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Abstract. We develop new numerical schemes for bilinear systems of stochastic differential
equations (SDEs). To this end, we present a new methodology for solving stiff multidimensional
SDEs with multiplicative noise, as well as, we introduce a new stable numerical method for non-linear
scalar SDEs. The rate of weak convergence of the new schemes is linear. Moreover, they preserve the
possible exponential stability of the unknown solutions for any step-size. Four numerical experiments
illustrate the good performance of the proposed algorithms.
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1. Introduction. This paper introduces a new approach to solve stiff stochastic
differential equations (SDEs) with multiplicative noise, namely, SDEs of the form

Xt = X0 +

∫ t

0

b (Xs) ds +

m
∑

k=1

∫ t

0

σk (Xs) dW k
s (1.1)

whose numerical solutions by the Euler-Maruyama scheme exhibit incorrect behav-
iors. Here, W 1, . . . , Wm are independent real valued Wiener processes on a filtered

complete probability space
(

Ω, F, (Ft)t≥0 , P
)

, Xt is an adapted Rd-valued stochas-

tic process, b, σk : Rd → Rd have continuous first-order partial derivatives, and
X0 ∈ L2(Ω, P). For simplicity, we only consider autonomous SDEs. Our final goal is
to have a set of schemes that preserve dynamical properties of (1.1), like asymptotic
stability, for any step size ∆ of the time discretization.

Section 2 is devoted to scalar SDEs. More precisely, we develop a new scheme
for (1.1) with d = 1. In case b (0) = 0 and σk (0) = 0, the new numerical method
preserves, for any step size ∆ > 0, both the sign of X0 and the possible exponential
stability of Xt, that is, the property lim supt→∞

1
t ln ‖Xt‖ ≤ −λ < 0 . This paves

way for the main objective of this article: to provide stable schemes for computing
the mean value of f (Xt), where f : Rd → R is smooth and, by abuse of notation,

Xt = X0 +

∫ t

0

BXs ds +

m
∑

k=1

∫ t

0

σkXs dW k
s , (1.2)

with B, σ1, . . . , σm real matrices of dimension d × d. In this research direction, Sub-
section 3.1 presents a general technique for constructing stable methods for (1.1) with
d > 1. Then, in Subsections 1.2 and 3.2 we use the new ideas to derive promising
weak schemes for (1.2). The bilinear SDE (1.2) arises, for example, from the spa-
tial discretization of some stochastic partial differential equations (see, e.g., [1, 12]),
and describes important dynamical features of non-linear SDEs via the linearization
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around their equilibrium points (see, e.g., [6, 34]). Furthermore, the new numerical
methods for (1.2) guide us in the application of our general methodology to systems
of non-linear SDEs.

1.1. Previous works. In many cases, the semi-implicit and explicit Euler meth-
ods preserve dynamical properties of the underlying SDEs provided that the step size
of the discretization is small enough. Recall that (see, e.g., [17, 19])

lim sup
t→∞

1

t
ln ‖Xt‖ ≤ −λ a.s. (1.3)

whenever

‖b (x)‖ ≤ Kn ‖x‖ ∀ ‖x‖ ≤ n and ∀n ∈ N,

∥

∥σk (x)
∥

∥ ≤ K ‖x‖ ∀x ∈ Rd, and (1.4)

−λ := sup
x∈Rd,x 6=0

(

〈x, b (x)〉 + 1
2

∑m
k=1

∥

∥σk (x)
∥

∥

2

‖x‖2 −
∑m

k=1〈x, σk (x)〉2

‖x‖4

)

< 0. (1.5)

Here and subsequently, K stands for a generic positive constant and Kn > 0. If
Conditions (1.4) and (1.5) hold, together with b (0) = 0, then Higham, Mao and Yuan
[17] proved that the Euler-Maruyama scheme

En+1 = En + b (En)∆ +
m
∑

k=1

σk (En)
(

W k
(n+1)∆ − W k

n∆

)

is almost sure exponentially stable for sufficiently small step sizes ∆ > 0 in case

‖b (x)‖ ≤ K ‖x‖ ∀x ∈ Rd.

At the cost of solving systems of algebraic equations, the backward Euler method

Ēn+1 = Ēn + b
(

Ēn+1

)

∆ +
m
∑

k=1

σk
(

Ēn

)

(

W k
(n+1)∆ − W k

n∆

)

(1.6)

improves the numerical stability of En (see, e.g., [16, 17, 35]). For instance, Higham,
Mao and Yuan [17] established that there exists ∆0 > 0 such that for any ∆ ∈ ]0, ∆0],
Ēn is almost sure exponentially stable provided that (1.4) is valid, b (0) = 0, and

sup
x 6=y

〈x − y, b (x) − b (x)〉
‖x − y‖2 + sup

x 6=0

(

∑m
k=1

∥

∥σk (x)
∥

∥

2

2 ‖x‖2 −
∑m

k=1〈x, σk (x)〉2

‖x‖4

)

< 0. (1.7)

The Euler schemes En and Ēn exhibit a poor numerical performance in situations
where, for example, some partial derivatives of the diffusion coefficients σk are not
small. A simple model problem for such SDEs is

dXt = λXtdWt, (1.8)

with λ > 0 (see, e.g., [22, 23]); the trajectories of En and Ēn applied to (1.8) blow
up unless ∆ is very small. Using (1.8) as a motivational problem, Milstein, Platen
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and Schurz [22] introduced the general formulation of the balanced implicit methods,
a class of fully implicit schemes for (1.1) whose implementation depends of the choice
of certain weights (see, e.g., [2, 15, 22]). To the best of our knowledge, the reported
balanced schemes have good asymptotic stability properties and low speed of weak
convergence.

Other implicit integrators for (1.1), together with their predictor-corrector ver-
sions, arise from the Itô-Taylor expansions of Xt (see, e.g., [13, 23, 27, 28, 30, 36]).
In particular, Kloeden and Platen [18] proposed the following class of weak implicit
schemes:

Ẽn+1 = Ẽn +
(

α c
(

Ẽn+1

)

+ (1 − α) c
(

Ẽn

))

∆ (1.9)

+

m
∑

k=1

(

ησk
(

Ẽn+1

)

+ (1 − η)σk
(

Ẽn

))√
∆ξk

n,

where α, η ∈ [0, 1], {ξk
n : k = 1, . . . , m and n ≥ 0} is a collection of independent

random variables taking values ±1 with probability 1/2, and

c (x) = b (x) − η

m
∑

k=1

d
∑

j=1

σj,k (x)
∂σk

∂xj
(x) .

We have Ẽn ≈ Xn∆. Applying (1.9) with α = η = 1 to (1.8) yields a fully implicit
method which is almost sure asymptotically stable, but converges to 0 as n → ∞
too much faster than Xt. Taking α = η = 1/2 gives a trapezoidal scheme with good
asymptotically stability properties, nevertheless it fails to preserve the sign of X0 in
the numerical solution of (1.8).

Finally, numerical methods adapted to specific types of SDEs with multiplicative
noise have been developed, for instance, in [3, 9, 23, 24, 25]. The numerical integration
of mean-square stable SDEs has been treated, for example, in [1, 10, 11, 15, 31]. To the
best of our knowledge, this paper is the first work to present numerical methods for
SDEs that preserve, for any step size ∆ > 0, the asymptotic stability of the solutions
of relevant classes of SDEs (see, e.g., [16, 17]).

1.2. New numerical method for bilinear SDEs. It follows from

Xt =
Xt

‖Xt‖
‖Xt‖

that we can divide the computation of the solution of (1.2) into:
(i) The approximation of X̂t := Xt/ ‖Xt‖ by an adapted stochastic process tak-

ing values in the unit sphere.
(ii) The numerical simulation of ‖Xt‖ by means of a scheme that preserves the

dynamical properties of ‖Xt‖.
Since (1.2) is bilinear, using Itô’s formula yields

X̂t = X̂0 +

∫ t

0

B
(

X̂s

)

X̂sds +

m
∑

k=1

∫ t

0

(

σk −
〈

X̂s, σ
kX̂s

〉)

X̂sdW k
s (1.10)

(see Subsection 3.1 for details), where, by abuse of notation,

B
(

X̂s

)

= B −
〈

X̂s, BX̂s

〉

+
m
∑

k=1

(

3

2

〈

X̂s, σ
kX̂s

〉2

−
〈

X̂s, σ
kX̂s

〉

σk − 1

2

∥

∥

∥
σkX̂s

∥

∥

∥

2
)

.



4 H. A. MARDONES AND C. M. MORA

Although (1.10) is a locally Lipschitz SDE, its solution has norm 1 for all t ≥ 0,
and hence we can improve the performance of the numerical schemes applied to (1.10)
by projecting on the unit sphere at each discretization step. This projection procedure
has been used with success in the numerical solution of the non-linear Schödinger
equations (see, e.g., [24, 26]).

