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Abstract

This work considers the flow of a fluid containing one disperse substance consisting of small
particles that belong to different species differing size and density. The flow is modelled by
combining a multilayer shallow water approach with a polydisperse sedimentation process.
The resulting model is less expensive, from a computational point of view, than a full coupled
two- or three-dimensional sedimentation-flow coupled model. The new model is adequate in
situations where the settling takes place from a suspension that undergoes horizontal movement
such as the transport and deposition of suspended particulate matter in rivers and estuaries.
Numerical examples are presented.
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1 Introduction

1.1 Scope

Numerous applications involve the flow of a mixture of one substance, for example solid mineral
particles or oil droplets in an emulsion, dispersed in a continuous phase, say a liquid or gas.
In many cases, the disperse substance consists of small particles that belong to different species
differing in some characteristic quantity such as size or density. As a consequence, the polydisperse
mixture does not move as one phase; rather, the different species segregate and create areas of
different composition. In many applications, practitioners are most interested in this differential
movement of the species, which is frequently described by spatially one-dimensional models. In
most circumstances, the diameter of the particles is small, which justifies identifying each species
with a continuous phase. The resulting models usually give rise to a strongly coupled system of
nonlinear first-order conservation laws for the volume fractions of the solids species.
In many other applications, we are not only interested in this differential movement of the species
but also in the fluid dynamics of the flow convecting the particulate suspensions, for instance the
transport of soils, silt and sand in rivers and estuaries. In those cases, a full three-dimensional
(3D) model could be considered, but the computational cost of solving such models is largely
increased since in two or three space dimensions, not only a multi-dimensional version of the
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†Dpto. Matemática Aplicada I. ETS Arquitectura - Universidad de Sevilla. Avda. Reina Mercedes N. 2.

41012-Sevilla, Spain. (ekone@us.es)
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above-mentioned system of conservation laws, but also additional equations of motion (e.g., the
Stokes or Navier-Stokes system) for the flow field of the mixture must be solved.
A common approach to model suspended sediment transport in shallow regimes is to use a Saint-
Venant or shallow water model combined with passive transport equations for the different species.
These models are obtained by averaging the original 3D equations along the height of the fluid
and allow one to simulate sediment transport with a relative small computational cost (see, e,g,
[15, 19, 20, 26]). The drawback of these models is that they only take into account the mean
depth-average concentration of solid particles in suspension. Thus, the vertical distribution and
settling of the particles suspended within the fluid is not described.
The objective of this paper is to derive and implement a computational model for polydisperse
sedimentation that takes into account the differential movement of the species as well as the
dynamics of the flow. This will be achieved by a multilayer Saint-Venant approach (see for example
[1, 2, 3, 5, 31]). The proposed multilayer model is less expensive than the full 3D model from the
computational point of view, but still keeps information on the vertical distribution of the mixture.

1.2 Related work

Mathematical models for the one-dimensional sedimentation of polydisperse suspensions are im-
portant to many applications in chemical engineering, mineral processing, wastewater treatment,
medicine, geology, and other areas; see, for example, [16, 21, 30, 32, 34, 35] for applications and
[7, 9] for mathematical treatments. On the other hand, experimental and theoretical analyses of
two- or three-dimensional scenarios, where the convective sediment transport is important, include
[8, 13, 17, 22, 23].
Multilayer Saint-Venant models have been used to study flows with large friction coefficients, with
significant water depth and/or with important wind effects, among others (see for example [2], [5],
[31]). In these cases, the standard shallow water system is considered invalid since the horizontal
velocity can hardly be approximated by a vertically constant velocity in the whole domain.
The multilayer approach consists in subdividing, in the vertical direction, the domain into layers.
This way, the multilayer Saint-Venant system derived in [1] consists in a set of coupled Saint-Venant
systems for each layer. It is noteworthy that the layers are assumed here to be advected by the
flow. Then, it is considered that no mass exchange occurs between neighboring layers making the
model physically closer to non-miscible fluids simulation. It is also extended to 3D computations
of free surface flows with friction and viscosity effects in [3].
A different multilayer model using a formal asymptotic analysis of the two-dimensional (2D) in-
compressible Navier-Stokes equations with a hydrostatic framework is proposed by Audusse et
al. in [5]. Each layer is described by its height and by a vertically constant horizontal velocity.
The main improvement is that mass and momentum exchange between the layers are allowed. In
order to close the system, the height of the layer is related to the total height of the fluid. Then,
the unknowns of the system are the total height of the fluid and a constant horizontal velocity
at each layer. The vertical velocity can be computed by postprocessing, taking into account the
incompressibility of the fluid.
In [4] Audusse et al. present the extension of this model for free surface density-stratified flows. It
approximates formally the Navier-Stokes equations with variable density, when it varies depending
on a quantity such as temperature or salinity.
Taking into account the non-hydrostatic pressure associated with a vertical acceleration, a non-
hydrostatic multilayer Saint-Venant system is obtained in [31] by an asymptotic analysis of the 2D
incompressible Euler equations. In addition to the total fluid height and the horizontal velocities,
the vertical velocities and pressures in the layers are the unknowns of the system. These last ones
are also vertically averaged as the horizontal velocities.
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1.3 Outline of the paper

The remainder of the paper is organized as follows. In Section 2 the polydisperse sedimentation
model of [7] is outlined. In Section 3 we deduce the multilayer model to study polydisperse
sedimentation. A numerical approach of the proposed model is considered in Section 4. In Section
5 we present several numerical tests. Finally, the conclusions of the paper are set in Section 6.
In Appendix A and Appendix B we develop some of the computations necessary to rewrite the
model under the structure of an hyperbolic system with conservative components, source terms
and nonconservative products.

2 A polydisperse sedimentation model

Let us consider N ∈ N∗ species of spherical solid particles dispersed in a viscous fluid. For each solid
species j, j = 1, . . . , N , we denote by φj , ρj , dj , and vj = (uj , $j), j = 1, . . . , N , its volumetric
concentration, density, particle diameter, and phase velocity, respectively. The same notation is
used for the fluid indexed by j = 0. The model is outlined in detail in [7], and will be used here
in final form only. Moreover, we assume that effects of sediment compressibility can be neglected.
The model is based on the continuity and linear momentum balance equations for the N solid
species and the fluid. The continuity equations are given by

∂tφj +∇ · (φjvj) = 0, j = 0, . . . , N. (2.1)

Taking into account that φ = 1−φ0, where φ := φ1+· · ·+φN denotes the total solids concentration,
we see by summing all equations in (2.1) that the volume average velocity of the mixture

q := (u,$) := φ0v0 + φ1v1 + · · ·+ φNvN = (1− φ)v0 + φ1v1 + · · ·+ φNvN

satisfies the simple mass balance of the mixture

∇ · q = 0. (2.2)

On the other hand, from the equations of conservation of linear momentum one obtains by introduc-
ing suitable constitutive assumptions, followed by a dimensional analysis (see [7]), the expression

vj = q + vMLB
j (Φ)ez, j = 1, . . . , N, (2.3)

where Φ := (φ1, . . . , φN )T and ez is the upward-pointing unit vector. The hindered settling
velocities vMLB

j (Φ) are those given in one space dimension by Masliyah [25] and Lockett and
Bassoon [24] (“MLB model”), namely

vMLB
j (Φ) = µV (φ)

[
δj
(
ρ̄j − ρ̄TΦ

)
−

N∑
l=1

δlφl
(
ρ̄l − ρ̄TΦ

)]
, j = 1, . . . , N, (2.4)

where we define ρ̄j := ρj − ρ0 for j = 1, . . . , N , ρ̄ := (ρ̄1, . . . , ρ̄N )T, µ = −gd2
1/(18µf), where g

is the acceleration of gravity and µf is the viscosity of pure fluid, and δj := d2
j/d

2
1. Moreover,

V = V (φ) is a so-called hindered settling factor, which may be chosen as follows [29]:

V (φ) =

{
(1− φ)λ−2 if Φ ∈ D̄φmax ,
0 otherwise,

λ > 2, (2.5)

where D̄φmax is the closure of the set

Dφmax := {Φ ∈ RN |φ1 > 0, . . . , φN > 0, φ := φ1 + · · ·+ φN < φmax},
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Figure 1: Sketch of the multilayer division of the mixture domain.

where φmax is a maximal solids concentration. Note that in one (vertical) space dimension, (2.2)
means that q is spatially constant (with q = 0 for batch settling in a column), and the equations
(2.1) for j = 1, . . . , N with the fluxes (2.3), (2.4) form a closed system, with no other flow variables
involved; for this reason the MLB model is also called kinematic in that case.
For future reference we remark that the vertical velocities of particles are expressed as a combi-
nation of the vertical volume-average velocity of the mixture $ := φ1$1 + · · · + φN$N and the
fluxes fj(Φ) = φjv

MLB
j (Φ), where vMLB

j (Φ) is given by the MLB model (2.4):

φj$j = φj$ + fj(Φ), j = 1, . . . , N. (2.6)

Moreover we get the following equality:

N∑
j=1

fj(Φ) = (1− φ)($ −$0) = φ0 ($ −$0). (2.7)

From (2.7) we may define a similar relation for the fluid volume fraction:

φ0$0 = φ0$ + f0(Φ) with f0(Φ) = −
N∑
j=1

fj(Φ). (2.8)

We conclude by recalling that under the present assumptions, the mass equation for the solids
species can be written as

∂tφj + ∂x(φjuj) + ∂z
(
φj$ + fj(Φ)

)
= 0, j = 1, . . . , N.

