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ABSTRACT. We introduce a mathematical model of the in vivo progression of Alzheimer’s disease with
focus on the role of prions in memory impairment. Our model consists of differential equations that de-
scribe the dynamic formation of β-amyloid plaques based on the concentrations of Aβ oligomers, PrPC

proteins, and the Aβ-×-PrPC complex, which are hypothesized to be responsible for synaptic toxicity. We
prove the well-posedness of the model and provided stability results for its unique equilibrium, when the
polymerization rate of β-amyloid is constant and also when it is described by a power law.
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1. INTRODUCTION

1.1. What is the link between Alzheimer disease and prion proteins? Alzheimer’s disease (AD)
is acknowledged as one of the most widespread diseases of age-related dementia with ≈ 35.6 million
people infected worldwide (World Alzheimer Report 2010 [40]). By the 2050’s, this same report has
predicted three or four times more people living with AD. AD affects memory, cognizance, behavior,
and eventually leads to death. Apart from the social dysfunction of patients, another notable societal
consequence of AD is its economic cost (≈ $422 billion in 2009 [40]). The human and social impact
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of AD has driven extensive research to understand its causes and to develop effective therapies. Among
recent findings are the results that imply cellular prion protein (PrPC ) is connected to memory impair-
ment [7,8,17,23,27]. This connection is the focus of our modeling here, which we hope will contribute
to understanding the relation of AD to prions.

The pathogenesis of AD is related to a gradual build-up of β-amyloid (Aβ) plaques in the brain
[13, 20]. β-amyloid plaques are formed from the Aβ peptides obtained from the amyloid protein
precursor (APP) protein cleaved at a displaced position. There exist different forms of β-amyloids ,
from soluble monomers to insoluble fibrillar aggregates [5, 25, 26, 37, 39]. It has been revealed that
the toxicity depends on the size of these structures and recent evidence suggest that oligomers (small
aggregates) play a key role in memory impairment rather than β-amyloid plaques (larger aggregates)
formed in the brain [35]. More specifically, Aβ oligomers cause memory impairment via synaptic
toxicity onto neurons. This phenomenon seems to be induced by a membrane receptor, and there is
evidence that this rogue agent is the PrPC protein [17, 23, 28, 32, 33] We note that this protein, when
misfolded in a pathological form called PrPSc , is responsible for Creutzfeldt-Jacob disease. Indeed,
it is believed that there is a high affinity between PrPC and Aβ oligomers, at least theoretically [16].
Moreover, the prion protein has also been identified as an APP regulator, which confirms that both are
highly related [28,38]. This discovery offers a new therapeutic target to recover memory in AD patients,
or at least slow memory depletion [6, 14].

1.2. What is our objective? Our objective here is to introduce and study a new in vivo model of AD
evolution mediated by PrPC proteins. To the best of our knowledge, no model such as the one proposed
here, has yet been advanced. There exist a variety of models specifically designed for Alzheimer’s
disease and their treatment, such as in [1, 3, 4, 10, 11, 15, 18, 19, 24, 31, 36]. Nevertheless, the prion
protein has never been taken into account in the way we formulate here, and our model could helpful in
designing new experiments and treatments..

This paper is organized as follows. We present the model in section 2, and provide a well-posedness
result in the particular case that β-amyloids are formed at a constant rate. In section 3 we provide a
theoretical study of our model in a more general context with a power law rate of polymerization, i.e.
the polymerization or build-up rate depends on β-amyloid plaque size.

2. THE MODEL

2.1. A model for beta-amyloid formation with prions. The model deals with four different species.
First, the concentration of Aβ oligomers consisting of aggregates of a few Aβ peptides; second, the
concentration of the PrPC protein; third, the concentration of the complex formed from one Aβ oligomer
binding onto one PrPC protein. These quantities are soluble and their concentration will be described in
terms of ordinary differential equations. Fourth, we have the insoluble β-amyloid plaques described by
a density according to their size x. This approach is standard in modeling prion proliferation phenomena
(see for instance [4, 18, 30]). Note that the size x is an abstract variable that could be the volume of the
aggregate. Here, however, we view aggregates as fibrils that lengthen in one dimension. The size
variable x thus belongs to the interval (x0,+∞), where x0 > 0 stands for a critical size below which the
plaques cannot form. To summarize we denote, for x ∈ (x0,+∞) and t ≥ 0,

f (t,x)≥ 0 : the density of β-amyloid plaques of size x at time t,

u(t)≥ 0: the concentration of soluble Aβ oligomers (unbounded oligomers) at time t,

p(t)≥ 0: the concentration of soluble cellular prion proteins PrPC at time t,

b(t)≥ 0: the concentration of Aβ-×-PrPC complex (bounded oligomers) at time t.
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FIGURE 1. Schematic diagram of the evolution processes of β-amyloid plaques,
Aβ oligomers (bounded and unbounded), and PrPC in the model.

Note that β-amyloid plaques are formed from the clustering of Aβ oligomers. The rate of agglom-
eration depends on the concentration of soluble oligomers and the structure of the amyloid which is
linked to its size. It occurs in a mass action between plaques and oligomers at a nonnegative rate given
by ρ(x), where x is the size of the plaque. This is the reason why the intentionally misused word “size”
considered here (and described above) accounts for the mass of Aβ oligomers that form the polymer.
We assume indeed, that the mass of one oligomer is given by a “sufficiently small” parameter ε > 0.
Thus, the number of oligomers in a plaque of mass x > 0 is x/ε which justifies our assumption that the
size of plaques is a continuum. Moreover, amyloids have a critical size x0 = εn > 0, where n ∈N∗ is the
number of oligomers in the critical plaque size. The amyloids are prone to be damaged at a nonnegative
rate µ, possibly dependent on the size x of the plaques. All the parameters for Aβ oligomers, PrPC , and
β-amyloid plaques, such as production, binding and degradation rates, are nonnegative and described
in table 2.1.

Then, writing evolution equations for these four quantities, we obtain

∂

∂t
f (x, t)+u(t)

∂

∂x

[
ρ(x) f (x, t)

]
=−µ(x) f (x, t) on (x0,+∞)× (0,+∞), (1)

u̇ = λu− γuu− τup+σb−nN(u)− 1
ε

u
∫ +∞

x0

ρ(x) f (x, t)dx on (0,+∞), (2)

ṗ = λp− γp p− τup+σb on (0,+∞), (3)

ḃ = τup− (σ+δ)b on (0,+∞). (4)
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Parameter/Variable Definition Unit

t Time days
x size of β-amyloid plaques –
x0 Critical size of β-amyloid plaques –
n Number of oligomers in a plaque of size x0 –
ε Mass of one oligomer –

λu Source of Aβ oligomers days−1

γu Degradation rate of Aβ oligomers days−1

λp Source of PrPC days−1

γp Degradation rate of PrPC days−1

τ Binding rate of Aβ oligomers onto PrPC days−1

σ Unbinding rate of Aβ-×-PrPC days−1

δ Degradation rate of Aβ-×-PrPC days−1

ρ(x) Conversion rate of oligomers into a plaque (SAF/sq)−1 ∗·days−1

µ(x) Degradation rate of a plaque days−1

TABLE 1. Parameter description of the model. ∗ SAF/sq means Scrapie-Associated
Fibrils per square unit and is explained in detail by Rubenstein et al. [34] (we consider
plaques as being fibrils here).