Moreover, we utilize Itô’s formula to obtain

‖Xt‖ = ‖X0‖ +

∫ t

0

(

〈Xs, BXs〉 + 1
2

∑m
k=1

∥

∥σkXs

∥

∥

2

‖Xs‖
− 1

2

m
∑

k=1

〈Xs, σ
kXs〉2

‖Xs‖3

)

ds

+
m
∑

k=1

∫ t

0

〈Xs, σ
kXs〉

‖Xs‖
dW k

s (1.11)

(see Subsection 3.1 for details). In Section 2 we develop a stable scheme for scalar
stiff SDEs that shows very good performance in numerical experiments. A close look
at this numerical method leads us to divide and multiply each integrand of (1.11) by
‖Xs‖, and so (1.11) becomes

‖Xt‖ = ‖X0‖ +

∫ t

0

(

〈X̂s, BX̂s〉 +
1

2

m
∑

k=1

(

∥

∥

∥σkX̂s

∥

∥

∥

2

− 〈X̂s, σ
kX̂s〉2

)

)

‖Xs‖ ds

+
m
∑

k=1

∫ t

0

〈X̂s, σ
kX̂s〉 ‖Xs‖ dW k

s . (1.12)

We propose to approximate numerically Xt by solving the system formed by (1.10)
and (1.12). Next, we present a simple way to do this. For simplicity, from now on we
consider the equidistant time discretization Tn = n∆, where ∆ > 0 and n = 0, 1, . . .
Suppose that X̄n ≈ X̂Tn

. Applying the weak Euler approximation to (1.10) we get
X̂Tn+1

≈ Z̄n+1 with

Z̄n+1 = X̄n + B
(

X̄n

)

X̄n∆ +

m
∑

k=1

(

σk −
〈

X̄n, σkX̄n

〉)

X̄n

√
∆ ξk

n

where ξ1
0 , ξ2

0 , . . . , ξm
0 , ξ1

1 , . . . are independent random variables taking values ±1 with
probability 1/2. Projecting Z̄n+1 on the unit sphere gives

X̂Tn+1
≈ X̄n+1 := Z̄n+1/

∥

∥Z̄n+1

∥

∥ . (1.13)

From (1.12) we deduce that ‖Xt‖, with t ∈ [Tn, Tn+1], is well approximated by
the solution of the linear scalar SDE

ηt = η̄n +

∫ t

Tn

(

〈X̄n, BX̄n〉 +
1

2

m
∑

k=1

(

∥

∥σkX̄n

∥

∥

2 − 〈X̄n, σkX̄n〉2
)

)

ηsds (1.14)

+
m
∑

k=1

∫ t

Tn

〈X̄n, σkX̄n〉ηsdW k
s ,
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Fig. 1. Computation of E arctan
“

1 +
`

X1
t

´2
”

, where t ∈ [0, 10] and Xt solves (1.16) with

b = −2, σ = 4 and ǫ = 4. The true values are plotted with a solid line. The circles (resp. stars)

represent the approximations of E arctan
“

1 +
`

X1
t

´2
”

, with t = 0, 1, . . . , 10, given by η̄nX̄n (resp.

the backward Euler method Ēn).

where η̄n ≈ ‖XTn
‖. Replacing W k

Tn+1
−W k

Tn
by

√
∆ξk

n in the explicit solution of (1.14)
we get

η̄n+1 = η̄n exp

((

〈X̄n, BX̄n〉 +
1

2

m
∑

k=1

∥

∥σkX̄n

∥

∥

2 −
m
∑

k=1

〈X̄n, σkX̄n〉2
)

∆

+
m
∑

k=1

〈X̄n, σkX̄n〉
√

∆ξk
n

)

, (1.15)

and so η̄n+1 ≈
∥

∥XTn+1

∥

∥. Iterating (1.13) and (1.15) gives the recursive scheme η̄nX̄n.
In Section 3, we prove that η̄nX̄n approximates XTn

with weak rate of convergence
equal to 1, and we establish that for any ∆ > 0,

lim sup
n→∞

1

n∆
ln
∥

∥η̄nX̄n

∥

∥ ≤ −λ P − a.s.

whenever (1.2) satisfies the condition (1.5). Moreover, Section 3 develops versions of
η̄nX̄n adapted to systems where B is very ill-conditioned.

We will illustrate the numerical behavior of η̄nX̄n by means of the test equation

Xt = X0 +

∫ t

0

(

b 0
0 b

)

Xsds +

∫ t

0

(

σ 0
0 σ

)

XsdW 1
s +

∫ t

0

(

0 −ǫ
ǫ 0

)

XsdW 2
s , (1.16)

which has been proposed in [8, 11]. We take X0 = (1, 2)⊤, b = −2, σ = 4 and ǫ = 4,
and so λ = −2. Hence we are dealing with an exponentially stable SDE. To avoid
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variance problems, we calcule E arctan
(

1 +
(

X1
t

)2
)

, whose reference values (solid

lines) have been obtained by sampling 108 times the explicit solution of (1.16). Here

Xt =
(

X1
t , X2

t

)⊤ ∈ R2. Figure 1 compares the computation of E arctan
(

1 +
(

X1
t

)2
)

by using η̄nX̄n (represented by circles) with that produced by the backward Euler
method Ēn defined by (1.6) with W k

(n+1)∆ −W k
n∆ replaced by

√
∆ξk

n (represented by

stars); all the sample sizes are equal to 106. Figure 1 shows the very good qualitative
behavior of η̄nX̄n in the numerical solution of (1.16). We can observe that the first
coordinate of η̄nX̄n decays to 0 with the same speed that the true solution, even
for large step-sizes. In contrast, the trajectories of Ēn blows up when ∆ = 0.1 and
∆ = 0.02. Moreover, η̄nX̄n achieves an excellent accuracy in cases ∆ = 1 and ∆ = 0.1.

2. Stable schemes for scalar SDEs. In this section, we restrict our attention
to stiff scalar SDEs, that is, we focus on

Xt = X0 +

∫ t

0

b (Xs) ds +

m
∑

k=1

∫ t

0

σk (Xs) dW k
s ,

where b, σk : R → R are continuously differentiable functions.

2.1. Derivation of the numerical method. We begin by assuming b (0) =
σ1 (0) = · · · = σm (0) = 0. Then

Xt = X0 +

∫ t

0

b (Xs)

Xs
Xsds +

m
∑

k=1

∫ t

0

σk (Xs)

Xs
XsdW k

s ,

where by abuse of notation, we write b (0) /0 and σk (0) /0 instead of the derivatives
at 0 of b and σk respectively.

Suppose that X̄n is an FTn
-measurable random variable such that X̄n ≈ XTn

,
here and subsequently, Tj = j∆ for all j = 0, 1, . . . Then, for all t ∈ [Tn, Tn+1],

Xt ≈ X̄n +

∫ t

Tn

b (Xs)

Xs
Xsds +

m
∑

k=1

∫ t

Tn

σk (Xs)

Xs
XsdW k

s . (2.1)

Since x 7→ b (x) /x and x 7→ σk (x) /x are continuous functions, (2.1) leads to

Xt ≈ X̄n +

∫ t

Tn

b
(

X̄n

)

X̄n
Xsds +

m
∑

k=1

∫ t

Tn

σk
(

X̄n

)

X̄n
XsdW k

s .

Hence Xt is approximated by the solution of the linear scalar SDE

Yt = X̄n +

∫ t

Tn

b
(

X̄n

)

X̄n
Ysds +

m
∑

k=1

∫ t

Tn

σk
(

X̄n

)

X̄n
YsdW k

s , (2.2)

and so XTn+1
≈ YTn+1

. Solving explicitly (2.2) gives

XTn+1
≈ (2.3)

X̄n exp









b
(

X̄n

)

X̄n
− 1

2

m
∑

k=1

(

σk
(

X̄n

)

X̄n

)2


∆ +
m
∑

k=1

σk
(

X̄n

)

X̄n

(

W k
Tn+1

− W k
Tn

)



 .
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As we are interested in weak approximations of Xt, we replace W k
Tn+1

− W k
Tn

in (2.3) by
√

∆Ŵ k
n , where Ŵ 1

0 , Ŵ 2
0 , . . . , Ŵm

0 , Ŵ 1
1 , . . . are independent identically dis-

tributed (i.i.d.) random variables with symmetric law and variance 1. This gives the
numerical scheme

X̄n+1 = X̄n exp









b
(

X̄n

)

X̄n
− 1

2

m
∑

k=1

(

σk
(

X̄n

)

X̄n

)2


∆ +

m
∑

k=1

σk
(

X̄n

)

X̄n

√
∆Ŵ k

n



 .

(2.4)
From (2.4) it follows that X̄n preserves the sign of the initial data. Furthermore,

we next establish that X̄n is almost sure exponential stable for any ∆ > 0 provided
that σ1, . . . , σm are globally Lipschitz and

−λ := sup
x∈R,x 6=0

(

b (x) /x −
m
∑

k=1

(

σk (x) /x
)2

/2

)

< 0.

Hence X̄n preserves two important dynamical properties of the solution of (1.1).
Theorem 2.1. Consider

(

X̄n

)

n≥0
given by the recursive formula (2.4). Suppose

that (1.4) and (1.5) hold, together with b (0) = 0 and E
(

X̄0

)2
< ∞. Then

lim sup
n→∞

1

n∆
ln
∣

∣X̄n

∣

∣ ≤ −λ P − a.s. (2.5)

Proof. Deferred to Section 2.3.1.
The high performance achieved by X̄n in our numerical experiments, together

with its good theoretical properties, motivates us to adapt X̄n to the framework
where b (0) , σ1 (0) , . . . , σm (0) are not necessarily equal to 0. To this end, we rewrite
(1.1) in the form

Xt = X0 +

∫ t

0

(

b (Xs) − b (0)

Xs
Xs + b (0)

)

ds

+

m
∑

k=1

∫ t

0

(

σk (Xs) − σk (0)

Xs
Xs + σk (0)

)

dW k
s ,

and so for all t ∈ [Tn, Tn+1],

Xt ≈ X̄n +

∫ t

Tn

(

µ
(

X̄n

)

Xs + b (0)
)

ds +

m
∑

k=1

∫ t

Tn

(

λk
(

X̄n

)

Xs + σk (0)
)

dW k
s ,

where X̄n is an FTn
-measurable random variable approximating XTn

,

µ (x) =

{

b(x)−b(0)
x , if x 6= 0

b′ (0) , if x = 0
and λk (x) =

{
(

σk (x) − σk (0)
)

/x, if x 6= 0
(

σk
)′

(0) , if x = 0
.

