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Maximum number of fixed points in AND-OR Boolean network

Julio Aracena, Adrien Richard,
Lilian Salinas

PREPRINT 2013-02

SERIE DE PRE-PUBLICACIONES





Maximum number of fixed points in

AND-OR Boolean networks.

J. Aracena a,∗,1

aCI2MA and Departamento de Ingenieŕıa Matemática, Universidad de
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1 Introduction

A Boolean network is a system of n interacting Boolean variables, which
evolve, in a discrete time, according to a predefined rule. The structure of
such a network is often represented by a digraph, called interaction graph:
vertices are network components, and there is an arc from one component
to another when the evolution of the latter depends on the evolution of the
former.

Boolean networks have many applications. In particular, from the seminal
works or Kauffman [11,12] and Thomas [21,22], they are extensively used as
models of gene networks. In this context (as in many other applicative con-
texts) fixed points are of special interests: they correspond to the stable states
of the systems and often have biological interpretations. Since experimental
data often concern the structure of the network, it is interesting to try to
extract, from this structure, information on fixed points (and in particular on
the number of fixed points). Several works have been done in this direction,
see [1,2,6,14,18,20,23] for example.

In this paper, we are interested in the number of fixed points in AND-OR
Boolean networks (AND-OR-nets for short). These are Boolean networks in
which the update function associated with each component is a conjunction
or a disjunction of positive or negative literals. Our interest for this class of
Boolean networks is twofold. Firstly, every Boolean network can be repre-
sented, up to an increase of the number of components, under the form of an
AND-OR-net. So the “AND-OR-net hypothesis” does not decrease the variety
of dynamical behaviors that Boolean networks can exhibit. Secondly, an AND-
OR-net can be represented, without loss of information, by a labelled digraph
obtained from the interaction graph by labeling each arc by a sign (positive of
negative) and each vertex by a type (AND or OR). This make easer the study
of the relationships between structure and dynamics, in particular because
graph theoretic tools and results can used.

The main result of this paper, the following, illustrates this:

(1) For every AND-OR-net N with n components and a loop-less connected
interaction graph, there exists a connected graph G with at most n ver-
tices such that the number of fixed points in N is at most the number of
maximal independent sets in G.

The maximum number µ(n) of maximal independent sets in a connected graph
with n vertices is known [7]. According to (1), µ(n) is an upper-bound on
the number of fixed points in an AND-OR-net with n components; and few
additional arguments are needed to show that this upper bound is tight.

2



Two papers are particularly close to this work. Recently, Veliz-Cuba and
Laubenbacher [23] study the number of fixed points in AND-nets (i.e. AND-
OR-nets without OR-vertex) and in negative AND-nets, i.e. AND-nets in
which each update function is a conjunction of negative literals. Mainly, they
show two easy but interesting results that we independently obtain:

(2) If a negative AND-net N has a loop-less symmetric interaction graph,
then there is a one-to-one correspondence between the fixed points of N
and the maximal independent sets of its interaction graph [23].

(3) The number of fixed points in a negative AND-net is at most the number
of maximal independent sets in its interaction graph [23].

As an immediate consequence, the authors pointed out that the number of
fixed points in a negative AND-net with n components and a loop-less con-
nected interaction graph is at most µ(n); this is a particular case the bound
that we get with (1). Besides, the authors show that, given an AND-net with
n components, there exists a negative AND-net with at most 2n components
and the same number of fixed points. Consequently, an AND-net with n com-
ponents and a loop-less connected interaction graph has at most µ(2n) fixed
points. However, this is far from the right upper bound µ(n) given by (1), and
µ(2n) does not really make sense because 2n < µ(2n) when n ≥ 9.

The second close paper, by the first author, Demongeot and Goles [2], is behind
this work (and likely behind the work of Veliz-Cuba and Laubenbacher). It
concerns positive AND-OR-nets (each update function is a conjunction or a
disjunction of positive literals). The main result is the following:

(4) For each positive AND-OR-net N with n components and a loop-less
connected interaction graph, there exists a loop-less connected bipartite
graph G with n vertices such that the number of fixed points in N is at
most the number of maximal independent sets in G [2].

The maximum number η(n) of maximal independent sets in a loop-less con-
nected bipartite graph with n vertices is known [13]. According to (4), η(n)
is an upper-bound on the number of fixed points in a positive AND-OR-net
with n components; and again, few additional arguments are needed to show
that this upper bound is tight. It is worth noting that even if positive AND-
OR-nets are particular AND-OR-nets, our result is not a generalization of this
one, because η(n) is much smaller than µ(n).

In [2], the proof of the existence of the bipartite graph G with the property
given in (4) is constructive: starting from N and using successively three graph
transformations, G is obtained in polynomial time. Here, we use successively
five polynomial graph transformations to obtain the graph G with the prop-
erties given in (1). Unfortunately none of the three graph transformations
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introduced in [2] is used; these transformations seem to be useless for the class
of AND-OR-nets. Nevertheless, we think that some of the transformations
introduced here could be of independent interest. To illustrate this we show,
using one of the transformations, the following property about the minimum
number of fixed points:

(5) Given a directed graph G with at least one cycle, there always exists an
AND-net without fixed points and with G as interaction graph.

The paper is organized as follows. Definitions and notations are given in Sec-
tion 2. The main results is formally stated and discuss in Section 3, and it is
proved in Section 4. In Section 6 deals with the presence of loop in the interac-
tion graph. In Section 7, (5) is established thanks to a graph transformations
introduced in Section 4. A conclusion and some future research directions are
given in Section 8.

2 Definitions and notations

A digraph (or directed graph) G consists in a finite set vertices (or nodes) V (G)
and a set of arcs (or directed edges) E(G) ⊆ V (G)×V (G); for convenience, we
always assume that V (G) = {1, . . . , n}. Paths and cycles are always directed
and seen as subdigraphs. An arc from a vertex to itself is a loop. A vertex
of in-degree zero is a sink. A digraph G is symmetric if (u, v) ∈ E(G) for all
(v, u) ∈ E(G) with u 6= v; and trivial if it has a unique vertex and no arc. A
graph is a loop-less symmetric digraph. The underlying graph of a digraph G

is the graph H defined as follows: V (H) = V (G), and (u, v) ∈ E(H) if and
only if u 6= v and (u, v) ∈ E(G) or (v, u) ∈ E(G). An independent set of G is
a subset I ⊆ V (G) such that (u, v) 6∈ E(G) for all distinct u, v ∈ I. The set of
independent sets of G is denoted IS(G), and the set of maximal independent
sets of G (w.r.t. inclusion) is denoted MIS(G). Clearly, if H is the underlying
graph of G then IS(H) = IS(G) and MIS(H) = MIS(G).

A signed digraph is a digraph G in which each arc is either positive or nega-
tive; the set of positive (resp. negative) arcs of G is denoted by E+(G) (resp.
E−(G)). If (u, v) is a positive (resp. negative) arc of G, we say that u is a
positive (resp. negative) predecessor of v. The set of positive (resp. negative)
predecessors of v in G is denoted P+

G (v) (resp. P−
G (v)). The set of predecessor

of v in G is PG(v) = P+
G (v) ∪ P−

G (v). A cycle of G is positive (resp. negative)
if it has an even (resp. odd) number of negative arcs.

An AND-OR-net is a signed digraph G in which each vertex is either an AND-
vertex or a OR-vertex; the set of AND-vertices (resp. OR-vertices) is denoted
by VAND(G) (resp. VOR(G)). Vertices of G are often called components. Two
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vertices have the same type if they are both AND-vertices or both OR-vertices.
An AND-net is an AND-OR-net with only AND-vertices (thus, AND-nets may
be identified with signed digraphs). A AND-net is negative if every arc that is
not a loop is negative (thus, loops-less negative AND-nets may be identified
with digraphs).

AND-OR-nets (which are simply labelled digraphs) take a sense in the light of
the following definitions. Let G be an AND-OR-net. The set of possible con-
figurations of G is the set of maps x from V (G) to {0, 1}; it is denoted {0, 1}n.
The update function associated with a vertex v of G is the Boolean function
fG
v from {0, 1}n to {0, 1} defined by:

(1) If v ∈ VAND(G), then fG
v (x) = 0 if and only if v has a positive predecessor

u with x(u) = 0 or a negative predecessor u with x(u) = 1.

(2) If v ∈ VOR(G), then fG
v (x) = 1 if and only if v has a positive predecessor

u with x(u) = 1 or a negative predecessor u with x(u) = 0.