The term N accounts for the formation rate of a new β-amyloid plaque with size x0 from the Aβ oligo-
mers. In order to balance this term, we add the boundary condition

u(t)ρ(x0) f (x0, t) = N(u(t)), t ≥ 0. (5)

The integral in the right-hand side of equation (2) is the total polymerization with parameters1/ε, since
dx/ε counts the number of oligomers into a unit of length dx. Finally, the problem is completed with
nonnegative initial data, a function f in ≥ 0 and uin, pin, bin ≥ 0, such that at time t = 0

f (·, t = 0) = f in on (x0,+∞), (6)

and
u(t = 0) = uin, p(t = 0) = pin and b(t = 0) = bin. (7)

The above system (1-5) involves two formal balance laws: the first one for prion proteins
d
dt

(b+ p) = λp− γp p−δb,

and the second for Aβ oligomers

d
dt

(
b+u+

1
ε

∫ +∞

x0

x f dx
)
= λu− γuu−δb− 1

ε

∫ +∞

x0

xµ f dx.

The total concentrations of both evolve in time according to the production and degradation rates. In
figure 1 we give a schematic representation of these processes.

2.2. An associated ODE system. In this section we investigate constant polymerization and degrada-
tion rates, i.e, rates independent of the size of the plaque involved in the process. This first approach
is biologically less realistic, but technically more tractable, yet still quite challenging for an analytical
study of the problem. In section 3, the polymerization rate ρ will be taken more realistically as a power
of x. Here we assume that ρ(x) := ρ and µ(x) := µ are positive constants. Moreover, without loss of
generality, we let ε = 1, which only requires a rescaling of the units in the equations. Then, we assume a
pre-equilibrium hypothesis for the formation of β-amyloid plaques, as formulated in [29] for filaments,
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by setting N(u) = αun. The formation rate is given by α > 0 and the number of oligomers necessary to
form a new plaque is an integer, n ≥ 1. With these assumptions we are able to close the system (1-4)
with respect to (5) into a system of four differential equations. Indeed, integrating (1) over (x0,+∞) we
get formally an equation over the quantity of amyloids at time t ≥ 0

A(t) =
∫ +∞

x0

f (x, t)dx.

This method has already been used on the prion model in [18]. Now the problem reads, for t ≥ 0,

Ȧ = αun−µA, (8)

u̇ = λu− γuu− τup+σb−αnun−ρuA, (9)

ṗ = λp− γp p− τup+σb, (10)

ḃ = τup− (σ+δ)b. (11)

The mass of β-amyloid plaques is given by M(t) =
∫ +∞

x0
x f (x, t)dx which satisfies an equation (formal

integration of (1)) that can be solved independently, since

Ṁ = nαun +ρuA−µM. (12)

Notice that initial conditions for A and M are given by Ain =
∫ +∞

x0
f in(x)dx and Min =

∫ +∞

x0
x f in(x)dx,

while the initial conditions for u, p and b are unchanged.
The next subsection is devoted to the analysis of the system (8-11).

2.3. Well-posedness and stability of the ODE system. We prove in the following proposition the
positivity, existence, and uniqueness of a global solution to the system (8-11) with classical techniques
from the theory of ordinary differential equations([21]).

Proposition 1 (Well-posedness). Assume λu, λp, γu, γp, τ, σ, δ, ρ and µ are positive, and let n≥ 1 be an
integer. For any (Ain,uin, pin,bin) ∈ R4

+ there exists a unique nonnegative bounded solution (A,u, p,b)
to the system (8-11) defined for all time t > 0, i.e, the solution A, u, p and b belong to C 1

b (R+) and
remains in the stable subset

S =

{
(A,u, p,b) ∈ R4

+ : nA+u+ p+2b≤ nAin +uin + pin +2bin +
λ

m

}
(13)

with λ = λu +λp and m = min{µ,γu,γp,δ}. Furthermore, let M(t = 0) = Min ≥ 0, and then there exist
a unique nonnegative solution M to (12), defined for all time t > 0.

Proof. Let F : R4 7→ R4 be given by

F(A,u, p,b) =


F1 := αun−µA

F2 := λu− γuu− τup+σb−αnun−ρuA

F3 := λp− γp p− τup+σb

F4 := τup− (σ+δ)b

 .

F is obviously C 1 and locally Lipschitz continuous on R4. Moreover, if (A,u, p,b) ∈ R4
+, F1 ≥ 0 when

A= 0, F2 ≥ 0 when u= 0, F3 ≥ 0 when p= 0, and F4 ≥ 0 when b= 0. Thus, the system is quasi-positive
and the solution remains in R4

+. Finally, we remark that

d
dt

(nA+u+ p+2b)≤ λ−m(nA+u+ p+2b) ,
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with λ = λu +λp and m = min{µ,γu,γp,δ}> 0, and Gronwall’s lemma ensures that

nA(t)+u(t)+ p(t)+2b(t)≤ nAin +uin + pin +2bin +
λ

m
.

This proves the global existence of a unique nonnegative bounded solution (A,u, p, b). The claim for
the mass M is straightforward. �

We next consider the existence of a steady state A∞, u∞, p∞, b∞ and the asymptotic behavior of
solutions to (8-11). It is easy to compute the steady state by solving the problem

µA∞−αun
∞ = 0 (14)

λu− γuu∞− τu∞ p∞ +σb∞−αnun
∞−ρu∞A∞ = 0 (15)

λp− γp p∞− τu∞ p∞ +σb∞ = 0 (16)

τu∞ p∞− (δ+σ)b∞ = 0 (17)

From the structure of the second equation, we cannot give an explicit formula for this problem. To
obtain u∞ we have to solve an algebraic equation, which involves a polynomial of degree n. However,
we can prove that the solution exists, and then u∞ is given implicitly. The next proposition establishes
the local stability of the steady state..

Theorem 2 (Linear stability). Under hypothesis of proposition 1, there exists a unique positive steady
state A∞, u∞, p∞ and b∞ to (8-11) with

A∞ =
α

µ
un

∞, p∞ =
λp

τ∗u∞ + γp
, b∞ =

1
σ

λp(τ− τ∗)

τ∗u∞ + γp
u∞,

where τ∗ = τ(1−σ/(δ+σ) and u∞ is the unique positive root of Q, defined by

Q(x) = γpλu +ax−P(x), for every x≥ 0

with a = τ∗(λu−λp)− γuγp and

P(x) = τ
∗
γux2 +αγpnxn +(ατ

∗n+ργp
α

µ
)xn+1 +ρτ

∗α

µ
xn+2

Moreover, this equilibrium is locally linearly asymptotically stable.