This leads to approximate Xt by the solution of

Yt = X̄n +

∫ t

Tn

(

µ
(

X̄n

)

Ys + b (0)
)

ds +
m
∑

k=1

∫ t

Tn

(

λk
(

X̄n

)

Ys + σk (0)
)

dW k
s . (2.6)
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The explicit solution of (2.6) is

Yt = Φt

(

X̄n +

(

b (0) −
m
∑

k=1

λk
(

X̄n

)

σk (0)

)

∫ t

Tn

Φ−1
s ds +

m
∑

k=1

σk (0)

∫ t

Tn

Φ−1
s dW k

s

)

,

where

Φt = exp

((

µ
(

X̄n

)

− 1

2

m
∑

k=1

λk
(

X̄n

)2

)

(t − Tn) +

m
∑

k=1

λk
(

X̄n

) (

W k
t − W k

Tn

)

)

.

Since Φ−1
s ≈ Φ−1

Tn
for all s ∈ [Tn, Tn+1], XTn+1

is approximated by

ΦTn+1

(

X̄n +

(

b (0) −
m
∑

k=1

λk
(

X̄n

)

σk (0)

)

∆ +

m
∑

k=1

σk (0)
(

W k
Tn+1

− W k
Tn

)

)

.

This yields the weak scheme

X̄n+1 = Φ̄n+1

(

X̄n +

(

b (0) −
m
∑

k=1

λk
(

X̄n

)

σk (0)

)

∆ +

m
∑

k=1

σk (0)
√

∆Ŵ k
n

)

, (2.7)

where Ŵ 1
0 , Ŵ 2

0 , . . . , Ŵm
0 , Ŵ 1

1 , . . . are i.i.d. random variables with symmetric law and
variance 1, and

Φ̄n+1 = exp

((

µ
(

X̄n

)

− 1

2

m
∑

k=1

λk
(

X̄n

)2

)

∆ +

m
∑

k=1

λk
(

X̄n

)
√

∆Ŵ k
n

)

.

The following theorem establishes that X̄, given by (2.7), converges weakly to X
with order O (∆) under a basic set of assumptions. In case b (0) = σ1 (0) = . . . =
σm (0) = 0, (2.7) becomes (2.4), and so the rate of weak convergence of X̄ , defined
by (2.4), is equal to 1.

Notation 2.1. We will use the same symbol K (·) (resp. K) for different positive
increasing functions (resp. positive real numbers) having the common property to be
independent of ∆. Similarly, q denotes generic constants greater than or equal to
2. We write Cℓ

p

(

Rd, R
)

for the set of all ℓ-times continuously differentiable functions

f : Rd → R such that f and all its partial derivatives of orders 1, 2, . . . , ℓ have at most
polynomial growth.

Theorem 2.2. Let b, σ1, . . . , σm be Lipschitz continuous functions belonging to
C4

p (R, R) such that |b (x)| +
∣

∣σ1 (x)
∣

∣+ · · · + |σm (x)| ≤ K (1 + |x|) for all x ∈ R. Fix

T > 0 and f ∈ C4
p (R, R). Consider the scheme X̄ described by (2.7) with ∆ = T/N ,

where N ∈ N. Assume that E exp
(

rŴ k
n

)

< ∞ for all r > 0, X0 has finite moments

of any order, and that for every g ∈ C4
p(R, R),

∣

∣Eg(X̄0) − Eg(X0)
∣

∣ ≤ K (1 + E |X0|q)T/N ∀N ∈ N.

Then for all N ∈ N,

∣

∣Ef (XT ) − Ef
(

X̄N

)∣

∣ ≤ K (T ) (1 + E |X0|q)T/N. (2.8)
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Proof. Deferred to Section 2.3.2.
Remark 2.1. If Ŵ k

n are standard Normal random variables, then

E exp
(

rŴ k
n

)

= exp
(

r2/2
)

.

In case Ŵ k
n are bounded random variables we also have E exp

(

rŴ k
n

)

< ∞.

2.2. Numerical experiment. In this subsection, we illustrate the behavior of
X̄n by means of the locally Lipschitz SDE

Xt = X0 +

∫ t

0

(

aXs − b (Xs)
3
)

ds +

∫ t

0

σXsdW 1
s , (2.9)

where b, σ are real positive numbers, a ∈ R, and X0 = 1. This scalar cubic SDE is
known as the stochastic Ginzburg-Landau equation, and constitutes a classical test
equation in the theory of stochastic bifurcation (see, e.g., [4, 7]). Let ξ1

0 , ξ2
0 , . . . , ξm

0 ,
ξ1
1 , . . . be independent random variables taking the values ±1 each with probability

1/2. Then, we will solve numerically (2.9) using three schemes: X̄n defined by (2.4)
with Ŵ k

n replaced by ξk
n, the backward Euler method Ēn given by (1.6) with

√
∆ξk

n

in place of W k
(n+1)∆ − W k

n∆, and











Z̃s
n+1/2 = Z̃s

n exp
(

(a − σ2/2)∆ + σ
√

∆ξ1
n

)

Z̃s
n+1 = Z̃s

n+1/2

(

1 − b∆
(

Z̃s
n+1/2

)2

/2

)

/

(

1 + b∆
(

Z̃s
n+1/2

)2

/2

)

.

Fig. 2. Computation of E ln
“

1 + (Xt)
2

”

, where t ∈ [0, 5] and Xt satisfies (2.9) with a = b = 1

and σ = 2. The “true” values are plotted with a solid line. The circles, stars and diamonds stand
for the schemes X̄n, Ēn and Z̃s respectively. The step sizes 1, 0.5 and 0.25 are represented by
dashdot, dashed and dotted lines respectively.
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It is worth pointing out that Ēn entails the solution of a nonlinear equation at each
step, and that Z̃s

n is a weak version of the splitting-step algorithm for (2.9) introduced
by Subsection 4.2 of [25].

Figures 2, 3 and Table 2.1 show features of the computation of E ln
(

1 + (Xt)
2
)

obtained from the sample means of 108 observations of X̄n, Ēn and Z̃s
n. The solid

line identifies the “true” values gotten by sampling 108 times Ēn with ∆ = 2−11 ≈
0, 000488. The lengths of all the 99% confidence intervals are at least of order 10−3,
they have been estimated following [18].

First, we take a = b = 1 and σ = 2, which is the motivating example of [17].

Since b (x) /x −
(

σ1 (x) /x
)2

/2 ≤ −1,

lim sup
t→∞

1

t
ln |Xt| ≤ −1 a.s.

From [17] we have that the Euler-Maruyama scheme applied to (2.9) blows up, with
positive probability, at a geometric rate. In numerical experiments, we saw that Ēn

and Z̃s
n fail to preserve the sign of X0 for ∆ = 1 and ∆ = 0.5. To this end, we

computed 10E
(

π/2 − arctan
(

103Xt + 102
))

.
Figure 2 presents the numerical solution of (2.9), with a = b = 1 and σ = 2, using

the step sizes ∆ = 0.25, 0.5, 1. Figure 2 suggests us that X̄n replicate very well the
long time behavior of Xt, even for ∆ = 1. Moreover, we can see that the accuracy of
X̄n is very good, even for large step sizes; X̄n achieves significantly lower errors than
Z̃s, which is a method adapted to the characteristics of (2.9).

Fig. 3. Computation of E ln
“

1 + (Xt)
2

”

, where t ∈ [0, 10] and Xt solves (2.9) with a = 6,

b = 9 and σ = 3. The “true” values are plotted with a solid line. The circles, stars and diamonds
represent the schemes X̄n, Ēn and Z̃s respectively. The step sizes 0.25 and 0.0625 are denoted by
dashed and dotted lines respectively.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time t

տ
∆ = 0.25
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տ
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ւ
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∆
˛

˛Ef (XT ) − Ef
`

ĒT/∆

´˛

˛

˛

˛

˛Ef (XT ) − Ef
“

Z̃s
T/∆

”˛

˛

˛

˛

˛Ef (XT ) − Ef
`

X̄T/∆

´˛

˛

1 0.51106 29.0077 0.074617

1/2 0.51504 26.1167 0.05854

1/4 0.45996 21.5922 0.026918

1/8 0.0089311 4.1708 0.0078809

2−4 0.048116 0.068864 0.003364

2−5 0.015164 0.041187 0.0029212

2−6 0.0056366 0.022123 0.0017523

2−7 0.0023573 0.011367 0.00095535

Table 2.1

Estimation of errors involved in the computation of Ef (XT ) for T = 10 and f (x) = ln
`

1 + x2
´

.
Here, Xt verifies (2.9) with a = 6, b = 9, σ = 3 and X0 = 1.

Second, we choose a = 6, b = 9 and σ = 3. Then

−λ = sup
x∈R,x 6=0

(

a − bx2 − σ2/2
)

> 0,

and so Condition (1.5) does not hold. In this case, (2.9) has three invariant forward
Markov measures (see, e.g., [4]). Calculating 10E

(

π/2 − arctan
(

103Xt + 102
))

we

observe that Ēn (resp. Z̃s
n) can take negative values when ∆ ≥ 1/8 (resp. ∆ ≥ 1/16).

