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Abstract Time delay is an essential ingredient of spatio-temporal predator-prey models since
the reproduction of the predator population after predating the prey will not be instanta-
neous, but is mediated by some constant time lag for the gestation of predators. Specifically,
time delay is considered within a predator-prey reaction-diffusion system. A stability analysis
involving Hopf bifurcations with respect to the delay parameter and simulations obtained by
a new numerical method reveal how this delay affects the formation of spatial patterns in
the distribution of the species. In particular, it turns out that the delay can induce spatial
patterns when the carrying capacity of the prey is large. The numerical method consists of a
finite volume element (FVE) method for the spatial discretization of the model combined with
a Runge-Kutta scheme for its time discretization.

Keywords Spatial patterns · Time delay · Pattern selection · Finite volume element
discretization
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1 Introduction

1.1 Scope

The effect of time delay is fundamental in continuous models of populations of single or multiple
species whenever the growth rate of a population does not respond instantaneously to changes
in population size. One of the first models with delay was proposed by Volterra (1926), who took
into account the delay in response of a population’s death rate to changes in population density
caused by an accumulation of pollutants in the past. Further causes of response delays include
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differences in resource consumption with respect to age structure, migration and diffusion of
populations, gestation and maturation periods, delays in behavioral response to environmental
changes, and dependence of a population on a food supply that requires time to recover from
grazing (Brauer and Castillo-Chávez, 2001). Within epidemic models, time delays describe the
incubation periods of infectious diseases, the infection periods of infective members and the
periods of recovered individuals with immunity; see Wang (2009) for an overview. The effect
of time delay is broadly discussed in most textbooks on mathematical biology (Renshaw, 1991;
Brauer and Castillo-Chávez, 2001; Murray, 2002; Britton, 2003). It is well known that the
main consequence of a time delay is oscillatory solution behaviour. For instance, the simple
delay differential equation du/dt = −(π/(2τ))u(t − τ), where τ denotes the delay, has the
time-periodic solution u(t) = A cos(πt/(2τ)), where A is a constant (Murray, 2002).

In this work we are interested in criteria for the formation, and numerical methods for the
efficient simulation, of spatio-temporal patterns described by a predator-prey model with time
delay and diffusion. The model is given by

∂tu1 − d1∆u1 = u1(a1 − b11u1 − b12u2), (x, t) ∈ Ω × T , (1.1a)

∂tu2 − d2∆u2 = u2

(
−a2 + b21(u1)τ − b22u2

)
, (x, t) ∈ Ω × T , (1.1b)

∂nu1 = ∂nu2 = 0, (x, t) ∈ ΣT , (1.1c)
u1(x, t) = ψ1(x, t), u2(x, t) = ψ2(x, t), (x, t) ∈ Ωτ (1.1d)

posed on a finite time interval T = (0, T ) for a fixed T > 0, and where ΣT := (∂Ω) × T ,
Ωτ := Ω × [−τ, 0], and ∂n denotes the directional derivative with respect to the outer normal
vector n of the boundary ∂Ω of Ω. Here u1 = u1(x, t) and u2 = u2(x, t) are the sought
densities of the prey and the predator, respectively. The right-hand side of (1.1b) includes
the delay term (u1)τ := u1(x, t− τ), where the constant τ > 0 is the delay. The homogeneous
Neumann boundary condition (1.1c) indicates zero population flux across ∂Ω. Moreover, a1

is the growth rate of the prey, while a2 is the death rate of the predator, bii (i = 1, 2) are
the rates of intra-specific competition, and b12 and b21 denote the rates of consumption by
predator on prey and mass conversion from prey to predator, respectively. The ratios ai/bii

(i = 1, 2) are environmental carrying capacities, and d1 and d2 are diffusion coefficients.

It is one purpose of this paper to study the spatial patterns produced by solutions of (1.1)
and the onset of oscillatory solution behaviour through a Hopf bifurcation with respect to
the delay τ as a bifurcation parameter. The second purpose is to introduce a new numerical
method for the solution of (1.1). Our objective here is to explore how delay determines the
stability threshold of the steady state. Moreover, it is pertinent to investigate whether different
values of the delay can determine the pattern selections. The present analysis reveals that
spatial patterns can be induced by a series of Hopf bifurcation critical points. To the authors’
knowledge, this property has not been yet reported in the literature related to spatial patterns.

1.2 Related work

Introductions to delay differential equations are given by Kuang (1993) and Smith (2011);
see also Chapter 8 of McKibben (2011). For general introductions to bifurcation theory we
mention Chow and Hale (1982) and Hale and Koçak (1991), as well as Hassard et al. (1981)
for Hopf bifurcations. In predator-prey systems, delay effects were first considered by Volterra
(1931). He showed that under certain conditions, all solutions possess an oscillatory behavior.
For the delayed non-spatial predator-prey model, the asymptotic stability of the equilibrium
and the periodicity of the solution were investigated (see Cunningham and Wangersky, 1957;
May, 1973; Bownds and Cushing, 1975, and the references therein). Analyses of non-spatial
variants of (1.1) also include Freedman and Hari Rao (1983); Zhao et al. (1997); Wang and
Chen (1997); Ruan and Wei (2003) and Jana et al. (2012). Numerical methods tailored for
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these kinds of problems can be found in e.g. Bellen and Zennaro (2003); Hairer and Wanner
(2002). We here decide to use stable Runge-Kutta schemes proposed by Koto (2008) (see also
Huang, 2009; Huang and Vandewalle, 2012).

For predator-prey models with diffusion, the existence of traveling wave solutions was
shown by Murray (1976) and Gopalsamy (1980) for discrete and continuous delays, respectively
(although their models differ from (1.1)). For (1.1) and related spatio-temporal models, Gourley
et al. (2004) proposed that diffusion and time delays interact in the sense that individuals may
be at different points in space at past times. Similarly, Sen et al. (2009) show that the time
delay may induce spatial patterns in the reaction-diffusion system. A version of (1.1) with
Beddington-Angelis functional response is studied by Zhang et al. (2011) along with numerical
simulations in one space dimension. Tian (2012) studies the formation of delay-induced Turing
patterns for a version of (1.1) with a different functional response (the bifurcation theory in
that paper is less involved). Bifurcations akin to those studied herein, are also analyzed by
Rodrigues et al. (2011) for a fully discrete coupled map lattice predator-prey model. Finite
difference methods are employed by Sun et al. (2012) and Wang and Pao (2006).