In other words, if v is an AND-vertex then fG
v is an AND-function (a conjunc-

tion of positive or negative literals corresponding to the positive or negative
predecessors of v); and if v is an OR-vertex, then fG

v is an OR-function (a
disjunction of positive or negative literals).

The global transition function associated withG is the function fG from {0, 1}n

to {0, 1}n defined by fG(x)(v) = fG
v (x) for all x ∈ {0, 1}n and v ∈ V (G). The

(parallel) dynamics of an AND-OR-net is described by the successive iterations
of fG. The fixed points of fG then correspond to the stable configurations of
the network. In this paper, we are only interested in the number of fixed points
of fG. The set of fixed points of fG is denoted FP(G). In the following, we
abusively refer FP(G) as the set of fixed points of G.

3 Maximum number of fixed points

We are interested in the following question: what is the maximum number
of fixed points that a loop-less connected AND-OR-nets with n vertices can
have? Our starting point is the following easy but fundamental observation:

Proposition 1 If H is a loop-less symmetric negative AND-net, then

|FP(H)| = |MIS(H)|.

Thus, for loop-less negative and-nets, our question is equivalent to the follow-
ing question: what is the maximum number of maximal independent sets that
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a connected graph with n vertices can have? This question has been answered
more than twenty years ago.

Theorem 1 [4,7] The maximum number µ(n) of maximal independent sets in
connected graph with n vertices is defined as follows: if n < 6 then µ(n) = n,
and otherwise

µ(n) =



























2 · 3s−1 + 2s−1 if n = 3s

3s + 2s−1 if n = 3s+ 1

4 · 3s−1 + 3 · 2s−2 if n = 3s+ 2

The main result of this paper is the following. Together with Proposition 1
and Theorem 1, it answers our question.

Theorem 2 (Main result) For every loop-less connected AND-OR-net G,
there exists a loop-less connected symmetric negative AND-net H such that

|V (H)| ≤ |V (G)| and |FP(H)| ≥ |FP(G)|.

Corollary 3 The maximum number of fixed points in a connected AND-OR-
net with n vertices is µ(n).

In [7], it was showed that for every n ≥ 6, there exists (up to isomorphism)
a unique graph Hn with n vertices such that |MIS(Hn)| = µ(n). So following
Proposition 1, for all n ≥ 6, the loop-less symmetric negative AND-net Gn

with Hn as underlying graph is such that |FP(Gn)| = µ(n). So the upper-
bound given in Corollary 3 is the best possible.

Actually, the maximum number of maximal independent sets has been estab-
lished for several classes of graphs (see [16,17,4,7,15,9,13,10,8,3,5] for instance);
and the first class that has been treated is naturally the class of graphs with
n vertices.

Theorem 4 [16] The maximum number λ(n) of maximal independent sets in
a graph with n vertices is defined as follows: if n = 1 then µ(n) = 1, and
otherwise

λ(n) =



























3s if n = 3s

4 · 3s−1 if n = 3s+ 1

2 · 3s if n = 3s+ 2

Clearly, Theorem 2 remains valid if “connected” is removed from the statement
(in the condition and the conclusion). From this observation Theorem 4 and
Proposition 1, we get:
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Corollary 5 The maximum number of fixed points in a loop-less AND-OR-
net with n vertices is λ(n).

It was showed that there exists (up to isomorphism) a unique graph H ′
n with

n vertices such that |MIS(H ′
n)| = λ(n) [16]. So, as above, we deduce that the

upper-bound given in Corollary 5 is the best possible.

4 Proof of Theorem 2

The proof is constructive. It involves five AND-OR-net transformations, de-
noted from T0 to T4. The first transformation T0 gives, from any loop-less
connected AND-OR-net G with n vertices, a loop-less connected AND-net G0

with n vertices and the same number of fixed points. The four other transfor-
mations are transformations on AND-nets. Each of them keeps the connectiv-
ity, never increases the number of vertices, and never decreases the number of
fixed points. Moreover, the AND-net obtain from G0 by applying successively
T1, T2, T3 and T4 is always loop-less, symmetric and negative AND-net, and
from this the theorem follows.

Before defining these transformations and their properties, we first state a
lemma that will be used several times.

Lemma 6 Let G be an AND-net, and let H be a strongly connected component
of G \ E−(G). Then x(u) = x(v) for every x ∈ FP(G) and u, v ∈ V (H).

PROOF. Let x ∈ FP(G). If x(v) = 0 for some v ∈ V (H), then x(u) = 0 for
every successor u of v in H , and since H is strong, we deduce that x(v) = 0
for all v ∈ V (H). If x(v) = 1 for some v ∈ V (H), then x(u) = 1 for every
predecessor u of v in H , and since H is strong, we deduce that x(v) = 1 for
all v ∈ V (H). Thus x(u) = x(v) for all x ∈ FP(G) and u, v ∈ V (H). 2

4.1 Transformation T0 (making AND-nets from AND-OR-nets)

Transformation T0 maps every AND-OR-net G to the AND-net G0 obtained
from G by changing the sign of each arc linking vertices of different type, and
by changing the type of OR-vertices. Formally, denoting E+

0 (G) (resp. E−
0 (G))

the set of positive (resp. negative) arcs (u, v) of G such that u and v have not
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the same type, G0 is defined by:

V (G0) = VAND(G
0) = V (G)

E+(G0) = (E+(G) \ E+
0 (G)) ∪ E−

0 (G)

E−(G0) = (E−(G) \ E−
0 (G)) ∪ E+

0 (G)

The following lemma is an easy exercise.

Lemma 7 For every AND-OR-net G we have |FP(G)| = |FP(G0)|.

4.2 Transformation T1 (removing constant vertices)

Let G be an AND-net. Transformation T1 is a technical step allowing AND-
nets to have some properties making possible the use of the other transforma-
tions. Roughly speaking, it consists in gluing together vertices with a constant
level in fixed points.

Let Vcst(G) = Vcst0(G) ∪ Vcst1(G), where Vcst0(G) and Vcst1(G) are the sets of
V (G) inductively defined in the following way:

(1) If there exists two strongly connected components H and H ′ in G\E−(G)
(not necessarily distinct) such that G has both a positive and a negative
arc from V (H ′) to V (H), then V (H) ⊆ Vcst0(G); and all the sinks of G
are in Vcst1(G).

(2) For all v ∈ V (G): if v has a positive predecessor in Vcst0(G) or a negative
predecessor in Vcst1(G), then v ∈ Vcst0(G); and if all the positive prede-
cessors of v are in Vcst1(G) and all the negative predecessors of v are in
Vcst0(G), then v ∈ Vcst1(G).

Lemma 8 Let G be an AND-net and x ∈ FP(G). If v ∈ Vcst0(G) then x(v) =
0, and if v ∈ Vcst1(G) then x(v) = 1.

PROOF. Let x ∈ FP(G). We proceed by induction (following the inductive
definition of Vcst(G)), and we only prove the base case, since the induction
step is obvious. If v is a sink, then by definition, fG

v = cst = 1 thus x(v) = 1.
Now, suppose that there exists two strongly connected components H and
H ′ in G \ E−(G) such that G has a positive arc (u′, u) and a negative arc
(w′, w) with u′, w′ ∈ V (H ′) and u, w ∈ V (H). Let v ∈ V (H). If x(u′) = 0
then fG

u (x) = 0 = x(u) and we deduce from Lemma 6 that x(v) = x(u) = 0.
Otherwise, x(u′) = 1 thus by Lemma 6 we have x(w′) = 1, so thus fG

w (x) =
0 = x(w) and we deduce from Lemma 6 that x(v) = x(w) = 0. 2
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Remark 9 Let v ∈ V (G), and suppose that there exists a constant c ∈ {0, 1}
such that x(v) = c for all x ∈ FP(G). Then v is not necessarily in Vcst(G).
Indeed, for instance, for the following AND-net G, which has two fixed points,
we have x(3) = 0 for all x ∈ FP(G) and Vcst(G) = ∅.

1 2

3

Transformation T1 maps every AND-net G to the AND-net G1 defined in the
following way. If Vcst(G) = ∅, then G1 = G, and otherwise:

V (G1) = (V (G) \ Vcst(G)) ∪ {v∗}

E+(G1) = E+(G \ Vcst(G))

E−(G1) = E−(G \ Vcst(G)) ∪ {(u, v∗) | u ∈ V (G) \ Vcst(G)}

Thus when Vcst(G) 6= ∅, G1 is obtained from the sub-AND-net G \ Vcst(G) by
adding a new vertex v∗ and a negative arc from u to v∗ for each vertex u not
in Vcst(G). Clearly, in all cases |V (G1)| ≤ |V (G)|.