The model also involves the linear momentum balance equations for the solid phases [7]. Assuming
that the advective acceleration terms are significant while sediment compressibility and viscous
stresses are neglected, we obtain the following form of these balance equations:

ρj
(
∂t(φjvj) +∇ · (φjvj ⊗ vj)

)
= −ρjφjgk − φj∇p, j = 1, . . . , N. (2.9)

3 A multilayer approach

In order to introduce a multilayer system, the mixture domain is divided along the vertical direction
into M ∈ N∗ layers of thickness hα(t, x) with M + 1 interfaces defined by zα+1/2(t, x) for α =
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0, 1, . . . ,M (see Figure 1). Denoting by zB := z1/2 and zS := zM+1/2 the bottom and the free
surface interfaces, respectively, we have hα = zα+1/2 − zα−1/2 and zα+1/2 = zB + h1 + · · ·+ hα for
α = 1, . . . ,M , and then the height of the fluid is given by h = zS − zB = h1 + · · ·+ hM .

Notation 1. For α = 1, . . . ,M we denote by Iα = Iα(t, x) :=]zα−1/2(t, x), zα+1/2(t, x)[ the vary-
ing one-dimensional vertical interval and for a given function a(t, x, z), we denote the vertically
averaged and the vertical fluctuation functions, respectively, by

aα(t, x) :=
1
hα

∫
Iα

a(t, x, z) dz and âα(t, x, z) := a(t, x, z)− aα(t, x). (3.1)

In addition, aα+1/2 denotes the restriction of the function a to the interface z = zα+1/2.

Remark 1. From (3.1) we obtain the following identities:∫
Iα

âα(t, x, z) dz = 0,∫
Iα

a bdz = hα aα bα +
∫
Iα

âα b̂α dz,∫
Iα

a b c dz = hα aα bα cα +
∫
Iα

(
cα âα b̂α + ĉα a b

)
dz.

Assumption 1. We assume that the horizontal velocity of each species coincides with that of the
fluid, that is uj =: u for all j = 0, 1, . . . , N .

Integrating the mass balance equations (2.1) over Iα for all α = 1, . . . ,M and j = 0, 1, . . . , N and
using the Leibnitz integration rule, we get

0 =
∫
Iα

(
∂tφj + ∂x(φj u) + ∂z(φj$j)

)
dz

= ∂t

∫
Iα

φj dz + ∂x

∫
Iα

φj udz

−∆α
−
(
φj,α+1/2∂tzα+1/2

)
−∆α

−
(
(φju)α+1/2∂xzα+1/2

)
+
[
φj$j

]zα+1/2

zα−1/2
,

where we define the difference operators ∆α
+ and ∆α

− via ∆α
+pj,α := pj,α+1 − pj,α and ∆α

−pj,α :=
pj,α − pj,α−1, respectively. Then (2.6) and Remark 1 lead to the equality

∂t(hαφj,α) + ∂x(hαφj,αuα) + ∂x

∫
Iα

φ̂j,αûα dz = ∆α
−
(
φj,α+1/2Gα+1/2 − fj,α+1/2(Φ)

)
(3.2)

for j = 0, 1, . . . , N and α = 1, . . . ,M , where we define for α = 0, 1, . . . ,M

Gα+1/2 := ∂tzα+1/2 + uα+1/2∂xzα+1/2 −$α+1/2,

f0,α+1/2(Φ) := −φ0,α+1/2($α+1/2 −$0,α+1/2).

Assumption 2. We assume that

∂x

∫
Iα

φ̂j,αûα dz = O(ε) for all α and all j,

where ε is a very small value, and shall neglect this term in the further development.

In light of Assumption 2, we obtain from (3.2) the following equations:

∂t(hαφj,α) + ∂x(hαφj,αuα) = ∆α
−Hj,α+1/2(Φ), α = 1, . . . ,M, j = 0, 1, . . . , N, (3.3)

5



where we define

Hj,α+1/2(Φ) := φj,α+1/2Gα+1/2 − fj,α+1/2(Φ) for α = 0, 1, . . . ,M and j = 0, 1, . . . , N . (3.4)

Next, in view of the equalities

N∑
j=0

φj,α+1/2 = 1 for all α = 0, 1, . . . ,M ,

we sum the equations (3.3) over j = 0, 1, . . . , N and take into account (2.8) to find the following
equations concerning the thickness of the layers:

∂thα + ∂x(hαuα) = ∆α
−Gα+1/2, α = 1, . . . ,M. (3.5)

Moreover, summing the horizontal components of equation (2.9) over j = 0, 1, . . . , N and integrat-
ing over Iα for all α = 1, . . . ,M , we obtain by the Leibnitz integration rule the following equation,
where pT denotes total pressure:

∂t

∫
Iα

ρ(Φ)udz + ∂x

∫
Iα

ρ(Φ)u2 dz +
N∑
j=0

ρj
[
φj$ju

]zα+1/2

zα−1/2

= −∂x
∫
Iα

pT dz + ∆α
−

((
ρ(Φ)u

)
α+1/2

(
∂tzα+1/2 + uα+1/2∂xzα+1/2

))
+ ∆α

−(pT,α+1/2∂xzα+1/2).

Let us denote the mixture density per layer by

ρα(Φ) :=
N∑
j=0

ρjφj,α = ρ0 +
N∑
j=1

(ρj − ρ0)φj,α.

Then we have

∂t
(
hαρα(Φ)uα

)
+ ∂x

(
hαρα(Φ)u2

α

)
+ ∂x

∫
Iα

pT dz + ∂t

∫
Iα

ρ̂α(Φ)ûα dz

+ ∂x

∫
Iα

(
ρα(Φ)ûα

2 + ρ̂α(Φ)u2
)

dz

= ∆α
−

((
ρ(Φ)u

)
α+1/2

(
∂tzα+1/2 + uα+1/2∂xzα+1/2

))
−

N∑
j=1

[
ρj
(
φj$ + fj(Φ)

)
u
]zα+1/2

zα−1/2

− ρ0

[
φ0$0u

]zα+1/2

zα−1/2
+ ∆α

−(pT,α+1/2∂xzα+1/2)

=
N∑
j=0

ρj∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
+ ∆α

−(pT,α+1/2∂xzα+1/2).

Assumption 3. Since we neglect the vertical fluctuation functions and since

ρ̂α(Φ) =
N∑
j=0

ρj φ̂j,α,

for a very small value 0 < ε� 1 we set

∂t

∫
Iα

ρ̂α(Φ)ûα dz + ∂x

∫
Iα

(
ρα(Φ)ûα

2 + ρ̂α(Φ)u2
)

dz = O(ε) for all α = 1, . . . ,M .
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We then get the following equations:

∂t
(
hαρα(Φ)uα

)
+ ∂x

(
hαρα(Φ)u2

α

)
+ ∂x(hαpT,α)

=
N∑
j=0

ρj∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
+ ∆α

−(pT,α+1/2∂xzα+1/2), α = 1, . . . ,M.
(3.6)

Assumption 4. We consider a hydrostatic total pressure, i.e., ∂zpT = −ρ(Φ)g.

Then for z ∈ Iα,

pT(t, x, z) = pS(t, x) +
M∑

β=α+1

(∫
Iβ

ρ(Φ)g dz′
)

+
∫ zα+1/2

z

ρ(Φ) g dz′

= pS(t, x) + g

M∑
β=α+1

hβρβ(Φ) +
∫ zα+1/2

z

ρ(Φ) g dz′,

where pS stands for the pressure at the free surface. Then the equality

pT,α+1/2 = pS +
M∑

β=α+1

hβρβ(Φ)g

holds and we have

pT,α(t, x) = pT,α+1/2 +
1
hα

∫
Iα

∫ zα+1/2

z

ρ(Φ) g dz′ dz

= pT,α+1/2 +
1
hα

∫
Iα

ρα(Φ)g(zα+1/2 − z) dz +
1
hα

∫
Iα

∫ zα+1/2

z

ρ̂α(Φ) g dz′ dz,

which means that

pT,α(t, x) = pS + g

(
1
2
hα ρα(Φ) +

M∑
β=α+1

hβ ρβ(Φ)

)
+O(ε).