We study the effects of the time delay by a finite volume element (FVE) approximation of
(1.1). This method is a hybrid concept between finite elements and finite volume discretizations
that features some desirable properties including the ability to deal with unstructured meshes
on arbitrarily shaped domains, the conservativity of inter-element fluxes, and the feasibility of
error estimates in L2 and H1 norms. The main difficulty is the analysis of the FVE method in
the sense that trial and test functions belong to different spaces. FVE methods have historically
been applied for flow equations (Cai, 1991; Chou, 1997; Quarteroni and Ruiz-Baier, 2011; Li
et al., 2012) and recently for other time-dependent convection-diffusion problems including
a sedimentation-consolidation model (Bürger et al., 2012), reactive flows in porous media
(Ewing et al., 2000), reaction-diffusion systems (Phongthanapanich and Dechaumphai, 2009)
and Brusselator models with cross-diffusion (Lin et al., 2012).

1.3 Outline of the paper

In Section 2 we set up some notation and cite two lemmas from the literature. In Section 3
we show that without delay (i.e., τ = 0), the problem (1.1) does not generate spatial patterns,
while in the presence of delay (τ > 0), the formation of spatial patterns is induced. To this
end, we first prove (in Section 3.1) by standard arguments that (1.1) admits a unique, positive
and uniformly bounded solution for all times. In Section 3.2 we analyze the linear stability
of (1.1). We show that when τ exceeds a certain critical value τ∗, then the operator arising
from linearization of (1.1) around the non-trivial equilibrium u∗ admits successions {τ∗n}n∈N0

of purely complex eigenvalues, and that the solutions of the linearized version undergo a Hopf
bifurcation at u = u∗ whenever τ = τ∗n. Next, in Section 3.3, we employ the normal form
method and the center manifold theory to analyze the direction of the Hopf bifurcation of
solutions of (1.1) (using τ as bifurcation parameter) obtained in Section 3.2. The result is
a predictive criterion that discriminates whether the Hopf bifurcations are supercritical or
subcritical, respectively, and the corresponding bifurcating periodic solutions on the center
manifold are stable (unstable, respectively). In Section 4 we introduce the numerical method for
the approximate solution of (1.1), which is based on a FVE spatial discretization (introduced
in Section 4.1) combined with a Runge-Kutta method for delay differential equations (see
Section 4.2). Numerical results are presented in Section 5. Example 1 (Section 5.2) refers to a
simplified version of (1.1), for which an exact solution is available. The recorded error histories
indicate that the method converges when discretization parameters are refined. Example 2
(Section 5.3) considers the full model (1.1) on a square. It is illustrated that spatial pattern
formation and temporal oscillatory behaviour appear as predicted. Example 3 in Section 5.4
reports similar findings in a disk-shaped domain. Finally, Section 6 collects some conclusions.
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2 Preliminaries

Notation 2.1 Let 0 = µ1 < µ2 < · · · → ∞ be the eigenvalues of −∆ on Ω under no-flux
boundary conditions, and E(µi) be the space of eigenfunctions corresponding to µi. We define
the following space decomposition:

(i) Xij := {c·φij : c ∈ R2}, where {φij} is an orthonormal basis of E(µi) for j = 1, . . . ,dim E(µi),
(ii) X := {u = (u1, u2)T ∈ [C1(Ω̄)]2 : ∂nu1 = ∂nu2 = 0 on ∂Ω}. Thus,

X =
∞⊕

i=1

Xi, where Xi =
dim E(µi)⊕

j=1

Xij . (2.1)

We will eventually employ the following result (see Theorem 2.1 in Pao, 1992).

Lemma 2.1 Let (c̃1, c̃2) and (ĉ1, ĉ2) be a pair of ordered upper and lower solutions of the
system (1.1). Then, that system has a unique global solution (u1(x, t), u2(x, t)) such that
ĉi ≤ ui(x, t) ≤ c̃i, i = 1, 2, for (x, t) ∈ Ω × [0,∞).

Furthermore, we will appeal to the following lemma by G.J. Butler (proven in Appendix A of
Freedman and Hari Rao, 1983).

Lemma 2.2 (Butler’s lemma) Let α + β < 0 and αβ > γ. Then the real parts of solutions
of λ2 − (α + β)λ + αβ − γe−τλ = 0 are negative for τ < τ0, where τ0 > 0 is the smallest value
for which this equation has a solution with real part zero.

3 Delay-driven spatial patterns

3.1 Existence of solution

In order to show the global existence of solution of (1.1), it suffices to show that any solution
candidate (u1(x, t), u2(x, t)) must be bounded for all t > 0. To this end, we define the quantities

ψ̂i(τ) := sup
(y,s)∈Ωτ

ψi(y, s), i = 1, 2.

Theorem 3.1 The initial-boundary value problem (1.1) has a unique solution (u1(x, t), u2(x, t))
for T = ∞. Moreover, the components u1 and u2 satisfy the following respective bounds:

0 < u1(x, t) ≤ A1(τ) := max
{

a1

b11
, ψ̂1(τ)

}
, (3.1)

0 < u2(x, t) ≤ A2(τ) := max
{

1
b22

[
b21 max

{
a1

b11
, ψ̂1(τ)

}
− a2

]
, ψ̂2(τ)

}
. (3.2)

Proof It is a standard routine to prove the local existence and uniqueness of solutions of (1.1)
for small values of T . We first show the positivity of the local solution (u1(x, t), u2(x, t)) for
some T . We now consider (1.1) for the time interval T = (0, τ). Since the initial values are
positive, the term (u1)τ is positive and bounded on Ω × (0, τ). By the standard maximum
principle for parabolic equations, the local solution (u1(x, t), u2(x, t)) of (1.1) for T = (0, τ)
is positive on Ω × (0, τ ]. Moreover, the bounds (3.1) and (3.2) are valid for 0 < t < τ . In a
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similar way, we now consider the system formed by (1.1a), (1.1b) and (1.1c) for T = (τ, 2τ)
along with the following initial condition:

u1(x, t) = ψ1(x, t), u2(x, t) = ψ2(x, t), (x, t) ∈ Ω × [0, τ ].