Lemma 10 For every AND-net G we have |FP(G)| ≤ |FP(G1)|.

PROOF. If G = G1 there is nothing to prove, so assume that G 6= G1.
Consider the function that maps every configuration x ∈ FP(G) to the con-
figuration x̃ of G1 defined as follows: x̃(v) = x(v) for all v 6= v∗, and

x̃(v∗) =
∏

v∈V (G1)\v∗

(1− x̃(v)).

Clearly, x 7→ x̃ is an injective function: if x, y ∈ FP(G) and x 6= y, then
following Lemma 8, x(v) 6= y(v) for some v ∈ V (G) \ Vcst(G) ⊆ V (G1), and it
follows that x̃(v) 6= ỹ(v). Thus, it is sufficient to prove that x̃ ∈ FP(G1) for
all x ∈ FP(G). Let x ∈ FP(G) and v ∈ V (G1) \ v∗.

(1) Suppose that x(v) = 1. Then, there is no u ∈ P+
G (v) with x(u) = 0 and

no u ∈ P−
G (v) with x(u) = 1. Since G1 \ v∗ = G \ Vcst(G) and since

v∗ 6∈ PG1(v), we deduce that P+
G1(v) ⊆ P+

G (v) and P−
G1(v) ⊆ P−

G (v). Since

x̃(u) = x(u) for all u 6= v∗ we deduce that fG1

v (x̃) = 1 = x(v) = x̃(v).

(2) Suppose that x(v) = 0. Then either there exists u ∈ P+
G (v) with x(u) = 0

or u ∈ P−
G (v) with x(u) = 1. Suppose that there exists u ∈ P+

G (v)
with x(u) = 0, the other case is similar. Since v 6∈ Vcst(G), we have
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u 6∈ Vcst0(G), and since x(u) = 0, by Lemma 8, we have u 6∈ Vcst1(G).
Thus u 6∈ Vcst(G). Consequently u ∈ P+

G1(v) and since x̃(u) = x(u) = 0,

it follows that fG1

v (x̃) = 0 = x(v) = x̃(v).

Thus fG1

v (x̃) = x̃(v) for all v ∈ V (G1) \ v∗. By the definition fG1

v∗ (x̃) = x̃(v∗),
thus x̃ ∈ FP(G1). 2

Remark 11 Actually, |FP(G)| = |FP(G1)| for every AND-net G, as showed
in Appendix A. However, |FP(G)| ≤ |FP(G1)| is sufficient for our propose.

An AND-net G has the property P1 if it is connected, has no loop, has no sink,
and satisfies the following property Q1: for every strongly connected compo-
nents H and H ′ of G\E−(G) (not necessarily distinct), all the arcs of G from
V (H) to V (H ′) are either positive or negative.

Lemma 12 If G is a loop-less connected AND-net, then either G1 is trivial
or it has the property P1.

PROOF. Suppose that G1 is not trivial, and let us prove that it has the
property P1. If G

1 = G, then Vcst(G) = ∅ thus G has no sink and the property
Q1; and since (by hypothesis) G is connected and has no loop, G1 has the
property P1. So suppose that G1 6= G, that is, Vcst(G) 6= ∅.

Clearly, G1 is connected since V (G1) \ v∗ is the set of predecessors of v∗. Also,
there is no loop on v∗, and since G has no loop, G1 \ v∗ = G \ Vcst(G) has
no loop. So G1 has no loop. Suppose that G1 has a sink v. Since G1 is not
trivial v∗ is not a sink thus v ∈ V (G). Since v 6∈ Vcst(G), v is not a sink of G,
and we deduce that, in G, all the predecessors of v are in Vcst(G). But then
v ∈ Vcst(G), a contradiction. Thus G1 has no sink.

Suppose finally that G1 has not the property Q1. Let H and H ′ be strongly
connected components of G1 \E−(G1) (not necessarily distinct) such that G1

has both a positive and a negative arc from V (H) to V (H ′). Then H and
H ′ are distinct strongly connected components of (G1 \ E−(G1)) \ v∗. Since
(G1 \ E−(G1)) \ v∗ = (G \ E−(G)) \ Vcst(V ), there exists strongly connected
components L and L′ in G \ E−(G) with V (H) ⊆ V (L) and V (H ′) ⊆ V (L′)
(L and L′ are not necessarily distinct). But then G has both a positive and a
negative arc from V (L) to V (L′), thus V (H ′) ⊆ V (L′) ⊆ Vcst0(G) ⊆ Vcst(G),
a contradiction. So G1 has the property Q1, and we deduce that it has the
property P1. 2
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4.3 Transformation T2 (removing cycles with only positive arcs)

Transformation T2 maps every AND-net G with the property Q1 to the AND-
net G2 defined in the following way. Let H1, . . . , Hr be the strongly connected
components of G \E−(G). For every 1 ≤ k ≤ r, let vk be the smallest vertices
in V (Hk). Let E

+
2 (G) (resp. E−

2 (G)) be the set of couples (vk, vl) with k 6= l

such that G has at least one positive (resp. negative) arc from V (Hk) to V (Hl).
Since G has the property Q1, E

+
2 (G) ∩ E−

2 (G) = ∅. This allows us to define
G2 by

V (G2) = V (G)

E+(G2) = E+
2 (G)

E−(G2) = E−
2 (G) ∪ {(vk, u), (u, vk) | 1 ≤ k ≤ r, u ∈ V (Hk) \ vk}

See Figure 1 for an illustration. Note that for every u ∈ V (Hk), if u 6= vk then
fG2

u (x) = 1− x(vk).

An AND-net G has the property P2 if it is connected, has no sink, and has
no cycle with only positive arcs (note that for every AND-net G with the
property Q1, G

2 has no cycle with only positive arcs).

Lemma 13 If G is an AND-net with the property P1, then G2 has the property
P2 and |FP(G)| ≤ |FP(G2)|.

PROOF. Since G has the property P1, it is connected and has no sink, and
so G2 has clearly the property P2. Let us prove that |FP(G)| ≤ |FP(G2)|. Let
H1, . . . , Hr be the strongly connected components of G\E−(G). For every 1 ≤
k ≤ r, let vk be the smallest vertices in V (Hk). Let U = V (G)\{v1, v2, . . . vr}.
Consider the permutation mapping each configuration x of G to the configu-
ration x̃ of G defined by:

x̃(u) =











1− x(u) if u ∈ U

x(u) ortherwise.

We prove that x̃ ∈ FP(G2) for all x ∈ FP(G). Let x ∈ FP(G) and 1 ≤ k ≤ r.

We first prove that fG2

u (x̃) = x̃(u) given any u ∈ V (Hk) \ vk. Indeed, if
x̃(u) = 0 then x(u) = 1 thus, by Lemma 6, x̃(vk) = x(vk) = 1 and we deduce
that fG2

u (x̃) = 1 − x̃(vk) = 0. Similarly, if x̃(u) = 1 then x(u) = 0 thus, by
Lemma 6, x̃(vk) = x(vk) = 0 and we deduce that fG2

u (x̃) = 1 − x̃(vk) = 1.
Thus fG2

u (x̃) = x̃(u) in all cases.

11



We now prove that fG2

vk
(x̃) = x̃(vk). Suppose first that x̃(vk) = 0. If Hk is

not trivial then there exists u ∈ P−
G2(vk) ∩ V (Hk) and since, by Lemma 6,

x(u) = x(vk) = x̃(vk) = 0, we have x̃(u) = 1 and we deduce that fG2

vk
(x̃) = 0.

Suppose that Hk is trivial. Since x(vk) = x̃(vk) = 0, one of the following two
condition holds:

(1) There exists u ∈ P+
G (vk) with x(u) = 0. Then u ∈ V (Hl) for some l 6= k

so vl ∈ P+
G2(vk). Since, by Lemma 6, we have x̃(vl) = x(vl) = x(u) = 0

we deduce that fG2

vk
(x̃) = 0.

(2) There exists u ∈ P−
G (vk) with x(u) = 1. Then u ∈ V (Hl) for some l 6= k

so vl ∈ P−
G2
(vk). Since, by Lemma 6, we have x̃(vl) = x(vl) = x(u) = 1

we deduce that fG2

vk
(x̃) = 0.

So in all cases, fG
vk
(x̃) = 0 = x̃(vk). Suppose now that x̃(vk) = 1, and suppose,

for a contradiction, that fG2

vk
(x̃) = 0. Then one of the following two conditions

holds:

(1) There exists u ∈ P+
G2
(vk) with x̃(u) = 0. Then u = vl for some l 6= k, thus

there exists an arc (w, t) ∈ E+(G) with w ∈ V (Hl) and t ∈ V (Hk). Since,
by Lemma 6, x(w) = x(vl) = x̃(vl) = x̃(u) = 0, we have fG

t (x) = 0. But,
by Lemma 6, we have x(t) = x(vk) = x̃(vk) = 1, a contradiction.