Figure 3 displays the numerical approximation of E ln
(

1 + (Xt)
2
)

by means of

X̄n and Ēn with step sizes ∆ = 0.25 and ∆ = 0.0625, as well as by using Z̃s
n with

∆ = 0.0625. Moreover, Table 2.1 shows errors made in the weak numerical integration

of (2.9), where the reference value of E ln
(

1 + (X10)
2
)

was obtained by sampling 108

times Ēn with ∆ = 2−11. In this test problem, the new scheme X̄n again provides
very good approximations of Ef (Xt), even for large values of ∆.

2.3. Proofs.

2.3.1. Proof of Theorem 2.1. From (2.4) it follows that

ln
∣

∣X̄n+1

∣

∣ = ln
∣

∣X̄0

∣

∣+
n
∑

j=0





b
(

X̄j

)

X̄j
− 1

2

m
∑

k=1

(

σk
(

X̄j

)

X̄j

)2


∆ + Sn,

with Sn =
∑n

j=0

∑m
k=1 σk

(

X̄j

)

/X̄j

√
∆Ŵ k

j . By (1.5), we thus get

1

n + 1
ln
∣

∣X̄n+1

∣

∣ ≤ 1

n + 1
ln
∣

∣X̄0

∣

∣− λ∆ +
1

n + 1
Sn. (2.10)

Using (1.4) gives E
(

∑m
k=1 σk

(

X̄j

)

/X̄j

√
∆Ŵ k

j

)2

≤ K∆, and so

∞
∑

j=0

1

(j + 1)
2 E

(

m
∑

k=1

σk
(

X̄j

)

X̄j

√
∆Ŵ k

j

)2

< ∞.

Since

E

(

m
∑

k=1

σk
(

X̄j

)

X̄j

√
∆Ŵ k

j �σ
(

X̄0, Ŵ
1
0 , . . . , Ŵm

0 , . . . , Ŵ 1
j−1, . . . , Ŵ

m
j−1

)

)

= 0,
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applying a generalized law of large numbers we deduce that Sn/ (n + 1) → 0 a.s. (see,
e.g., p. 243 of [14]). Then, letting n → ∞ in (2.10) we obtain (2.5).

2.3.2. Proof of Theorem 2.2. To shorten notation, for any n ≥ 0 we set

fn :=

(

µ
(

X̄n

)

− 1

2

m
∑

k=1

λk
(

X̄n

)2

)

∆ +

m
∑

k=1

λk
(

X̄n

)
√

∆Ŵ k
n

and gn :=
(

b (0) −∑m
k=1 λk

(

X̄n

)

σk (0)
)

∆ +
∑m

k=1 σk (0)
√

∆Ŵ k
n . Then

X̄n+1 = exp (fn)
(

X̄n + gn

)

= X̄n +
(

efn − 1 − fn

)

X̄n +
(

efn − 1
)

gn + fnX̄n + gn,

and hence

X̄n+1 = X̄0 +

n
∑

k=0

(

efk − 1 − fk

)

X̄k +

n
∑

k=0

(

efk − 1
)

gk +

n
∑

k=0

(

fkX̄k + gk

)

.

Let q ≥ 2. By
∣

∣

∣

∣

∣

∣

exp (x) −
k−1
∑

j=0

xj/ (j!)

∣

∣

∣

∣

∣

∣

≤ |x|k exp (|x|) ,

using Hölder’s inequality yields

∣

∣X̄n+1

∣

∣

q ≤ K
∣

∣X̄0

∣

∣

q
+ K (n + 1)

q−1

(

n
∑

k=0

|fk|2q
eq|fk|

∣

∣X̄k

∣

∣

q
+

n
∑

k=0

|fk|q |gk|q eq|fk|

)

+K (n + 1)
q−1

n
∑

k=0

∆q

∣

∣

∣

∣

∣

∣

µ
(

X̄k

)

− 1

2

m
∑

j=1

λj
(

X̄k

)2

∣

∣

∣

∣

∣

∣

q

∣

∣X̄k

∣

∣

q

+K (n + 1)q−1
n
∑

k=0

∆q

∣

∣

∣

∣

∣

∣

b (0) −
m
∑

j=1

λj
(

X̄k

)

σj (0)

∣

∣

∣

∣

∣

∣

q

+K∆q/2
m
∑

j=1

∣

∣

∣

∣

∣

n
∑

k=0

(

λj
(

X̄k

)

X̄k + σj (0)
)

Ŵ j
k

∣

∣

∣

∣

∣

q

. (2.11)

For any t > 0,

E exp
(

t
∣

∣

∣
Ŵ j

k

∣

∣

∣

)

≤ E exp
(

tŴ j
k

)

+ E exp
(

−tŴ j
k

)

< ∞, (2.12)

and so for all ℓ ∈ N,

E

(

∣

∣

∣Ŵ
j
k

∣

∣

∣

ℓ
)

< ℓ! E exp
(∣

∣

∣Ŵ
j
k

∣

∣

∣

)

< ∞. (2.13)

Since µ and λk are bounded functions, we use (2.12), (2.13) and the Burkholder-
Davis-Gundy inequality to obtain from (2.11) that

E
∣

∣X̄n+1

∣

∣

q ≤ KE
∣

∣X̄0

∣

∣

q
+ K (T ) + K (T )∆

n
∑

k=0

E
∣

∣X̄k

∣

∣

q
,
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with n = 0, . . . , N − 1. Applying a discrete Gronwall lemma (see, e.g., [4]) we deduce
that for all n = 0, . . . , N ,

E
∣

∣X̄n

∣

∣

q ≤ K (T )
(

1 + E
∣

∣X̄0

∣

∣

q)
. (2.14)

Consider again q ≥ 2. Using

∣

∣X̄n+1 − X̄n

∣

∣ ≤
∣

∣efn − 1
∣

∣

∣

∣X̄n

∣

∣+ efn |gn| ≤ |fn| exp (|fn|)
∣

∣X̄n

∣

∣+ exp (fn) |gn| ,

together with (2.12) and (2.13), we get

E
(∣

∣X̄n+1 − X̄n

∣

∣

q
� FTn

)

≤ K (T )∆q/2
(

1 +
∣

∣X̄n

∣

∣

q)
. (2.15)

Here, we assume without loss of generality that Ŵ 1
n , . . . Ŵm

n are FTn+1
-measurable

and independent of FTn
.

Since
∣

∣X̄n+1 −
(

1 + fn + f2
n/2 + f3

n/6
) (

X̄n + gn

)∣

∣ ≤ |fn|4 exp (|fn|)
∣

∣X̄n + gn

∣

∣ ,

X̄n+1 = X̄n +
√

∆
m
∑

k=1

(

λk
(

X̄n

)

X̄n + σk (0)
)

Ŵ k
n

+∆X̄n



µ
(

X̄n

)

− 1

2

m
∑

k=1

λk
(

X̄n

)2
+

1

2

(

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

)2




+∆



b (0) −
m
∑

k=1

λk
(

X̄n

)

σk (0) +

m
∑

j,k=1

σj (0)λk
(

X̄n

)

Ŵ j
nŴ k

n





+∆3/2X̄n

(

µ
(

X̄n

)

− 1

2

m
∑

k=1

λk
(

X̄n

)2

)

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

+∆3/2X̄n

(

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

)3

/6

+∆3/2



µ
(

X̄n

)

− 1

2

m
∑

k=1

λk
(

X̄n

)2
+

1

2

(

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

)2




m
∑

k=1

σk (0) Ŵ k
n

+∆3/2

(

b (0) −
m
∑

k=1

λk
(

X̄n

)

σk (0)

)

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n + Rn

(

∆, X̄n

)

,

where
∣

∣Rn

(

∆, X̄n

)∣

∣ ≤ |fn|4 exp (|fn|)
∣

∣X̄n + gn

∣

∣+ K (T )∆2
(

1 +
∣

∣X̄n

∣

∣

)

. This gives

∣

∣

∣

∣

∣

∣

E





(

X̄n+1 − X̄n

)ℓ −
(

b
(

X̄n

)

∆ +

m
∑

k=1

σk
(

X̄n

)

(

W k
∆(n+1) − W k

∆n

)

)ℓ

�FTn





∣

∣

∣

∣

∣

∣

≤ K (T )∆2
(

1 +
∣

∣X̄n

∣

∣

q)
(2.16)

provided that ℓ = 1, 2, 3.
From (2.14), (2.15) and (2.16) we obtain (2.8). To this end, we can apply the

classical methodology introduced by Milstein [20] and Talay [32, 33], or we can directly
use Theorem 9.1 of [21] (see also Theorem 14.5.2 of [18]).
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3. Stable schemes for systems of SDEs.

3.1. General methodology. Since the coefficients of (1.1) are locally Lipschitz
functions, (1.1) has a unique continuous strong solution up to an explosion time (see,
e.g., [29]), which we assume to be +∞ a.s. Let b (0) = σ1 (0) = · · · = σm (0) = 0.
Then, without loss of generality we can suppose X0 6= 0 a.s. Hence, almost surely,
Xt 6= 0 for all t > 0.