Then the solution (u1(x, t), u2(x, t)) of this system is positive on Ω× (τ, 2τ ]. By the induction
principle, (u1(x, t), u2(x, t)) is positive and bounded for some T .

Now we show the global existence of the solution (u1(x, t), u2(x, t)) by the method of upper
and lower solutions owing to Lemma 2.1. It is easy to verify that the pairs (A1(τ),A2(τ)) and
(0, 0) are ordered upper and lower solutions of (1.1). Now the existence theorem of Pao (1992)
implies that (1.1) admits a unique global solution (u1(x, t), u2(x, t)). '(

We observe that if the initial values ψi(x, 0), i = 1, 2, are nonnegative and none of the
initial values is identically zero, then the corresponding solution of (1.1) (u1(x, t), u2(x, t)) is
strictly positive on Ω × T .

3.2 Linear stability analysis

The system (1.1a), (1.1b) has a nontrivial equilibrium

u∗ = (u∗1, u
∗
2) =

(
a1b22 + a2b12

b11b22 + b12b21
,

a1b21 − a2b11

b11b22 + b12b21

)
,

which is feasible if we assume that the parameters of the kinetics in (1.1) satisfy

a1/b11 > a2/b21. (3.3)

We now set u := u1 − u∗1, v := u2 − u∗2, substitute u1 = u + u∗1 and u2 = v + u∗2 into (1.1),
and retain only the linear terms in u and v to obtain

∂tu− d1∆u = −b11u
∗
1u− b12u

∗
1v, (x, t) ∈ ΩT ,

∂tv − d2∆v = b21u
∗
2u(t− τ)− b22u

∗
2v, (x, t) ∈ ΩT ,

∂nu = ∂nv = 0, (x, t) ∈ ΣT ,

u(x, t) = ψ1(x, t)− u∗1, v(x, t) = ψ2(x, t)− u∗2, (x, t) ∈ Ωτ .

The linearization of (1.1) around u∗ can be therefore expressed by ∂tu = (D∆ + J∗)u,
where D = diag(d1, d2), u = (u, v)T, and

J∗ =

[
−b11u∗1 −b12u∗1

b21u∗2e−λτ −b22u∗2

]

(cf., e.g., Smith (2011) for the underlying calculus). Notation 2.1 implies that Xi is invariant
under the operator D∆ + J∗, and λ is an eigenvalue of this operator on Xi if and only if
λ is an eigenvalue of the matrix −µiD + J∗. For a fixed index i the characteristic equation of
−µiD + J∗ is

∆(λ, τ) := det(−µiD + J∗ − λ) = 0. (3.4)

In what follows, we fix the index i. A direct calculation shows that

∆(λ, τ) = λ2 −Riλ + Qe−λτ , (3.5)

where for sake of brevity, we define

Ri := b11u
∗
1 + b22u

∗
2 + d1µi + d2µi > 0, Q := b12b21u

∗
1u
∗
2. (3.6)

Then we have the following result on the existence of delay-driven spatial patterns.
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Theorem 3.2 If (1.1) satisfies the assumption (3.3), then the delay can induce spatial pat-
terns.

(i) If the delay is absent, that is τ = 0, then the positive equilibrium u∗ of (1.1) is locally
asymptotically stable.

(ii) If the delay is present, that is τ )= 0, assume that ω∗ < Q1/2, where

ω∗ :=
1√
2

([
R4

i + 4Q2
]1/2 −R2

i

)1/2
(3.7)

for Ri and Q as defined in (3.6). Then there exists a critical point

τ∗ =
1
ω∗

arccos
ω∗2

b12b21u∗1u
∗
2

=
1
ω∗

arccos
ω∗2

Q

such that the positive equilibrium u∗ is locally asymptotically stable for τ ∈ [0, τ∗] and
unstable for τ ∈ (τ∗,∞).

Proof (i) We first show that when τ = 0, there are no spatial patterns. From the above
argument, it is sufficient to show all the roots of ∆(λ, 0) have negative real parts. It follows
from (3.5) that ∆(λ, 0) = λ2−Riλ+Q. Therefore, by the Descartes rule of sign, the quadratic
equation ∆(λ, 0) = 0 always has two negative roots.

(ii) By the use of the instability result for delayed differential equations owing to Gopalsamy
(1992), in order to prove the instability of the uniform equilibrium, it is sufficient to show that
there exist a pure imaginary number ωi, where ω ∈ R and i2 = −1, and a real number τ > 0
such that ∆(ωi, τ) = 0. If ωi is a root of (3.4), then ω must satisfy the pair of equations

− ω2 −Q cos ωτ = 0, ωRi −Q sinωτ = 0, (3.8)

which leads to the quadratic equation (with respect to ω2)

ω4 + R2
i ω

2 −Q2 = 0. (3.9)

By the Descartes rule of sign, (3.9) always has a unique positive real root (3.7), and ∆(ωi, τ) = 0
has a pair of simple purely imaginary roots ±ω∗i when

τ∗n =
1
ω∗

arccos
ω∗2

Q
+

2nπ

ω∗
, n = 0, 1, . . . . (3.10)

If we set

τ∗ := τ∗0 =
1
ω∗

arccos
ω∗2

Q
,

then by Lemma 2.2, u∗ is stable for τ < τ∗. On the other hand, if τ ≥ τ∗, then (3.5) has a
unique root on the imaginary axis. By the eigenvalue theory of Ruan and Wei (2003), the sum
of orders of the zeros of (3.5) for τ > τ∗ is equal to that of τ = τ∗. Then (3.5) for τ ∈ [τ∗,∞)
has roots with positive real parts, which implies that u∗ is locally asymptotically unstable for
τ ≥ τ∗. '(

Theorem 3.3 Under the assumption (3.3) solutions of the problem (1.1) undergo a Hopf
bifurcation at u∗ when τ = τ∗n for n ∈ N0.
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Proof We have already shown that ∆(ωi, τ) = 0 has a pair of simple purely imaginary roots
±ω∗i at τ∗n. Thus, to prove that a Hopf bifurcation occurs at τ = τ∗n for n = 0, 1, . . ., we must
still prove the following transversality property:

d
dτ

(
Re(λ(τ))

)∣∣
τ=τ∗n

> 0, n = 0, 1, . . . . (3.11)

To this end, we substitute λ = σ + ωi, σ, ω ∈ R into (3.4) to obtain

σ2 − ω2 −Riσ + e−στQ cos ωτ = 0, 2σω −Riω − e−στQ sin ωτ = 0.