(2) There exists u ∈ P−
G2(vk) with x̃(u) = 1. Suppose that u ∈ V (Hk). Then

u ∈ U so x(u) 6= x̃(u) = 1, but by Lemma 6, x(u) = x(vk) = x̃(vk) = 1,
a contradiction. So u = vl for some l 6= k, thus there exists an arc
(w, t) ∈ E−(G) with w ∈ V (Hl) and t ∈ V (Hk). Since, by Lemma 6,
x(w) = x(vl) = x̃(vl) = x̃(u) = 1, we have fG

t (x) = 0. But, by Lemma 6,
we have x(t) = x(vk) = x̃(vk) = 1, a contradiction.

Since there is a contradiction in both cases, fG2

vk
(x̃) = 1 = x̃(vk). 2

Remark 14 Actually, we have |FP(G)| = |FP(G2)|, as showed in Ap-
pendix B, but |FP(G)| ≤ |FP(G2)| is enough for our propose.

4.4 Transformation T3 (removing positive arcs)

The transformation T3 maps every AND-net G to the AND-net G3 = T3(G)
defined in the following way. Let E−

3 (G) denotes the set of couples of vertices
(u, v) such that for at least one vertex w, (u, w) ∈ E−(G) and G has a path

12



from w to v with only positive arcs. Then

V (G3) = V (G)

E+(G3) = ∅

E−(G3) = E−(G) ∪ E−
3 (G)

See Figure 2 for an illustration.

An AND-net G has the property P3 if it connected, has no sink, and has no
positive arc.

Lemma 15 If G is an AND-net with the property P2, then G3 has the property
P3 and FP(G) ⊆ FP(G3).

PROOF. We first prove that G3 has no sink, using the fact that G has no
sink and no cycle with only positive arcs. Let v ∈ V (G), and let P be the
longest path of G with only positive arcs and with v as terminal vertex. Let u
be the initial vertex of P (if v has only negative predecessors, then the path
is of length zero and u = v). Suppose that u has a positive predecessor w.
If w 6∈ V (P ), then P is not of maximal length, and if w ∈ V (P ) then G

has a cycle with only positive arcs, a contradiction. Thus u has only negative
predecessors in G. Let w be one of them. Then (w, v) ∈ E−

3 (G) so v is not a
sink of G3.

We now prove that G3 is connected. Suppose, for a contradiction, that G3

is not connected. Since G is connected, G3 has two connected components,
say G3

1 and G3
2, such that G has at least one arc (v1, v2) with v1 ∈ V (G3

1) and
v2 ∈ V (G3

2). Since (v1, v2) is not an arc of G3, we have (v1, v2) ∈ E+(G). Let P
be the longest path of G with only positive arcs and with (v1, v2) as final arc.
Let u be the initial vertex of P . As above we show that u has only negative
predecessors in G. Let w be one of them. Then (w, v1) and (w, v2) are negative
arcs of G3, thus G3

1 and G3
2 are connected, a contradiction.

Let x ∈ FP(G), and let us prove that x ∈ FP(G3). Let v ∈ V (G). If x(v) = 0,
then one of the two following cases holds:

(1) There exists u ∈ P−
G (v) with x(u) = 0. Let P be the longest path of G

with only positive arcs, with u as final vertex, and such that x(w) = 0 for
all w ∈ V (P ). Let w be the initial vertex of P . If there exists t ∈ P−

G (w)
with x(t) = 0, then t ∈ V (P ) (since P is of maximal length) and so G

has a cycle with only positive arcs, a contradiction. Thus x(t) = 1 for all
t ∈ P−

G (w). Since x(w) = 0, we deduce that there exists t ∈ P−
G (w) with

x(t) = 1. Then (t, v) ∈ E−(G3) thus fG3

v (x) = 0 = x(v).

13
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Fig. 1. An AND-net G (with the property Q1) and its transformation G2 by T2.
Negative arcs are represented by T -end arrows, and positive arcs by normal arrows.
G \ E−(G) contains 7 strongly connected components. Arcs of strongly connected
components are bolded, and the smallest vertex in each strongly connected compo-
nent is in gray.
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Fig. 2. An AND-net G and its transformation G3 by T3.
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(2) There exists u ∈ P−
G (v) with x(u) = 1. Then (u, v) ∈ E−(G3) thus

fG3

v (x) = 0 = x(v).

Suppose now that x(v) = 1, and suppose, for a contradiction, that fG3

v (x) = 0.
Then there exists u ∈ P−

G3(v) with x(u) = 1. If (u, v) ∈ E−(G) then fG
v (x) = 0,

a contradiction. Thus (u, v) ∈ E−
3 (G), that is, G has a negative arc (u, w)

and a path P from w to v with only positive arcs. Since x(u) = 1, we have
fG
w (x) = 0 = x(w) and (following the path P ) we deduce that fG

t (x) = 0 =
x(t) for all t ∈ V (P ). In particular, x(v) = 0, a contradiction. Thus in all cases
fG3

v (x) = x(v) and so x ∈ FP(G3). 2

Remark 16 Actually, we have FP(G) = FP(G3), as showed in Appendix C,
but FP(G) ⊆ FP(G3) is enough for our purpose.

4.5 Transformation T4 (symmetrization)

The transformation T4 maps every signed digraph G to the AND-net T4(G) =
G4 defined by

V (G4) = V (G)

E+(G4) = ∅

E−(G4) = (E−(G) ∪ {(u, v) | (v, u) ∈ E−(G)}) \ {(v, v) | v ∈ V (G)}

Lemma 17 If G is an AND-net with the property P3, then G4 is a loop-less
connected symmetric AND-net with only negative arcs such that FP(G) ⊆
FP(G4).

PROOF. It is obvious that G4 is symmetric, has no loop, and no positive
arcs. Then, since G is connected and has no positive arc, G4 is connected too.
It remains to prove that FP(G) ⊆ FP(G4). Let x ∈ FP(G) and v ∈ V (G).
If x(v) = 0 then there exists u ∈ P−

G (v) with x(v) = 1. Thus u 6= v, so
u ∈ P−

G4(v) and we deduce that fG4

v (x) = 0. Suppose now that x(v) = 1, and

suppose, for a contradiction, that fG4

v (x) = 0. Then there exists u ∈ P−
G4(v)

with x(u) = 1. If u ∈ P−
G (v) then fG

v (x) = 0 6= x(v), a contradiction. Thus
v ∈ P−

G (u), and since x(v) = 1, we have fG
u (v) = 0 6= x(u), a contradiction.

Thus fG4

v (x) = 1 = x(v). 2

Remark 18 The inclusion in Lemma 17 is sometimes strict. For instance, if
Cn is a cycle of length n with only negative arcs then |FP(Cn)| ≤ 2 (since Cn

has no fixed point if n is odd and two fixed points otherwise) while the number
of fixed points in C4

n = T4(Cn) growths exponentially with n: |FP(C4
n)| ∼ pn

where p > 1, 3 is the plastic number [4].
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4.6 Proof of Theorem 2

Let G be a loop-less connected AND-OR-net. Let G0 = T0(G). If G1 = T1(G
0)

is trivial, then the theorem is obvious. So suppose that G1 is not trivial. Fol-
lowing Lemmas 7, 10, 12, 13, 15 and 17: AND-nets G2 = T2(G

1), G3 = T3(G
2)

and G4 = T4(G
3) are well defined; G4 is loop-less, connected, symmetric and

negative. Furthermore

|FP(G)| = |FP(G0)| ≤ |FP(G1)| ≤ |FP(G2)| ≤ |FP(G3)| ≤ |FP(G4)|.

Since it is clear that

|V (G)| = |V (G0)| ≥ |V (G1)| = |V (G2)| = |V (G3)| = |V (G4)|

the theorem is proved. Note that according to Remarks 11, 14 and 16:

|FP(G0)| = |FP(G1)| = |FP(G2)| = |FP(G3)|.

5 Extremal AND-nets

In this section, we characterize AND-OR-nets reaching the upper bound given
in Corollaries 3 and 5, that is, we characterize loop-less connected AND-OR-
nets with µ(n) fixed points, and loop-less AND-OR-nets with λ(n) fixed points.

