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Abstract

The Hermite random field has been introduced as a limit of some weighted Hermite
variations of the fractional Brownian sheet. In this work we define it as a multiple integral
with respect to the standard Brownian sheet and introduce Wiener integrals with respect
to it. As an application we study the wave equation driven by the Hermite sheet. we prove
the existence of the solution and we study the regularity of its sample paths, the existence
of the density and of its local times.

2000 AMS Classification Numbers: 60F05, 60H05, 60G18.

Key words: Hermite process, Hermite sheet, Wiener integral, stochastic wave equa-
tion.

1 Introduction

The random fields or multiparameter stochastic processes have focused a significant
amount of attention among scientists due to the wide range of applications that they have.
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Particularly, self-similar random fields find some of their applications in various kind of phe-
nomena, going from hydrology and surface modeling to network traffic analysis and mathemat-
ical finance, to name a few. From other side, this type of processes are also quite interesting
when they appear as solutions to Stochastic Parial Differential Equations (SPDE’s) in several
dimensions, such as the wave or heat equations.

A class of processes that lies in the family described above are the Hermite random
fields or Hermite sheets (from now on). Inside this class we can find the well-known and studied
fractional Brownian sheet and the Rosenblatt processes, among others.

The Hermite processes of order q ≥ 1 are self-similar with stationary increments and
live in the qth Wiener chaos, that is, it can be expressed as a q times iterated integral with
respect to the Wiener process. The class of Hermite process includes the fractional Brownian
motion which is the only Gaussian process in this family. Their practical aspects are striking:
they provide a wide class of processes from which to model long memory, self-similarity and
Hölder-regularity, allowing significant deviation from fBm and other Gaussian processes. Since
they are non-Gaussian and self-similar with stationary increments, the Hermite processes can
also be an input in models where self-similarity is observed in empirical data which appears to
be non-Gaussian.

The Hermite sheet of order q it is only known in his representation as a non-
central limit of a particularly normalized Hermite variation of the fractional Brownian sheet,
see [21] for the two-parameter case and [8] for the general d-parametric case. In both cases the
authors also prove self-similarity, stationary increments and Hölder continuity.

In the present work we deal directly with the multi-parametric case building the Hermite
sheet as a natural extension of the expression for the Hermite process studied as a non-central
limit in [14] and [25].

Fix d ∈ N\ {0} and let H = (H1, H2, ...,Hd) ∈ (12 , 1)d a multi-Hurst index

ZqH(t) = c(H, q)

∫
Rd·q

∫ t1

0
. . .

∫ td

0

 q∏
j=1

(s1 − y1,j)
−
(

1
2
+

1−H1
q

)
+ . . . (sd − yd,j)

−
(

1
2
+

1−Hd
q

)
+


dsd . . . ds1 dW (y1,1, ..., yd,1) . . . dW (y1,q, ..., yd,q)

= c(H, q)

∫
Rd·q

∫ t

0

q∏
j=1

(s− yj)
−
(

1
2
+1−H

q

)
+ ds dW (y1) . . . dW (yq). (1)

The above integrals are Wiener-Itô multiple integrals of order q with respect to the
d-parametric standard Brownian sheet (W (y))y∈Rd (see [18] for the definition) and c(H, q) is a
positive normalization constant depending only on H and q. We designate the process ZqH(t)
as the Hermite sheet or Hermite random field.

From expression (1) is possible to note that for d = 1 we recover the Hermite process
which represent a family that has been recently studied in [12], [16] and [20]. As a particular
case (q = 1) we recover the most known element of this family, the fractional Brownian mo-
tion, which has been largely studied due to its various applications. Recently, a rich theory
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of stochastic integration with respect to this process has been introduced and stochastic dif-
ferential equations driven by the fractional Brownian motion have been considered for several
purposes. The process obtained in (1) for d = 1, q = 2 is known as the Rosenblatt process, it
was introduced by Rosenblatt in [22] and it has been called in this way by Taqqu in [24]. Lately,
this process have been increasingly studied by his different interesting aspects like wavelet type
expansion or extremal properties, parameter estimations, discrete approximations and others
potential applications (see [1], [2], [5], [11], [27]).

As far as we know, the only well-known multiparameter process that can be obtained
from (1) is the fractional Brownian sheet (d > 1 and q = 1). This processes has been recently
studied as a driving noise for stochastic differential equations and stochastic calculus with
respect to it have been developed. We refer to [3], [15], [28] for only a few works on various
aspects of the fractional Brownian sheet.

In one hand the purpose of this article is to study the basic properties of the multipara-
marmeter Hermite process and then to introduce Wiener integrals with respect to the Hermite
sheet in order to generalize and continue the line introduced in [16] putting a new brick in the
construction of stochastic calculus driven by this class of processes in several dimensions. As
in [8] the covariance structure of the Hermite sheet is like the one of the fractional Brownian
sheet, enabling the use of the same classes of deterministic integrands as in the fractional
Brownian sheet profiting its well-known properties.