Differentiating these equations with respect to τ yields

(
2σ −Ri − τe−στQ cos ωτ

) dσ

dτ
− 2ω

dω

dτ
− e−στQ(ω sinωτ + σ cos ωτ) = 0,

(
2ω + τe−στQ sinωτ

) dσ

dτ
+ (2σ −Ri)

dω

dτ
+ e−στQ(σ sinωτ − ω cos ωτ) = 0.

Substituting σ = 0 into the above equations, we have

(−Ri − τQ cos ωτ)
dσ

dτ
− 2ω

dω

dτ
−Qω sin ωτ = 0,

(2ω + τQ sinωτ)
dσ

dτ
−Ri

dω

dτ
−Qω cos ωτ = 0.

Solving the above system of linear equations, we obtain

dσ

dτ
= A−1

∣∣∣∣
Qω sinωτ −2ω
Qω cos ωτ −Ri

∣∣∣∣ , (3.12)

where A is the determinant. Substituting τ = τ∗n, ω = ω∗ and (3.8) into (3.12), we obtain
A = R2

i + 4ω∗2 + τ∗ω∗2Ri > 0, and thus

dσ

dτ

∣∣∣∣
τ=τ∗n,ω=ω∗

=
(Q sinω∗τ∗n)2 + 2ω∗4

A
> 0,

which proves (3.11). '(

3.3 The direction and stability of the Hopf bifurcation

Let w1 := u1−u∗1, w2 := u2−u∗2 and γ := τ−τ∗n, so that γ = 0 is the Hopf bifurcation value of
system (1.1). Let us recall the Banach space decomposition (2.1) in Notation 2.1 and re-scale
time by t → t/τ to normalize the delay. The periodic solution of system (1.1) is equivalent to
the solution of the following system

∂tw1 = (τ∗n + γ)(−d1µiw1 − b11u
∗
1w1 − b12u

∗
1w2 − b11w

2
1 − b12w1w2),

∂tw2 = (τ∗n + γ)
(
−d2µiw2 + b21u

∗
2w1(t− 1)− b22u

∗
2w2 + b21w1(t− 1)w2 − b22w

2
2

)
.

(3.13)

Next, we use the notation of Hassard et al. (1981) and define C = C([0, 1], R2). Then the
system (3.13) is transformed into a functional differential equation as

ẇ(t) = Lγ(wt) + f(γ,wt), (3.14)

where w(t) = (w1(t), w2(t))T ∈ R2, ˙≡ d/dt, and Lγ : C → R2, f : R × C → R2, respectively,
are represented by

Lγ(φ) = (τ∗n + γ)
[
−d1µi − b11u∗1 −b12u∗1

0 −d2µi − b22u∗2

] (
φ1(0)
φ2(0)

)
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+ (τ∗n + γ)
[

0 0
b21u∗2 0

] (
φ1(−1)
φ2(−1)

)
,

f(γ,φ) = (τ∗n + γ)
(
−b11φ2

1(0)− b12φ1(0)φ2(0)
b21φ1(−1)φ2(0)− b22φ2

2(0)

)
,

where φ(θ) = (φ1(θ), φ2(θ))T ∈ C. By the Riesz representation theorem, there exists a 2 × 2
matrix, denoted η(θ, γ), whose entries are functions of bounded variation such that

Lγφ =
∫ 0

−1
[dη(θ, γ)]φ(θ) for φ ∈ C.

As a matter of fact, we can choose

η(θ, γ) = (τ∗n + γ)
[
−d1µi − b11u∗1 −b12u∗1

0 −d2µi − b22u∗2

]
δ(θ)

+ (τ∗n + γ)
[

0 0
b21u∗2 0

]
δ(θ + 1),

where δ is a Dirac delta function. For φ ∈ C1([−1, 0], R2) we define

A(γ)φ :=






dφ(θ)
dθ

if θ ∈ [−1, 0),

∫ 0

−1
[dη(s, γ)]φ(s) if θ = 0,

R(γ)φ :=

{
0 if θ ∈ [−1, 0),
f(γ, φ) if θ = 0.

Thus, system (3.14) is equivalent to

ẇt = A(γ)(wt) + R(γ)(wt), (3.15)

where we define wt(θ) := w(t + θ) for θ ∈ [−1, 0]. Now, for ψ ∈ C1([0, 1], (R2)∗) we define

A∗ψ(s) :=






−dψ(s)
ds

if s ∈ [−1, 0),

∫ 0

−1
ψ(−t)dηT(t, 0) if s = 0,

and a bilinear inner product 〈·, ·〉 by

〈ψ(s),φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

0
ψ̄(ξ − θ) dη(θ)φ(ξ) dξ, (3.16)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. From the discussion in Theo-
rem 3.2, we know that ±ω∗τ∗ni are eigenvalues of A(0) and therefore they are also eigenvalues
of A∗.

Suppose q(θ) = (q1, q2)Teiω∗τ∗n is the eigenvector of A(0) corresponding to ω∗τ∗ni. Thus,
A(0)q(θ) = ω∗τ∗niq(θ). Then from the definition of A(0) we have

[
−d1µi − b11u∗1 − iω∗ −b12u∗1

b21u∗2e−iω∗τ∗n −d2µi − b22u∗2 − iω∗

] (
q1

q2

)
= 0.

Then we have

q(θ) =
(

1,−d1µi + b11u∗1 + iω∗

b12u∗1

)T

eiω∗τ∗nθ.
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Similarly, let q∗(s) = M(q∗1 , q∗2)eiω∗τ∗ns be the eigenvector of A∗ corresponding to −iω∗τ∗n, where
the factor M is determined later. Then by A∗q∗(s) = −iω∗τ∗nq∗(s) and the definition of A∗,
we have

[
−d1µi − b11u∗1 + iω∗ b21u∗2eiω∗τ∗n

−b12u∗1 −d2µi − b22u∗2 + iω∗

] (
q∗1
q∗2

)
= 0.

This gives

q∗(s) = M

(
−d2µi − b22u∗2 + iω∗

b12u∗1
, 1

)
eiω∗τ∗ns.