Let n = 3s + r with 0 ≤ r ≤ 2 ≤ s. Let Hn be the graph described in
Figure 3. It has been proved in [7] that Hn is the unique connected graph
with n vertices and µ(n) maximal independent sets. Let Gn be the loop-
less symmetric negative AND-net with Hn as underlying graph. According to
Proposition 1, Gn is the unique loop-less symmetric connected negative AND-
net with n vertices and µ(n) fixed points. Let Gn be the family of AND-nets
containing Gn and all the connected AND-nets that we can obtain from Gn by
removing some arcs that does not belong to a triangle (cycle of length three);
since there are 2(s− 1) such arcs, |Gn| = 3s−1.

Theorem 19 Let G be a loop-less connected AND-net with n vertices. If n ≥
6, then G has µ(n) fixed points if and only if G ∈ Gn. If n ≤ 5, then G has
µ(n) fixed points if and only if G is isomorphic to one of the AND-nets given
in Figure 4.

PROOF. Graphs with at most five vertices that maximize the number of
maximal independent sets are given [7], and from this it is easy to check the
case n ≤ 5. Suppose that n ≥ 6. It is also easy to check that |FP(G)| = µ(n)
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s− 1 s− 1

s− 2

n = 3s n = 3s+ 1 n = 3s+ 2

Fig. 3. Graphs Hn (a line between two nodes u and v means that both (v, u) and
(u, v) are arcs of the graph). Note that in every case, there are 2(s − 1) arcs that
does belong to no triangles.

if G ∈ Gn. So suppose that |FP(G)| = µ(n), and let us prove that G ∈ Gn. Let
G1 = T1(G). It is clear that G1 is not trivial, thus G2 = T2(G

1), G3 = T3(G
2)

and G4 = T4(G
3) are well defined. Following Corollary 3 and Lemmas 10, 12,

13, 15 and 17, we have

|FP(G)| = |FP(G1)| = |FP(G2)|, FP(G2) = FP(G3) = FP(G4).

Since G4 is loop-less, connected, symmetric and negative, G4 is isomorphic
to Gn. Without loss of generality, assume that G4 = Gn.

Let us prove that G3 ∈ Gn. It is easy to check that, for all vertex v, there
exists x, y ∈ FP(Gn) such that x(v) 6= y(v). We deduce that G3 has no
negative loops. Since G3 is negative, it follows that G3 is a sub-AND-net of
Gn, which is connected since G4 is. Let (u, v) be an arc that belong to at
least one triangle of Gn. It is also easy to check that every sub-AND-net Gn

that does not contain (u, v) cannot have the same set of fixed points than Gn.
Consequently, G3 ∈ Gn.

We now prove that G = G1 = G2 = G3. Suppose, for a contradiction, that
G2 6= G3. Then G2 has at least one positive arc. Since G2 has no cycles with
only positive arcs, G2 has at least one positive arc (u, v) such that u has no
positive predecessors. Then, it is clear that P−

G3(u) = P−
G2(u). Since G3 ∈ Gn

and since each vertex of each AND-net in Gn has in-degree at least two, we
deduce that P−

G2(u) contains at least two vertices, say w1 and w2. Consequently,
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Fig. 4. Extremal loop-less connected AND-nets with at most five vertices.

(w1, u), (w2, u), (w1, v) and (w2, v) are arcs of G
3, and since G3 ∈ Gn, it follows

that (v, u) ∈ E−(G3). Since P−
G2(u) = P−

G3(u), we have (v, u) ∈ E−(G2), and
since (u, v) ∈ E+(G2), we deduce that G3 has a loop on v, a contradiction.
This proves that G2 = G3 ∈ Gn. If G

1 6= G2, then G1\E−(G1) contains at least
one non-trivial strongly connected component H . But, then |V (H)| − 1 > 0
vertices of H has in-degree one in G2, a contradiction with the fact that
G2 = G3 ∈ Gn. Thus G1 = G2 ∈ Gn. Clearly, |V (G4)| = |V (G1)| = n, thus if
G 6= G1 then G1 contains a vertex of in-degree n− 1, a contradiction with the
fact that G1 ∈ Gn. Thus G = G1 ∈ Gn. 2

From this characterization and Lemma 7, we deduce that a loop-less connected
AND-OR-net G with n ≥ 6 vertices has µ(n) fixed points if and only if it has
the following property: its underlying graph H is isomorphic to Hn; every arc
of H that is not in a triangle is an arc of G; an arc of G is negative if and only
if it connects vertices with the same type. We can also derived easily from
Figure 4 and Lemma 7, the extremal loop-less connected AND-OR-nets with
at most five vertices.

To characterize extremal loop-less AND-OR-nets, additional definitions are
needed. Given two graphs H and H ′, let H ∪H ′ denotes the disjoint union of
H and H ′, and let nH denotes the disjointed union of n copies of H . As usual,
Kn is the complete graph with n vertices. For n ≥ 2, let Hn be the set of
graphs defined as follows: if n = 3s then Hn only contains 3Kn; if n = 3s+ 1
thenHn containsK4+(s−1)K3 and 2K2+(s−1)K3; and if n = 3s+2 then Hn

only contains K2 + (s− 1)K3. In [16] the following is proved: a graph H with
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n vertices has η(n) maximal independent sets if and only if H is isomorphic
to a graph in Hn. Using this characterization and arguments similar to the
ones used in the proof of Theorem 20, we can prove the following.

Theorem 20 If G is a loop-less AND-net with n ≥ 2 vertices, then G has
η(n) fixed points if and only if G has the following properties: (i) the underlying
graph H of G is isomorphic to a graph in Hn; (ii) G is symmetric (so H is
actually the underlying digraph of G); (iii) copies of K3 and K4 have only
negative arcs; and copies of K2 have either two negative arcs or two positive
arcs.

From this characterization and Lemma 7, we deduce that a loop-less connected
AND-OR-net G with n ≥ 2 vertices has η(n) fixed points if and only if it has
the properties (i) and (iii) given above and the following property: an arc in
a copy of K3 and K4 is negative if and only if it connects vertices with the
same type.

6 Allowing loops

In this section, we establish the maximal number of fixed points in a connected
AND-OR-nets when the presence of loops is allowed.

Lemma 21 Let G be an AND-net. If H is an AND-net obtained from G by
removing a positive loop, then FP(H) ⊆ FP(G); and if H is an AND-net
obtained from G by removing a negative loop, then FP(G) ⊆ FP(H).

PROOF. Suppose that G has a positive loop on v, and let H be the AND-
net obtained from G by removing this loop. Let x ∈ FP(H). If x(v) = 0 then
fG
v (x) = 0 because of the presence of the positive loop, and it follows that
x ∈ FP(G). If x(v) = 1, then, in H , x(u) = 1 for all positive predecessors of
v, and x(u) = 0 for all negative predecessors of v. Since this situation remains
true in G, we have fG

v (x) = 1, so x ∈ FP(G).

Suppose that G has a negative loop on v, and let H be the AND-net obtained
from G by removing this loop. Let x ∈ FP(G). Clearly, since G has a negative
loop on v, we have x(v) = 0. Thus, in G, v has a positive predecessor u with
x(u) = 0 or a negative predecessor u with x(u) = 1. So u 6= v and we deduce
that fH

v (x) = 0. Thus x ∈ FP(H). 2

Remark 22 These inclusions are sometimes strict. Indeed: the AND-net with
one vertex and a positive loops has two fixed points; the AND-net with one
vertex and a negative loop has no fixed point; and the AND-net with one vertex
and no arc has a unique fixed point.

19



Lemma 23 Let G be an AND-net with a positive loop on each vertex, let v be
a vertex of G, and let H be the AND-net obtained from G by making negative
each arc starting from v. Then |FP(G)| ≤ |FP(H)|.

PROOF. Let U be the set of vertices u ∈ V (G)\v such that (v, u) ∈ E+(G).
For each x ∈ FP(G), let x̃ be the configuration defined as follows: x̃(u) = x(u)
for all u 6= v, and

x̃(v) =











0 if ∃u ∈ U with x(u) = 1

x(v) ortherwise.

Let us prove that the map x 7→ x̃ is an injection. Let x, y ∈ FP(G) with
x 6= y, and suppose, for a contradiction, that x̃ = ỹ. Then x(u) = y(u)
for all u 6= v, thus x(v) 6= y(v). If x(u) = y(u) = 0 for all u ∈ U , then
x̃(v) = x(v) 6= y(v) = ỹ(v), a contradiction. Thus x(u) = y(u) = 1 for some
u ∈ U . Since G has a positive arc (v, u), we deduce that x(v) = y(v) = 1, a
contradiction. This prove that x 7→ x̃ is an injection.