Thus, we set

pT,α(t, x) ≈ pS + g

(
1
2
hα ρα(Φ) +

M∑
β=α+1

hβρβ(Φ)

)
.

In addition, we point out the expansion

∆α
−(pT,α+1/2∂xzα+1/2) =

(
pS + g

M∑
β=α+1

hβρβ(Φ)

)
∂xhα − hαραg

(
∂xzB +

α−1∑
β=1

∂xhβ

)
.

The final model is constituted by the equations (3.3), (3.5), (3.6) and is summarized here:

∂thα + ∂x(hαuα) = ∆α
−Gα+1/2,

∂t(hαφi,α) + ∂x(hαφi,αuα) = ∆α
−Hj,α+1/2(Φ),

∂t
(
hαρα(Φ)uα

)
+ ∂x

(
hαρα(Φ)u2

α

)
+ ∂x

(
hα

[
pS +

1
2
ghα ρα(Φ) + g

M∑
β=α+1

hβ ρβ(Φ)

])

=
N∑
j=0

ρj∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
+

(
pS + g

M∑
β=α+1

hβ ρβ(Φ)

)
∂xhα

−hαραg

(
∂xzB +

α−1∑
β=1

∂xhβ

)
,

(3.7)
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where Hj,α+1/2(Φ) is defined by (3.4) and fj,α+1/2(Φ) is given by (2.4). The quantities uα+1/2 and
Gα+1/2 are specified in the next subsection. The rest of this section is devoted to the closure of
the model. To that end, we set the following hypothesis on the heights of the layers.

Assumption 5. We consider layers having thickness proportional to the total height. That is for
α = 1, . . . ,M, hα = lα h with lα a positive constant. Hence we have

M∑
α=1

lα = 1. (3.8)

From that hypothesis, we get the global continuity equation

∂th+ ∂x

(
h

M∑
β=1

lβuβ

)
= GM+1/2 −G1/2. (3.9)

Now, the system (3.7) reduces to

∂th+ ∂x

(
h

M∑
β=1

lβuβ

)
= GM+1/2 −G1/2,

∂t(hφj,α) + ∂x(hφj,αuα) =
1
lα

∆α
−
(
Hj,α+1/2(Φ)

)
,

∂t
(
hρα(Φ)uα

)
+ ∂x

(
hρα(Φ)u2

α

)
+ ∂x

(
hpS + gh2

[
1
2
lα ρα(Φ) +

M∑
β=α+1

lβ ρβ(Φ)

])

=
N∑
j=0

ρj
lα

∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
+

(
pS + gh

M∑
β=α+1

lβρβ(Φ)

)
∂xh

−ghρα

(
∂xzB +

α−1∑
β=1

lβ∂xh

)
.

(3.10)

To define uα+1/2 and φj,α+1/2 we may use an approach similar to the one used in [5] by considering
an upwind scheme, that is, for α = 0, 1, . . . ,M and j = 1, . . . , N we set

uα+1/2 =

{
uα+1 if Gnα+1/2 ≥ 0,
uα otherwise,

φj,α+1/2 =

{
φj,α+1 if Hn

j,α+1/2(Φ) ≥ 0,
φj,α otherwise,

(3.11)

where the superscript n stands for the previous time step t = tn. For α = 0, 1, . . . ,M and
j = 1, . . . , N we may rewrite (3.11) as follows:

uα+1/2 = εα+1/2uα + (1− εα+1/2)uα+1, φj,α+1/2 = θj,α+1/2φj,α + (1− θj,α+1/2)φj,α+1,

where εα+1/2 ∈ [0, 1] and θj,α+1/2 ∈ [0, 1] are given by

εα+1/2 =
1
2

(
1− sgn

(
Gnα+1/2

))
, θj,α+1/2 =

1
2

(
1− sgn

(
Hn
j,α+1/2(Φ)

))
. (3.12)

Another possible definition for uα+1/2 and φj,α+1/2 is to replace the equalities (3.12) by εα+1/2 =
θj,α+1/2 = lα/(lα + lα+1), or even εα+1/2 = θj,α+1/2 = 1/2. Taking into account that the terms
Gα+1/2 represent the transfer between the layers α and α+ 1 throughout the common interface, a
natural assumption is to suppose that there is no transfer between the fluid and the bottom or at
the surface. Thus, we make the assumption G1/2 = GM+1/2 = 0. Of course, one could eventually
consider variants of the model presented here by changing these definitions. For instance, we could
include an interchange of sediment at the bottom interface by effects of erosion and deposition.
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Now, notice that

Gα+1/2 =
α∑
β=1

lβ
(
∂th+ ∂x(huβ)

)
=

α∑
β=1

lβ

(
∂x (huβ)−

M∑
γ=1

∂x (lγhuγ)

)
.

Therefore we set

Gα+1/2 =
M∑
γ=1

ξα,γ∂x(huγ), α = 1, . . . ,M, (3.13)

where for α, γ ∈ {1, . . . ,M}, we define

ξα,γ :=
α∑
β=1

(δβγ − lβ)lγ =

{(
1− (l1 + · · ·+ lα)

)
lγ if γ ≤ α,

−(l1 + · · ·+ lα)lγ otherwise,

where δβγ is the standard Kronecker symbol.

Remark 2. In light of (3.8) we have ξM,γ = 0 for all γ = 1, . . . ,M . In addition, setting ξ0,γ = 0
for all γ = 1, . . . ,M , we notice that ξα,γ = ξα−1,γ + (δαγ − lα)lγ for all α, γ = 1, . . . ,M .

By a straightforward computation (see Appendix A) we can rewrite the system (3.10) in the more
compact form

∂tw + ∂xF (w) +B(w)∂xw = S(w)∂xH +G(w), (3.14)

where w ∈ Rn (n ∈ N∗) is the unknown vector, F : Rn → Rn is a regular vectorial function,
B : Rn →Mn(R) is a matrix function, where Mn(R) is the space of real n × n matrices, S,G :
Rn → Rn are vectorial functions, and H : Rn → R is a real scalar function. The form (3.14)
constitutes a classical simplified model type for multiphase or multilayer flows in the literature.
More precisely, we introduce the notation rj,α := φj,αh for j = 0, 1, . . . , N and qα := ρα(Φ)huα,
and define the vector

w := (h, q, r)T ∈ R((N+1)M+1) (3.15)

where

h ∈ R, q = (q1, q2, . . . , qM )T ∈ RM ,

r = (r1,1, r2,1, . . . , rN,1, . . . , r1,α, r2,α, . . . , rN,α, . . . , r1,M , r2,M , . . . , rN,M )T ∈ RNM .
(3.16)

The algebraic expressions of the different terms in (3.14) for the current multilayer model are
detailed in Appendix A.

4 Numerical approach

The approach is based on a standard finite volume method combined with a two-step splitting
procedure. The splitting consists in ruling out, from the first step, the contribution of the vertical
numerical fluxes fj,α+1/2(Φ) for j = 1, . . . , N and α = 0, 1, . . . ,M . However, since the number of
variables for the models is (N + 1)M + 1, the size of the system considerable, especially for large
numbers of layers and particle species. Therefore, to reduce the computational cost, instead of
solving (3.14) directly, we introduce the variables

mα = ρα(Φ)h. (4.1)
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From (3.14) we obtain the following system:

∂th+ ∂x

(
h

M∑
β=1

lβuβ

)
= 0,

∂tmα + ∂xqα =
1
lα

N∑
j=0

ρj∆α
−Hj,α+1/2(Φ),

∂tqα + ∂x

(
q2
α

mα

)
+ ∂x

(
gh

[
1
2
lαmα +

M∑
β=α+1

lβmβ

])

=
N∑
j=0

ρj
lα

∆α
−(uα+1/2Hj,α+1/2(Φ)) +

(
pS + gh

M∑
β=α+1

lβρβ(Φ)

)
∂xh

−ghρα

(
∂xzB +

α−1∑
β=1

lβ∂xh

)
.

(4.2)

For simplicity, for the numerical simulations we set pS = 0. In a similar manner as for (3.10), we
also write the system (4.2) in a compact form (see Appendix B), namely as

∂tw̃ + ∂xF̃ (w̃) + B̃(w̃)∂xw̃ = S̃(w̃)∂xH̃ + G̃(w̃), (4.3)

where we have introduced the vector of unknowns

w̃ := (h,m, q)T ∈ R2M+1 (4.4)

and we have used the notation (4.1) to set m := (m1,m2, . . . ,mM )T ∈ RM .
While (3.14) involves an unknown vector w of (N + 1)M + 1 components, (4.3) deals with an
unknown vector w̃ of size 2M + 1. Since N ≥ 1, w̃ is at most of the same size as w. However, the
larger the number N of solid species becomes, the smaller is the size of (4.3) compared with (3.14).
Thus, solving (4.3) is computationally less expensive than solving (3.14). We therefore propose to
solve the original system (3.14) over one time step by solving first (4.3) (Step 1), and then to use
an upwinding technique to obtain the variables rj,α (see (4.8) and (4.9)) (Step 2). We now state
in detail the two steps of this procedure.