To ensure that 〈q∗(s), q(θ)〉 = 1, we need to determine the value of M . From (3.16), we have

1
M̄

= (q∗1q1 + q∗2q2)−
∫ 0

−1

∫ θ

ξ=0
q̄∗(ξ − θ) dη(θ)q(ξ) dξ

= q∗1
(
q1 + τ∗ne−iω∗τ∗n(0q1 + 0q2)

)
+ q∗2

(
q2 + τ∗e−iω∗τ∗n(b21u

∗
2q1 + 0q2)

)

= −d1µi + d2µi + b11u∗1 + b22u∗2
b12u∗1

+ τ∗nb21u
∗
2e
−iω∗τ∗n .

(3.17)

Next we will compute the coordinate to describe the center manifold C0 at γ = 0. Let wt

be the solution of (3.15) when γ = 0, and define

z(t) := 〈q∗,wt〉, W (t, θ) := W
(
z(t), z̄(t), θ

)
:= wt(θ)− 2 Re{z(t)q(θ)}. (3.18)

On the center manifold C0 we have the Taylor expansion

W
(
z(t), z̄(t), θ

)
= W 20(θ)

z2

2
+ W 11(θ)zz̄ + W 02(θ)

z̄2

2
+ W 30(θ)

z3

6
+ · · · ,

where z and z̄ are local coordinates for the center manifold C0 in the direction of q∗ and q̄∗.
Note that W is real if wt is real. We only consider the real solutions. Combining γ = 0 with
(3.18) we have that the solution wt ∈ C0 of (3.15) satisfies

ż(t) = iω∗τ∗nz + q̄∗(0)f
(
0, W (z, z̄, θ) + 2 Re{zq(θ)}

)

! iω∗τ∗nz + q̄∗(0)f0(z, z̄),

which we rewrite as ż(t) = iω∗τ∗nz + g(z, z̄), where

g(z, z̄) = q̄∗(0)f0(z, z̄) = q̄∗(0)f0(0,wt)

= τ∗nM̄
(
q̄∗1 , q̄∗2

) (
−b11φ2

1(0)− b12φ1(0)φ2(0)
b21φ1(−1)φ2(0)− b22φ2

2(0)

) (3.19)

for φ = wt. Substituting w(t) = zq(θ) + z̄q̄(θ) into (3.19), we have

g(z, z̄) = τ∗nM̄ q̄∗1
[
−(b11q

2
1 + b12q1q2)z2 − (b11q̄

2
1 + b12q̄1q̄2)z̄2

− 2(b11|q1|2 + b12 Re{q1q̄2})zz̄
]
+ τ∗nM̄ q̄∗2

[(
−b22q

2
2 + b21q1q2e−iω∗τ∗n

)
z2

+
(
−b22q̄

2
2 + b21q̄1q̄2eiω∗τ∗n

)
z̄2 +

(
−2b22|q2|2 + 2b21 Re{q1q̄2e−iω∗τ∗n}

)
zz̄

]
.

(3.20)

Letting

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
,

and substituting q1 = q∗2 = 1 into (3.20), we have

g20 = 2τ∗nM̄
[
q̄∗1(−b11 − b12q2) + (−b22q

2
2 + b21q2e−iω∗τ∗n)

]
,

g11 = 2τ∗nM̄
[
q̄∗1(−b11 − b12 Re{q2}) + (−b22|q2|2 + b21 Re{q2eiω∗τ∗n})

]
,



10 Bürger, Ruiz-Baier, Tian

g02 = 2τ∗nM̄
[
q̄∗1(−b11 − b12q̄2) + (−b22q̄

2
2 + b21q̄2eiω∗τ∗n)

]
,

where M is defined in (3.17) and

q2 = −d1µi + b11u∗1 + iω∗

b12u∗1
, q∗1 =

−d2µi − b22u∗2 + iω∗

b12u∗1
.

Again, according to Hassard et al. (1981), the Hopf bifurcation periodic solutions of (1.1)
at τ∗n on the center manifold are determined by the following formulas:

C1(0) =
i

2τ∗nω∗

(
g11g20 − 2|g11|2 −

|g02|2

3

)
,

ν2 = −Re{C1(0)}
(

Re
{

dλ

dτ
(τ∗n)

})−1

,

β2 = 2Re{C1(0)},

T2 =
1

τ∗nω∗

(
− Im{C1(0)}+ ν2 Im

{
dλ

dτ
(τ∗n)

})
.

Here ν2 determines the direction of the Hopf bifurcation. If ν2 > 0 (ν2 < 0, respectively) then
the Hopf bifurcations are supercritical (subcritical, respectively) and the bifurcating periodic
solutions exist for τ > τ∗n (τ < τ∗n, respectively). Again β2 determines the stability of the
bifurcating periodic solutions. The bifurcating periodic solution are stable (unstable) if β2 < 0
(β2 > 0, respectively). Also, T2 determines the period of periodic solutions: the period increases
(decreases, respectively) if T2 > 0 (T2 < 0, respectively). Thus, we have the following result.

Theorem 3.4 The Hopf bifurcation of solutions of the system (1.1) at the equilibrium u∗

when τ = τ∗n is supercritical (subcritical, respectively) and the bifurcating periodic solutions
on the center manifold are stable (unstable, respectively) if Re{C1(0)} < 0 (Re{C1(0)} > 0,
respectively).

3.4 Global stability of the equilibrium

First we study the global stability of the equilibrium when the delay is absent.

Theorem 3.5 If (1.1) satisfies (3.3) and we choose τ = 0, then its positive equilibrium u∗ is
globally asymptotically stable.

Proof We define E(t) = E1(t) + E2(t), where

Ei(t) :=
∫

Ω
b3−i,i

[
ui − u∗i − u∗i log

(
ui

u∗i

)]
dx, i = 1, 2.

We now show that E(t) is a Lyapunov functional. It is obvious that E(t) ≥ 0. We now prove
that dE(t)/dt ≤ 0. Differentiating E1(t) yields

Ė1(t) = b21

∫

Ω

u1 − u∗1
u1

∂u1

∂t
dx

= b21

∫

Ω

u1 − u∗1
u1

d1∆u1 dx + b21

∫

Ω
(u1 − u∗1)(a1 − b11u1 − b12u2) dx.