Proof. First, equation (14) gives A∞ with respect to u∞. Then, combining (16) and (17) we get p∞ and b∞

as functions of u∞. Now replacing p∞ and b∞ in (15) we get u∞ as the root of Q. It is straightforward that
Q has a unique positive root. Indeed, it is the intersection between a line and a monotonic polynomial
on the half plane. Now, we linearize the system in A∞, u∞, p∞ and b∞. Let X = (A,u, p,b)T and the
linearized system reads

d
dt

X = DX ,

where

D =


−µ αnun−1

∞ 0 0
−ρu∞ γu− τp∞−αn2un−1

∞ −ρA∞ −τu∞ σ

0 −τp∞ −(γp + τu∞) σ

0 τp∞ τu∞ −(σ+δ)

 .

The characteristic polynomial is of the form

P(λ) = λ
4 +a1λ

3 +a2λ
2 +a3λ+a4,
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with the ai > 0, i = 1 . . .4 given in the appendix. Moreover it satisfies

a1a2a3 > a2
3 +a2

1a4.

Then, according to the Routh-Hurwitz criterion (see [2, Th. 4.4, page 150]), all the roots of the charac-
terisic polynomial P are negative or have negative real part, thus the equilibrium is locally asymptotically
stable. �

To go further, we give a conditional global stability result when no nucleation is considered, i.e.,
α = 0.

Proposition 3 (Global stability). Assume that α = 0. Under the condition(
1+2

δ+ γu

σ

)
>

δ

2γp
>

γp

σ
,

the unique equilibrium is given by

A∞ = 0, p∞ =
λp

τ∗u∞ + γp
, b∞ =

1
σ

λp(τ− τ∗)

τ∗u∞ + γp
u∞,

where u∞ is the unique positive root of Q(x) = γpλu+ax−τ∗λux2, with a = τ∗(λu−λp)−γuγp. Further,
this equilibrium is globally asymptotically stable in the stable subset S defined in (13).

Proof. The proof is given by a Lyapunov function Φ stated in the appendix. It is positive when the
condition above is fulfilled and its derivative along the solution to the system (8-11) is negative definite.
Thus, from the LaSalle’s invariance principle, we get that under these hypotheses the equilibrium of
(8-11) is globally asymptotically stable. �

3. A POWER LAW POLYMERIZATION RATE

The assumption that the polymerization rate ρ and the degradation rate µ are constant is not always
biologically realistic, as recognized in [3, 15]. Consequently, we study here the more realistic case
ρ(x) ∼ xθ, and in the following we restrict our analysis to θ ∈ (0,1). We will see that we are able to
obtain a result of existence and uniqueness of solutions for this more general case.

3.1. Hypotheses and main result. We are interested in nonnegative solutions to the system (1-4) with
the boundary condition (5), completed by initial data (6) and (7), but with the new assumption ρ(x)∼ xθ.
Moreover, we require that our solution preserves the total mass of β-amyloid in order to be biologically
relevant. Hence, the solution f will be sought in the natural space L1(x0,+∞;xdx), since xdx measures
the mass at any time. Our hypotheses for the system (1-4) are

(H1)
∣∣∣∣ f in ∈ L1(x0,+∞;xdx), f in ≥ 0, a.e. x > x0.

(H2)
∣∣∣∣ ρ ≥ 0 , ρ ∈ W 2,∞([x0,∞)), µ ≥ 0 , µ ∈ W 1,∞([x0,∞)).

(H3)
∣∣∣∣ N ≥ 0 , N ∈ W 1,∞

loc (R+), N(0) = 0.

(H4)
∣∣∣∣ λu, γu, λp, γp, τ, σ, δ > 0.
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We note that (H2) implies the existence of a constant C > 0 such that ρ(x) ≤ Cx, with for example,
C = 2‖ρ′‖L∞ +ρ(x0)/x0. For any x≥ x0, we have

ρ(x)≤ ‖ρ′‖L∞(x+ x0)+ρ(x0)≤
(

2‖ρ′‖L∞ +
ρ(x0)

x0

)
x.

We remark that this kind of regularity of the rate ρ covers the case that ρ(x)∼ xθ with θ ∈ (0;1). Also,
(H3) implies the existence of a constant KM > 0 such that N(w) ≤ KMw, for any w ∈ [0,M]. Further,
The nonnegativity of the parameters of table 2.1 (hypothesis (H4)) is a natural assumption with regard
to their biological meaning.

We introduce the definition of a solution to system (1-4).

Definition 1. Consider a function f in satisfying (H1) and let uin, pin, bin be three nonnegative real data.
Assume that ρ, µ, N and all the parameters of table 2.1 verify assumptions (H2) - (H4), and let T > 0.
Then a quadruplet ( f ,u, p,b) of nonnegative functions is said to be a solution on the interval (0,T ) to
the system (1-4) with the boundary condition (5) and the initial data (6) and (7), if it satisfies, for any
ϕ ∈ C ∞

c ([0,T ]× [x0,+∞)) and t ∈ (0,T )∫ +∞

x0

f (x, t)ϕ(x, t)dx =
∫ +∞

x0

f in(x)ϕ(x,0)dx+
∫ t

0
N(u(s))ϕ(x0,s)ds

+
∫ t

0

∫ +∞

x0

f (x,s)
[

∂

∂t
ϕ(x,s)+u(s)ρ(x)

∂

∂x
ϕ(x,s)−µ(x)ϕ(x,s)

]
dxds,

and

u(t) = uin +
∫ t

0

[
λu− γuu− τup+σb− x0N(u)−u

∫ +∞

x0

ρ(x) f (x,s)dx
]

ds,

p(t) = pin +
∫ t

0
[λp− γp p− τup+σb]ds,

b(t) = bin +
∫ t

0
[τup− (σ+δ)b]ds,

with the regularity f ∈ L∞
(
0,T ;L1 (x0,+∞;xdx)

)
and u, p,b ∈C0(0,T ).

Theorem 4 (Well-posedness). Let f in be a nonnegative function satisfying (H1), let uin, pin and bin

be nonnegative real numbers, and assume hypothesis (H2) to (H4). Let T > 0. There exists a unique
nonnegative solution ( f ,u, p,b) to (1-4) with (5) and initial conditions given by (6) and (7), in the sense
of definition 1, such that f ∈C0

(
[0,T ],L1(x0,+∞;xrdx)

)
for every r ∈ [0,1], and u, p,b ∈C1

b(0,T ).