Also in the aim of this work lives the idea of making an approach to the study of
stochastic partial differential equations in several dimensions driven by non-Gaussian noises,
giving a specific expression for the driving noise allowing to use in a better way the properties
of the equations by taking advantage of the results already existent in the literature. Is in this
sense that, inspired by the works [4], [10] or [13] and exploiting these, we present a stochastic
wave equation with respect to the Hermite sheet in spatial dimension d ≥ 1 and we study the
existence, regularity, and other properties of the solution, including the existence of local times
and of the joint density.

We organize our paper as follows. Section 2 present the necessary notations and prove
several properties of the Hermite sheet. In Section 3, we construct Wiener integrals with
respect to this process. Section 4 is devoted to present the wave equation and discuss the
existence and regularity of the solution and other properties.

2 Notation and the Hermite sheet

Throughout the work we use the notation introduced in [8]. Fix d ∈ N\ {0} and consider
multi-parametric processes indexed in Rd. We shall use bold notation for multi-indexed quanti-
ties, i.e., a = (a1, a2, ..., ad), ab = (a1b1, a2b2, ..., adbd), a/b = (a1/b1, a2/b2, ..., ad/bd), [a,b] =∏d
i [ai, bi], (a,b) =

∏d
i (ai, bi),

∑
i∈[0,N] ai =

∑N1
i1

∑N2
i2
. . .
∑Nd

id
ai1,i2,...,id , ab =

∏d
i=1 a

bi
i , and

a < b iff a1 < b1, a2 < b2, ..., ad < bd (analogously for the other inequalities).
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Before introducing the Hermite sheet we briefly recall the fractional Brownian sheet
and the standard Brownian sheet.

The d-parametric anisotropic fractional Brownian sheet is the centered Gaussian pro-
cess
{BH

t : t = (t1, ..., td) ∈ Rd} with Hurst multi-index H = (H1, ...,Hd) ∈ (0, 1)d. It is equal to
zero on the hyperplanes {t : ti = 0}, 1 ≤ i ≤ d, and its covariance function is given by

RH(s, t) = E[BH
s B

H
t ]

=

d∏
i

RHi(si, ti) =

d∏
i

s2Hii + t2Hii − |ti − si|2Hi
2

. (2)

The d-parametric standard Brownian sheet is the Gaussian process {Wt : t = (t1, ..., td) ∈ Rd}
equal to zero on the hyperplanes {t : ti = 0}, 1 ≤ i ≤ d, and covariance function given by

R(s, t) = E[Ws,Wt] =

d∏
i

R(si, ti) =

d∏
i

si ∧ ti. (3)

Let q ≥ 1, q ∈ Z and the Hurst multi-index H = (H1, H2, ...,Hd) ∈ (12 , 1)d. The
Hermite sheet of order q is given by

ZqH(t) = c(H, q)

∫
Rd·q

∫ t1

0
. . .

∫ td

0

 q∏
j=1

(s1 − y1,j)
−
(

1
2
+

1−H1
q

)
+ . . . (sd − yd,j)

−
(

1
2
+

1−Hd
q

)
+


dsd . . . ds1 dW (y1,1, ..., yd,1) . . . dW (y1,q, ..., yd,q)

= c(H, q)

∫
Rd·q

∫ t

0

q∏
j=1

(s− yj)
−
(

1
2
+1−H

q

)
+ ds dW (y1) . . . dW (yq). (4)

where x+ = max(x, 0). For a better understanding about multiple stochastic integrals we refer
to [18]. As pointed out before, when q = 1, (4) is the fractional Brownian sheet with Hurst
multi-index H = (H1, H2, ...,Hd) ∈ (12 , 1)d. For q ≥ 2 the process ZqH(t) is not Gaussian and
for q = 2 we denominate it as the Rosenblatt sheet.

Now let’s calculate the covariance RqH(s, t) of the Hermite sheet. Using the isometry
of multiple Wiener-Itô integrals and Fubini one get
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RqH(s, t) = E[ZqH(s)ZqH(t)]

= E

c(H, q)2
∫
Rd·q

∫ s

0

q∏
j=1

(u− yj)
−
(

1
2
+1−H

q

)
+ du dW (y1) . . . dW (yq)

·
∫
Rd·q

∫ t

0

q∏
j=1

(v − yj)
−
(

1
2
+1−H

q

)
+ dv dW (y1) . . . dW (yq)


= c(H, q)2

∫
Rd·q


∫ s1

0
. . .