Employing the homogeneous Neumann boundary condition (1.1c), we get

Ė1(t) = −b21d1u
∗
1

∫

Ω

|∇u1|2

u2
1

dx− b21

∫

Ω
(u1 − u∗1)

(
b11(u1 − u∗1) + b12(u2 − u∗2)

)
dx.
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Analogously, we obtain

Ė2(t) = −b12d2u
∗
2

∫

Ω

|∇u2|2

u2
2

dx + b12

∫

Ω
(u2 − u∗2)

(
b21(u1 − u∗1)− b22(u2 − u∗2)

)
dx.

Combining the expressions for Ė1(t) and Ė2(t), we have

Ė(t) = −b21d1u
∗
1

∫

Ω

|∇u1|2

u2
1

dx− b12d2u
∗
2

∫

Ω

|∇u2|2

u2
2

dx− b11b21

∫

Ω
(u1 − u∗1)

2 dx

− b22b12

∫

Ω
(u2 − u∗2)

2 dx ≤ 0.

This completes the proof. '(

Now we study the global stability of the equilibrium in the presence of delay.

Theorem 3.6 If the system (1.1) satisfies the assumption (3.3) and

max{b12, b21} ≤ (b11b22)1/2, (3.21)

then the positive equilibrium u∗ of (1.1) is globally asymptotically stable.

Proof We now define F (t) = F1(t) + F2(t) + F3(t), where

Fi(t) :=
∫

Ω
b3−i,i

[
ui − u∗i − u∗i log

(
ui

u∗i

)]
dx, i = 1, 2,

F3(t) :=
∫

Ω

∫ t

t−τ

b11

2
(
u1(s,x)− u∗1

)2 dsdx.

It is obvious that F (t) ≥ 0. In a similar way as for Theorem 3.5, we show that Ḟ ≤ 0. First,
direct computation yields

Ḟ1(t) = −d1u
∗
1

∫

Ω

|∇u1|2

u2
1

dx−
∫

Ω
(u1 − u∗1)

(
b11(u1 − u∗1) + b12(u2 − u∗2)

)
dx,

Ḟ2(t) = −d2u
∗
2

∫

Ω

|∇u2|2

u2
2

dx

+
∫

Ω
(u2 − u∗2)

(
b21(u1(t− τ,x)− u∗1)− b22(u2 − u∗2)

)
dx,

Ḟ3(t) =
b11

2

∫

Ω

(
(u1 − u∗1)

2 − (u1(t− τ,x)− u∗1)
2
)
dx.

Combining these equations, we obtain

Ḟ (t) = −d1u
∗
1

∫

Ω

|∇u1|2

u2
1

dx− d2u
∗
2

∫

Ω

|∇u2|2

u2
2

dx

−
∫

Ω

[
b11

2
(u1 − u∗1)

2 + b22(u2 − u∗2)
2 +

b11

2
(
u1(t− τ,x)− u∗1

)2
]

dx

+
∫

Ω

[
b21

(
u1(t− τ,x)− u∗1

)
(u2 − u∗2)− b12(u1 − u∗1)(u2 − u∗2)

]
dx.

Thus, in view of (3.21), it follows that Ḟ (t) ≤ 0. Therefore, F (t) is a Lyapunov functional and
the proof is completed. '(

Remark 3.1 Theorem 3.6 implies that if (3.21) holds, then the time delay can not induce
spatial patterns.
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T !
h --Th−

Fig. 1 Primal mesh Th and dual mesh T ∗
h .

4 Numerical method

4.1 Finite volume element spatial discretization

Let Th be a family of partitions of Ω into triangles K, and assume that Th with meshsize
h > 0 is regular in the sense of Ciarlet (1978). By Pr(K) we denote the space of polynomial
functions on K ∈ Th of degree at most r ≥ 0. The classical finite dimensional space of
continuous piecewise linear functions

Vh =
{
vh ∈ C0(Ω̄) : vh|K ∈ P1(K),∀K ∈ Th

}
,

with basis {φi}i, is a subspace of H1(Ω) used to write the weak formulation in a semi-discrete
sense:

For t > 0, find u1,h(t), u2,h(t) ∈ Vh such that
d
dt

(
u1,h(t), vh

)
Ω

+ d1

(
∇u1,h(t),∇vh

)
Ω

=
(
f1,h(t), vh

)
Ω

∀vh ∈ Vh,

d
dt

(
u2,h(t), wh

)
Ω

+ d2

(
∇u2,h(t),∇wh

)
Ω

where the nonlinear reaction terms in the semidiscrete setting are given by

f1,h(t) := u1,h(t)
(
a1 − b11u1,h(t)− b12u2,h(t)

)
,

f2,h(t, τ) := u2,h(t)
(
−a2 + b21u1,h(τ)− b12u2,h(t)

)
.

The associated finite volume element discretization is obtained by introducing a dual mesh
T ∗

h consisting of polygons (control volumes) K∗
i centered on each node si of Th and defined

by joining the barycenter of each element sharing the vertex si and the midpoints of the edges
that intersect si, see Figure 1.

We next define the finite volume space V ∗h as

V ∗h :=
{
w ∈ L2(Ω) : wKj

i
∈ P0(K∗

i ),∀K∗
i ∈ T ∗

h

}
,

and a Petrov-Galerkin map Ph : Vh → V )
h (cf., e.g., Quarteroni and Ruiz-Baier, 2011) defined

by
(Phvh)(x) =

∑

i

vh(si)χi(x) for x ∈ Ω,
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where χi is the characteristic function on the control volume K)
i ∈ T ∗

h . Using Lemma 3.1 of
Lin et al. (2012), we end up with a finite volume element formulation where the only terms
recast in the dual space V ∗h appear in the testing of the reactions:

For t > 0, find u1,h(t), u2,h(t) ∈ Vh such that
d
dt

(
u1,h(t), vh

)
Ω

+ d1

(
∇u1,h(t),∇vh

)
Ω

=
(
f1,h(t),Phvh

)
Ω

∀vh ∈ Vh,

d
dt

(
u2,h(t), wh

)
Ω

+ d2

(
∇u2,h(t),∇wh

)
Ω

=
(
f2,h(t, τ),Phwh

)
Ω

∀wh ∈ Vh.

