ω
C
)3 + sup

0≤t≤T
‖ curlu(t)− curluh(t)‖2L2(Ω)3 +

∫ T

0

‖∂t(u(t)− uh(t))‖2L2(Ω
C
)3 dt

≤ C h2r

{
sup

0≤t≤T
‖u(t)‖2Hr(curl;Ω) +

∫ T

0

‖∂tu(t)‖2Hr(curl;Ω) dt

}

≤ C h2r‖u‖2H1(0,T ;Hr(curl;Ω)).

Proof. As a first step, we need to prove the analogue to Lemma 2.12 for u and uh being solution to Problem 3.1
and 3.4, respectively. The only difference in this proof is that, now, the test functions wh in (2.50) lie in U0

h

instead of Uh. Therefore, we need to ensure that δh(t) := IN
h (u(t))−uh(t) and ∂tδh(t) belong to U0

h; namely,

L̃n(δh(t)) = L̃n(∂tδh(t)) = 0. The former follows from Lemma 3.5 and the fact that Ln(u(t)) = L̃n(uh(t))
(cf. the first equations in Problem 3.1 and 3.4). For the latter we use the same arguments and the assumption
u ∈ H1(0, T ; Hr(curl; Ω)). The rest of the proof follows identically as that of Theorem 2.13. �

Finally, we introduce the fully discrete approximation of Problem 3.1 defined as follows:

Problem 3.7. Given Vn ∈ H1(0, T ), n = 1, . . . , N , and H0 satisfying (2.1), find um
h ∈ Uh and ξmh ∈ Qh,

m = 1, . . . ,M , such that

L̃n(uh(tm)) =

∫ tm

0

Vn(s) ds, n = 1, . . . , N,

∫

Ω
C

σ
um
h − um−1

h

∆t
·wh +

∫

Ω

1

µ
curlum

h · curlwh +

∫

Ω
D

ǫwh · grad ξmh =

∫

Ω

curlH0 ·wh ∀wh ∈ U0
h,

∫

Ω
D

ǫum
h · gradϕh =

∫

Γ
D

(∫ tm

0

g(s) ds

)
ϕh ∀ϕh ∈ Qh,

u0
h = 0 in Ω.
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This problem has a unique solution. In fact, taking ǔm
h := ǔh(t

m), with ǔh as in (3.7), and writing
um
h = ūm

h + ǔm
h , the m-th step of Problem 3.7 is equivalent to find ūm

h ∈ U0
h and ξmh ∈ Qh such that

∫

Ω
C

σūm
h ·wh +∆t

∫

Ω

1

µ
curl ūm

h · curlwh +∆t

∫

Ω
D

ǫwh · grad ξmh

=

∫

Ω
C

σūm−1
h ·wh +∆t

∫

Ω

curlH0 ·wh −
∫

Ω
C

σ(ǔm
h − ǔm−1

h ) ·wh −∆t

∫

Ω

1

µ
curl ǔm

h · curlwh ∀wh ∈ U0
h,

∆t

∫

Ω
D

ǫūm
h · gradϕh = ∆t

∫

Γ
D

(∫ tm

0

g(s) ds

)
ϕh +∆t

∫

Ω
D

ǫǔm
h · gradϕh ∀ϕh ∈ Qh.

The well-posedness of this problem follows identically as that of Problem 2.16. The same happens with the
error estimates analogous to those in Theorem 2.18. Therefore, we conclude the following result.

Theorem 3.8. Let u be the solution to Problem 3.1 and uk
h, k = 1, . . . ,M , that to Problem 3.7. If u ∈

H1(0, T ; Hr(curl; Ω)) for r ∈
(
1
2 , 1
]
and u|Ω

C
∈ H2(0, T ; L2(ΩC)

3), then there exists a constant C > 0, indepen-
dent of h and ∆t, such that

max
1≤k≤M

‖u(tk)− uk
h‖2L2(Ω

C
)3 + max

1≤k≤M
‖ curl(u(tk)− uk

h)‖2L2(Ω)3 +∆t
M∑

k=1

∥∥∥∥∥∂tu(tk)−
uk
h − uk−1

h

∆t

∥∥∥∥∥

2

L2(Ω
C
)3

≤ C

{
(∆t)2

∫ T

0

‖∂ttu(t)‖2L2(Ω
C
)3 dt+ h2r sup

0≤t≤T
‖u(t)‖2Hr(curl;Ω) + h2r

∫ T

0

‖∂tu(t)‖2Hr(curl;Ω) dt

}

≤ C
{
(∆t)2‖u‖2H2(0,T ;L2(Ω

C
)3) + h2r‖u‖2H1(0,T ;Hr(curl;Ω))

}
.