∫ sd

0

q∏
j=1

d∏
i=1

(ui − yi,j)
−
(

1
2
+

1−Hi
q

)
+ dud . . . du1

·
∫ t1

0
. . .

∫ td

0

q∏
j=1

d∏
i=1

(vi − yi,j)
−
(

1
2
+

1−Hi
q

)
+ dvd . . . dv1

 dy1,1 . . . dyd,1 . . . dy1,q . . . dyd,q

= c(H, q)2
∫ t1

0

∫ s1

0

∫
Rq

q∏
j=1

(u1 − y1,j)
−
(

1
2
+

1−H1
q

)
+ (v1 − y1,j)

−
(

1
2
+

1−H1
q

)
+ dy1,1 . . . dy1,qdu1dv1

...∫ td

0

∫ sd

0

∫
Rq

q∏
j=1

(ud − yd,j)
−
(

1
2
+

1−Hd
q

)
+ (vd − yd,j)

−
(

1
2
+

1−Hd
q

)
+ dyd,1 . . . dyd,qduddvd

but ∫
Rq

q∏
j=1

(u− xj)
−
(

1
2
+ 1−H

q

)
+ (v − xj)

−
(

1
2
+ 1−H

q

)
+ dx1 . . . dxq

=

[∫
R

(u− x)
−
(

1
2
+ 1−H

q

)
+ (v − x)

−
(

1
2
+ 1−H

q

)
+

]q
, (5)

so

RqH(s, t) = c(H, q)2
∫ t1

0

∫ s1

0

[∫
R

(u1 − y1)
−
(

1
2
+

1−H1
q

)
+ (v1 − y1)

−
(

1
2
+

1−H1
q

)
+

]q
du1dv1

...∫ td

0

∫ sd

0

[∫
R

(ud − yd)
−
(

1
2
+

1−Hd
q

)
+ (vd − yd)

−
(

1
2
+

1−Hd
q

)
+

]q
duddvd.

Recalling that the Beta function β(p, q) =
∫ 1
0 z

p−1(1− z)p−1dz, p, q > 0, satisfies the following
identity ∫

R
(u− y)a−1+ (v − y)a−1+ dy = β(a, 2a− 1)|u− v|2a−1 (6)
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we see that

RqH(s, t) = c(H, q)2
∫ t1

0

∫ s1

0
β

(
1

2
− 1−H1

q
,
2(H1 − 1)

q

)q
· |u1 − v1|2(H1−1)du1dv1

. . .

∫ td

0

∫ sd

0
β

(
1

2
− 1−Hd

q
,
2(Hd − 1)

q

)q
· |ud − vd|2(Hd−1)duddvd

= c(H, q)2β

(
1

2
− 1−H1

q
,
2(H1 − 1)

q

)q 1

2H1(2H1 − 1)

(
s2H1
1 + t2H1

1 − |t1 − s1|2H1

)
. . . β

(
1

2
− 1−Hd

q
,
2(Hd − 1)

q

)q 1

2Hd(2Hd − 1)

(
s2Hdd + t2Hdd − |td − sd|2Hd

)
So now we choose

c(H, q)2 =

β
(
1
2 −

1−H1
q , 2(H1−1)

q

)q
H1(2H1 − 1)

−1 . . .
β

(
1
2 −

1−Hd
q , 2(Hd−1)q

)q
Hd(2Hd − 1)

−1 (7)

in this way we get E
(
ZqH(t)2

)
= t2H = t2H1

1 . . . t2Hdd , and finally

RqH(s, t) =
1

2

(
s2H1
1 + t2H1

1 − |t1 − s1|2H1

)
. . .
(
s2Hdd + t2Hdd − |td − sd|2Hd

)
=

d∏
i

s2Hii + t2Hii − |ti − si|2Hi
2

=

d∏
i

RHi(si, ti) = RH(s, t) (8)

Remark 1 As mentioned at the beginning, from the previous development we see that the
covariance structure is the same for all q ≥ 1, so it coincides with the covariance of the
fractional Brownian sheet.

We will next prove the basic properties of the Hermite sheet: self-similarity, stationarity
of the increments and Hölder continuity.

Let us first recall the concept of self-similarity for multiparameter stochastic processes.

Definition 1 A stochastic process (Xt)t∈T , where T ⊂ Rd is called self-similar with self-
similarity order α = (α1, ..., αd) > 0 if for any h = (h1, .., hd) > 0 the stochastic process
(X̂t)t∈T given by

X̂t = hαX t
h

= hα1
1 ...hαdd X t1

h1
,...,

td
hd

has the same law as the process X.

Proposition 1 The Hermite sheet is self-similar of order H = (H1, ...,Hd).
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Proof: The scaling property of the Wiener sheet implies that for every 0 < c = (c1, .., cd) ∈ Rd
the processes (W (ct)t≥0) and

(√
cW (t)

)
t≥0 have the same finite dimensional distributions.