Let x ∈ FP(G) and let us prove that x̃ ∈ FP(H). Let u ∈ U . If x̃(u) = 0
then fH

u (x̃) = 0 since, in H , u has a positive loop. If x̃(u) = 1 then fG
u (x) =

x(u) = x̃(u) = 1 and x̃(v) = 0. So, if, in H , u has a positive predecessor w

with x̃(w) = 0 or a negative predecessor w with x̃(w) = 1, then w 6= v, thus
x(w) = x̃(w) and we deduce that fG

v (x) = 0, a contradiction. Thus, inH , u has
no positive predecessor w with x̃(w) = 0 and no negative predecessor w with
x̃(w) = 1. Thus fH

u (x̃) = 1 = x̃(u). So for all u ∈ U , we have fH
u (x̃) = x̃(u).

It remains to prove that fH
v (x̃) = x̃(v). If x̃(v) = 0 then fH

v (x̃) = 0 since H

has a positive loop on v. If x̃(v) = 1 then x̃ = x and since fH
v = fG

v we have
fH
v (x̃) = fG

v (x̃) = x̃(v). Thus fH
v (x̃) = x̃(v) in all cases, and we deduce that

x̃ ∈ FP(H). 2

Remark 24 The inequality is sometimes strict. For instance, consider the
following AND-nets G and H:

G

1

2 3

H

1

2 3

G satisfies the conditions of the statement, H is obtained from G by making
negative each arc starting from vertex 1, and |FP(G)| = 4 < |FP(H)| = 5.

The following observation is straightforward.
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Lemma 25 If G is a negative AND-net with a positive loop on each vertex,
then |FP(G)| = |IS(G)|.

Remark 26 If G is a loop-less negative AND-net, then applying transforma-
tion T4 consists in a symmetrization of G that may increase the number of
fixed points (cf. Remark 18). However, if G is as in the previous lemma, a
symmetrization does not change fixed points. To see this, let G be a nega-
tive AND-net with a positive loop on each vertex, and consider the symmetric
version Gs of G, obtained from G by adding a negative arc (u, v) for each
(v, u) ∈ E−(G) (such that (u, v) 6∈ E−(G)). Clearly, the symmetrization has
no influence on independent sets: |IS(Gs)| = |IS(G)|. Hence, according to
Lemma 25, |FP(Gs)| = |FP(G)|.

A star is a graph G that contains a vertex v, called center, such there is an arc
(u, w) if and only if v = u 6= w or u 6= w = v. Thus, a star with n+ 1 vertices
is isomorphic to K1,n (the complete bipartite graph with a part of size 1 and
a part of size n), and a star has a unique center when n 6= 2.

Clearly, if G is a connected graph and T a spanning tree of G, then |IS(T )| ≥
|IS(G)|. Besides, in [17] it was proved that among all trees on n vertices, K1,n−1

is the one that maximizes the number of independent sets. As a consequence,
we have the following property:

Lemma 27 If G is a connected graph with n vertices, then |IS(G)| ≤ 2n−1+1,
and the bound is reached if and only if G is a star.

For each n > 1, let Sn be the AND-net defined as follows: there are n vertices,
denoted from 1 to n, a positive loop an each vertex, and a positive arc (1, k)
for each 1 < k ≤ n. Note that the underlying graph of Sn is a star. We are
now in position to state the main result of this section.

Theorem 28 If G is a connected AND-net with n vertices, then

|FP(G)| ≤ 2n−1 + 1.

The bound is reached if and only if G is isomorphic to Sn or has the following
properties: (i) a positive loop on each vertex; (ii) no negative cycles; (iii) a
star as underlying graph; (iv) no positive arc leaving the center of this star.

PROOF. Let G be a connected AND-net with n vertices. Let G′ be the
AND-net obtained from G by: (1) removing all the negative loops; (2) adding
a positive loop on each vertex (if it does not already exist); and (3) mak-
ing negative each arc that is not a loop. Clearly, G and G′ have the same
underlying graph; we denote it by H . According to Lemmas 21, 23, 25 and 27,

|FP(G)| ≤ |FP(G′)| = |IS(G′)| = |IS(H)| ≤ 2n−1 + 1.
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This prove the first assertion. Let us prove the second. Suppose that H is
a start, and let v be the center of H . If G is isomorphic to Sn or has the
properties (i)−(iv), then it is easy to check that G has 2n−1 fixed points x

such that x(v) = 0, and a (unique) fixed point x such that x(v) = 1. So
finally, suppose that |FP(G)| = 2n−1 + 1, suppose that G is not isomorphic
to Sn, and let us prove that this implies that G has the properties (i)−(iv).

(iii) We have already seen that |FP(G)| ≤ |IS(H)|, and it follows from
Lemma 27 that H is a star (thus G satisfies (iii)); let v be its the center.

(i) It has been proved in [1] that |FP(G)| ≤ 2|U | for every U ⊆ V (G) such
that G \ U has no positive cycles. Let v ∈ V (G) and U = V (G) \ v.
If G has no positive loop on v, then G \ U has no positive cycles, thus
|FP(G)| ≤ 2|U | = 2n−1, a contradiction. Thus G has the property (i).

(ii) Suppose that G has a negative cycle. It follows from (ii) and (iii) that
there exists u 6= v such that (u, v) and (v, u) are arcs of G with opposite
signs. Let x ∈ FP(G). Suppose that (v, u) is positive (and (u, v) negative);
the other case being similar. Then, x(v) = 0 implies x(u) = 0, and
x(v) = 1 implies x(u) = 0. Thus x(u) = 0 for all x ∈ FP(G), so that
|FP(G)| ≤ 2n−1, a contradiction. Thus G has the property (ii).

(iv) We first need to prove the following property: for all u 6= v,

(v, u) ∈ E+(G) ⇒ (u, v) 6∈ E(G). (1)

Indeed, suppose that (v, u) ∈ E+(G) with u 6= v. By (ii) (u, v) 6∈ E−(G),
and if (u, v) ∈ E+(G), then it is easy to see that x(v) = x(u) for all
x ∈ FP(G), so that |FP(G)| ≤ 2n−1, a contradiction. Now suppose, for a
contradiction, that G has a positive arc (v, u) leaving the center (u 6= v).
Suppose first that there exists w 6= u, v such that (v, w) ∈ E−(G). Let
x ∈ FP(G). Then x(v) = 0 implies x(u) = 0 and x(v) = 1 implies
x(w) = 0. Thus there are at most 2n−2 fixed points x such that x(v) = 1
and at most 2n−2 fixed points x such that x(v) = 1. Thus |FP(G)| ≤ 2n−1,
a contradiction. We deduce that all the arcs leaving v are positive. From
(1) and the fact that G is not isomorphic to Sn, we deduce that there
exists w 6= u, v such that (w, v) ∈ E(G). Let c = 1 if this arc is positive,
and c = 0 otherwise. Then, x(v) = 0 implies x(u) = 0, and x(v) = 1
implies x(w) = c. Hence, as above, we deduce that |FP(G)| ≤ 2n−2 +
2 n− 2 = 2n−1, a contradiction. Thus there is no positive arc leaving the
center v. 2

7 Minimum number of fixed points

In this section we study, given a digraph H , which is the minimum number of
fixed points that an AND-OR-net G with underlying digraph H can have. In
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[1] it was proved that the presence of a positive cycle in the interaction digraph
of a Boolean network is a necessary condition to the existence of fixed points.
In particular, if an AND-OR-net G has no positive cycle, then |FP(G)| ≤ 1.
However, there are some families of digraphs, such as the complete digraphs,
for which any assignment of signs on the arcs yields a positive cycle. Despite
this, the following result ensures that for any connected digraph H , there
exists an AND-net G with underlying digraphH and without fixed points. The
proof is mainly based on transformation T3. This shows that transformations
introduced in the proof of Theorem 2 may be interesting in other contexts.

Theorem 29 Let H be a connected digraph without sink. There exists an
AND-net G with underlying digraph H such that |FP(G)| = 0.

PROOF. Let F ⊆ V (H) be a minimal feedback vertex set of H ; that is a
minimal set of vertices intersecting each cycle (since H has no sink, it has at
least one cycle, thus F 6= ∅). We define G to be the AND-net such that

V (G) = V (H)

E−(G) = {(u, v) | (u, v) ∈ E(H), u ∈ F}

E+(G) = {(u, v) | (u, v) ∈ E(H), u 6∈ F}

Note that E−(G) is a feedback arc set of G: every cycle of G has at least one
arc in E−(G). So G has the property P2. Let G3 = T3(G). By Lemma 15,
FP(G) ⊆ FP(G3). See Figure 5 for an illustration.