Remark 3.9. As in the case of Problem 2.16, we approximate the electric field E and the magnetic field H

at each time tk, k = 1, . . . ,M , by means of Ek
h :=

u
k
h−u

k−1
h

∆t and Hk
h := 1

µ curluk
h − H0, respectively. Then,

Theorem 3.8 yields the following error estimates:

∆t

M∑

k=1

∥∥∥E(tk)−Ek
h

∥∥∥
2

L2(Ω
C
)3

≤ C
{
(∆t)2‖u‖2H2(0,T ;L2(Ω

C
)3) + h2r‖u‖2H1(0,T ;Hr(curl;Ω))

}
,

max
1≤k≤M

‖H(tk)−Hk
h)‖2L2(Ω)3 ≤ C

{
(∆t)2‖u‖2H2(0,T ;L2(Ω

C
)3) + h2r‖u‖2H1(0,T ;Hr(curl;Ω))

}
.

Remark 3.10. The same observation made in Remark 2.15 holds in this case.

Let us remark that the constraints L̃n(uh(tm)) =
∫ tm
0

Vn(s) ds, n = 1, . . . , N , can be imposed by means of a
Lagrange multiplier. In such a case, we are led to the following problem:
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Problem 3.11. Given Vn ∈ H1(0, T ), n = 1, . . . , N , and H0 satisfying (2.1), find um
h ∈ Uh, ξ

m
h ∈ Qh and

Im = (Im1 , . . . , ImN ) ∈ RN , m = 1, . . . ,M , such that

∫

Ω
C

σ
um
h − um−1

h

∆t
·wh +

∫

Ω

1

µ
curlum

h · curlwh +

∫

Ω
D

ǫwh · grad ξmh +

N∑

n=1

Imn L̃n(wh)

=

∫

Ω

curlH0 ·wh ∀wh ∈ Uh,

∫

Ω
D

ǫum
h · gradϕh =

∫

Γ
D

(∫ tm

0

g(s) ds

)
ϕ ∀ϕh ∈ Qh,

N∑

n=1

L̃n(u
m
h ) Jn =

N∑

n=1

∫ t

0

Vn(s) ds Jn ∀J = (J1, . . . , JN ) ∈ RN ,

u0
h = 0 in Ω.

The following lemma shows that this and Problem 3.7 are actually equivalent:

Lemma 3.12. Given Vn ∈ H1(0, T ), n = 1, . . . , N , and H0 satisfying (2.1), (um
h , ξmh ), m = 1, . . . ,M , is the

solution to Problem 3.4 if and only if there exist Im ∈ RN such that (um
h , ξmh , Im), m = 1, . . . ,M , is the unique

solution to Problem 3.11.

Proof. The result is a consequence of the existence and uniqueness of the solution to Problem 3.7 and the fact

that the bilinear form c : Uh × RN → R defined by c(wh, J) :=
∑N

n=1 L̃n(wh) Jn satisfies a discrete inf-sup
condition, see [7, Lemma 3.3]. �

The Lagrange multipliers Imn have a physical meaning. In fact, the equations of Problem 3.11 are exactly the
same as those of Problem 2.16, with Imn instead of In(tm) − In(0). Therefore by solving Problem 3.11, we can
compute the input currents on each conductor Ωn

C
by means of In(tm) = In(0) + Imn (provided In(0) is known).

4. Numerical experiments

In this section we present some numerical results obtained with a Matlab code implementing the numerical
method described above. First, we give some details about the computer implementation. Then, we present
a test with a known analytical solution which we use to validate the computer code and to check the error
estimates proved above. Finally, we apply the method to a problem in a more realistic geometry.