Therefore, if 1 = (1, ..., 1) ∈ Rd, using obvious changes of variables in the integrals ds and dW ,

ẐqH(t) = hHZqt
h

= c(H, q)hH

∫
Rd·q

∫ t
h

0

q∏
j=1

(s− yj)
−
(

1
2
+1−H

q

)
+ ds dW (y1) . . . dW (yq)

= c(H, q)hH−1
∫
Rd·q

∫ t

0

q∏
j=1

(
s

h
− yj)

−
(

1
2
+1−H

q

)
+ ds dW (y1) . . . dW (yq)

= c(H, q)hH−1
∫
Rd·q

∫ t

0

q∏
j=1

(
s

h
− yj

h
)
−
(

1
2
+1−H

q

)
+ ds dW (h−1y1) . . . dW (h−1yq)

= c(H, q)hH−1h
q
(

1
2
+1−H

q

) ∫
Rd·q

∫ t

0

q∏
j=1

(s− yj)
−
(

1
2
+1−H

q

)
+ ds dW (h−1y1) . . . dW (h−1yq)

=(d) c(H, q)hH−1h
q
(

1
2
+1−H

q

)
h−

q
2

∫
Rd·q

∫ t

0

q∏
j=1

(s− yj)
−
(

1
2
+1−H

q

)
+ ds dW (y1) . . . dW (yq)

= ZqH(t)

where =(d) means equivalence of finite dimensional distributions.

Let us recall the notion of the increment of a d-parameter process X on a rectangle
[s, t] ⊂ Rd, s = (s1, ..., sd), t = (t1, ..., td), with s ≤ t. This increment is denoted by ∆X[s,t]

and it is given by

∆X[s,t] =
∑

r∈{0,1}d
(−1)d−

∑
i riXs+r·(t−s). (9)

When d = 1 one obtains ∆X[s,t] = Xt−Xs while for d = 2 one gets ∆X[s,t] = Xt1,t2 −Xt1,s2 −
Xs1,t2 +Xs1,s2 .

Definition 2 A process (Xt, t ∈ Rd) has stationary increments if for every h > 0,h ∈ Rd the
stochastic processes (∆X[0,t], t ∈ Rd) and (∆X[h,h+t], t ∈ Rd) have the same finite dimensional
distributions.

Proposition 2 The Hermite sheet (Zq(t))t≥0 has stationary increments.

Proof: Developing the increments of the process using the definition of the Hermite sheet
and proceding as in the proof of Proposition 1 using the change of variables s′ = s − h, it is
immediate to see that for every h > 0,h ∈ Rd,

∆Zq[h,h+t] =d ∆Zq[0,t]

for every t.
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Proposition 3 The trajectories of the Hermite sheet (Zq(t), t ≥ 0) are Hölder continuous of
any order δ = (δ1, .., δd) ∈ [0,H] in the following sense: for every ω ∈ Ω, there exists a constant
Cω > 0 such that for every s, t ∈ Rd, s, t ≥ 0,

|∆Zq[s,t]| ≤ Cω|t1 − s1|
δ1 ....|td − sd|δd = Cω|t− s|δ.

Proof: Using the Cencov’s criteria (see [9]) and the fact that the process Zq is almost sure
equal to 0 when ti = 0, it suffices to check that

E
∣∣∣∆Zq[s,t]∣∣∣p ≤ C (|t1 − s1|....|td − sd|)1+γ (10)

for some p ≥ 2 and γ > 0. From the self-similarity and the stationarity of the increments of
the process Zq, we have for every p ≥ 2

E
∣∣∣∆Zq[s,t]∣∣∣p = E |Z1|p (|t1 − s1|....|td − sd|)pH

and this obviously implies (10).

3 Wiener integrals with respect to the Hermite sheet

Now we are well positioned to present Wiener integrals with respect to the d-parametric
Hermite sheet. Let us consider a Hermite sheet

(
ZqH(t)

)
t∈Rd .Denote E the family of elementary

functions on Rd of the form

f(u) =
n∑
l=1

al1(tl,tl+1](u) (11)

=
n∑
l=1

al1(t1,l,t1,l+1]×...×(td,l,td,l+1](u1, . . . , ud), tl < tl+1, al ∈ R, l = 1, . . . , n.