The proof of the theorem 4 is decomposed into two parts. First, we study the initial boundary value
problem

∂

∂t
f (x, t)+u(t)

∂

∂x

[
ρ(x) f (x, t)

]
=−µ(x) f (x, t) on (x0,+∞)× (0,+∞), (18)

u(t)ρ(x0) f (x0, t) = N(u(t)), on (0,+∞), (19)

f (·, t = 0) = f in, on (x0,+∞). (20)

We prove in the subsection 3.2 the following proposition:

Proposition 5. Let u ∈ C 0
b (R+), let f in satisfy (H1), and assume hypothesis (H2) to (H3). For any

T > 0, there exists a unique nonnegative solution f to (18-20) in the sense of distributions, such that
f ∈C0

(
[0,T ],L1(x0,+∞;xrdx)

)
for every r ∈ [0,1].
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The proof is in the spirit of the proof in [9] for the Lifshitz-Slyozov equation. It consists of a proof
based on the concept of a mild solution in the sense of distributions, with the additional requirement of
continuity from time into L1(xdx) space.

The second step of the proof of theorem 4 is performed in subsection 3.3. Precisely, once we have
the existence of a unique density f , when u is given, we are able to construct the operator

S : C0([0,T ])3 7→ C0([0,T ])3

(u, p,b) 7→ (Su,Sp,Sb) = S(u, p,b),
(21)

Su = uin +
∫ t

0

[
λu− γuu− τup+σb− x0N(u)−u

∫ +∞

x0

ρ(x) f (x,s)dx
]

ds,

Sp = pin +
∫ t

0
[λp− γp p− τup+σb]ds,

Sb = bin +
∫ t

0
[τup− (σ+δ)b]ds,

where f is the unique solution associated to u given by proposition 5. Then, theorem 4 is finally proven
in subsection 3.3 applying the Banach fixed point theorem to the operator S.

3.2. Existence of a solution to the autonomous problem. In the following we let u ∈ C 0
b (R+) and

we use the notations a(x, t) = u(t)ρ(x) and c(x, t) =−u(t)ρ′(x) for every (x, t) ∈ [x0,+∞)×R+. From
(H2) and noting that ρ(x)≤Cx, we have for any t > 0

a(t,x)≤ Ax, for x > x0, (22)

|a(t,x)−a(t,y)| ≤ A|x− y|, for x,y > x0, (23)

|c(t,x)| ≤ B, (24)

where A = max(C‖u‖L∞ ,‖u‖L∞‖ρ′‖L∞) and B = ‖u‖L∞‖ρ′‖L∞(x0,+∞). In order to establish the mild
formulation of the problem, we define the characteristic which reaches x ≥ x0 at time t ≥ 0, that is, the
solution to

d
ds

X(s;x, t) = a(t,X(s;x, t)),

X(t;x, t) = x.
(25)

From property (23), their exists a unique characteristic that reaches (x, t).We note that it makes sense as
long as X(s;x, t)≥ x0. Thus, we define the starting time of the characteristic as

s0(x, t) := inf{s ∈ [0, t] : X(s;x, t)≥ x0} .

The characteristic will be defined for any time s≥ s0 and takes its origin from the initial or the boundary
condition, respectively, if s0 = 0 or s0 > 0. We recall the classical properties of these characteristics

X(s;X(σ;x, t),σ) = X(s;x, t)

J(s;x, t) :=
∂

∂x
X(s;x, t) = exp

(∫ t

s
c(σ,X(σ;x, t))dσ

)
∂

∂t
X(s;x, t) =−a(t,x)J(s;x, t).

Also, remarking that s0(X(t;x0,0), t) = 0, then by monotonicity and continuity of X for any t > 0, we get
x ∈ (x0,X(t;x0,0)) ⇐⇒ s0(x, t) ∈ (0, t), and for any x ∈ (x0,X(t;x0,0)) we have X(s0(x, t);x, t) = x0.
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It follows that for every x ∈ (x0,X(t;x0,0))

I(x, t) :=− ∂

∂x
s0(x, t) = J(s0(x, t);x, t)/a(s0(x, t),x0).

Considering the derivative of f (s,X(s;x, t)) in s, and integrating over (s0, t) we obtain the mild formu-
lation of the problem. The mild solution is defined for a.e. (x, t) ∈ (x0,+∞)×R+ by

f (x, t) =


f in(X(0;x, t))J(0;x, t)exp

(
−
∫ t

0
µ(X(σ;x, t))dσ

)
x≥ X(t;x0,0),

N(u(s0(x, t)))I(x, t)exp
(
−
∫ t

s0(x,t)
µ(X(σ;x, t))dσ

)
x ∈ (x0,X(t;x0,0)).

(26)

We infer from the formulation (26) that for a.e (x, t) ∈ [x0,+∞)×R+, f is nonnegative, since J and I
are nonnegative, and f in satisfies (H1). We recall some useful properties that are derived in [9, Lemma
1].

Lemma 6. Let u ∈ C 0
b (R+) be a given data and assume that (H2) holds. Then for any x≥ x0 and t > 0,

as long as the characteristic curve s 7→ X(s;x, t) defined in (25) exists, i.e., s≥ s0(x, t), we have

for s1 ≤ s2, X(s1;x, t)≤ X(s2;x, t)≤ X(s1;x, t)eA(s2−s1)

if xn→+∞, then for all t ≥ s≥ 0, X(s;x, t)→+∞

for s≥ t, X(s;x, t)≤ xeA(s−t).

Proof. We refer to [9, Lemma 1], where the result follows from the fact that for any x ≥ x0, t > 0 and
s0(x, t)≤ s1 ≤ s2, we have

x0 ≤ X(s2;x, t) = X(s1;x, t)+
∫ s2

s1

a(s,X(s;x, t))ds≤ X(s1;x, t)+A
∫ s2

s1

X(s;x, t)ds,

where A is given by (22). �

In the sequel we will repeatedly refer to the changes of variables

y = X(0;x, t) over x ∈ (X(t,x0,0),+∞), with Jacobian J(0;x, t),

s = s0(x, t) over x ∈ (x0,X(t;x0,0)), with Jacobian − I(x, t).
The first is a C 1 - diffeomorphism from (X(t,x0,0),+∞) into (x0,+∞), and the second from (x0,X(t;x0,0))
into (0, t). Integrating f defined by (26) over (0,R) with R > X(t;x0,0), using the change of variables
above, using lemma 6, and taking the limit R→+∞, we get∫ +∞

x0

x| f (t,x)|dx≤
∫ +∞

x0

X(t;y,0)| f in(y)|dy+
∫ t

0
X(t;s,x0)|N(u(s))|ds

≤ eAt
(∫ +∞

x0

y| f in(y)|dy+
∫ t

0
x0|N(u(s))|ds

)
,

(27)

where we have split the integral into two parts and uses both the previous changes of variables. Thus,for
any T > 0, f ∈ L∞

(
0,T ;L1(x0,+∞;xdx)

)
, and therefore in L∞

(
0,T ;L1(x0,+∞;xrdx)

)
, for any r ∈ [0,1].

In the next lemma we claim that f defined by (26) is a weak solution.