As we pointed out in Subsection 1.2, we divide the numerical approximation of
Xt into the computations of ‖Xt‖ and X̂t := Xt/ ‖Xt‖. Since, almost surely, Xt will
never reach the origin,

τj := inf {t > 0 : ‖Xt‖ < 1/j} −→j→∞ ∞. (3.1)

Applying Itô’s formula to

√

∥

∥Xt∧τj

∥

∥

2
we obtain

∥

∥Xt∧τj

∥

∥ = ‖X0‖ +

m
∑

k=1

∫ t∧τj

0

〈Xs, σ
k (Xs)〉

‖Xs‖
dW k

s

+

∫ t∧τj

0

(

〈Xs, b (Xs)〉 + 1
2

∑m
k=1

∥

∥σk (Xs)
∥

∥

2

‖Xs‖
− 1

2

m
∑

k=1

〈Xs, σ
k (Xs)〉2

‖Xs‖3

)

ds,

and so taking limit as j → ∞ gives

‖Xt‖ = ‖X0‖ +
m
∑

k=1

∫ t

0

〈Xs, σ
k (Xs)〉

‖Xs‖
dW k

s (3.2)

+

∫ t

0

(

〈Xs, b (Xs)〉 + 1
2

∑m
k=1

∥

∥σk (Xs)
∥

∥

2

‖Xs‖
− 1

2

m
∑

k=1

〈Xs, σ
k (Xs)〉2

‖Xs‖3

)

ds.

Moreover, using Itô’s formula, together with τj , we obtain after a long calculation
that

Xt

‖Xt‖
=

X0

‖X0‖
+

∫ t

0

(

b (Xs)

‖Xs‖
−
〈

Xs

‖Xs‖
,
b (Xs)

‖Xs‖

〉

Xs

‖Xs‖

)

ds (3.3)

+
1

2

m
∑

k=1

∫ t

0

(

3

〈

Xs

‖Xs‖
,
σk (Xs)

‖Xs‖

〉2

−
〈

σk (Xs)

‖Xs‖
,
σk (Xs)

‖Xs‖

〉

)

Xs

‖Xs‖
ds

−
m
∑

k=1

∫ t

0

〈

Xs

‖Xs‖
,
σk (Xs)

‖Xs‖

〉

σk (Xs)

‖Xs‖
ds

+

m
∑

k=1

∫ t

0

(

σk (Xs)

‖Xs‖
−
〈

Xs

‖Xs‖
,
σk (Xs)

‖Xs‖

〉

Xs

‖Xs‖

)

dW k
s .

There are at least two general ways of computing X̂Tn+1
:= XTn+1

/
∥

∥XTn+1

∥

∥. For

example, we can approximate XTn+1
by Z̃n+1, the numerical solution at time Tn+1 of

Zt = η̄nX̄n +

∫ t

Tn

b (Zs) ds +

m
∑

k=1

∫ t

Tn

σk (Zs) dW k
s ,

where η̄n and X̄n are FTn
-measurable random variables such that η̄n ≈ ‖XTn

‖ and
X̄n ≈ X̂Tn

:= XTn
/ ‖XTn

‖; as in Sections 1 and 2, for simplicity, we take Tn = n∆ for
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all n = 0, 1, . . . Then, taking care of round-off errors we set X̄n+1 := Z̃n+1/
∥

∥

∥
Z̃n+1

∥

∥

∥
,

and, in consequence, X̄n+1 ≈ X̂Tn+1
. Alternatively, we can solve numerically (3.3),

which is the method used in Subsections 1.2 and 3.2. In the non-linear case, we can,
for instance, approximate the right hand side of (3.3) in each time interval [Tn, Tn+1].

Now, we provide a manner of handling ‖Xt‖. The good performance of the
numerical method developed in Section 2 motivates us to rewrite (3.2) in the form

‖Xt‖ = ‖X0‖ +
m
∑

k=1

∫ t

0

〈Xs, σ
k (Xs)〉

‖Xs‖2 ‖Xs‖ dW k
s (3.4)

+

∫ t

0

(

〈Xs, b (Xs)〉 + 1
2

∑m
k=1

∥

∥σk (Xs)
∥

∥

2

‖Xs‖2 − 1

2

m
∑

k=1

〈Xs, σ
k (Xs)〉2

‖Xs‖4

)

‖Xs‖ ds,

and, further, to approximate ‖Xt‖ on the time interval [Tn, Tn+1] by the solution of
the scalar SDE

ηt = η̄n +

m
∑

k=1

∫ t

Tn

〈X̃n, σk
(

X̃n

)

〉
∥

∥

∥X̃n

∥

∥

∥

2 ηs dW k
s (3.5)

+

∫ t

Tn







〈X̃n, b
(

X̃n

)

〉 + 1
2

∑m
k=1

∥

∥

∥σk
(

X̃n

)∥

∥

∥

2

∥

∥

∥X̃n

∥

∥

∥

2 − 1

2

m
∑

k=1

〈X̃n, σk
(

X̃n

)

〉2
∥

∥

∥X̃n

∥

∥

∥

4






ηs ds,

where η̄n ≈ ‖XTn
‖ and X̃n is an FTn

-measurable random variable approximating Xs

on [Tn, Tn+1]. Using the explicit solution of (3.5) we find

∥

∥XTn+1

∥

∥ ≈ η̄n exp













〈X̃n, b
(

X̃n

)

〉 + 1
2

∑m
k=1

∥

∥

∥
σk
(

X̃n

)∥

∥

∥

2

∥

∥

∥X̃n

∥

∥

∥

2 −
m
∑

k=1

〈X̃n, σk
(

X̃n

)

〉2
∥

∥

∥X̃n

∥

∥

∥

4






∆

+
m
∑

k=1

〈X̃n, σk
(

X̃n

)

〉
∥

∥

∥X̃n

∥

∥

∥

2

(

W k
Tn+1

− W k
Tn

)






.

We substitute W k
Tn+1

− W k
Tn

by
√

∆Ŵ k
n , the random variables Ŵ 1

0 , . . . , Ŵm
0 , Ŵ 1

1 , . . .

being i.i.d. with symmetric law and variance 1. This leads to
∥

∥XTn+1

∥

∥ ≈ η̄n+1, where
η̄n+1 is given by the recursive formula

η̄n+1 = η̄n exp













〈X̃n, b
(

X̃n

)

〉 + 1
2

∑m
k=1

∥

∥

∥σk
(

X̃n

)∥

∥

∥

2

∥

∥

∥
X̃n

∥

∥

∥

2 −
m
∑

k=1

〈X̃n, σk
(

X̃n

)

〉2
∥

∥

∥
X̃n

∥

∥

∥

4






∆

+

m
∑

k=1

〈X̃n, σk
(

X̃n

)

〉
∥

∥

∥X̃n

∥

∥

∥

2

√
∆Ŵ k

n






. (3.6)

From (3.6) we have that η̄n > 0 for all n ∈ N, in case η̄0 > 0. Moreover, if (1.4)
and (1.5) hold, then we next assert that η̄nX̄n is almost sure exponential stable for
all ∆ > 0 provided that X̄n is a FTn

-measurable random variable of norm 1.
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Theorem 3.1. Let η̄n be as in (3.6). Suppose that b (0) = 0, η̄0 > 0, and that

E (η̄0)
2 < ∞. Assume that the inequalities (1.4) and (1.5) hold. Then

lim sup
n→∞

1

n∆
ln (η̄n) ≤ −λ P − a.s. (3.7)

Proof. Deferred to Section 3.4.1.

3.2. Bilinear SDEs. We will construct numerical schemes for bilinear SDEs
based on (3.2) and (3.3). This fleshes out the new technique.

In this subsection, we assume that Xt satisfies (1.2). Then, (3.3) becomes (1.10),
and so X̂t is approximated in [Tn, Tn+1] by Zt/ ‖Zt‖, where

Zt = X̄n +

∫ t

Tn

B
(

Ŷn

)

Zsds +

m
∑

k=1

∫ t

Tn

(

σk −
〈

Ŷn, σkŶn

〉)

ZsdW k
s , (3.8)

with X̄n ≈ X̂Tn
and

B
(

Ŷn

)

= B −
〈

Ŷn, BŶn

〉

+
m
∑

k=1

(

3

2

〈

Ŷn, σkŶn

〉2

−
〈

Ŷn, σkŶn

〉

σk − 1

2

∥

∥

∥σkŶn

∥

∥

∥

2
)

.

Moreover, (3.6) takes the form

η̄n+1 = η̄n exp

((

〈Ŷn, BŶn〉 +
1

2

m
∑

k=1

∥

∥

∥σkŶn

∥

∥

∥

2

−
m
∑

k=1

〈Ŷn, σkŶn〉2
)

∆

+
m
∑

k=1

〈Ŷn, σkŶn〉
√

∆Ŵ k
n

)

, (3.9)

where Ŷn is an FTn
-measurable random variable of norm 1 that approximates X̂s on

[Tn, Tn+1]. Thus, we have to specify both Ŷn and a way of computing ZTn+1
. The

simplest selection is Ŷn = X̄n, together with the use of the Euler-Maruyama method
to integrate numerically (3.8). This leads to

Scheme 3.1. Define recursively X̄n+1 = Z̄n+1/
∥

∥Z̄n+1

∥

∥, where

Z̄n+1 = X̄n + B
(

X̄n

)

X̄n∆ +

m
∑

k=1

(

σk −
〈

X̄n, σkX̄n

〉)

X̄n

√
∆Ŵ k

n . (3.10)

Here Ŵ 1
0 , Ŵ 2

0 , . . . , Ŵm
0 , Ŵ 1

1 , . . . are i.i.d. symmetric random variables having variance
1. Let η̄n+1 be given by (3.9) with Ŷn = X̄n.

Scheme 3.1 reduces to the method defined by (1.13) and (1.15) when Ŵ k
n = ξk

n.
Applying Theorem 3.1 we obtain that Scheme 3.1 is almost sure exponential stable
for all ∆ > 0 under condition (1.5). We next establish that it converges weakly with
order 1.