For functions like f above we can naturally define it’s Wiener integral with respect to the
Hermite sheet ZqH as ∫

Rd
f(u)dZqH(u) =

n∑
l=1

al∆(ZqH)[tl,tl+1] (12)

where (∆ZqH)[tl,tl+1] (see (9)) stands for the generalized increments of ZqH on the rectangle

∆tl := [tl, tl+1] =

d∏
i=1

[ti,l, ti,l+1]

given by

(∆ZqH)[tl,tl+1] =
∑

ξ∈{0,1}d
(−1)d−

∑d
i=1 ξiZqH(t1,l+ξd , . . . , td,l+ξ1). (13)
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In the case d = 1, we simply have

(∆ZqH)[tl,tl+1] = ZqH(t1,l+1 − t1,l)

while for d = 2

(∆ZqH)[tl,tl+1] = ZqH(t1,l+1, t2,l+1)− ZqH(t1,l, t2,l+1)− ZqH(t1,l+1, t2,l) + ZqH(t1,l, t2,l).

With the purpose of extend the definition (12) to a larger family of integrands, we
will point out some observations before. Let’s consider the mapping J on the set of functions
f : Rd → R to the set of functions f : Rd·q → R such that

J(f)(y1, . . . ,yq) = c(H, q)

∫
Rd
f(u)

q∏
j=1

(u− yj)
−
(

1
2
+1−H

q

)
+ du (14)

= c(H, q)

∫
Rd
f(u1, . . . , ud)

q∏
j=1

d∏
i=1

(ui − ui,j)
−
(

1
2
+

1−Hi
q

)
+ du1, . . . dud.

Using the mapping J we see that definition (4) can be re-expressed as follows

ZqH(t) = c(H, q)

∫
Rd·q

∫ t

0

q∏
j=1

(s− yj)
−
(

1
2
+1−H

q

)
+ ds dW (y1) . . . dW (yq)

=

∫
Rd·q

J(1[0,t1]×...×[0,td])(y1, . . . ,yq)dW (y1) . . . dW (yq). (15)

As J is clearly linear, definition (12) can be tailored to∫
Rd
f(u)dZqH(u) =

n∑
l=1

al∆tl

(
ZqH(tl)

)
=

n∑
l=1

al

 ∑
ξ∈{0,1}d

(−1)d−
∑d
i=1 ξiZqH(t1,l+ξ1 , . . . , td,l+ξd)


=

n∑
l=1

al
∑

ξ∈{0,1}d
(−1)d−

∑d
i=1 ξi

∫
Rd·q

J(1[0,t1,l+ξ1 ]×...×[0,td,l+ξd]
)(y1, . . . ,yq)dW (y1) . . . dW (yq)

=
n∑
l=1

al

∫
Rd·q

J(1[t1,l,t1,l+1]×...×[td,l,td,l+1])(y1, . . . ,yq)dW (y1) . . . dW (yq)

=

∫
Rd·q

J(f)(y1, . . . ,yq)dW (y1) . . . dW (yq). (16)

In this way we introduce the space

H =

{
f : Rd → R :

∫
Rd·q

(J(f)(y1, . . . ,yq))
2 dy1, . . . , dyq <∞

}
(17)
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equipped with the norm

‖f‖2H =

∫
Rd·q

(J(f)(y1, . . . ,yq))
2 dy1, . . . , dyq. (18)

Working the expression for the norm we see that

‖f‖2H = c(H, q)2
∫
Rd·q


∫

Rd
f(u)

q∏
j=1

(u− yj)
−
(

1
2
+1−H

q

)
+ du


·

∫
Rd
f(v)

q∏
j=1

(v − yj)
−
(

1
2
+1−H

q

)
+ dv

 dy1, . . . , dyq

= c(H, q)2
∫
Rd·q


∫

Rd
f(u1, . . . , ud)

q∏
j=1

d∏
i=1

(ui − yi,j)
−
(

1
2
+

1−Hi
q

)
+ du1, . . . dud


·

∫
Rd
f(v1, . . . , vd)

q∏
j=1

d∏
i=1

(vi − yi,j)
−
(

1
2
+

1−Hi
q

)
+ dv1, . . . dvd

 dy1, . . . , dyq

Using (5), (6) and (7) we get that

‖f‖2H = c(H, q)2
∫
Rd

∫
Rd
f(u1, . . . , ud)f(v1, . . . , vd)

d∏
i=1

∫
Rq

q∏
j=1

(ui − yi,j)
−
(

1
2
+

1−Hi
q

)
+ (vi − yi,j)

−
(

1
2
+

1−Hi
q

)
+ dyi,1, . . . dyi,q

 du1, . . . duddv1, . . . dvd

= c(H, q)2
∫
Rd

∫
Rd
f(u1, . . . , ud)f(v1, . . . , vd)

·
d∏
i=1

(∫
R

(ui − y)
−
(

1
2
+

1−Hi
q

)
+ (vi − y)

−
(

1
2
+

1−Hi
q

)
+ dy

)q
du1, . . . duddv1, . . . dvd

=

∫
Rd

∫
Rd
f(u1, . . . , ud)f(v1, . . . , vd)

d∏
i=1

Hi(2Hi − 1)|u− v|2Hi−2du1, . . . duddv1, . . . dvd

= H(2H− 1)