Step 1

We subdivide the horizontal spatial domain into standard computational cells Ii = [xi−1/2, xi+1/2],
and then apply a finite volume scheme for (4.3), where we exclude the vertical flux contributions
by subtracting the term G̃(w̃) in the right-hand side. The resulting system has the form

W̃ t +A
(
W̃
)
· W̃ x = 0, (4.5)

where W̃ is the concatenated vector W̃ := (w̃, H̃)T ∈ Ω ⊂ R2(M+1).
Solutions of (4.5) may develop discontinuities and, due to the non-divergence form of the equations,
the notion of weak solution in the sense of distributions cannot be used. The theory introduced by
Dal Maso, LeFloch, and Murat [18] is followed here to define weak solutions. This theory allows
one to define the nonconservative product A(W̃ ) · W̃ x as a bounded measure provided a family of
Lipschitz continuous paths Ψ : [0, 1]×Ω×Ω→ Ω is prescribed, which must satisfy certain natural
regularity conditions, in particular

Ψ
(
0; W̃ L, W̃R

)
= W̃ L, Ψ

(
1; W̃ L, W̃R

)
= W̃R,

and

Ψ
(
s; W̃ , W̃

)
= W̃ for all s ∈ [0, 1].
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For example, a family of straight segments can be considered:

Ψ
(
s; W̃ L, W̃R

)
= W̃ L + s

(
W̃R − W̃ L

)
, s ∈ [0, 1].

We consider here path-conservative numerical schemes in the sense defined by Parés in [27]. Applied
to the system (4.3), the scheme is of the form

w̃
n+1/2
i = w̃n

i −
∆t
∆x

(
Fni+1/2 −F

n
i−1/2 +

1
2
(
Bni+1/2 + Bni−1/2

))
(4.6)

along with appropriate initial conditions w̃0
i , and where the expressions Fni+1/2 and Bni+1/2 are

defined as follows:

Fni+1/2 :=
1
2
(
F̃ (w̃n

i ) + F̃ (w̃n
i+1)

)
− 1

2
Qn
i+1/2

(
w̃n
i+1 − w̃

n
i −Λn

i+1/2S̃
n

i+1/2

(
H̃n
i+1 − H̃n

i

))
,

Bni+1/2 = B̃
n

i+1/2

(
w̃n
i+1 − w̃

n
i

)
− S̃

n

i+1/2

(
H̃n
i+1 − H̃n

i

)
. (4.7)

From [28, 36] we recall that if Ψ denotes a family of Lipschitz continuous paths used to design the
path-conservative scheme (4.6), then for a given matrix C, we denote by CΨ its Roe linearization
and set

Cn
i+1/2 = CΨ

(
W̃

n

i+1, W̃
n

i

)
.

The matrix Λ(w̃) represents an approximation of the inverse of Ã(w̃) = J̃(w̃) + B̃(w̃), where J̃(w̃)
is the Jacobian matrix of the flux vector F̃ (w̃) (see Appendix B). In addition, Qn

i+1/2 is the nu-
merical viscosity matrix whose definition identifies the particular finite volume method used. For
example, the Roe method is defined by Qi+1/2 = |Ãi+1/2|, where Ãi+1/2 is the Roe matrix defined
in the sense of Toumi (see [28, 36]). An interesting alternative to Roe method for system with a
great number of unknowns are PVM (“polynomial viscosity matrix”) methods (see [14]).
In the sequel, for sake of simplicity, we shall omit the upper index n in the notation of Fni+1/2, and
then we denote the components of this vector merely by

Fi+1/2 =
(
Fhi+1/2,F

m1
i+1/2, . . . ,F

mM
i+1/2,F

q1
i+1/2, . . . ,F

qM
i+1/2

)T
.

Next, from the previous components of the numerical fluxes, we determine those corresponding to
the variables rj,α using an upwinding formula. That is, we define

Frj,αi+1/2 :=


(rj,α)i
(mα)i

Fmαi+1/2 if Fmαi+1/2 > 0,

(rj,α)i+1

(mα)i+1
Fmαi+1/2 otherwise,

j = 1, . . . , N, (4.8)

and once again, with suitable initial data (rj,α)0
i , we set the scheme

(rj,α)n+1/2
i = (rj,α)ni −

∆t
∆x

(
Frj,αi+1/2 −F

rj,α
i−1/2 +

1
2
(
Brj,αi+1/2 + Brj,αi−1/2

))
. (4.9)

The quantity Brj,αi+1/2 is defined analogously to (4.7) with the subtracted parts, corresponding to the
variables rj,α, from the matrix B(w) in (3.14). Indeed, there is no action of the vector S(w) here
(see Appendix A) and we still exclude the contribution of the vertical fluxes incorporated within
G(w) for the splitting purpose. At this step, we obtain from (4.6) the intermediate solution

w̃
n+1/2
i =

(
h
n+1/2
i ,m

n+1/2
i , q

n+1/2
i

)T
,

where

m
n+1/2
i =

(
(m1)n+1/2

i , . . . , (mM )n+1/2
i

)T
, q

n+1/2
i =

(
(q1)n+1/2

i , . . . , (qM )n+1/2
i

)T
,

and then from (4.9), we get the intermediate solution

r
n+1/2
i =

(
. . . , (r1,α)n+1/2

i , (r2,α)n+1/2
i , . . . , (rN,α)n+1/2

i , . . .
)T
.
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Step 2

We complete the numerical procedure by including the contribution of the numerical vertical fluxes
expressed by the matrices G̃(w̃) and G(w) in the right-hand sides of (4.3) and (3.14), respectively
(see Appendices A and B). These numerical vertical fluxes, namely fj,α+1/2(Φ) for all j = 1, . . . , N
and α = 0, 1, . . . ,M , are computed by using the formula of [11, Scheme 8] stated for a single-layer
model. Hence, we set

fj,α+1/2(Φα,Φα+1) =
1
2
(
φj,αv

MLB
j (Φα) + φj,α+1v

MLB
j (Φα+1)

)
− Eα+1

2
(φj,α+1 − φj,α)

− φj,α
2

∣∣vMLB
j (Φα+1)− vMLB

j (Φα)
∣∣ sgn(φj,α+1 − φj,α),

where we have used the notation Φα := (φ1,α, . . . , φN,α)T, Eα := maxj=1,...,N |vMLB
j (Φα)|, and the

hindered settling velocities vMLB
j (Φ) are given by (2.4).

Let us denote by G̃q(w̃) the components of G̃(w̃) corresponding to the variables q in (4.3).
Analogously, we denote by Gr(w), the components of G(w) corresponding to the variables r in
(3.15). Then we set the following updates:

hn+1
i = h

n+1/2
i ,

qn+1
i = q

n+1/2
i + ∆tG̃q

(
w̃
n+1/2
i

)
,

rn+1
i = r

n+1/2
i + ∆tGr

(
w
n+1/2
i

)
,

(φj,α)n+1
i =

(rj,α)n+1
i

hn+1
i

, j = 1, 2, . . . , N,

(mα)n+1
i = ρ0h

n+1
i +

N∑
j=1

(ρj − ρ0)(rj,α)n+1
i ,

where wn+1/2
i = (hn+1/2

i , q
n+1/2
i , r

n+1/2
i )T as introduced in (3.15). We may also define

(r0,α)n+1
i = hn+1

i −
N∑
j=1

(rj,α)n+1
i , (φ0,α)n+1

i = 1−
N∑
j=1

(φj,α)n+1
i ,

which represent the pure liquid mass and volumetric concentration, respectively, in layer α. Then
there follows

(mα)n+1
i =

N∑
j=0

ρj(φj,α)n+1
i hn+1

i ,

which in the case of equal-density spheres ρ1 = · · · = ρN =: ρs reduces to

(mα)n+1
i = ρs

(
1− (φ0,α)n+1

i

)
.

Recall that φj,α for j = 1, . . . , N represents the volumetric concentration of the sediment species
j in layer α and one should have 0 ≤ φj,α ≤ 1 for all j = 0, 1, . . . , N. To ensure this property, the
numerical fluxes are limited.

5 Numerical tests

We use the model developed in the current work to simulate the settling of bidisperse (N = 2)
suspensions in 2D domains with various bottom geometries. More precisely, we present in Test 1
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one example where the bottom has a bump and in Test 2 and 3 two examples with two different
kinds of hollow. The parameters are the solid species diameters d1 = 4.96 × 10−4 m and d2 =
1.25 × 10−4 m, the density of both solid species is ρ1 = ρ2 = 2790 kg/m3, the density of the fluid
is ρ0 = 1208 kg/m3, the gravity constant is g = 9.81 m/s2, and the viscosity of the pure fluid
µ0 = 0.02416 Pa s. (These parameters correspond to experimental data by Schneider et al. [33].)
For each horizontal layer (α = 1, . . . ,M), the hindrance function (2.5) is used with the exponent
λ = 4.7 and a maximum total solid concentration φmax = 0.68. Unless said otherwise, we use SI
units in what follows.