Theorem 3.2. Consider T > 0 and f ∈ C4
p(Rd, R). Let η̄nX̄n be described by

Scheme 3.1 with ∆ = T/N , where N ∈ N. Assume that Ŵ k
n are bounded random

variables, X0 have finite moments of any order, and that for every g ∈ C4
p (Rd, R),

∣

∣Eg(η̄0X̄0) − Eg(X0)
∣

∣ ≤ K (1 + E |X0|q)T/N ∀N ∈ N.
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Then for all N ∈ N,

∣

∣Ef (XT ) − Ef
(

η̄N X̄N

)∣

∣ ≤ K (T ) (1 + E ‖X0‖q
)T/N. (3.11)

Proof. Deferred to Section 3.4.2.

We now focus on (1.2) with B ill-conditioned. If the matrix B have very differ-
ent eigenvalues, then we should carefully approximate the term 〈X̂s, BX̂s〉 in (1.12).
This leads us to the problem of finding good candidates for the random variable Ŷn

presented in (3.8) and (3.9) (see Remark 3.1).

We now develop an alternative strategy to use (3.8) and (3.9), which has yielded
promising results in our numerical experiments. Suppose that X̄n and ρ̄n are FTn

-
measurable random variables such that X̄n ≈ X̂Tn

,
∥

∥X̄n

∥

∥ = 1, and ρ̄n ≈ ‖XTn
‖.

Return to (1.10) and (1.12), and consider the ordinary differential equation

Yn (t) = ρ̄nX̄n +

∫ t

Tn

BYn (s) ds ∀t ∈ [Tn, Tn+1] . (3.12)

Since Ŷn (t) := Yn (t) / ‖Yn (t)‖ satisfies

Ŷn (t) = X̄n +

∫ t

Tn

(

B −
〈

Ŷn (s) , BŶn (s)
〉)

Ŷn (s) ds,

from (1.10) we obtain that for any t ∈ [Tn, Tn+1],

X̂t ≈ Ŷn (t) +

∫ t

Tn

Ψ
(

X̂s

)

X̂sds +

m
∑

k=1

∫ t

Tn

(

σk −
〈

X̂s, σ
kX̂s

〉)

X̂sdW k
s ,

where Ψ
(

X̂s

)

=
∑m

k=1

(

3
〈

X̂s, σ
kX̂s

〉2

/2 −
〈

X̂s, σ
kX̂s

〉

σk −
∥

∥

∥σkX̂s

∥

∥

∥

2

/2

)

. Hence

X̂t ≈ Ŷn (t) +

∫ t

Tn

Ψ
(

X̄n

)

X̂sds +

m
∑

k=1

∫ t

Tn

(

σk −
〈

X̄n, σkX̄n

〉)

X̂sdW k
s .

In the spirit of the Euler-exponential schemes given by [24] we consider

X̃t = Ŷn (t) +

∫ t

Tn

Ψ
(

X̄n

)

X̃sds +
m
∑

k=1

∫ t

Tn

(

σk −
〈

X̄n, σkX̄n

〉)

X̄ndW k
s , (3.13)

and so X̃t ≈ X̂t. Approximating the explicit solution of (3.13) we deduce that
X̃Tn+1

≈ Un+1, where

Un+1 = exp
(

Ψ
(

X̄n

)

∆
)

(

Ỹn/
∥

∥

∥Ỹn

∥

∥

∥+

m
∑

k=1

(

σk − 〈X̄n, σkX̄n〉
)

X̄n

√
∆Ŵ k

n

)

. (3.14)

Here Ŵ 1
0 , Ŵ 2

0 , . . . , Ŵm
0 , Ŵ 1

1 , . . . are i.i.d. symmetric random variables having variance

1, and Ỹn = exp (B∆) X̄n. This implies Ỹn/
∥

∥

∥Ỹn

∥

∥

∥ = Ŷn (Tn+1).
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Similarly, using (1.12) and
∥

∥

∥
Ŷn (t)

∥

∥

∥
=
∥

∥X̄n

∥

∥ +
∫ t

Tn
〈Ŷn (s) , BŶn (s)〉

∥

∥

∥
Ŷn (s)

∥

∥

∥
ds

we can assert that ‖Xt‖ ≈ ρt for all t ∈ [Tn, Tn+1], where

ρt =
∥

∥

∥Ŷn (t)
∥

∥

∥+

∫ t

Tn

(

m
∑

k=1

(

∥

∥σkX̄n

∥

∥

2
/2 − 〈X̄n, σkX̄n〉2/2

)

)

ρsds (3.15)

+
m
∑

k=1

∫ t

Tn

〈X̄n, σkX̄n〉ρsdW k
s .

Approximating the explicit solution of (3.15) we get ρTn+1
≈ ρ̄n+1, with

ρ̄n+1 = ρ̄n

∥

∥

∥Ỹn

∥

∥

∥ exp

(

m
∑

k=1

(

∥

∥σkX̄n

∥

∥

2
/2 − 〈X̄n, σkX̄n〉2

)

∆ +

m
∑

k=1

〈X̄n, σkX̄n〉
√

∆Ŵ k
n

)

.

(3.16)
We have derived the following numerical method.

Scheme 3.2. Let
(

X̄n

)

n≥0
be given by the recursive formula

X̄n+1 = Un+1/ ‖Un+1‖ ,

where Un+1 is as in (3.14). Moreover, (ρ̄n)n≥0 is defined recursively by (3.16).
On the other hand, applying the Euler approximation to (3.13) we obtain that

X̃Tn+1
≈ Vn+1, where

Vn+1 = Ỹn/
∥

∥

∥Ỹn

∥

∥

∥+ Ψ
(

X̄n

)

X̄n∆ +

m
∑

k=1

(

σk − 〈X̄n, σkX̄n〉
)

X̄n

√
∆Ŵ k

n . (3.17)

Then, we can replace Un+1 by Vn+1 in Scheme 3.2. This yields
Scheme 3.3. Define recursively X̄n+1 = Vn+1/ ‖Vn+1‖, where Vn+1 is given by

(3.17). Let (ρ̄n)n≥0 be described by (3.16).
We next establish the exponential stability of Schemes 3.2 and 3.3 for any step-

size ∆, under Condition (1.7) applied to (1.2). Here, for brevity reasons, we do not
address the rate of convergence of Schemes 3.2 and 3.3.

Theorem 3.3. Consider Scheme 3.2, or Scheme 3.3, with ρ̄0 > 0 and E (ρ̄0)
2 <

∞. Suppose that

−λ̃ := sup
‖x‖=1

〈x, Bx〉 + sup
‖x‖=1

m
∑

k=1

(

∥

∥σkx
∥

∥

2
/2 − 〈x, σk (x)〉2

)

< 0. (3.18)

Then

lim sup
n→∞

1

n∆
ln (ρ̄n) ≤ −λ̃ P − a.s.

Proof. Deferred to Section 3.4.3.
Remark 3.1. Applying the midpoint rule to the solution of (3.12) we obtain

Xs ≈ Ȳn :=
exp (B∆/2) X̄n
∥

∥exp (B∆/2) X̄n

∥

∥

, (3.19)

and so we can approximate 〈X̂s, BX̂s〉 by 〈Ȳn, BȲn〉 whenever s ∈ [Tn, Tn+1]. More-

over, 〈X̂s, σ
kX̂s〉 ≈ 〈Ȳn, σkȲn〉 and

∥

∥

∥σkX̂s

∥

∥

∥

2

≈
∥

∥σkȲn

∥

∥

2
for all s ∈ [Tn, Tn+1].
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Therefore, the choice Ŷn = Ȳn in (3.8) and (3.9) yields X̂Tn+1
≈ ZTn+1

/
∥

∥ZTn+1

∥

∥

and
∥

∥XTn+1

∥

∥ ≈ η̄n+1. We can solve (3.8) by using the Euler-exponential method

introduced in [24]. This gives the recursive scheme X̄n+1 := V̄n+1/
∥

∥V̄n+1

∥

∥, where

V̄n+1 = exp
(

B
(

Ȳn

)

∆
)

(

X̄n +

m
∑

k=1

(

σk −
〈

Ȳn, σkȲn

〉)

X̄n

√
∆Ŵ k

n

)

,

with Ŵ k
n as in Scheme 3.1. Finally, we take η̄n+1 defined by (3.9) with Ŷn = Ȳn. A

good alternative to V̄n+1 is to apply the backward Euler method to (3.8).

3.3. Numerical experiments.

3.3.1. Lyapunov exponents. We will illustrate the potential of Scheme 3.1 to
compute the Lyapunov exponents of (1.2) (see [4, 34] for classical theoretical and
numerical references). To this end, we calcule ℓ (X0) := limt→∞

1
t ln ‖Xt‖ , where

Xt = X0 +

∫ t

0

(

a − σ2

2 0

0 b − σ2

2

)

Xsds +

∫ t

0

σ

(

0 −1

1 0

)

XsdW 1
s , (3.20)

with a, b ∈ R, σ > 0 and X0 6= 0. In this well-known test problem [5, 18, 34], ℓ (X0)
does not depend on the initial condition X0, and further

ℓ =
a + b

2
+

a − b

2

∫ 2π

0
cos (2θ) exp

(

a−b
2σ2 cos (2θ)

)

dθ
∫ 2π

0 exp
(

a−b
2σ2 cos (2θ)

)

dθ
. (3.21)

Following [34] we take a = 1 and b = −2. We choose X0 =
(

1/
√

2, 1/
√

2
)⊤

. In
the context of (1.2), there is no loss of generality in assuming ‖X0‖ = 1, because
ℓ (X0) = ℓ (X0/ ‖X0‖) for bilinear SDEs.