Lemma 7. Let f be the mild solution defined by (26). Then for any t > 0∫ +∞

x0

f (x, t)ϕ(x, t)dx =
∫ +∞

x0

f in(x)ϕ(x,0)dx+
∫ t

0
N(u(s))ϕ(x0,s)ds

+
∫ t

0

∫ +∞

x0

f (x,s)
[

∂

∂t
ϕ(x,s)u(s)ρ(x)

∂

∂x
ϕ(x,s)−µ(x)ϕ(x,s)

]
dxds,

for all ϕ ∈ C ∞
c ([0,T ]× [x0,+∞)).
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Proof. Since f belongs to f ∈ L∞
(
0,T ;L1(x0,+∞;xdx)

)
, it is possible to multiply the mild solution f

against a test function ϕ ∈ C ∞
c ([0,T ]× [x0,+∞)) and integrate over (x0,+∞) to obtain∫ +∞

x0

f (x, t)ϕ(x, t)dx =
∫ +∞

x0

f in(y)ϕ(X(t;y,0))e−
∫ t

0 µ(X(σ;y,0))dσdy

−
∫ t

0
N(u(s))ϕ(X(t;x0,s), t)e−

∫ t
s µ(X(σ;x0,s))dσds, (28)

by the same change of variable made above for (27). Furthermore, we have∫ t

0

∫ X(s;x0,0)

x0

f (x,s) [∂tϕ(x,s)+a(s,x)∂xϕ(x,s)−µ(x)ϕ(x,s)]dxds

=
∫ t

0

∫ +∞

x0
f in(x)

d
ds

(
ϕ(X(s;x,0),s)e−

∫ s
0 µ(X(σ;x,0))dσ

)
dyds

=
∫ +∞

x0

f in(x)ϕ(X(t;x,0), t)e−
∫ t

0 µ(X(σ;y,0))dσdx−
∫ +∞

x0

f in(x)ϕ(x,0)dx, (29)

still using the change of variable mentioned above and∫ t

0

∫
∞

X(s;x0,0)
f (x,s) [∂tϕ(x,s)+a(s,x)∂xϕ(x,s)−µ(x)ϕ(x,s)]dxds

=−
∫ t

0

∫ s

0
N(u(z))

d
ds

(
ϕ(X(s;x0,z),s)e−

∫ s
z µ(X(σ;x0,z))dσ

)
dzds

=−
∫ t

0
N(u(s))ϕ(X(t;x0,s), t)e−

∫ t
s µ(X(σ;x0,s))dσdzds−

∫ t

0
N(u(s))ϕ(x0,s)ds. (30)

Finally, combining (28), (29) and (30) we obtain that f is a weak solution. �

The aim of the following lemma is to prove that the moments of f less than 1 are continuous in time.

Lemma 8. Let hypothesis (H1) to (H3) hold. Let f be the mild solution given by (26). Then for any
T > 0,

f ∈C0 ([0,T ],L1(x0,+∞;xrdx)
)
, for every r ∈ [0,1].

Proof. Let T > 0 and r ∈ [0,1], since f ∈ L∞
loc

(
R+,L1(x0,+∞;xrdx)

)
, we have for any t > 0 and δt > 0

such that t +δt ≤ T ∫ +∞

x0

xr | f (x, t +δt)− f (x, t)|dx = I1 + I2 + I3,

where

I1 =
∫ X(t;x0,0)

x0

xr | f (x, t +δt)− f (x, t)|dx,

I2 =
∫ X(t+δt;x0,0)

X(t;x0,0)
xr | f (x, t +δt)− f (x, t)|dx,

I3 =
∫ +∞

X(t+δt;x0,0)
xr | f (x, t +δt)− f (x, t)|dx.

Our goal is to prove that each term goes to zero when δt goes to zero. We first bound I3, which results
from the initial condition, since for x≥ X(t +δt;x0,0)≥ X(t;x0,0), it follows that

I3 =
∫ +∞

X(t+δt;x0,0)
xr
∣∣∣ f in(X(0;x, t +δt))J(0;x, t +δt)e−

∫ t+δt
0 µ(X(σ;x,t+δt))dσ

− f in(X(0;x, t))|J(0;x, t)e−
∫ t

0 µ(X(σ;x,t))dσ

∣∣∣dx.
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Let f in
ε ∈ C ∞

0 with compact support supp( f in
ε ) ⊂ (0,Rε) and converge in L1([x0,+∞),xdx) to f in. We

write I3 as follows

I3 = I1
3 + I2

3 + I3
3 , (31)

where

I1
3 =

∫ +∞

X(t+δt;x0,0)
xr∣∣ f in(X(0;x, t +δt))− f in

ε (X(0;x, t +δt))
∣∣

× J(0;x, t +δt)e−
∫ t+δt

0 µ(X(σ;x,t+δt))dσdx,

I2
3 =

∫ +∞

X(t+δt;x0,0)
xr∣∣ f in

ε (X(0;x, t +δt))J(0;x, t +δt)

× e−
∫ t+δt

0 µ(X(σ;x,t+δt))dσ

− f in
ε (X(0;x, t))J(0;x, t)e−

∫ t
0 µ(X(σ;x,t))dσ

∣∣dx,

I3
3 =

∫ +∞

X(t+δt;x0,0)
xr| f in

ε (X(0;x, t))− f in(X(0;x, t))|

× J(0;x, t)e−
∫ t

0 µ(X(σ;x,t))dσdx.

Dropping the exponential term, which is bounded by one, and changing of variables y = X(0;x, t +δt)
in I1

3 and y = X(0;x, t) in I3
3 , we get

I1
3 + I3

3 ≤ 2eAT
∫ +∞

x0

yr| f in(y)− f in
ε (y)|dy =C1

3(T,ε), (32)

with the help of lemma 6. Next we bound I2
3 by

I2
3 ≤

∫ +∞

X(t+δt;x0,0)
xr| f in

ε (X(0;x, t +δt))− f in
ε (X(0;x, t))|J(0;x, t +δt)dx

+
∫ +∞

X(t+δt;x0,0)
xr f in

ε (X(0;x, t))|J(0;x, t +δt)− J(0;x, t)|dx

+
∫ +∞

X(t+δt;x0,0)
xr f in

ε (X(0;x, t))J(0;x, t)

× |e−
∫ t+δt

0 µ(X(σ;x,t+δt))dσ− e−
∫ t

0 µ(X(σ;x,t))dσ|dx,

and we denote the integrals by J1
3 to J3

3 , respectively. We remark that J(0,x, t)≤ eBT by (24) and so

J1
3 ≤ eBT‖ f in

ε ‖L∞

∫ Cε

X(t+δt;x0,0)
xr|X(0;x, t +δt)−X(0;x, t)|dx

≤ δteBT‖ f in
ε ‖L∞

∫ Cε

X(t+δt;x0,0)
xr sup

s∈[t,t+δt]

∣∣∣∣ ∂

∂t
X(0;x,s)

∣∣∣∣dx

≤ δtAe2BT‖ f in
ε ‖L∞

∫ Cε

x0

xr+1dx, (33)

where Cε depends on T , A and Rε i.e., the compact support of f in
ε . Then

J2
3 ≤ eBT‖ f in

ε ‖L∞

∫ Rε

X(t+δt;x0,0)
xr|eG(t,δt,x)−1|dx
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with

|G(t,δt,x)|=
∣∣∣∫ t+δt

0
c(σ,X(σ;x, t +δt))dσ−

∫ t

0
c(σ,X(σ;x, t))dσ

∣∣∣
≤

∫ t+δt

0

∣∣∣ρ′(X(σ;x, t +δt))−ρ
′(X(σ;x, t))

∣∣∣u(σ)dσ

+
∫ t+δt

t

∣∣∣c(σ,X(σ;x, t))
∣∣∣dσ.