∫
Rd

∫
Rd
f(u)f(v)|u− v|2H−2dudv, (19)

hence

H =

{
f : Rd → R :

∫
Rd

∫
Rd
f(u)f(v)|u− v|2H−2dudv < +∞

}
(20)

and

‖f‖2H = H(2H− 1)

∫
Rd

∫
Rd
f(u)f(v)|u− v|2H−2dudv.
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The mapping

f →
∫
Rd
f(u)dZqH(u) (21)

provides an isometry from E to L2(Ω). Indeed, for f like (11) it holds that

E

{(∫
Rd
f(u)dZqH(u)

)2
}

=
n−1∑
k,l=0

akalE
(
∆tk

(
ZqH(tk)

)
·∆tl

(
ZqH(tl)

))
(22)

=
n−1∑
k,l=0

akal
∑

ξ∈{0,1}d
(−1)d−

∑d
i=1 ξi

∑
ρ∈{0,1}d

(−1)d−
∑d
j=1 ρjE

{
ZqH(tk+ξ)Z

q
H(tl+ρ)

}
=

n−1∑
k,l=0

akal
∑

ξ∈{0,1}d
(−1)d−

∑d
i=1 ξi

∑
ρ∈{0,1}d

(−1)d−
∑d
j=1 ρjRH(tk+ξ, tl+ρ)

=

n−1∑
k,l=0

akalH1(2H1 − 1) . . . Hd(2Hd − 1)

∫ t1,k+1

t1,k

. . .

∫ td,k+1

td,k

·
∫ t1,l+1

t1,l

. . .

∫ td,l+1

td,l

|u1 − v1|2H1−2 . . . |ud − vd|2Hd−2du1 . . . duddv1 . . . dvd

=
n−1∑
k,l=0

akal < 1[t1,k,t1,k+1]×[td,k,td,k+1], 1[t1,l,t1,l+1]×[td,l,td,l+1] >H

= < f, f >H, (23)

where we have made a slight abuse of notation, tk+ξ = (t1,k+ξ1 , . . . td,k+ξd).

On the other hand, from what shown in [19] it follows that the set of elementary
functions E is dense in H. As a consequence the mapping (14) can be extended to an isometry
from H to L2(Ω) and relation (15) still holds.

Remark 2 The elements of H may be not functions but distributions; it is therefore more
practical to work with subspaces of H that are sets of functions. Such a subspace is

|H| =

{
f : Rd → R

∣∣∣ ∫
Rd

∫
Rd
|f(u)||f(v)||u− v|2H−2dvdu <∞

}
.

Then |H| is a strict subspace of H and we actually have the inclusions

L2(Rd) ∩ L1(Rd) ⊂ L
1
H (Rd) ⊂ |H| ⊂ H, (24)

where Lp denotes Lp1 ⊗ . . .⊗ Lpd.
The space |H| is not complete with respect to the norm ‖ · ‖H but it is a Banach space with
respect to the norm

‖f‖2|H| =

∫
Rd

∫
Rd
|f(u)||f(v)||u− v|2H−2dvdu

11



Remark 3 Expression (16) present a useful interpretation for the Wiener integrals with re-
spect to the Hermite sheet; as elements in the q-th Wiener chaos generated by the d-parametric
standard Brownian field.

4 Application: The Hermite stochastic wave equation

In this section we present the linear stochastic wave equation as an example of equations
driven by a Hermite sheet. We show the existence of the solution and study some properties
of it thanks to the definition of the Wiener integrals with respect to the Hermite sheet.

Consider the linear stochastic wave equation driven by an infinite-dimensional Hermite
sheet ZqH with Hurst multi-index H ∈ (1/2, 1)(d+1). That is

∂2u

∂t2
(t, x) = ∆u(t, x) + ŻqH(t,x), t > 0,x ∈ Rd (25)

u(0, x) = 0, x ∈ Rd

∂u

∂t
(0, x) = 0, x ∈ Rd.

Here ∆ is the Laplacian on Rd and ZqH = {ZqH(t,x); t ≥ 0,x ∈ Rd} is the (d + 1)-parametric
Hermite sheet whose covariance is given by

E
{
ZqH(s,x)ZqH(t,y)

}
= RH(t, s)RH0(x,y)

if H = (H,H1, ..,Hd) and we denoted by H0 = (H1, ...,Hd). Equivalently we can write

E
{
ŻqH(s,x)ŻqH(t,y)

}
= H(2H − 1)|t− s|2H−2

d∏
i=1

(Hi(2Hi − 1) · |xi − yi|2Hi−2) (26)

Let G1 be the fundamental solution of utt − ∆u = 0. It is known that G1(t, ·) is a
distribution in S ′(Rd) with rapid decrease, and