4.1. Implementation issues

We have implemented in our codes matrix forms of Problem 2.6 and 3.11. In both cases we need a basis of
Uh. We have used the following one taken from [7, Section 3]

{
Φe : e ∈ E̊h

}
∪
{
gradϕv : v ∈ V

Γ
D

h

}
∪
{
gradϕJ

n : n = 1, . . . , N
}
∪
{
gradϕE

n : n = 1, . . . , N
}
,

where

• E̊h is the set of inner edges of the mesh Th (i.e., edges e * ∂Ω) and, for each e ∈ E̊h, Φe ∈ N h(Ω) is
the Nedéléc basis function associated to e;

• V
Γ
D

h is the set of vertices of the mesh Th lying on the open surface ΓD and, for all vertices v ∈ Ω̄D,
ϕv ∈ Lh(ΩD

) is the piecewise linear function associated to v;
• ϕJ

n is the piecewise linear function such that ϕJ
n = 1 for all vertices of the mesh Th lying on the closed

surface Γ̄n
J

and ϕJ
n = 0 otherwise;
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• ϕE
n is the piecewise linear function such that ϕE

n = 1 for all vertices of the mesh Th lying on the closed
surface Γ̄n

E
and ϕE

n = 0 otherwise.

In spite of the fact that L̃n is defined by means of an integral on a particular curve Cn (cf. (2.34)), in practice,

there is no need to construct such curves. In fact, to impose the constraint L̃n(uh(tk)) =
∫ tk
0

Vn(s) ds, it is

enough to evaluate L̃n for the basis functions of Uh by means of (2.34). Thus, we obtain

L̃n(wh) =





0, if wh = Φe,

0, if wh = gradϕv for v ∈ V
Γ
D

h ,
δmn, if wh = gradϕJ

m,
−δmn, if wh = gradϕE

m.

On the other hand, a basis of Qh is given by

{
ϕv : v ∈ V

Γ
D

h

}
∪ {ϕv : v ∈ Ω

D
} ∪ {ϕk : k = 2, . . . ,M} ,

where ϕv are as defined above and ϕk is the piecewise linear function such that ϕk = 1 for all vertices of the
mesh Th lying on the closed surface Γ̄k

I
, k = 2, . . . ,M , and vanishing at all the other vertices.

Remark 4.1. Let us recall that to prove that Problem 3.4 is well-posed, we have used functions Φm satisfying

L̃n(Φm) = δmn, m,n = 1, . . . , N . An example of one such Φm is defined by Φm := gradϕJ
m, where ϕJ

m is as
above.

4.2. A test with known analytical solution

To test our codes, we applied the proposed method to the same problem solved in [6] in harmonic regime.
This is the reason why we only give here a brief description and refer the reader to the quoted paper for further
details. Figure 2 shows a sketch of the domain where the conducting part Ω

C
and the whole domain Ω are

E

H

I(t) = I ( t)cos w0

Dielectric ( )W D

GJ

1

GE
Conductor (      )CW

Figure 2. Sketch of the domain in the analytical example.

coaxial cylinders of respective radius R
C
= 0.25m and R

D
= 0.5m and height A = 0.5m. First, we solve the

problem with input intensity as boundary data. An alternating current of intensity I(t) = I0 cos(ωt) enters the
conductor through Γ1

J
and crosses Ω

C
in the axial direction; I0 denotes the amplitude of the intensity and ω the

angular frequency. Under these assumptions, by using a cylindrical coordinate system, it is easy to obtain an
analytical solution of the eddy current problem in Ω by writing all the fields in the form F (t,x) = Re(eiωtF(x)).
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To solve Problem 2.16 we also need the data g ∈ L2(0, T ; L2(Γ
D
)). However, as stated above, the most relevant

physical quantities H and E|Ω
C
are independent of the chosen g. Because of this, we have solved Problem 2.16

by means of the easiest choice: g = 0.
The numerical method has been used on several successively refined meshes and the time-step has been conve-

niently reduced to analyze the convergence with respect to both, the mesh-size and the time-step simultaneously.
We have compared the obtained numerical solutions with the analytical one.