In case B is well-conditioned, we can approximate the Lyapunov exponent ℓ by

ℓ̃N (∆) :=
1

N∆
ln
∥

∥η̄N X̄N

∥

∥ =
1

N∆

N−1
∑

n=0

ln

(
∥

∥η̄n+1X̄n+1

∥

∥

∥

∥η̄nX̄n

∥

∥

)

,

where η̄nX̄n is given by Scheme 3.1 and N is sufficiently large. From (3.9) we have

ℓ̃N (∆) = 1
N∆

∑N−1
n=0 Ln

(

X̄n

)

, with

Ln (x) =

(

〈x, Bx〉 +
1

2

m
∑

k=1

∥

∥σkx
∥

∥

2 −
m
∑

k=1

〈x, σkx〉2
)

∆ +

m
∑

k=1

〈x, σkx〉
√

∆Ŵ k
n .

For concreteness, we consider Ŵ k
n uniformly distributed on

[

−
√

3,
√

3
]

. Then

ℓ̃n+1 (∆) = ℓ̃n (∆)

(

1 − 1

n + 1

)

+
Ln

(

X̄n

)

(n + 1)∆
.

In order to evaluate the performance of ℓ̃n, we also compute ℓ by means of the algo-
rithm ℓ̂n introduced in pages 1155 and 1156 of [34].

Table 3.1 compares the average of 20 realizations of both ℓ̃N (∆) and ℓ̂N (∆)
applied to (3.20) with σ = 10 and σ = 20. We have actually computed 1

500 ln (‖X500‖ )
since we choose N = 500/∆. Integrating numerically (3.21) we obtain the reference
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∆ 0.1 0.05 0.01 0.002 0.001 0.0001

σ = 10, ℓ = −0.48875

ℓ̂N (∆) 30.09701 26.77603 −3.71372 −0.57889 −0.48503 −0.48811

ℓ̃N (∆) −0.52693 −0.50851 −0.49928 −0.49132 −0.48930 −0.48937

σ = 20, ℓ = −0.49719

ℓ̂N (∆) 86.56572 114.26780 93.37706 −9.63927 −2.96739 −0.48334

ℓ̃N (∆) −0.55164 −0.51945 −0.50120 −0.49883 −0.49798 −0.49703

Table 3.1

Computed values for a final integration time T = N∆ = 500 of the Lyapunov exponent ℓ for

(3.20) with a = 1, b = −2, X0 =
“

1/
√

2, 1/
√

2
”⊤

and different parameters σ.

value ℓ = −0.48875 for σ = 10, as well as that ℓ = −0.49719 whenever σ = 20.
Table 3.1 shows the very good accuracy of ℓ̃N . In case σ = 10, the relative error
∣

∣

∣ℓ̃N (0.1) − ℓ
∣

∣

∣ / |ℓ| is equal to 0.0781, and so ℓ̃N (∆) provides a good approximation of

ℓ even if ∆ = 0.1. If we increase the noise to σ = 20, then
∣

∣

∣ℓ̃N (0.05)− ℓ
∣

∣

∣ / |ℓ| = 0.0448.

In contrast, ℓ̂N (0.001) produces the value −2.96739.

3.3.2. Ill-conditioned matrix B. This subsection addresses the test problem
(1.16), but with more general drift coefficient B. Indeed, we deal with the numerical
solution of the SDE

Xt = X0 +

∫ t

0

(

b1 0

0 b2

)

Xsds+

∫ t

0

(

σ 0

0 σ

)

XsdW 1
s +

∫ t

0

(

0 −ǫ

ǫ 0

)

XsdW 2
s . (3.22)

In order to study cases where B is ill-conditioned, we take b1 = −100 and b2 = 2. We
also choose σ = 4, ǫ = 1 and X0 = (1, 2)

⊤
. We have that Xt converges exponentially

fast to 0 since

−λ̃ = sup
‖x‖=1

〈x, Bx〉 + sup
‖x‖=1

(

1

2

m
∑

k=1

∥

∥σkx
∥

∥

2 −
m
∑

k=1

〈x, σkx〉2
)

= max {b1, b2} +
(

ǫ2 − σ2
)

/2 = −11/2.

Similar to Subsection 1.2, we compute the mean value of the bounded ran-

dom variable arctan
(

1 +
(

X2
t

)2
)

, where Xt =
(

X1
t , X2

t

)

. In Figure 4, the solid

line provides the reference values for E arctan
(

1 +
(

X2
t

)2
)

, which have been ob-

tained by sampling 108 times the Euler-Maruyama scheme En applied to (3.22) with
step-size ∆ = 2−14 ≈ 0.0000610 and W k

(n+1)∆ − W k
n∆ replaced by

√
∆ξk

n. Here,

ξ1
0 , ξ2

0 , . . . , ξm
0 , ξ1

1 , . . . are independent random variables taking values ±1 with prob-
ability 1/2. Moreover, the circles (resp. stars) represent the estimated values of

E arctan
(

1 +
(

X2
t

)2
)

produced by averaging over 106 random realizations of Scheme

3.2 with Ŵ k
n = ξk

n (resp. the backward Euler method Ēn given by (1.6) with
W k

(n+1)∆ − W k
n∆ replaced by

√
∆ξk

n). Figure 4 shows that the second coordinate

of Ēn does not converge to 0 when ∆ = 0.25, 0.125, and it goes too fast to 0 for
∆ = 0.0625. On the contrary, Scheme 3.2 is very accurate, even with ∆ = 0.25.

Table 3.2 presents the errors produced at time T = 0.5 by the new numeri-
cal methods. We assign the weak error ǫ (Y, ∆) :=

∣

∣Ef (XT ) − Ef
(

YT/∆

)∣

∣ to every
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∆ = 0.25

ւ

ւ

∆ = 0.125

↑

∆ = 0.125

∆ = 0.25

տ

↑

∆ = 0.0625

∆ = 2
− 5

ր

Fig. 4. Computation of E arctan
“

1 +
`

X2
t

´2
”

, where t ∈ [0, 4] and Xt solves (3.22) with

b1 = −10, b2 = 2, σ = 4, ǫ = 1 and X0 = (1, 2)⊤. The true values are plotted with a solid line. The
circles and stars represent the approximations obtained by Scheme 3.2 and Ēn respectively.

scheme Y with step-size ∆, where f (x1, x2) = arctan
(

1 + (x2)
2
)

. Table 3.2 compares

estimates of ǫ (Y, ∆) obtained by sampling 106 times the backward Euler method Ēn,

Table 3.2

Absolute errors ǫ (Y, ∆) =
˛

˛Ef (XT ) − Ef
`

YT/∆

´˛

˛ involved in the computation of Ef (XT ),

where Xt verifies (3.22) with b1 = −100, b2 = 2, σ = 4, ǫ = 1 and X0 = (1, 2)⊤. Here T = 0.5 and

f (x1, x2) = arctan
“

1 + (x2)
2

”

.

∆
ǫ (Y,∆)

Ē Scheme 3.2 Remark 3.1 Scheme 3.1 Scheme 3.3

1/2 − 0.11463 0.16262 0.15767 0.097492

1/4 0.62209 0.033856 0.039728 0.15767 0.033187

1/8 0.45494 0.028848 0.055127 0.15767 0.027073

1/16 0.1167 0.00092922 0.031429 0.15767 0.00001519

1/32 0.051448 0.0034819 0.02738 0.15765 0.0030137

1/64 0.022656 0.0013437 0.022279 0.057997 0.001135

2−7 0.010789 0.0007307 0.016977 0.015613 0.00065061

2−8 0.0052678 0.00037132 0.011165 0.0061579 0.00034013

2−9 0.0031195 0.00034469 0.0059087 0.0032785 0.0003577

2−10 0.001551 0.00017328 0.0032079 0.001571 0.00017914

2−11 0.00045271 0.00023427 0.001994 0.00044898 0.0002315

2−12 0.00031327 0.000029582 0.00092728 0.00030817 0.000028237
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Schemes 3.1-3.3 and the method introduced in Remark 3.1. We take Ŵ k
n = ξk

n, and
the length of all the 99%-confidence intervals are at least of order 10−3 (see, e.g., [18]).
Table 3.2 shows that the values of ǫ (Scheme 3.2, ∆) and ǫ (Scheme 3.3, ∆) are quite
similar. We can also see that Schemes 3.2 and 3.3 are very accurate. Moreover, the
second coordinate given by Scheme 3.1 decays too fast to 0 when ∆ ≥ 1/32. Finally,
the numerical method given by Remark 3.1 has exponentially stable trajectories, but
tends to 0 slightly more slowly than the ‘true’ solution.

3.4. Proofs.

3.4.1. Proof of Theorem 3.1. Using (3.6) yields

ln (η̄n+1) = ln (η̄0) + Sn

+

n
∑

j=0







〈X̃j , b
(

X̃j

)

〉 + 1
2

∑m
k=1

∥

∥

∥σk
(

X̃j

)∥

∥

∥

2

∥

∥

∥X̃j

∥

∥

∥

2 −
m
∑

k=1

〈X̃j , σ
k
(

X̃j

)

〉2
∥

∥

∥X̃j

∥

∥

∥

4






∆,

where Sn =
∑n

j=0

∑m
k=1

〈X̃j ,σk(X̃j)〉

‖X̃j‖2

√
∆Ŵ k

n . Then, (1.5) leads to

1

n + 1
ln (η̄n+1) ≤

1

n + 1
ln (η̄0) +

1

n + 1
Sn − λ∆. (3.23)

From (1.4) it follows that

E







m
∑

k=1

〈X̃j , σ
k
(

X̃j

)

〉
∥

∥

∥X̃j

∥

∥

∥

2

√
∆Ŵ k

n







2

≤ E





m
∑

k=1

∥

∥

∥
σk
(

X̃j

)∥

∥

∥

∥

∥

∥X̃j

∥

∥

∥

√
∆
∣

∣

∣Ŵ k
n

∣

∣

∣





2

≤ K∆,

and so applying a generalized law of large numbers, as in the proof of Theorem 2.1,
we obtain that Sn/ (n + 1) → 0 a.s. By (3.23),

lim sup
n→∞

1

n + 1
ln (η̄n+1) ≤ −λ∆ a.s.