Thus, with (22) and (24),

|G(t,δt,x)| ≤ K‖u‖L∞

∫ T

0

∣∣∣X(σ;x, t +δt)−X(σ;x, t)
∣∣∣dσ+δtB

≤ δtK‖u‖L∞

∫ T

0
sup

s∈[t,t+δt]

∣∣∣∣ ∂

∂t
X(σ;x,s)

∣∣∣∣dσ+δtB

≤ δt
(
K‖u‖L∞ATeBT x+B

)
,

where K is the Lipschitz constant of ρ′. Since x≤ Rε, let CG(T,ε) = K‖u‖L∞ATeBT Rε+B, and if |x| ≤ y,
then

|ex−1| ≤ |ey−1|+
∣∣e−y−1

∣∣ .
Thus, we get

J2
3 ≤ eBT‖ f in

ε ‖L∞

(∣∣eδtCG(T,ε)−1
∣∣+ ∣∣e−δtCG(T,ε)−1

∣∣)∫ Rε

x0

xrdx. (34)

Since µ is nonnegative, J3
3 ≤

eBT‖ f in
ε ‖L∞

∫ Rε

X(t+δt;x0,0)
xr
∣∣∣∣e−(∫ t+δt

0 µ(X(σ;x,t+δt))dσ−
∫ t

0 µ(X(σ;x,t))dσ

)
−1
∣∣∣∣dx.

Exactly as above,

∣∣∣∫ t+δt

0
µ(X(σ;x, t +δt))dσ−

∫ t

0
µ(X(σ;x, t))dσ

∣∣∣≤ δtMATeBT x+δt‖µ‖L∞ ,

with M = Lipschitz constant of µ. Denoting by CM(T,ε) = MATeBT Rε +‖µ‖L∞ , we get

J3
3 ≤ eBT‖ f in

ε ‖L∞

(∣∣eδtCM(T,ε)−1
∣∣+ ∣∣e−δtCM(T,ε)−1

∣∣)∫ Rε

x0

xrdx. (35)

From (32), (33), (34) and (35) we can conclude that for any ε > 0,

I3(δt)≤C1
3(T,ε)+C2

3(T,δt,ε), (36)

with limε→0 C1
3(T,ε) = 0 and limδt→0 C2

3(T,δt,ε) = 0.
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Next, concerning I1, f can be written from the boundary condition. Let uε ∈ C ∞
0 such that uε −→ u

uniformly on [0,T ]. Then we write I1 as follows:

I1 ≤
∫ X(t+δt;x0,0)

x0

xr|N(u(s0(x, t +δt))−N(uε(s0(x, t +δt))|I(x, t +δt)dx

+
∫ X(t;x0,0)

x0

xr
∣∣∣N(uε(s0(x, t +δt))I(x, t +δt)e−

∫ t
s0(x,t+δt) µ(X(σ;x,t+δt))dσ

−N(uε(s0(x, t))I(x, t)e
−
∫ t

s0(x,t)
µ(X(σ;x,t))dσ

∣∣∣dx

+
∫ X(t;x0,0)

x0

xr|N(u(s0(x, t))−N(uε(s0(x, t))|I(x, t)dx.

From (H3) we obtain, similarly to I3, that there exist two constants C1
1(T,ε) and C2

1(T,δt,ε) such that

I1(δt)≤C1
1(T,ε)+C2

1(T,δt,ε), (37)

with limε→0 C1
1(T,ε) = 0 and limδt→0 C2

1(T,δt,ε) = 0.
Finally, for I2, we use the two formulas of f ,

I2 =
∫ X(t+δt;x0,0)

X(t;x0,0)
xr
∣∣∣∣N(u(s0(x, t +δt)))I(x, t +δt)e

−
∫ t+δt

s0(x,t+δt) µ(X(σ;x,t+δt))dσ

− f in(X(0;x, t))J(0;x, t)e−
∫ t

s0(x,t)
µ(X(σ;x,t))dσ

∣∣∣dx

Using the Lipschitz constant of N denoted by KN , from the definition of I and with the help of lemma
6, we get

I2 ≤ xr
0e(rA+B)T KN |X(t +δt;x0,0)−X(t;x0,0)|

+ xr
0erAT

∫ X(t+δt;x0,0)

X(t;x0,0)

∣∣ f in(X(0;x, t))J(0;x, t)
∣∣dx.

Using the regularization f in
ε of f in, there exist two constants C1

2(T,ε) and C2
2(T,δt,ε) such that for any

ε > 0,
I2(δt)≤C1

2(T,ε)+C2
2(T,δt,ε), (38)

with limε→0 C1
2(T,ε) = 0 and limδt→0 C2

2(T,δt,ε) = 0.
In conclusion, combining (36), (37) and (38), we get for any ε > 0 and δt > 0,∫ +∞

x0

xr| f (x, t +δt)− f (x, t)|dx≤C1(T,ε)+C2(T,δt,ε),

where C1(T,ε) and C2(T,δt,ε) are two constants such that limε→0 C1(T,ε)= 0 and limδt→0 C2(T,δt,ε)=
0. Noticing that the proof remains the same when δt is negative, taking the limsup in δt we get

0≤ limsup
δt→0

∫ +∞

x0

xr| f (x, t +δt)− f (x, t)|dx≤C1(T,ε), for any ε > 0.

The proof is completed by taking the limit as ε goes to zero, which yields to the require regularity,
f ∈ C 0([0,T ],L1([x0,+∞),xrdr) for all r ∈ [0,1]. �

We finish this section with a useful estimate for the uniqueness investigation.