Preliminary Test: A one-dimensional vertical sedimentation

First of all, we simulate the settling of a bidisperse sedimentation in a vertical column of height
H = 0.3 m according to the original experiment in [33], which has become a standard example for
numerical methods for polydisperse sedimentation (see e.g., [10] and the references cited in that
paper). We point out the interaction between the two solid species. This preliminary test will
explain some of the forthcoming observations in the 2D cases. We discretize the height interval
with 50 nodes zi and choose the initial solid concentrations φ1(t = 0) = 0.1 and φ2(t = 0) = 0.05.
Figure 2 displays the simulated concentrations at several times, where we have rescaled height to
unity.
In accordance with analytical, experimental and numerical evidence [6, 7, 10, 12, 24, 33], we observe
that the larger species settles more rapidly to the bottom, and forms a sediment layer with a small
content of the second (smaller) species only. Most of the smaller species form a second thin layer
of sediment which is void of particles of the larger species.

5.1 Test 1: Sedimentation in a domain with a bump

We simulate the sedimentation in a 2D channel of horizontal length L = 1 which we discretize
with 300 nodes xi. The vertical direction is discretized using M = 5 horizontal layers with a CFL
number equal to 0.8. The bottom elevation is given by

zB(x) = 0.2 exp(−40(x− 0.5)2).

and we consider the following initial data: h(t = 0) = 0.3− zB and

qα(t = 0) = 0, φ1,α(t = 0) = 0.01, φ2,α(t = 0) = 0.005 for all α = 1, . . . ,M .

Figures 3–7 report four instants (t = 1, 5, 15, 30 s) of the sedimentation when we consider closed end
walls. The closed end walls are simulated by imposing the boundary condition that the velocity
vanishes at the two vertical end walls (no-slip boundary condition), i.e.,

uα|x=0 = uα|x=L = 0, $α|x=0 = $α|x=L = 0 for all α.

In Figures 3–6, we present the simulated concentrations in each layer by profiles and a colormap,
together with the horizontal velocities uα of those layers. Figure 7 represents the velocity vectors
(uα, $α) of the layers for the selected times. The vertical component $α of the velocity vector
is computed with a postprocessing technique using the divergence-free condition (2.2) and the
kinematic condition at the bottom (see [5]).
Starting from the initial concentration distribution, we notice that the concentration of Species 1
decreases in the upper layers (near the free surface) and increases in the lower ones (near the bot-
tom). This is noticeable in the values of φ1 in the lowest (bottom) and uppermost (free surface)
layers (cf. Figure 3 (a)), while in the intermediate layers, φ1 varies very slightly only. In fact, the
lowest (respectively, the uppermost) layer carries the highest (respectively, the lowest) value of φ1

all the time along the channel width. However, in the first moments, particles of Species 1 mostly

13



0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solids species concentrations ( t = 0 )

concentrations values

n
o
rm

a
liz

e
d
 h

e
ig

h
t

 

 
φ

1

φ
2

(a) t = 0 s.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solids species concentrations ( t = 30.0448 )

concentrations values

n
o
rm

a
liz

e
d
 h

e
ig

h
t

 

 
φ

1

φ
2

(b) t = 30 s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solids species concentrations ( t = 50.6013 )

concentrations values

n
o
rm

a
liz

e
d
 h

e
ig

h
t

 

 
φ

1

φ
2

(c) t = 50 s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solids species concentrations ( t = 100.5522 )

concentrations values

n
o
rm

a
liz

e
d
 h

e
ig

h
t

 

 
φ

1

φ
2

(d) t = 100 s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solids species concentrations ( t = 150.5616 )

concentrations values

n
o
rm

a
liz

e
d
 h

e
ig

h
t

 

 
φ

1

φ
2

(e) t = 150 s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solids species concentrations ( t = 200.0737 )

concentrations values

n
o
rm

a
liz

e
d
 h

e
ig

h
t

 

 
φ

1

φ
2

(f) t = 200 s.

Figure 2: One-dimensional vertical bidisperse sedimentation: concentrations with respect the
height at times t = 0 s (initial datum) and t = 30, 50, 100, 150, 200 s with φ1(t = 0) = 0.1 and
φ2(t = 0) = 0.05.
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settle just onto the top of the bump and as time evolves, they accumulate symmetrically on the foot
of the bump in the lower corners of the domain. In what concerns the second species, we observe
a slow symmetric increase in time of the concentration in the bottom layer just on the foot of the
bump, whereas above the peak area of the bump, Species 2 is being concentrated quite rapidly
in the free surface layer instead. Here again both the lowest and uppermost layers behave very
differently from the intermediate ones. Nevertheless, all behave in a symmetric way. The situation
described above can be explained by the velocity vector profiles, and according to the interaction
between the two solid species as we have seen with the one-dimensional vertical test previously.
Indeed, as is illustrated in Figure 7, the bump and the closed end walls induce a circulation of
the flow on each side of the bump. The circulation is clockwise to the left and counterclockwise
to the right of the bump, and involves strong negative vertical components of the velocity above
the bump’s peak and along its sides. Hence the flow tries to move the solid particles downward.
Therefore, from the interaction issue handled in the preliminary test, the first species accumulates
below dripping the bump to fill the lower corners of the domain before and driving the second
species away from below. That effect can be visualized better in Figuref 6 (a)–(d). Especially in
the area above the peak of the bump, there remain positive values of φ1 almost equally distributed
in all the layers that prevent the Species 2 from settling into the bottom layer at this area.

Furthermore, we observe the effect of sedimentation on the horizontal velocities. We observe in
Figure 7 (a) that these velocities are initially fairly small, and that they increase slowly in time
(see Figure 7 (b)–(d)). The reason for this is that we start from the fluid at rest with relatively
low concentrations of solid species. Then the disruption induced by the solid species is not so
strong. Next, we observe the combined influence of the bump, the closure of the end walls, and
the weight of the suspended solids on the velocities. For instance, Figures 3(e)–6(e) for the total
solid concentration φ and Figures 3(f)–6(f) for the horizontal velocity uα indicate two types of
characteristic behaviour in the velocities. If we focus on the bottom layer (the blue line here), one
characteristic behaviour is an increase of velocity near the peak of the bump, whose value reaches
zero at the top. This acceleration can be explained by the sliding of the sediments settled on the
top of this bump. A second characteristic behaviour is a decrease of velocity from zero on the left
of the domain. This is explained by the fall of flow from the top of the bump which pushes the
sediment toward the left wall, where its movement is hindered by the accumulation of solids, and is
stopped by boundary conditions. As we can see in the figures, the more concentrated the sediment
is, the smaller the horizontal velocity becomes in that region. An analogous effect is observed in
the right part of the domain.

Figure 8 reports three instants (t = 1, 15, 30 s) of the sedimentation when we consider an open
channel without end walls. The open ends are simulated by duplicating the data across each of
the two vertical end walls as transparent boundary conditions. Figure 8 shows the concentrations
of each of the solid species at these times. Naturally, profiles turn out similar to the case of closed
end walls. However, the significant feature here is that the model renders the expected loss of
solids through the boundaries as time evolves. This may be noticed by comparing the values in
Figure 8 with those of Figures 3–6.

5.2 Test 2: Sedimentation in a domain with a hollow

We simulate now the sedimentation keeping the same 2D channel with the same discretization
features and initial conditions that in previous test, but we change the bottom geometry by setting

zB(x) = 0.2
(
1− exp(−40(x− 0.5)2)

)
.

Figures 9–13 report four instants (t = 1, 5, 15, 30 s) of the sedimentation when we consider closed
end walls. In Figures 9–12, we represent the values and colormap of the concentrations in each layer
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Figure 3: Test 1: solid species concentrations and horizontal velocities by layers at time t = 1 s,
with closed end walls.
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Figure 4: Test 1: solid species concentrations and horizontal velocities by layers at time t = 5 s,
with closed end walls.
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Figure 5: Test 1: solid species concentrations and horizontal velocities by layers at time t = 15 s,
with closed end walls.
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Figure 6: Test 1: solid species concentrations and horizontal velocities by layers at time t = 30 s,
with closed end walls.
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Figure 7: Test 1: velocity vectors by layers at the times t = 1, 5, 15, 30s, with closed end walls
(vector lengths multiplied by 2).