Existence and uniqueness of weak solutions to (1.1) along with a-priori estimates can be
obtained following Nababan and Teo (1980). The wellposedness of the semidiscrete and fully
discrete FVE discretizations and the convergence to the corresponding weak solution will be
addressed in a forthcoming contribution. For the moment we will assess the experimental
convergence properties of the method in Section 5.2.

4.2 Runge-Kutta time discretization

The time interval T is discretized by nodes {tk}N
k=−m, where t0 = 0, t−m = τ and tN = T .

We choose a stable Runge-Kutta time integration scheme (Koto, 2008) yielding the system of
equations

1
∆t

MY n
i +

i∑

j=1

αijKY n
j =

1
∆t

MUn +
i−1∑

j=1

α̃ijF (Y n
j ,Y n−m

j ), i = 1, . . . , s,

1
∆t

MUn+1 +
s∑

i=1

βiKY n
i =

1
∆t

MUn +
s∑

i=1

β̃iF (Y n
i ,Y n−m

i ),

where s is the order of the Runge-Kutta scheme, U is the vector of nodal values of the
discrete solution (u1,h(t), u2,h(t)), Y i is the vector of the discrete solution in the intermediate
stage i ∈ {1, . . . , s}, M is the mass matrix with entries

∫
Ω φiφj dx, K is the stiffness matrix

with entries
∫

Ω ∇φi · ∇φj dx, and F (An,An−m) is the vector of reaction terms depending
on the discrete generic field A at times t = tn and t = tn − τ = tn−m. The robustness and
performance of Runge-Kutta methods for differential delay equations have been tested e.g. by
Bencheva (2010), and theoretical error estimates for advection-diffusion problems are available
from Burman and Ern (2012).

5 Numerical results

5.1 Turing parameter space

In view of Theorem 3.2, satisfaction of condition (3.3) is sufficient for the positive uniform
equilibrium (u∗1, u∗2) to be linearly unstable with respect to the particular case of system (1.1).
In order to the numerical simulations, we take the following values in the parameter space

a1 = 2, a2 = 0.2, b11 = 0.2, b12 = 0.5, b21 = 0.2, b22 = 0.2, d1 = 0.1, d2 = 0.1.

For this particular choice, the positive uniform equilibrium is given by

(u∗1, u
∗
2) =

(
25
7

,
18
7

)
≈ (3.5714, 2.5714).
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Fig. 2 Bifurcation diagram of model (1.1) for parameters a1 (top left) and a2 (top right) where the remaining
parameters are set as b11 = 0.2, b12 = 0.5, b21 = 0.2, b22 = 0.2, d1 = 0.1, d2 = 0.1. The figures show the Turing
space (labeled as T in the top figures), corresponding to the region bounded by the two Hopf bifurcations
τ = τ∗ = τ∗0 and τ = τ∗1 .

These parameters are not the actual values from experimental observations, but they are
meaningful from the viewpoint of theoretical biology.

Now, we present the bifurcations represented by the formula (3.10) in the parameter region
spanned by the parameters a1 and τ that are also depicted in Figure 2. All arising spatial
patterns are induced in this parameter region.

Following the standard procedure (cf., e.g., Murray, 2003), we can compute the wavenumber
explicitly and characterize the pattern selection mechanism by the linearization around the
positive uniform equilibrium and taking τ as the Turing bifurcation parameter. From the
mathematical viewpoint, the Turing bifurcation occurs when Im(λ) = 0 and Re(λ) > 0 at √µi

for some fixed i. By the eigenvalue theory of the parabolic differential equations, kc := √
µi is

the critical wavenumber and λ is the root of the characteristic equation (3.4).
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5.2 Example 1: error histories for a simplified model

The accuracy of the numerical method is first studied for the reduced system

∂tu1 −∆u1 = −(u1)τ +
u2

2
, ∂tu2 −∆u2 = −2(u1)τ + u2,

defined on Ω = (0, 2π)2, t ∈ [0, 2] with homogeneous Neumann boundary conditions and data
u1(x, y, t) = cos(x) + cos(y), u2(x, y, t) = 2(cos(x) + cos(y)) for t ∈ [−τ, 0]. Its exact solution
is u1 = w(t)[cos(x) + cos(y)], u2 = 2u1 where

w(t) =






1 if −τ ≤ t < 0,
1− t if 0 ≤ t < 1,
1
2
(t− 1)2 if 1 ≤ t < 2

is a solution of the following delayed ordinary differential equation:

dw

dt
= −w(t− τ) for t ∈ (0,∞); w(t) = 1 for t ∈ [−τ, 0].

A Runge-Kutta scheme of order s = 2 will be used, with parameters α21 = 0, α22 = 1, α̃21 = 1,
α̃22 = 0, β1 = 0, β2 = 1, β̃1 = 1, β̃2 = 0 (corresponding to an implicit RK method, see
Koto (2008)). When required, the exact solution (if available) is employed as additional initial
data. Otherwise, we employ the homogeneous equilibrium state perturbed with a uniformly
distributed random field.

For all numerical examples presented herein, we implemented the FVE method on a C++
code based on the FE library Freefem++ (see www.freefem.org/ff++) and the visualization
has been done with Paraview (www.paraview.org).

The observed convergence rates of the approximate solutions are illustrated by computing
errors in the L2(0, T ;H1(Ω))-norm and at the final time T = 2 in the L2(Ω)-norm, defined as

e1(ui) :=

(
∆t

N∑

n=−m

∥∥ui(tn)− un
i,h

∥∥2

H1(Ω)

)1/2

, E0(ui) :=
∥∥ui(tN )− uN

h,i

∥∥
L2(Ω)

,

for i = 1, 2. The spatial accuracy is assessed by performing a series of computations on a set of
unstructured primal meshes where each node of a coarser mesh is also present in a finer mesh
and the timestep is first fixed to ∆t = 10−4 so that the error in space dominates the error in
time. Secondly, we study the time accuracy of the Runge-Kutta scheme by fixing h = 0.2357
and running a set of tests with timesteps varying from 10−6 to 0.1. We put τ = 1 and the results
can be observed in Figure 3 and Table 1, where we report on the errors and experimental orders
of convergence of (∆t)3/2 for e1(ui) and of h2 for E0(ui). The sub-optimality of the convergence
in time could be explained by the discontinuity of the exact solution w(t).