Proposition 9. Let T > 0 and u1, u2 ∈ C 0
b (0,T ). Let f1 and f2 be two mild solutions to (18)-(20),

associated, respectively to u1 and u2, with initial data f in
1 , f in

2 given by formula (26). Then, for any
t ∈ (0,T )
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∫ +∞

x0

x | f1(x, t)− f2(x, t)|dx≤
∫ +∞

x0

x
∣∣ f in

1 (x)− f in
2 (x)

∣∣dx

−
∫ t

0

∫ +∞

x0

µ(x)x
∣∣ f in

1 (x,s)− f in
2 (x,s)

∣∣dxds+A1

∫ t

0

∫ +∞

x0

x | f1(x,s)− f2(x,s)|dxds

+
∫ t

0

(
K1,2 +C‖ f2(·,s)‖L1(xdx)

)
|u1(s)−u2(s)|ds,

where A1 is given by (22) for u1 and K1,2 is the Lipschitz constant of N on [0,R] with R=max(‖u1‖L∞(0,T ),
‖u2‖L∞(0,T )). Finally C > 0 denotes a constant such that ρ(x)<Cx.

Proof. This estimation is obtained from a classical argument of approximation. Let h = f1− f2 and∫ +∞

x0

h(x, t)ϕ(x, t)dx =
∫ +∞

x0

hin(x)ϕ(x,0)dx+
∫ t

0
(N(u1(s))−N(u2(s)))ϕ(x0,s)ds

+
∫ t

0

∫ +∞

x0

h(x,s)
[

∂

∂t
ϕ(x,s)+a1(s,x)

∂

∂x
ϕ(x,s)−µ(x)ϕ(x,s)

]
dxds

+
∫ t

0

∫ +∞

x0

(a1(s,x)−a2(s,x)) f2(x,s)
∂

∂x
ϕ(x,s)dxds.

Let hε be a regularization of h and Sδ a regularization of the Sign function. Take ϕ(x,s)= Sδ(hε(s,x))g(x)
with g ∈ C ∞

c ([x0,+∞)). Then, letting δ→ 0 and then ε→ 0, we get∫ +∞

x0

|h(x, t)|g(x)dx =
∫ +∞

x0

|hin(x)|g(x)dx

+
∫ t

0
|N(u1(s))−N(u2(s)))Sign(h0(x0))g(x0)ds

+
∫ t

0

∫ +∞

x0

|h(x,s)|
[

a1(s,x)
∂

∂x
g(x)−µ(x)g(x)

]
dxds

+
∫ t

0

∫ +∞

x0

(a1(s,x)−a2(s,x)) f2(x,s)Sign(h(s,x))
∂

∂x
g(x)dxds.

Finally, we approximate the identity function with a regularized function ηR ∈ C ∞
c ([x0,+∞)) such that

ηR(x) = x over (0,R), and then taking the limit R→+∞ ends the proof.
�

We get straightforward from proposition 7 that f defined by (26) is a weak solution and the only
one from proposition 9. Indeed, getting u1 = u2 and f 0

1 = f 0
2 in proposition 9 leads to the uniqueness.

Finally, proposition 8 provides the continuity in time of the moments with order less or equal to one.
This concludes the proof of proposition 5

3.3. Proof of the well-posedness. In this section we prove theorem 4. We first study the operator S in
(21).

Lemma 10. Consider hypothesis (H2) to (H4). Let uin, pin and bin be nonnegative initial data, and let
f in satisfy (H1). Let M > 0 be large enough such that uin, pin,bin < M/2 and define

XM =
{
(u, p,b) ∈ C 0([0,T ])3 : 0≤ u, p,b≤M

}
where C 0([0,T ])3 is equipped with the uniform norm. Then, there exists T > 0 (small enough) such that
S : XM 7→ XM is a contraction.
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Proof. Let M be sufficiently large such that max(uin, pin,bin) < M/2, and let T > 0 be small enough
such that

(γu + τM+σ+ x0C1(M)+C2(M,T ))MT ≤M/2,

(γp + τM)MT ≤M/2,

(σ+δ)MT ≤M/2,

(λu +σM)T ≤M/2,

(λp +σM)T ≤M/2,

τM2T ≤M/2,

where C1(M) is the Lipschitz constant of N on (0,M) and

C2(M,T ) =CeMCT
(
‖ f in‖L1(xdx)+C1(M)MT

)
, (39)

where C is the constant such that ρ(x) ≤Cx, see (27). This assumption ensures that for any (u, p,b) ∈
XM , then S(u, p,b) ∈ XM , i.e, the solution is bounded by M and is nonnegative. It remains to prove that
S is a contraction. Let (u1, p1,b1) and (u2, p2,b2) belong to XM . Then

‖Su1 −Su2‖∞ ≤ γuT‖u1−u2‖∞ + τT‖u1 p1−u2 p2‖∞ +σT‖b1−b2‖∞

+ x0TC1(M)‖u1−u2‖∞

+T sup
t∈[0,T ]

∣∣∣∣u1
∫ +∞

x0

ρ(x) f1(x,s)dx−u2
∫ +∞

x0

ρ(x) f2(x,s)dx
∣∣∣∣ . (40)

Then,
‖u1 p1−u2 p2‖∞ ≤M‖u1−u2‖∞ +M‖p1− p2‖∞, (41)

sup
t∈[0,T ]

∣∣∣∣u1
∫ +∞

x0

ρ(x) f1(x,s)dx−u2
∫ +∞

x0

ρ(x) f2(x,s)dx
∣∣∣∣

≤C2(M,T )‖u1−u2‖∞ +CM sup
t∈[0,T ]

∣∣∣∣∫ +∞

x0

x| f1(x, t)− f2(x, t)|dx
∣∣∣∣ , (42)

and from Proposition 9,

sup
t∈[0,T ]

∣∣∣∣∫ +∞

x0

x| f1(x, t)− f2(x, t)|dx
∣∣∣∣≤ T (C1(M)+CC2(M,T ))‖u1−u2‖∞. (43)

We get similar bounds for |Sp1 − Sp2 |∞ and |Sb1 − Sb2 |∞. We infer that there exists a constant C(M,T )
depending only on M and T such that

‖(Su1 ,Sp1 ,Sb1)− (Su2 ,Sp2 ,Sb2)‖∞ ≤C(M,T )T‖(u1, p1,b1)− (u2, p2,b2)‖∞, (44)

with C(M,T )T → 0, when T goes to 0. Hence, if T is small enough such that C(M,T )T < 1 , then S is
a contraction. �

From Lemma 10, we have a local nonnegative solution on [0,T ], which is unique with the solution
(u, p,b) bounded by the constant M. The solution satisfies f ∈C0(0,T ;L1(xdx)) and u, p,b ∈C0(0,T ).
Futhermore from (H3), N is continuous and from (H2), ρ(x)≤Cx where C is a positive constant. Thus
ρ f ∈C0(0,T ;L1(dx)). We conclude that u, p and b defined in definition 1 have continuous derivatives.

Now we remark that the solutions satisfies on [0,T ]
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d
dt

(u+ p+2b) = λu +λp− γuu− γp p−δ2b−nN(u)

− 1
ε

u
∫ +∞

x0

ρ(x) f (x, t)dx≤ λ−m(u+ p+2b),

with m = min(γu,γp,δ) and λ = λu +λp. Using Gronwall’s lemma, the solutions remain bounded, at
any time by

u+ p+2b≤ uin + pin +2bin +
λ

m
. (45)

From this global bound on u, p and b, we can construct the solution on any interval of time by repetition
of the local argument. The proof of the theorem is complete.