20



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

First solid species concentration value by layers
( φ

1,α
, t = 1 )

x

 

 
layer 1

layer 2

layer 3

layer 4

layer 5

(a) φ1,α(t = 1 s).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4

4.5

5

5.5

6

x 10
−3

Second solid species concentration value by layers
( φ

2,α
, t = 1 )

x

 

 
layer 1

layer 2

layer 3

layer 4

layer 5

(b) φ2,α(t = 1 s).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.005

0.01

0.015

0.02

0.025

First solid species concentration value by layers
( φ

1,α
, t = 15 )

x

 

 
layer 1

layer 2

layer 3

layer 4

layer 5

(c) φ1,α(t = 15 s).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

Second solid species concentration value by layers
( φ

2,α
, t = 15 )

x

 

 
layer 1

layer 2

layer 3

layer 4

layer 5

(d) φ2,α(t = 15 s).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

First solid species concentration value by layers
( φ

1,α
, t = 30 )

x

 

 
layer 1

layer 2

layer 3

layer 4

layer 5

(e) φ1,α(t = 30 s).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

0.025

0.03

Second solid species concentration value by layers
( φ

2,α
, t = 30 )

x

 

 
layer 1

layer 2

layer 3

layer 4

layer 5

(f) φ2,α(t = 30 s).

Figure 8: Test 1: solid species concentrations by layers at times t = 1, 15, 30s, with open end walls.
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together with the horizontal velocities of those layers. Figure 13 represents the velocity vectors of
the layers for the selected times.

From the initial concentrations distribution, we notice a rapid and a massive movement of Species 1
from the upper layers the lower ones. We observe that the lowest layer differs from the others by the
accumulation of particles on the bottom of the hollow. As in Test 1, the level of concentration in the
intermediate layers varies very slightly. Actually, in the first moments, the particles mostly settle
outside the hollow just onto the top of each side and as time evolves, they accumulate symmetrically
inside. Species 2 immediately accumulates on the bottom inside the hollow, and its concentration
increases in time. Hence, the hollow appears to constitute a particle trap. Moreover, the species
also accumulate quite quickly in the free surface layer in the upper corners of the domain.
The phenomena we have just described can be explained once more looking at the velocity vectors
profiles and according to the interaction between the two solid species. As illustrated in Figure 13,
the hollow and the closed end walls induce two opposite circulations in the flow separated by the
vertical axis of symmetry axis at x = 0.5 m. The circulation to the left is counterclockwise and that
to the right is clockwise. Hence inside the hollow, the flow tries to move the solid species downward
from each side whereas in the middle the moving is upward. Therefore from the interaction issue,
Species 1 accumulates below dripping both sides of the hollow to concentrate essentially inside.
That effect is better visualized in Figure 12. In addition, under the same flow regime, the hollow
traps a portion of Species 2, while the other part is sent to the corners above by the circulation.
Next, there remain some positive concentrations of Species 1 all the layers in these regions, with
a minor value in the free surface layer than in the two previous ones. Then, the concentration of
Species 2 moved upwards by the circulation is kept in the free surface layer at the corners trying
to occupy the place left by Species 1.

We observe again the effect of the sedimentation on the horizontal velocities. That effect is a
combination of the influence of the hollow, the closure of the end walls and the weight in sediments
on the velocities. Figures 9(e)–12(e) for the total solid concentrations and Figures 9(f) - 12(f)
for the horizontal velocities again indicate two types of characteristic behaviour in the velocities.
If we focus on the bottom layer, then one characteristic behaviour is a decreasing velocity value
near the base of the hollow. This deceleration may be explained by the hindrance caused by the
opposite slipping of the sediment settled on each slope of the hollow and going downward. The
second characteristical behaviour is an increase of the velocity value from zero on the left of the
domain. Starting with a layer stopped by boundary conditions, that is explained by the fall of flow
inside the hollow filtering and getting the layer lighter in this area from the left to the right. As we
can see in the figures, the lighter are the sediments the more is the horizontal velocity in that region.

5.3 Test 3: Imposed velocity and sediment concentration as boundary
condition

In this test we change the form of the hollow and the boundary conditions. More precisely, we
spread out the base of the hollow and employ open end boundary conditions along with a fixed
horizontal velocity and fixed solid concentrations imposed at the left boundary.
We consider the same discretization features and initial conditions as in Tests 1 and 2. The bottom
function zB(x) is defined by

zB(x) =


0 if

∣∣x− 1
2

∣∣ ≤ 1
8 ,

p2

(∣∣x− 1
2

∣∣) if 1
8 ≤

∣∣x− 1
2

∣∣ ≤ 1
4 ,

0.2 if
∣∣x− 1

2

∣∣ ≥ 1
4 ,
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Figure 9: Solid species concentrations and horizontal velocities by layers at the time t = 1 s, with
closed end walls.
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Figure 10: Solid species concentrations and horizontal velocities by layers at the time t = 5 s, with
closed end walls.
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Figure 11: Solid species concentrations and horizontal velocities by layers at the time t = 15 s,
with closed end walls.
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Figure 12: Solid species concentrations and horizontal velocities by layers at the time t = 30 s,
with closed end walls.
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Figure 13: Test 2: velocity vectors (uα, ϕα)T by layers at the times t = 1, 5, 15, 30 s, with closed
end walls. (Vector length divided by 2)
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where p2(x) is the polynomial of degree two such that p2( 1
8 ) = 0, p2( 1

4 ) = 0.2 and p′2( 1
8 ) = 0. In

what follows, we denote by ub,α the given left boundary velocity, and we impose the left boundary
concentrations φ1,b,α = 0.01 and φ2,b,α = 0.005. This test aims at studying the effect of the
given left boundary velocity on the sedimentation. Figures 14 and 15 report the concentrations
of Species 1 and horizontal velocities at times t = 5, 30 s with the respective imposed velocities
ub,α = 0.3 ms−1 and ub,α = 0.5 ms−1. Figures 16 and 17 report the concentrations of the second
species at the times t = 5 s and t = 30 s when ub,α = 0.3 ms−1 and ub,α = 0.5 ms−1, respectively.
For Species 1, we notice a similar initial effect with the two values of ub,α. That is the convection
of the sediment toward the right inducing an asymmetric form in layers with an accumulation in
the bottom layer, as shown in Figures 14(a) and 15(a), or equivalently in Figures 14(b) and 14(b).
As the time evolves, there appears a great difference in the behaviour of both solutions with the
two values of ub,α. With the low velocity value, the particles accumulates almost symmetrically in
the bottom inside the hollow with an increased concentration (see Figure 14(c) or 14(d)). However,
the sedimentation with ub,α = 0.5 ms−1 keeps the same asymmetric form as the beginning with a
non-increased concentration despite the constant supply of particles through the entry boundary
(Figure 15(c) or 15(d)). A similar behaviour is observed by Species 2 up to the interaction, already
examined earlier, with Species 1, as illustrated in Figures 16 and 17. The previous events reveal
clearly that the left boundary velocity ub,α sweeps the sediments along the domain. However with
the low velocity value experimented here (ub,α = 0.3 ms−1), a major quantity of the provided
sediments may stay in the domain dropping and accumulating in the bottom inside the hollow,
while only a small quantity stay with the high velocity value (ub,α = 0.5 ms−1). This high velocity
value is high enough to carry a significant sediments concentration away from the domain trough
the open right end wall.

6 Conclusions

The multilayer shallow water approach presented herein combines a shallow water model for the
fluid flow with a model of sedimentation of polydisperse suspension. The new formulation takes
advantage of the fact that segregation of the particle species from each other, and from the fluid,
takes place in the vertical direction of the gravity body force only. Thus, the solution of the
full coupled two- or three-dimensional sedimentation-flow system is avoided. Numerical results
suggest that the multilayer shallow water model could be adequate in situations where the settling
takes place from a suspension that undergoes horizontal movement. Typical situations of that kind
should include the transport and deposition of suspended particulate matter in rivers and estuaries.
To this end, the model should be extended to two horizontal space dimensions, and additional
mechanisms of sediment erosion should be built in. Experimental and theoretical analyses of such
scenarios are cited in Section 1.1.
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Figure 14: First solid species concentrations and horizontal velocities by layers at the times t = 5, 30
s, for open end walls with φ1,b,α = 0.01, φ2,b,α = 0.005 and ub,α = 0.3 ms−1.
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Figure 15: First solid species concentrations and horizontal velocities by layers at the times t = 5, 30
s, for open end walls with φ1,b,α = 0.01, φ2,b,α = 0.005 and ub,α = 0.5 ms−1.
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Figure 16: Second solid species concentrations by layers at the times t = 5, 30 s, for open end walls
with φ1,b,α = 0.01, φ2,b,α = 0.005 and ub,α = 0.3 ms−1.
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Figure 17: Second solid species concentrations by layers at the times t = 5, 30 s, for open end walls
with φ1,b,α = 0.01, φ2,b,α = 0.005 and ub,α = 0.5 ms−1.
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A Appendix: definition in terms of the variable w

Considering the unknown w as defined in (3.15), the equation (3.9) is merely rewritten as

∂th+ ∂x

(
M∑
β=1

lβ
qβ

ρβ(Φ)

)
= 0. (A.1)

Next, to handle the equation (3.3), we here expand the right-hand side for j = 1, . . . , N :

∆α
−Hj,α+1/2(Φ) =

M∑
γ=1

(
−θj,α−1/2ξα−1,γφj,α−1 +

(
θj,α+1/2ξα,γ − (1− θj,α−1/2)ξα−1,γ

)
φj,α+

(1− θj,α+1/2)ξα,γφj,α+1

)
∂x(huγ)−∆α

−fj,α+1/2(Φ).