We claim that each vertex v ∈ F has a negative loop inG3. Indeed, if v ∈ F has
a negative loop inG then it has a negative loop inG3 (since E−(G) ⊆ E−(G3)).
So suppose that v has no negative loop in G. Then it has no loop in G since
G has the property P2. Because F is minimal, for every v ∈ F there exists a
cycle C in G such that V (C) ∩ F = {v}. Let w be the successor of v in C

(w 6= v by hypothesis). Then by the definition of G, (v, w) ∈ E−(G) and all
the other arcs of C are positive arcs of G. Thus, G has a path from w to v

with only positive arcs. Thus (v, v) ∈ E−
3 (G) ⊆ E−(G3).

Furthermore, since (u, v) ∈ E−(G) implies that u ∈ F , we deduce that (u, v) ∈
E−(G3) implies that u ∈ F . Thus every arc of G3 is an arc starting from F . In
this way, if x ∈ FP(G), then x ∈ FP(G3), and x(v) = 0 for all v ∈ F , because
(v, v) ∈ E−(G3). So for all v ∈ F , there exists an arc (u, v) ∈ E−(G3) such
that x(u) = 1, but this is not possible since u ∈ F . 2

Actually, the hypothesis “H is connected” can be simply removed from the
statement: if H has no sink, then by applying the previous theorem on each
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Fig. 5. Illustration for the proof of Theorem 30.

connected component of H , we obtain an AND-net G with underlying digraph
H and without fixed point.

Besides, the hypothesis “H has no sink” can be replaced by the weaker hy-
pothesis “H has at least one cycle”. Indeed, let H be a digraph with at least
one cycle, and let G the AND-net defined, as in the previous proof, from H

and a minimal feedback vertex set F . Suppose that H has a sink v. Then
x(v) = 1 for all x ∈ FP(G), and since all the arcs starting from v are positive
(because v 6∈ F ), it is clear that G \ v and G have the same number of fixed
points. Also, F is clearly a minimal feedback vertex set of H \ v. Repeating
this process, we obtain a AND-net G′ with underlying digraph H ′ such that:
G′ and G has the same number of fixed points, H ′ has no sink, and F is a
minimal feedback vertex set of H ′. Then, using the previous proof, G′ has no
fixed point, and we deduce that G has no fixed point too.

On the other hand, according to a theorem of Robert [19,20], if H has no cycle
then every AND-OR-net with underlying digraph H has a unique fixed point.
Hence, we obtain the following corollary.

Corollary 30 Let H be a digraph. There exists an AND-net G with underly-
ing digraph H such that |FP(G)| = 0 if and only if H has at least one cycle.

8 Conclusion and perspectives

We have proved that the number of fixed points in a connected AND-OR-
net G with n vertices is bounded above by: the maximal number of maximal
independent sets in a connected graph with n vertices if G has no loops;
and the maximal number of independent sets in a connected graph with n

vertices otherwise. In this way, using results on independent sets, we obtain
tight upper-bounds on the number of fixed points in AND-OR-nets.

Considering AND-OR-nets reaching the bounds is interesting. For example,

24



in the loop-less case, AND-nets reaching the bounds are symmetric, contains
only negative arcs, and a lot of “triangles” that is cycles of length 3. Thus, in
the loop-less case, to reach the bound, a lot of negative cycles are necessary,
and this is not very intuitive since negative cycles are mostly known to be
unfavorable to fixed points. Now, when loops are allowed, AND-nets reaching
the bound contains have no negative cycles. This shows that the influence of
negative cycles on the number of fixed points is subtile, not yet well understood
(while the influence of positive cycle is rather well understand: to have many
fixed points, a lot of “rather disjoint” positive cycles are necessary).

A More on transformation T1

Proposition 2 For every AND-net G we have |FP(G)| = |FP(G1)|.

PROOF. By Lemma 10 we have |FP(G)| ≤ |FP(G1)|. Suppose that G 6= G1,
and let us prove that |FP(G1)| ≤ |FP(G)|. Consider the function that maps
every configuration x ∈ FP(G1) to the configuration x̃ of G defined by:

x̃(v) =



























x(v) if v ∈ V (G) \ Vcst(G)

1 if v ∈ Vcst1(G)

0 if v ∈ Vcst0(G)

Since x 7→ x̃ is clearly an injection, it is sufficient to show that x̃ ∈ FP(G) for
all x ∈ FP(G1). Let x ∈ FP(G1), let v ∈ V (G) \Vcst(G), and let us prove that
fG
v (x̃) = x̃(v).

(1) Suppose that x(v) = 1 = x̃(v) and, for a contradiction, that fG
v (x̃) = 0.

Then there exists u ∈ P+
G (v) with x̃(u) = 0 or there exists u ∈ P−

G (v)
with x̃(u) = 1. Suppose first that there exists u ∈ P+

G (v) with x̃(u) = 0.
Then u 6∈ Vcst0(G) since otherwise v ∈ Vcst0(G). Thus u 6∈ Vcst(G), and
we deduce that u ∈ P+

G1(v). Since x(u) = x̃(u) = 0 we have fG1

v (x) = 0,
a contradiction. If there exists u ∈ P−

G (v) with x̃(u) = 1, then we obtain
a contradiction in a similar way. Thus fG

v (x̃) = 1 = x̃(v).

(2) Suppose that x(v) = 0 = x̃(v). If there exists u ∈ P+
G1(v) with x(u) = 0,

then u 6= v∗, thus u ∈ P+
G (v). Since x̃(u) = x(u) = 0, we deduce that

fG
v (x̃) = 0. Similarly, if there exists u ∈ P−

G1(v) with x(u) = 1, then u 6=
v∗, thus u ∈ P−

G (v). Since x̃(u) = x(u) = 1, we deduce that fG
v (x̃) = 0.

Thus fG(x̃) = 0 in all cases.

So we have proved that fG
v (x̃) = x̃(v) for all v ∈ V (G) \ Vcst(G). We now

prove, by induction (following the inductive definition of Vcst(G)), that the
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same equality holds for v ∈ Vcst(G). Actually, we only prove the base case,
since the induction step is straightforward. Let x ∈ FP(G1).

(1) Suppose that there exists strong components H and H ′ in G \ E−(G)
such that G has both a positive and a negative arc from V (H ′) to V (H)
(so V (H) ⊆ Vcst0(G)). Let v ∈ V (H). If H is not trivial, v has a positive
predecessor u ∈ V (H). Thus x̃(u) = 0 and we deduce that fG

v (x̃) =
0 = x̃(v). So suppose that H is trivial. If V (H ′) ∩ Vcst0(G) 6= ∅ then
V (H ′) ⊆ Vcst0(G) thus x̃(u) = 0 for all u ∈ V (H ′), and since v has
a positive predecessor in V (H ′) we have fG

v (x̃) = 0 = x̃(v). Similarly,
if V (H ′) ∩ Vcst1(G) 6= ∅ then V (H ′) ⊆ Vcst1(G) thus x̃(u) = 1 for all
u ∈ V (H ′), and since v has a negative predecessor in V (H ′) we have
fG
v (x̃) = 0 = x̃(v). So finally, suppose that V (H ′) ∩ Vcst(G) = ∅. Then
fG
u (x̃) = x̃(u) for all u ∈ V (H ′), and we deduce, as in Lemma 6, that
there exists c ∈ {0, 1} such that x̃(u) = c for all u ∈ V (H ′). If c = 0 then
fG
v (x̃) = 0 = x̃(v), because v has a positive predecessor in V (H ′), and if
c = 1 then fG

v (x̃) = 0 = x̃(v), because v has a negative predecessor in
V (H ′). Thus fG

v (x̃) = x̃(v) in all cases.

(2) If v is a sink, then v ∈ Vcst1(G) thus fG
v = cst = 1 = x̃(v). 2

B More on transformation T2

Proposition 3 If G is an AND-net satisfying the property P1, then
|FP(G)| = |FP(G2)|.

PROOF. By Lemma 13 we have |FP(G)| ≤ |FP(G2)|. Let us prove that
|FP(G2)| ≤ |FP(G)|. Let H1, . . . , Hr be the strongly connected components of
G \E−(G). For every 1 ≤ k ≤ r, let vk be the smallest vertices in V (Hk). Let
U = V (G) \ {v1, v2, . . . vr}. Consider the permutation mapping each configu-
ration x of G to the configuration x̃ of G defined by:

x̃(u) =











1− x(u) if u ∈ U

x(u) ortherwise.