5.3 Example 2: full delayed predator-prey model on a square

We continue with simulations for system (1.1) modeling a predator-prey scenario where the
domain of interest is the square Ω = (0, L)2 with L = 60. The corresponding wavenumber
satisfies

k = π(m1/L, m2/L), |k| = π
√

(m1/L)2 + (m2/L)2, for m1, m2 = 0, 1, . . .

The timestep size is chosen as ∆t = 10−3 and the system is evolved until T = 1000. Apart from
those given in Section 5.1, different combinations of model parameters have been successfully
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h E0(u1) rate E0(u2) rate

3.1221 1.6275 − 3.25517 −
1.6661 4.6691e−1 1.9880 9.3395e−1 1.9845
0.7854 1.1051e−1 1.9163 2.2102e−1 1.9027
0.4158 2.9814e−2 2.0592 5.9629e−2 1.9963
0.2142 9.9176e−3 1.6590 1.9835e−2 1.7102
0.1096 4.8104e−3 1.0803 9.6209e−3 1.2134

∆t e1(u1) rate e1(u2) rate

1e−1 3.4388 − 6.8776 −
1e−2 1.3341e−1 1.4113 2.9113e−1 1.3731
1e−3 5.5459e−2 1.3812 9.4271e−2 1.4912
1e−4 2.0275e−3 1.4370 4.7672e−3 1.2949
1e−5 6.9338e−5 1.4662 1.5713e−4 1.4820
1e−6 2.2986e−6 1.4795 5.6782e−6 1.4421

Table 1 Example 1: Convergence histories for the FVE–Runge-Kutta approximation of the reduced system.
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Fig. 3 Example 1: Errors E0(u1), E0(u2) versus the meshsize (left) and e1(·), e0(·) versus the timestep (right)
associated to the FVE–Runge-Kutta approximation of the reduced system. See values in Table 1.

tested indicating the significance of the model under various scenarios. From (3.10) we compute
the Hopf bifurcation thresholds τ∗ = 1.6373 and τ∗1 = 11.1749 and an example for different
values of τ is presented in Figures 4 and 5. Periodic solutions should appear due to the Hopf
bifurcation. In addition, when the time delay is less than the critical value τ∗ = 1.6373, no
patterns are generated. For instance, in the top-right plot we see that the initial patterns are
smoothed out. From the theoretical results we expect that for 1.8 < τ < 11.2 the amplitude of
the oscillations will increase significantly within a short period. This is confirmed when we put
τ = 5, where we can observe the formation of patterns. This is also the case if we set the time
delay as τ = ∆t + τ∗. We finally put τ = 12 and notice that spatial patterns appear within a
period of around 2τ . This is especially noticed in the bottom-left plot of Figure 5. A similar
behavior is observed for a delay τ = ∆t + τ∗1 . A primal mesh with 38952 elements and 19733
vertices has been employed. The average number of o GMRES iterations needed to achieve
convergence with a tolerance of 10−7 was 8.

We compute the fields of maximum and total variations for the species uj , j = 1, 2 at a
given point x ∈ Ω in t ∈ [−τ, T ] as

maxvarj(x) := max
−m≤k≤N

uk
j,h(x)− min

−m≤k≤N
uk

j,h(x),
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Fig. 4 Example 2: Spatial patterns of species u1 (left) and u2 (right) for different time delays τ = 1.5, 5, 12
(respectively, from top to bottom) at t = 1000.

totalvarj(x) :=
N∑

k=1−m

∣∣uk
j,h(x)− uk−1

j,h (x)
∣∣,

respectively. These quantities are shown for τ = 12 in Figure 6.
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Fig. 5 Example 2: Time evolution of the total variation (left) and density of species on the center c of the
domain (right) up to t = 480 for different time delays τ = 1.5, 5, 12 (respectively, from top to bottom). When
τ < τ∗ = 1.6373, the initial patterns are smoothed out. If τ > τ∗, patterns appear for the first time, and if
τ > τ∗1 = 11.1749 the patterns appear for the second time. These simulations agree with the sketch in Figure 2.

5.4 Example 3: full delayed predator-prey model on a disk

The patterns can be observed with further detail in a simulation with a smaller wavenumber.
The next simulation is then performed on a disk of radius r = 10 and Figures 7 and 8 illustrate
the behavior of the model for species u1 and u2 at time instants t = 24 and t = 480. These
figures show that when the delay τ is close to τ∗1 , the pattern modes are different than those
arising when τ is close to τ∗. In this way we are able to numerically reproduce two critical
points for the formation of spatial patterns. According to Theorem 3.3, we could obtain, in
fact, more than two critical points.

6 Conclusion

In this paper we have presented the theoretical formulation, consistent mathematical analysis,
and numerical implementation of pattern formation phenomena in a predator-prey model with
delay terms. Applying a stability analysis and suitable numerical simulations, we investigate
the Turing parameter space, the Turing bifurcation and the pattern selection. We have shown
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Fig. 6 Example 2: Maximum (top) and total (bottom) variations through time for species u1 (left) and u2

(right).

that the time delay can lead to the formation of spatial patterns when the carrying capacity of
the prey is large. The stability of the positive uniform equilibrium is determined in the Turing
parameter space. From a biological viewpoint, the existence of stability switches induced by
the delay is found in the region of the Turing space.

Numerical studies have been employed to support and extend the obtained theoretical re-
sults. The numerical simulations illustrate the existence of both stable and unstable equilibrium
near the critical point of the delay which is in good agreement with our theoretical analysis
results. Our result does not cover yet the case of time delay far away from the critical point.
However, numerical simulations show that with increasing the delay from the Hopf bifurcation,
the selection of the spatial pattern transform from spots to stripes. At the current stage the
present model is still quite simple and can of course accommodate a number of directions for
improvement.
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Fig. 7 Example 3: Snapshots of the transient patterns of species u1 at t = 24 (top) and t = 480 (bottom) for
time delays τ = 1.5, 5, 12 (left, middle and right, respectively).
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2012-23 Raimund Bürger, Ilja Kröker, Christian Rohde: A hybrid stochastic Galerkin
method for uncertainty quantification applied to a conservation law modelling a clarifier-
thickener unit

2012-24 Felipe Lepe, David Mora, Rodolfo Rodŕıguez: Locking-free finite element
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