Using that equality, we can rewrite equation (3.3) as

∂trj,α + ∂x(rj,αuα)− 1
hlα

M∑
γ=1

(
−θj,α−1/2ξα−1,γrj,α−1 +

(
θj,α+1/2ξα,γ − (1− θj,α−1/2)ξα−1,γ

)
rj,α

+ (1− θj,α+1/2)ξα,γrj,α+1

)
∂x(huγ) = − 1

lα
∆α
−fj,α+1/2(Φ).

(A.2)

From now on, we will omit here the argument “Φ” in ρα(Φ). Then, concerning the case of the
equation (3.6), which we can rewrite as

∂t(hραuα) + ∂x(hραu2
α) + ∂x

(
hpS + gh2

[
1
2
lαρα +

M∑
β=α+1

lβρβ

])

=
N∑
j=0

ρj
lα

∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
+

(
pS + gh

M∑
β=α+1

lβρβ

)
∂xh− ghLα−1ρα∂xh− ghρα∂xzB,

let us notice that

∆α
−
(
uα+1/2H0,α+1/2(Φ)

)
= −

N∑
j=1

∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
+ ∆α

−(uα+1/2Gα+1/2).

Then we get

N∑
j=0

ρj
lα

∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
=

N∑
j=1

ρ̄j
lα

∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
+
ρ0

lα
∆α
−(uα+1/2Gα+1/2),

where we recall that ρ̄j = ρj − ρ0 for all j = 1, . . . , N . In addition, expanding the quantity

∆α
−(uα+1/2Gα+1/2) =

M∑
γ=1

∆α
−

((
εα+1/2uα + (1− εα+1/2)uα+1

)
ξα,γ

)
∂x(huγ)

as well as the following one,

∆α
−
(
uα+1/2Hj,α+1/2(Φ)

)
=

M∑
γ=1

∆α
−

((
εα+1/2uα + (1− εα+1/2)uα+1

)(
θj,α+1/2φj,α + (1− θj,α+1/2)φj,α+1

)
ξα,γ

)
∂x(huγ)
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−∆α
−

((
εα+1/2uα + (1− εα+1/2)uα+1

)
fj,α+1/2(Φ)

)
,

we may rewrite equation (3.6) as follows:

∂t(hραuα) + ∂x

(
hραu

2
α + gh2

[
1
2
lαρα +

M∑
β=α+1

lβρβ

])
+ gh

(
Lα−1ρα −

M∑
β=α+1

lβρβ

)
∂xh

−
M∑
γ=1

1
h2lα

b(1)
α,γ∂x(huγ) =

1
h2lα

c(1)
α − ghρα∂xzB − h∂xpS.

More precisely, recalling that

ργ(Φ) = ρ0 +
1
h

N∑
j=1

ρ̄jrj,γ for all γ = 1, . . . ,M

so that

∂x(huγ) =∂x

(
qγ
ργ

)
=

1
ργ
∂xqγ −

qγ
ρ2
γ

∂xργ =
1
ργ
∂xqγ +

(ργ − ρ0)qγ
hρ2

γ

∂xh−
qγ
hρ2

γ

N∑
j=1

ρ̄j∂xrj,γ ,

we can finally rewrite equation (3.6) as

∂tqα + ∂x

(
q2
α

hρα
+ gh2

[
1
2
lαρα +

M∑
β=α+1

lβρβ

])
+ gh

(
Lα−1ρα −

M∑
β=α+1

lβρβ

)
∂xh

−
M∑
γ=1

1
h2lα

b(1)
α,γ

(
1
ργ
∂xqγ +

(ργ − ρ0)qγ
hρ2

γ

∂xh−
qγ
hρ2

γ

N∑
j=1

ρ̄j∂xrj,γ

)

=
1

h2lα
c(1)
α − ghρα∂xzB − h∂xpS,

(A.3)

where we define

b(1)
α,γ :=∆α

−

((
εα+1/2qα

ρα
+

(1− εα+1/2)qα+1

ρα+1

)
ξα,γ

[
hρα+1 +

N∑
j=1

ρ̄jθj,α+1/2(rj,α − rj,α+1)

])
,

c(1)
α :=−∆α

−

((
εα+1/2qα

ρα(Φ)
+

(1− εα+1/2)qα+1

ρα+1(Φ)

)
h

N∑
j=0

ρjfj,α+1/2(Φ)

)
.

To complete the system, we rewrite equation (A.2) as

∂trj,α + ∂x

(
qαrj,α
hρα

)
−

M∑
γ=1

1
hlα

b
(2)
j,α,γ

(
1
ργ
∂xqγ +

(ργ − ρ0)qγ
hρ2

γ

∂xh−
qγ
hρ2

γ

N∑
k=1

ρ̄k∂xrk,γ

)
=

1
hlα

c
(2)
j,α,

(A.4)

where we define

b
(2)
j,α,γ :=− θj,α−1/2ξα−1,γrj,α−1 +

(
θj,α+1/2ξα,γ − (1− θj,α−1/2)ξα−1,γ

)
rj,α

+ (1− θj,α+1/2)ξα,γrj,α+1,

c
(2)
j,α :=− h∆α

−fj,α+1/2(Φ).
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The system of (N + 1)M + 1 equations made up of the equations (A.1), (A.3) and (A.4) has the
form (3.14) with the notation (3.15), (3.16) for the unknown vector. The scalar function H is
actually nothing else but the bottom function (i.e., H = zB). Let us introduce the integer index

I(α, j) = (α− 1)N + j +M + 1 for α = 1, . . . ,M and j = 1, . . . , N ,

which defines a one-to-one function I : {1, . . . ,M} × {1, . . . , N} → {M + 2, . . . , (N + 1)M + 1}.
Note that I has a well-defined inverse, which we denote by Î. We now define the vectors S(w) =
(Sν(w))ν=1,...,(N+1)M+1, G(w) = (Gν(w))ν=1,...,(N+1)M+1 and F (w) = (Fν(w))ν=1,...,(N+1)M+1.

Sν(w) =

{
0 for ν = 1 and ν = M + 2, . . . , (N + 1)M + 1,
−ghρα, α = ν − 1 for ν = 2, · · · ,M + 1,

Gν(w) =



GM+1/2 −G1/2 for ν = 1,

c
(1)
α

h2lα
− h∂xpS, α = ν − 1 for ν = 2, . . . ,M + 1,

c
(2)
j,α

hlα
, (α, j) = Î(ν) for ν = M + 2, . . . , (N + 1)M + 1,

Fν(w) =



M∑
β=1

lβ
qβ
ρβ

for ν = 1,

q2
α

hρα
+ gh2

(
1
2
lαρα +

M∑
β=α+1

lβρβ

)
, α = ν − 1 for ν = 2, . . . ,M + 1,

qαrj,α
hρα

, (α, j) = Î(ν) for ν = M + 2, . . . , (N + 1)M + 1.

The matrix B(w) = (Bν,µ(w))ν,µ=1,...,(N+1)M+1 within the equation (3.14) is defined by

Bν,µ(w) =



0 for ν = 1, µ = 1, . . . , (N + 1)M + 1,

gh

(
Lαρα −

M∑
β=α+1

lβρβ

)

− 1
h3lα

M∑
β=1

ρβ − ρ0

ρ2
β

qβb
(1)
α,β , α = ν − 1 for ν = 2, . . . ,M + 1, µ = 1,

−
b

(1)
α,β

h2lαρβ
, α = ν − 1, β = µ− 1 for ν, µ = 2, . . . ,M + 1,

ρ̄kqβ
h3lαρ2

β

b
(1)
α,β , α = ν − 1, (β, k) = Î(µ) for

{
ν = 2, . . . ,M + 1,
µ = M + 2, . . . , (N + 1)M + 1,

1
h2lα

M∑
β=1

ρ0 − ρβ
ρ2
β

qβb
(2)
j,α,β , (α, j) = Î(ν) for

{
ν = M + 2, . . . , (N + 1)M + 1,
µ = 1,

−
b

(2)
j,α,β

hlαρβ
, (α, j) = Î(ν), β = µ− 1 for

{
ν = M + 2, . . . , (N + 1)M + 1,
µ = 2, . . . ,M + 1,

ρ̄kqβ
h2lαρ2

β

b
(2)
j,α,β , (α, j) = Î(ν), (β, k) = Î(µ) for ν, µ = M + 2, . . . , (N + 1)M + 1.