4. SUMMARY

The connection of prions and AD is not fully understood, but recent research suggests that soluble
Aβ oligomers are possible inducers of AD neuropathology. The key element of this hypothesis is that
β−amyloid plaques increase their size over disease progression by the clustering of Aβ oligomers,
which are bound to PrPC proteins. Aβ oligomers exist both as bounded and unbounded to PrPC proteins,
and the agglomerartion rate in the formation of β−amyloid plaques depends on the concentrations of the
bound and unbound Aβ oligomers, the concentration of soluble PrPC , and the size of the β−amyloid
plaques. We have introduced a mathematical model of the evolution of AD based on these hypotheses,
and presented a mathematical analysis of its fundamental properties. Specifically, we have analyzed
in detail the existence and uniqueness properties of solutions, as well as the qualitative properties of
solution behavior. In specific cases we have quantified the stabilization of the solutions to steady state,
a well-known feature of AD progression. In future work we will explore applications of this model to
specific AD laboratory and clinical data.

APPENDIX A. CHARACTERISTIC POLYNOMIALS OF THE LINEARIZED ODE SYSTEM

Here we give the coefficient ai, i = 1, . . . ,4 for the characteristic polynomial of the linearized system
in proposition 2:

a1 =

(
µ+ γu + τ

λp

τ∗u∞ + γp
+αn2un−1

∞ +ρ
α

µ
un

∞ + γp + τu∞ +σ+δ

)
,

a2 =

(
µ+ γu +αn2un−1

∞ +ρ
α

µ
un

∞

)
(γp + τu∞ +σ+δ)+ γpσ+(γp + τu∞)δ

+µ
(

γu + τ
λp

τ∗u∞ + γp
+αn2un−1

∞ +ρ
α

µ
un

∞

)
+ραnun

∞ + τ(γp +δ)
λp

τ∗u∞ + γp
,

a3 =

(
µ+ γu +αn2un−1

∞ +ρ
α

µ
un

∞

)
(γpσ+(γp + τu∞)δ)+(γpδ+(γp +δ)µ)τ

λp

τ∗u∞ + γp

+

{
µ
(

γu +αn2un−1
∞ +ρ

α

µ
un

∞

)
+ραnun

∞

}
(γp + τu∞ +σ+δ),

a4 = µγpδτ
λp

τ∗u∞ + γp
+

{
µ
(

γu +αn2un−1
∞ +ρ

α

µ
un

∞

)
+ραnun

∞

}
(γpσ+(γp + τu∞)δ).
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APPENDIX B. LYAPUNOV FUNCTIONNAL

In order to obtain a Lyapunov function for system (8-11), we approached the problem in a backward
manner as described in [21, Chap. 4 - p. 120]. We investigated an expression for the derivative Φ̇

and went back to chose the parameters of Φ so as to make Φ̇ negative definite. This is useful idea to
searching for a lyapunov function. Using this method we can derive the global stability in proposition
3. The Lyapunov function for the system (8-11) is:

Φ =
1
2

(
2γp

δ

)
s1θ

2
1 +

1
2

(
1+2

δ+ γu +ρ(A∞ +θ1)

σ

)
θ

2
2 +

1
2

(
2γp

δ

)
θ

2
3

+
1
2

(
σ

γp

)
θ

2
4 +

(
ρp∞

γu +ρA∞ +µ

)
θ1θ2 +θ1θ3 +θ2θ3

+

(
ρp∞

γu +ρA∞ +µ
+1+

ρ

τ

)
θ1θ4 +2θ2θ4 +

(
2γp

δ

)
θ3θ4,

where θ1 = A−A∞, θ2 = u−u∞, θ3 = p− p∞, θ4 = b−b∞, with s1 = max(T1,T2) such that

T1 =
ρ2δu2

∞(1+2 1+δ

σ
)

8µγp
+

(γp +µ)2( δ

2γp
)2

4γpµ
+

[(δ+µ)( ρp∞

γu+ρA∞+µ +1)+(σ+δ+µ)ρ

τ
+2ρu∞]

2

8µσ
,

T2 =

(
δ

2γp

)2(
ρp∞

γu+ρA∞+µ

)2(
2σ+δ

2γp

)
(

1+2 δ+γu
σ
− δ

2γp

)(
δ

2γp
σ

γp
−1
) +

(
δ

2γp

)2(
ρp∞

γu+ρA∞+µ

)[
2+4 ρ

τ

δ+γu
σ

]
(

1+2 δ+γu
σ
− δ

2γp

)(
δ

2γp
σ

γp
−1
)

+

(
δ

2γp

)3 [
ρ

τ

(
2+ ρ

τ

)
+ σ

γp
+2 δ+γu

γp

]
(

1+2 δ+γu
σ
− δ

2γp

)(
δ

2γp
σ

γp
−1
) +

(
δ

2γp

)2 (
1+ ρ

τ

)[
1+2 δ+γu

σ

]
ρ

τ(
1+2 δ+γu

σ
− δ

2γp

)(
δ

2γp
σ

γp
−1
)

+

(
δ

2γp

)(
ρp∞

γu +ρA∞ +µ

)2
(

1

1+2 δ+γu
σ

)
+

(
1+2 δ+γu

σ

)(
δ

2γp

)2(
1+2 δ+γu

σ
− δ

2γp

) .

This Lyapunov function Φ is positive when
(

1+2 δ+γu
σ

)
> δ

2γp
>

γp
σ

. Its derivative along the solutions
to the system (8-11) is

Φ̇ = −

(
µs1 +ρu

ρ
δ

2γp
p∞

γu +ρA∞ +µ

)
θ

2
1−ρu∞

(
1+2

γu +ρ(A∞ +θ1)+δ

σ

)(
δ

2γp

)
θ1θ2

−
(

2(γu +ρ(A∞ +θ1)+ τp)(γu +ρ(A∞ +θ1)+δ)

σ
+ γu +ρ(A∞ +θ1)

)(
δ

2γp

)
θ

2
2

−
(
(δ+µ)

(
ρp∞

γu +ρA∞ +µ
+1
)
+(σ+δ+µ)

ρ

τ
+2ρu∞

)(
δ

2γp

)
θ1θ4

−
(

δτu
2γp

+ γp

)
θ

2
3−δ

(
σ

γp

δ

2γp

)
θ

2
4− (γp +µ)

(
δ

2γp

)
θ1θ3.

Φ̇ is non-positive. Furthermore, Φ̇= 0 if and only if θ1 = θ2 = θ3 = θ4 = 0. LaSalle’s invariant principle
then implies that the unique equilibrium is globally asymptotically stable in the stable subset defined in
(13) [22].
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