FG1(t, ·)(ξ) =
sin(t|ξ|)
|ξ|

, (27)

for any ξ ∈ Rd, t > 0, d ≥ 1 (see e.g. [26]). In particular,

G1(t,x) =
1

2
1{|x|<t}, if d = 1

G1(t,x) =
1

2π

1√
t2 − |x|2

1{|x|<t}, if d = 2

G1(t,x) = cd
1

t
σt, if d = 3,

where σt denotes the surface measure on the 3-dimensional sphere of radius t.
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The mild solution of (25) is a square-integrable process u = {u(t,x); t ≥ 0,x ∈ Rd}
defined by:

u(t,x) =

∫ t

0

∫
Rd
G1(t− s,x− y)ZqH(ds, dy). (28)

The above integral is a Wiener integral with respect to the Hermite sheet, as introduced in
Section 2.

4.1 Existence and regularity of the solution

By definition, u(t,x) exists if and only if the stochastic integral above is well-defined, i.e.
gt,x := G1(t− ·,x− ·) ∈ H. In this case, E|u(t, x)|2 = ‖gt,x‖2H.

We state the result on the existence and the regularity of the solution to (25).

Proposition 4 Let ZqH(t,x) be the (d+ 1)-parametric Hermite sheet of order q. Denote by

β = d−
d∑
i=1

(2Hi − 1). (29)

Then the following statements are true

a.- The stochastic wave equation (25) admits an unique mild solution (u(t,x))t∈[0,1],x∈Rd if
and only if

d∑
i=1

(2Hi − 1) > d− 2H − 1. (30)

b.- Assume β > 2H−1 and let t0 and x ∈ Rd fixed. Then there exists positive constants c1, c2
such that for every s, t ∈ [t0, 1]

c1|t− s|2H+1−β ≤ E |u(t,x)− u(s,x)|2 ≤ c2|t− s|2H+1−β.

Also for every fixed x ∈ Rd the application

t→ u(t,x)

is almost surely Hölder continuous of order δ ∈
(

0, 2H+1−β
2

)
.

c.- Fix t ∈ [t0, T ]. Then there exist positive constants c3, c4 such that for any x,y ∈ Rd

c3|x− y|2H+1−β ≤ E |u(t,x)− u(t,y)|2 ≤ c4|x− y|2H+1−β.

Also, for any t ∈ [t0, 1] the application

x→ u(t,x)

is almost surely Hölder continuous of order δ ∈
(

0,
(
2H+1−β

2

)
∧ 1
)

.
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d.- Denote by ∆ the following metric on [0, T ]× Rd

∆ ((t,x); (s,y)) = |t− s|2H+1−β + |x− y|2H+1−β. (31)

Fix M > 0 and assume (30). For every t, s ∈ [t0, 1] and x,y ∈ Rd there exist positive
constants C1, C2 such that

C1∆ ((t,x); (s,y)) ≤ E |u(t,x)− u(s,y)|2 ≤ C2∆ ((t,x); (s,y)) . (32)

Proof: By the isometry of the Wiener integral with respect to the Hermite sheet, the L2

norm will be

Eu(t,x)2 = αH

∫ t

0
du

∫ t

0
dv|u− v|2H−2

∫
Rd

∫
Rd
dydzG1(t− u,x− y)G1(t− v,x− z)

×
d∏
i=1

(Hi(2Hi − 1))|xi − yi|2Hi−2

= αH

∫ t

0
du

∫ t

0
dv|u− v|2H−2

∫
Rd

sin(u|ξ|) sin(v|ξ|)
|ξ|2

µ(dξ)

where

µ(dξ) = cH

d∏
i=1

|ξi|−(2Hi−1) (33)

with ξ = (ξ1, ..., ξd). This is, u(t,x) has the same L2 norm as in the case q = 1, that means,
when the noise of the equation is a fractional Brownian sheet. It therefore follows from [4],
Theorem 3.1 that the above integral is finite if and only if∫

Rd

(
1

1 + |ξ|2

)H+ 1
2

µ(dξ) <∞

with µ given by (33). The above condition is equivalent to
∑d

i=1(2Hi − 1) > d− 2H − 1, see
Example 3.4 in [4].

The proof of the other two items items is strongly held in the covariance structure of
the Hermite sheet, which is the same as for the fractional Brownian sheet. By a carefully
revision of the proofs of Theorem 3.1 in [4], Propositions 1, 2, 3 and Corollary 1 in [10], is
possible to appreciate that the computations are also valid for any process with a covariance
structure like the one presented in these articles, in particular our case.

• The bounds for the increments are consequence of Proposition 1 in [10], and the Hölder
regularity comes from Corollary 1 in [10].