Equation (3.14) also can be rewritten in the form

∂tw +A(w)∂xw = S(w)∂xH +G(w),
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where A(w) = B(w) + J(w), and J(w) = ∂F (w)/∂w is the Jacobian matrix of F . We define,
below, the Jacobian matrix J(w) = (Jν,µ(w))ν,µ=1,...,(N+1)M+1 ∈M(N+1)M+1(R).

Jν,µ(w) =



1
h

M∑
β=1

lβ(ρβ − ρ0)
ρ2
β

qβ for ν = 1, µ = 1,

lβ/ρβ , β = µ− 1 for ν = 1, µ = 2, . . . ,M + 1,

− lβ ρ̄k
hρ2

β

qβ , (β, k) = Î(µ) for

{
ν = 1,
µ = M + 2, · · · , (N + 1)M + 1,

− ρ0q
2
α

h2ρ2
α

+ gh

(
1− Lα +

lα
2

)
(ρα − ρ0),

α = ν − 1 for ν = 2, . . . ,M + 1, µ = 1,

2qα
hρα

δα,β , α = ν − 1, β = µ− 1 for ν, µ = 2, . . . ,M + 1,

(
gh
lα
2
− q2

α

h2ρ2
α

)
ρ̄kδα,β + ρ̄kgh

M∑
γ=α+1

lγδγ,β , for

{
ν = 2, . . . ,M + 1,
µ = M + 2, . . . , (N + 1)M + 1,

α = ν − 1, (β, k) = Î(µ)

−ρ0qαrj,α
h2ρ2

α

, (α, j) = Î(ν) for

{
ν = M + 2, . . . , (N + 1)M + 1,
µ = 1,

rj,α
hρα

δα,β , (α, j) = Î(ν), β = µ− 1 for

{
ν = M + 2, . . . , (N + 1)M + 1,
µ = 2, . . . , N + 1,

qαδα,β
h2ρ2

α

(
hραδj,k − ρ̄krj,α

)
,

(α, j) = Î(ν), (β, k) = Î(µ) for ν, µ = M + 2, · · · , (N + 1)M + 1.

B Appendix: definition in terms of the variable w̃

With the unknown vector w̃ in (4.4), the first equation of the system (4.2) is merely rewritten as

∂th+ ∂x

(
M∑
β=1

lβ
hqβ
mβ

)
= 0. (B.1)

Next, considering the expression (3.13), we have

∂x(huγ) =
1

ργ(Φ)
∂xqγ −

qγ
hρ2

γ(Φ)
∂x(hργ(Φ)) +

qγ
hργ(Φ)

∂xh =
h

mγ
∂xqγ −

hqγ
m2
γ

∂x(mγ) +
qγ
mγ

∂xh,

and then we exploit the previous computations for the case of the system (3.10) (Appendix 1) to
complete the compact form of (4.2). More precisely, we rewrite the second and third parts of the
system respectively as

∂tmα + ∂xqα −
M∑
γ=1

1
hlα

∆α
−(ξα,γmα+ 1

/
2)
(
h

mγ
∂xqγ −

hqγ
m2
γ

∂x(mγ) +
qγ
mγ

∂xh

)

= −
N∑
j=1

ρ̄j
lα

∆α
−fj,α+1/2(Φ)

(B.2)
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and

∂tqα + ∂x

(
q2
α

mα
+ gh

[
1
2
lαmα +

M∑
β=α+1

lβmβ

])
+ g

(
Lα−1mα −

M∑
β=α+1

lβmβ

)
∂xh

−
M∑
γ=1

1
hlα

∆α
−(ξα,γqα+1/2)

(
h

mγ
∂xqγ −

hqγ
m2
γ

∂x(mγ) +
qγ
mγ

∂xh

)

= −
N∑
j=1

ρ̄j
lα

∆α
−

(
qα+1/2

mα+1/2
fj,α+1/2(Φ)

)
− gmα∂xzB − h∂xpS.

(B.3)

Here also, the system of 2M+1 equations made up of the equations (B.1), (B.2) and (B.3) has the
form (4.3) with the notation (4.4) for the unknown vector. The scalar function H̃ still represents
the bottom function. The vectors S̃(w̃) = (S̃ν(w̃))ν=1,...,2M+1, G̃(w̃) = (G̃ν(w̃))ν=1,...,2M+1 and
F̃ (w̃) = (F̃ν(w̃))ν=1,...,2M+1 are given by the respective expressions

S̃ν(w̃) =

{
0 for ν = 1, . . . ,M + 1,
−gmα, α = ν −M − 1 for n = M + 2, · · · , 2M + 1,

G̃ν(w̃) =



GM+1/2 −G1/2 for ν = 1,

−
N∑
j=1

ρ̄j
lα

∆α
−fj,α+1/2(Φ), α = ν − 1 for ν = 2, . . . ,M + 1,

−
N∑
j=1

ρ̄j
lα

∆α
−

(
qα+1/2

mα+1/2
fj,α+1/2(Φ)

)
− h∂xpS,

α = ν −M − 1 for ν = M + 2, . . . , 2M + 1,

F̃ν(w̃) =



M∑
β=1

lβ
hqβ
mβ

for ν = 1,

qα, α = ν − 1 for ν = 2, . . . ,M + 1,

q2
α

mα
+ gh

(
1
2
lαmα +

M∑
β=α+1

lβmβ

)
, α = ν −M − 1 for ν = M + 2, . . . , 2M + 1.
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The matrix B̃(w̃) = (B̃ν,µ(w̃))ν,µ=1,...,2M+1 is defined by

B̃ν,µ(w̃) =



0 for ν = 1, µ = 1, . . . , 2M + 1,

−
M∑
β=1

qβ∆α
−(ξα,βmα+1/2)
hlαmβ

, α = ν − 1 for ν = 2, . . . ,M + 1, µ = 1,

qβ∆α
−(ξα,βmα+1/2)
lαm2

β

,

{
α = ν − 1,
β = µ− 1

for ν, µ = 2, . . . ,M + 1,

−
∆α
−(ξα,βmα+1/2)

lαmβ
,

{
α = ν − 1,
β = µ−M − 1

for

{
ν = 2, . . . ,M + 1,
µ = M + 2, . . . , 2M + 1,

g

(
Lα−1mα −

M∑
β=α+1

lβmβ

)

−
M∑
β=1

qβ∆α
−(ξα,βqα+1/2)
hlαmβ

, α = ν −M − 1 for ν = M + 2, . . . , 2M + 1, µ = 1,

qβ∆α
−(ξα,βqα+1/2)
lαm2

β

,

{
α = ν −M − 1,
β = µ− 1

for

{
ν = M + 2, . . . , 2M + 1,
µ = 2, . . . ,M + 1,

−
∆α
−(ξα,βqα+1/2)

lαmβ
,

{
α = ν −M − 1,
β = µ−M − 1

for ν, µ = M + 2, . . . , 2M + 1.

Here again, the form (4.3) can be rewritten as

∂tw̃ + Ã(w̃)∂xw̃ = S̃(w̃)∂xH̃ + G̃(w̃),

where Ã(w̃) = B̃(w̃) + J̃(w̃) and J̃(w̃) = ∂F̃ (w̃)/∂w̃ is the Jacobian matrix of F̃ . The matrix
J̃(w̃) ∈M2M+1(R) = (J̃ν,µ(w̃))ν,µ=1,...,2M+1 is then given below.

J̃ν,µ(w̃) =



M∑
β=1

lβ
qβ
mβ

for ν, µ = 1,

−lβ
hqβ
m2
β

, β = µ− 1 for ν = 1, µ = 2, . . . ,M + 1,

lβ
h

mβ
, β = µ−M − 1 for ν = 1, µ = M + 2, . . . , 2M + 1,

0 for ν = 2, . . . ,M + 1, µ = 1, . . . ,M + 1,

qαδα,β , α = ν − 1, β = µ−M − 1 for

{
ν = 2, . . . ,M + 1,
µ = M + 2, . . . , 2M + 1,

1
2
glαmα + g

M∑
β=α+1

lβmβ , α = ν −M − 1 for ν = M + 2, . . . , 2M + 1, µ = 1,

− q2
α

m2
α

δα,β + gh

(
lαδα,β

2
+

M∑
γ=α+1

lγδγ,β

)
,

α = ν −M − 1, β = µ− 1 for

{
ν = M + 2, . . . , 2M + 1,
µ = 2, . . . ,M + 1,

2 qα
mα

δα,β , α = ν −M − 1, β = µ−M − 1 for ν, µ = M + 2, . . . , 2M + 1.
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lamiento Matemático (U. de Chile)/CI2MA (U. de Concepción), and CONICYT project Anillo de
Investigación en Ciencia y Tecnoloǵıa ANANUM.
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