In order to show the linear convergence with respect to the mesh-size and the time-step, we have computed
the relative errors of the different fields corresponding to h

n ,
∆t
n , n = 1, . . . , 7. Figure 3 shows log-log plots of

the relative error for the physical variables of interest, the magnetic field and the electric field in the conductor
domain, in the discrete norms considered in Remark 2.19 versus the number of degrees of freedom (d.o.f.).
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Figure 3.
max

1≤k≤M
‖H(tk)−H

k
h)‖L2(Ω)3

max
1≤k≤M

‖H(tk)‖L2(Ω)3
and

√
∆t

{

∑M
k=1‖E(tk)−E

k
h‖2

L2(Ω
C
)3

}1/2

√
∆t

{

∑M
k=1‖E(tk)‖2

L2(Ω
C
)3

}1/2 versus number of d.o.f.

(log-log scale).

Secondly we consider voltage drops as boundary data for the same problem. In this case it is easy to show
that the corresponding voltage drop is given by V (t) = Re(eiωtV) (see [3, Section 8.1.5]), where

V =
γAI0
2πσRC

I0(γRC)

I1(γRC)
+ iωµ

AI0
2π

log

(
RD

RC

)
,

with γ =
√
iωµσ and I0, I1 the Bessel’s function of order 0 and 1, respectively.

We have compared the obtained numerical solutions with the analytical one. As in the previous case, we
have chosen g = 0. Figure 4 shows log-log plots of the relative errors for the magnetic field and for the electric
field in Ω

C
in the discrete norms considered in Remark 3.9 versus the number of degrees of freedom.

In both tests, with intensities or voltage drops as boundary data, the error curves show a very good agreement
with the theoretically predicted order of convergence. In fact, the relative error of H behaves always very close
to O(h+∆t). The order of convergence of E is initially worse (although the relative errors are smaller than
those of H) but finally it is also almost O(h+∆t). Moreover, these results are actually independent of the
choice of g. In fact, we have also solved Problems 2.6 and 3.4 with two other choices of g: a random one and
the exact value of ǫE|Γ

D
(which was obtained by analytical computations similar to those in [3, Section 8.1.5]).

In all cases the computed values of Hk
h and Ek

h, the latter only in Ω
C
, coincide up to rounding errors.

Additionally, when the exact value of g = ǫE|Γ
D
was used, we have tested whether the computed values

u
k
h−u

k−1
h

∆t approximate the exact electric fields E
D
in Ω

D
. In this case, although the theoretical results only

guarantees such a convergence in ΩC, we checked an O(h+∆t) convergence, too.
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4.3. A problem in a more realistic geometry

In this section we have computed the eddy currents induced by a coil in a metallic plate. The coil and the
plate are shown in Figure 5, which also shows a typical mesh of the conducting domain. Such configuration
is usually found, for instance, in problems related to non destructive testing or electromagnetic forming (see,
e.g., [21]).

Domain Ω has been chosen as a sufficiently large box surrounding the conductor. Notice that in order to
introduce a scalar potential in the dielectric domain to use the formulation proposed in [5], we would need to
build a cutting surface in this domain, what would not be easy in this case.

Figure 5. Mesh of the conducting domain (left). Detail of the coil mesh (right).

The current intensity which enters the coil is shown in Figure 6. Here, we have used g ≡ 0 on [0, T ]×Γ
D
, too.

In this test, the eddy currents induced in the plate are in the range 2.7×104 – 1.8×103 A/m2. They are
significantly smaller than those in the coil (range 2.9×108 – 8.1×108 A/m2). This is the reason why we show
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Figure 6. Imposed current intensity (A) vs. time (s).

coil and plate on separate figures. Figure 7 shows the modulus of the current density in the conducting domain.
Figures 8 and 9 show the current density vector field. All the reported results correspond to the time at which
the input current intensity reaches its maximum (0.00018 s).

Figure 7. Modulus of the current density in coil and plate at time 0.00018 s (different scales).

References
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[23] Žeńı̌sek, A. Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. London, Academic Press,

1990.
[24] W. Zheng, Z. Chen and L. Wang, An adaptive finite element method for the H-ψ formulation of time-dependent eddy current

problems. Numer. Math. 103 (2006) 667–689.



Centro de Investigación en Ingenieŕıa Matemática (CI
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analysis for the mixed formulation of the elasticity equations

2012-07 Ana I. Garralda Guillem, Gabriel N. Gatica, Antonio Marquez, Manuel
Ruiz Galan: A posteriori error analysis of twofold saddle point variational formula-
tions for nonlinear boundary value problems
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