• The bounds are deduced from Proposition 2 in [10], and the space Hölder regularity is
direct from Proposition 3 in [10].

• Point d follows from b and c by following the lines of the proof of Theorem 2 in [10].
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4.2 Existence of local times

We will show that the solution to (25), viewed as a process in (t, x), admits a square
integrable local time.

Let us define the local time of a stochastic process (Xt)t∈T . Here T denotes a subset
of Rd. For any Borel set I ⊂ T the occupation measure of X on I is defined as

µI(A) = λ (t ∈ I,Xt ∈ A) , A ∈ B(R)

where λ denotes the Lebesque measure. If µI is absolutely continuous with respect to the
Lebesque measure, we say that X has local time on I. The local time is defined as the Radon-
Nykodim derivative of µI

L(I, x) =
dµI
dλ

(x), x ∈ R.

We will use the notation

L(t, x) := L([0, t], x), t ∈ Rd+, x ∈ R.

The local time satisfies the occupation time formula∫
I
f(Xt)dt =

∫
R
f(y)L(I, y)dy (34)

for any Borel set I in T and for any measurable function f : Rd → R.

Proposition 5 Let u(t,x), t ≥ 0,x ∈ Rd be the solution to (25) and assume β > 2H −
1 where β is given by (29). Then on each set [a, b] × [A,B] ⊂ [0,∞) × Rd the process(
u(t, x), t ≥ 0,x ∈ Rd

)
admits a local time (L([a, b]× [A,B], y), y ∈ R) which is square inte-

grable with respect to y

E
∫
R
L([a, b]× [A,B], y)2dy <∞ a.s. .

Proof: It is well known from [7] (see also Lemma 8.1 in [29]) that, for a jointly measurable
zero-mean stochastic process X = (X(t), t ∈ [0,T]) (T belongs to Rd) with bounded variance,
the condition ∫

[0,T]

∫
[0,T]

(E[X(t)−X(s)]2)−1/2dsdt <∞

is sufficient for the local time of X to exist on [0,T] almost surely and to be square integrable
as a function of u.
According to the inequality (32), for all I = [a, b]× [A,B] interval included in [0,∞)× Rd we
have,∫
I

∫
I
(E(u(t,x)−u(s,y))−1/2dtdxdsdy < C

∫
I

∫
I

(
|t− s|2H+1−β + |x− y|2H+1−β

)− 1
2
dtdxdsdy

and this is finite for β > 2H − 1. Thus almost surely the local time of u exists and is square
integrable.
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Remark 4 It follows as a consequence of Lemma 8.1 in [29] that the local time of the solution
u admits the following L2 representation

L([a, b]× [A,B], x) =
1

2π

∫
R
dze−izx

∫
[a,b]×[A,B]

dsdyeiu(s,y)z

for every x ∈ R.

4.3 Existence of the joint density for the solution in the Rosenblatt case

It is possible to obtain the existence of the joint density of the random vector (u(t, x), u(s, y))
with s 6= t or x 6= y in the case when the wave equation (25) is driven by a Hermite sheet
of order q = 2 (the Rosenblatt sheet). The result is based on a criterium for the existence of
densities for vectors of multiple integrals which has recently been proven in [17].

Let us state our result.

Proposition 6 Let u(t, x), t ≥ 0,x ∈ Rd be the mild solution to (25). Then for every (t,x) 6=
(s,y), (t,x), (s,y) ∈ (0,∞)× Rd, the random vector

(u(t,x), u(s,y))

admits a density.

Proof: Note that for every t ≥ 0 and x ∈ Rd, the random variable u(t,x) is a multiple
integral of order 2 with respect to the d-parametric Brownian sheet. A result present in [17]
states that a two-dimensional vector of multiple integrals of order 2 admits a density if and
only if the determinant of the covariance matrix is strictly positive. Denote by C(t, s,x,y) the
covariance matrix of (u(t,x), u(s,y)). The determinant of this matrix is the same for every
q ≥ 1, from the covariance structure of the Hermite sheet. It is clear that for q = 1 obviously
detC(t, s,x,y) is strictly positive, since the vector (u(t,x), u(s,y)) is a Gaussian vector and
hence admits a density when (t,x) 6= (s,y). This implies that detC(t, s,x,y) is also strictly
positive for q = 2 and so the vector (u(t,x), u(s,y)) admits a density also for q = 2.
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[28] C. A. Tudor and F. Viens (2003): Itô Formula and Local Time for the Fractional Brownian
Sheet. Electronic Journal of Probability. 8(14), 1-31.

[29] Y. Xiao (2009): Sample path properties of anisotropic Gaussian random fields: A mini-
course on stochastic partial differential equations. Lecture Notes in Math. 1962, 145-212,
Springer, Berlin.

18



Centro de Investigación en Ingenieŕıa Matemática (CI
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