We prove that x̃ ∈ FP(G) for each x ∈ FP(G2). Let x ∈ FP(G2) and 1 ≤
k ≤ r. If u ∈ V (Hk) \ vk, then fG2

u (x) = 1 − x(vk) and thus x(u) 6= x(vk).
Consequently

∀u ∈ V (Hk), x̃(u) = x(vk).

We first prove that fG
u (x̃) = x̃(u) given any u ∈ V (Hk) \ vk. Suppose that
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x̃(u) = 0. Since there exists w ∈ P+
G (u) ∩ V (Hk), and since x̃(w) = x̃(u) = 0,

we have fG
u (x̃) = 0 = x̃(u). Suppose now that x̃(u) = 1, and suppose, for a

contradiction, that fG
u (x̃) = 0. Then one of the following two conditions holds:

(1) There exists w ∈ P+
G (u) with x̃(w) = 0. Then x̃(w) 6= x̃(u) so w 6∈ V (Hk)

thus w ∈ V (Hl) for some l 6= k. Then, vl ∈ P+
G2(vk) and x(vl) = x̃(w) = 0

thus fG2

vk
(x) = 0 = x(vk) 6= x̃(u), a contradiction.

(2) There exists w ∈ P−
G (u) with x(w) = 1. Since G satisfies the condition Q1,

w 6∈ V (Hk) thus w ∈ V (Hl) for some l 6= k. Then, vl ∈ P−
G2(vk) and

x(vl) = x̃(w) = 1 thus fG2

vk
(x) = 0 = x̃(u), a contradiction.

Since there is a contradiction in both cases, fG
u (x̃) = 1 = x̃(u).

We now prove that fG
vk
(x̃) = x̃(vk). Suppose first that x̃(vk) = 0. If Hk is not

trivial then there exists u ∈ P+
G (vk) ∩ V (Hk) and since x̃(u) = x(vk) = 0 we

deduce that fG
vk
(x̃) = 0. Suppose that Hk is trivial. Since x(vk) = x̃(vk) = 0,

one of the following two condition holds:

(1) There exists u ∈ P+
G2(vk) with x(u) = 0. Then u = vl for some l 6= k, so

there exists w ∈ P+
G (vk)∩ V (Hl). Since x̃(w) = x(vl) = 0 we deduce that

fG
vk
(x̃) = 0.

(2) There exists u ∈ P−
G2(vk) with x(u) = 1. Then u = vl for some l 6= k, so

there exists w ∈ P−
G (vk)∩ V (Hl). Since x̃(w) = x(vl) = 1 we deduce that

fG
vk
(x̃) = 0.

So in all cases, fG
vk
(x̃) = 0 = x̃(vk). Suppose now that x̃(vk) = 1, and suppose,

for a contradiction, that fG
vk
(x̃) = 0. Then one of the following two conditions

holds:

(1) There exists u ∈ P+
G (vk) with x̃(u) = 0. Then x̃(u) 6= x̃(vk) = x(vk)

so u 6∈ V (Hk) thus u ∈ V (Hl) for some l 6= k. Then, vl ∈ P+
G2(vk) and

x(vl) = x̃(u) = 0 thus fG2

vk
(x) = 0 6= x̃(vk) = x(vk), a contradiction.

(2) There exists u ∈ P−
G (vk) with x̃(u) = 1. Since G satisfies the condition Q1,

u 6∈ V (Hk) thus u ∈ V (Hl) for some l 6= k. Then, vl ∈ P−
G2(vk) and

x(vl) = x̃(u) = 1 thus fG2

vk
(x) = 0 6= x̃(vk) = x(vk), a contradiction.

Since there is a contradiction in both cases, fG
vk
(x̃) = 1 = x̃(vk). 2

C More on transformation T3

Proposition 4 If G is an AND-net with the property P2 then FP(G) =
FP(G3).
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PROOF. By Lemma 15 we have FP(G) ⊆ FP(G3), so we just prove that
FP(G3) ⊆ FP(G3). Let x ∈ FP(G3) and v ∈ V (G).

Suppose that x(v) = 0. Then there exists u ∈ P−
G3(v) with x(u) = 1. If

u ∈ P−
G (v) then fG

v (x) = 0 = x(v). Otherwise, there exists w such that
(u, w) ∈ E−(G) and such that G has a path P from w to v with only positive
arc. Then, (u, t) ∈ E−(G3) for all t ∈ V (P ), and thus fG3

t (x) = 0 = x(t) for all
t ∈ V (P ). Thus, there exists t ∈ P+

G (v) ∩ V (P ) with x(t) = 0 and we deduce
that fG

v (x) = 0 = x(v).

Suppose now that x(v) = 1, and suppose, for a contradiction, that fG
v (x) = 0.

Then one of the following two conditions hold:

(1) There exists u ∈ P+
G (v) with x(u) = 0. Let P be the longest path of G

with only positive arcs, with u as final vertex, and such that x(w) = 0 for
all w ∈ V (P ). Let w be the initial vertex of P . If there exists t ∈ P+

G (w)
then t ∈ V (P ) (since P is of maximal length) thus G has a cycle with
only positive arcs, in contradiction with the property P2. Thus x(t) = 1
for all t ∈ P−

G (w). Since x(w) = 0 we have, according to the arguments
above, fG

w (x) = 0. Thus, there exists t ∈ P−
G (w) with x(t) = 1. But then

(t, v) ∈ E−(G3) so fG3

v (x) = 0 6= x(v), a contradiction.

(2) There exists u ∈ P−
G (v) with x(u) = 1. Then u ∈ P−

G3(v) thus fG3

v (x) =
0 6= x(v), a contradiction.

We deduce that fG
v (x) = 1 = x(v). 2
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[4] Z. Füredi, The number of maximal independent sets in connected graphs, J.
Graph Theory 11 (1987), 463-470.

[5] D. Galvin, Two problems on independent sets in graphs, Discrete Mathematics
311 (2011), 2105-2112.

[6] E. Goles, G. Hernández, Dynamical Behavior of Kauffman Networks with AND-
OR gates, Journal of Biological Systems 8 (2000) 151-175.

28



[7] J. R. Griggs, C. M. Grinstead, and D. R. Guichard, The number of maximal
independent sets in a connected graph, Discrete Math. 68(1988), 211-220.

[8] H. Hua, A sharp upper bound for the number of stable sets in graphs with given
number of cut edges, Applied Mathematics Letters 22 (2009), 1380-1385.

[9] M. Hujter and Z. Tuza, The number of maximal independent sets in triangle-
free graphs, SIAM J. Discrete Math. 6 (1993), 284-288.

[10] J. Kahn, An entropy approach to the hard-core model on bipartite graphs,
Combinatorics, Probability & Computing 10 (2001), 219-237.

[11] S.A. Kauffman, Metabolic Stability and Epigenesis in Randomly Constructed
Genetics nets, J. Theoretical Biology 22(1969) 437-467.

[12] S.A. Kauffman, The Origins of Order, Self-Organization and Selection in
Evolution (Oxford University Press, 1993).

[13] J. Liu, Maximal independent sets in bipartite graphs, J. Graph Theory 17(1993)
495-507.

[14] A. Melkman, T. Tamura, T. Akutsu, Determining a singleton attractor of an
AND/OR Boolean network in O(1.587n) time, Information Processing Letters
110 (2010) 565-569.

[15] A. Meir and J. W. Moon, On maximal independent sets of nodes in trees, J.
Graph Theory 12 (1988), 265-283.

[16] J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965) 23-28.

[17] H. Prodinger and R. Tichy, Fibonacci numbers of graphs, The Fibonacci
Quarterly 20 (1982), 16-21.

[18] E. Remy, P. Ruet and D. Thieffry, Graphic requirements for multistability
and attractive cycles in a boolean dynamical framework, Advances in Applied
Mathematics 41 (2008) 335 - 350.

[19] F. Robert, Iterations sur des ensembles finis et automates cellulaires
contractants, Linear Algebra and its Applications 29 (1980) 393-412.

[20] F. Robert, Discrete iterations: a metric study, Series in Computational
Mathematics 6, Springer, 1986.

[21] R. Thomas, Boolean formalization of genetic control circuits, Journal of
Theoretical Biology 42 (1973) 563-585.

[22] R. Thomas and R. d’Ari, Biological Feedback, CRC Press, 1990.

[23] A. Veliz-Cuba and R. Laubenbacher. On the computation of fixed points in
Boolean networks, Journal of Applied Mathematics and Computing 39 (2012)
145-153.

[24] Y. Zhao, The Number of Independent Sets in a Regular Graph, Combinatorics,
Probability & Computing 19 (2010), 315-320.

29



Centro de Investigación en Ingenieŕıa Matemática (CI
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