3.4.2. Proof of Theorem 3.2. We first establish that for an arbitrary q ≥ 2,

E
∥

∥η̄nX̄n

∥

∥

q ≤ K (T )E |η̄0|q ∀n = 0, . . . , N. (3.24)

To shorten notation, we set λk
(

X̄n

)

=
〈

X̄n, σkX̄n

〉

and

µ
(

X̄n

)

=
〈

X̄n, BX̄n

〉

+

m
∑

k=1

(

∥

∥σkX̄n

∥

∥

2 −
〈

X̄n, σkX̄n

〉2
)

/2.

Similar to the proof of (2.14), we rewrite η̄n+1 as exp (hn) η̄n, and so

η̄n+1 = η̄n + (exp (hn) − 1 − hn) η̄n + hnη̄n,

with hn :=
(

µ
(

X̄n

)

− 1
2

∑m
k=1 λk

(

X̄n

)2
)

∆ +
∑m

k=1 λk
(

X̄n

)√
∆Ŵ k

n . Thus

η̄n+1 = η̄0 +
n
∑

k=0

(exp (hk) − 1 − hk) η̄k +
n
∑

k=0

hkη̄k.
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Using |exp (hk) − 1 − hk| ≤ |hk|2 exp (|hk|) we obtain

|η̄n+1|q ≤K |η̄0|q + K (n+1)
q−1

n
∑

k=0

|hk|2q
eq|hk| |η̄k|q + K∆q/2

m
∑

j=1

∣

∣

∣

∣

∣

n
∑

k=0

λj
(

X̄k

)

η̄kŴ j
k

∣

∣

∣

∣

∣

q

+ K (n + 1)
q−1

n
∑

k=0

∆q

∣

∣

∣

∣

∣

∣

µ
(

X̄k

)

− 1

2

m
∑

j=1

λj
(

X̄k

)2

∣

∣

∣

∣

∣

∣

q

|η̄k|q . (3.25)

For any k ∈ Z+,
∥

∥µ
(

X̄k

)∥

∥ ≤ K and
∥

∥λj
(

X̄k

)∥

∥ ≤ K, because
∥

∥X̄k

∥

∥ = 1. We also

have that Ŵ 1
0 is a bounded random variable. Then, applying the Burkholder-Davis-

Gundy inequality we deduce from (3.25) that

E |η̄n+1|q ≤ KE |η̄0|q + K (T )∆
n
∑

k=0

E |η̄k|q

for all n = 0, . . . , N−1. A discrete Gronwall lemma (see, e.g., [4]) now leads to (3.24).
We proceed to find a truncated asymptotic expansion of η̄n+1X̄n+1 as ∆ goes to

0. In what follows, we use the same symbol O (·) for different random functions from
[0, T ] to R or Rd×d such that ‖O (x)‖ ≤ K (T )x. Since

∣

∣exp (x) − 1 + x + x2/2 + x3/6
∣

∣ ≤ x4 exp (|x|) ,

η̄n+1 = η̄n

(

1 +

(

µ
(

X̄n

)

− 1

2

m
∑

k=1

λk
(

X̄n

)2

)

∆ +

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

√
∆

)

(3.26)

+η̄n



µ
(

X̄n

)

− 1

2

m
∑

j=1

λj
(

X̄n

)2





(

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

)

∆3/2

+
η̄n

2

(

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

)2

∆ +
η̄n

6

(

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

)3

∆3/2 + η̄nO
(

∆2
)

.

Multiplying the right hand sides of (3.10) and (3.26) yields

η̄n+1Z̄n+1 =

(

1 + B∆ +
m
∑

k=1

σkŴ k
n

√
∆

)

η̄nX̄n + Γn∆3/2η̄nX̄n (3.27)

+∆

m
∑

k=1

(

σk − λk
(

X̄n

)

/2
)

λk
(

X̄n

)

(

(

Ŵ k
n

)2

− 1

)

η̄nX̄n

+∆
∑

k 6=j

(

σj − λj
(

X̄n

)

/2
)

λk
(

X̄n

)

Ŵ j
nŴ k

n η̄nX̄n + O
(

∆2
)

η̄nX̄n,

where Γn is a random matrix such that ‖Γn‖ ≤ K and E (Γn�FTn
) = 0; throughout

the proof, we assume without loss of generality that Ŵ 1
n , . . . Ŵm

n are FTn+1
-measurable

and independent of FTn
. Indeed,

Γn =

(

B +
1

2

m
∑

k=1

λk
(

X̄n

)2 −
m
∑

k=1

λk
(

X̄n

)

σk

)

m
∑

j=1

λj
(

X̄n

)

Ŵ j
n

+
1

6

(

m
∑

k=1

λk
(

X̄n

)

Ŵ k
n

)3

+

(

µ
(

X̄n

)

− 1

2

m
∑

k=1

λk
(

X̄n

)2

)

m
∑

k=1

(

σk − λk
(

X̄n

))

Ŵ k
n .
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From (3.10) we have

∥

∥Z̄n+1

∥

∥

2
= 1 + ∆

m
∑

k=1

(

λk
(

X̄n

)2 −
∥

∥σkX̄n

∥

∥

2
)

(

1 −
(

Ŵ k
n

)2
)

(3.28)

+∆
∑

k 6=j

(〈

σkX̄n, σjX̄n

〉

− λj
(

X̄n

)

λk
(

X̄n

))

Ŵ k
n Ŵ j

n

+2∆3/2
m
∑

k=1

〈

B
(

X̄n

)

X̄n, σkX̄n − λk
(

X̄n

)

X̄n

〉

Ŵ k
n + O

(

∆2
)

.

Hence, there exists ∆0 > 0 such that
∣

∣

∣1 −
∥

∥Z̄n+1

∥

∥

2
∣

∣

∣ ≤ 1/2 for all ∆ ≤ ∆0, because
∣

∣

∣Ŵ k
n

∣

∣

∣ ≤ K. Using the power series expansion of x 7→ (1 + x)
−1/2

we get

1

‖z‖ = 1 +
1

2

(

1 − ‖z‖2
)

+
(

1 − ‖z‖2
)2 ∞
∑

k=2

(2k)!

(k!)2 4k

(

1 − ‖z‖2
)k−2

whenever
∣

∣

∣1 − ‖z‖2
∣

∣

∣ < 1. This, together with (3.28), implies that for all ∆ ≤ ∆0,

1/
∥

∥Z̄n+1

∥

∥ = 1 +
∆

2

m
∑

k=1

(

λk
(

X̄n

)2 −
∥

∥σkX̄n

∥

∥

2
)

(

(

Ŵ k
n

)2

− 1

)

(3.29)

−∆

2

∑

k 6=j

(〈

σkX̄n, σjX̄n

〉

− λj
(

X̄n

)

λk
(

X̄n

))

Ŵ k
n Ŵ j

n

−∆3/2
m
∑

k=1

〈

B
(

X̄n

)

X̄n, σkX̄n − λk
(

X̄n

)

X̄n

〉

Ŵ k
n + O

(

∆2
)

.

Combining (3.27) with (3.29) gives

η̄n+1X̄n+1 =

(

1 + B∆ +

m
∑

k=1

σkŴ k
n

√
∆

)

η̄nX̄n + Γ̃n∆3/2η̄nX̄n (3.30)

+∆

m
∑

k=1

(

λk
(

X̄n

)

σk −
∥

∥σkX̄n

∥

∥

2
/2
)

(

(

Ŵ k
n

)2

− 1

)

η̄nX̄n

+∆
∑

k 6=j

(

λk
(

X̄n

)

σj −
〈

σkX̄n, σjX̄n

〉

/2
)

Ŵ j
nŴ k

n η̄nX̄n + O
(

∆2
)

η̄nX̄n,

where ∆ ≤ ∆0 and Γ̃n is a random matrix satisfying
∥

∥

∥Γ̃n

∥

∥

∥ ≤ K and E
(

Γ̃n�FTn

)

= 0.

By (3.24), it is sufficient to prove that (3.11) holds for all N ≥ T/∆0. Then, from
now we suppose ∆ ≤ ∆0. Looking at (3.30) we easily see that

∥

∥η̄n+1X̄n+1 − η̄nX̄n

∥

∥ ≤
K (T )∆1/2

∥

∥η̄nX̄n

∥

∥, and so

E
(∥

∥η̄n+1X̄n+1 − η̄nX̄n

∥

∥

q
� FTn

)

≤ K (T )∆q/2
(

1 +
∥

∥η̄nX̄n

∥

∥

q)
. (3.31)

Moreover, (3.30) leads to
∥

∥

∥

∥

∥

E

(

η̄n+1X̄n+1 − η̄nX̄n −
(

B∆ +

m
∑

k=1

σk
(

W k
Tn+1

− W k
Tn

)

)

η̄nX̄n�FTn

)∥

∥

∥

∥

∥

≤ K (T )∆2
(

1 +
∥

∥η̄nX̄n

∥

∥

)

.



STABLE SCHEMES FOR SDEs 25

Using again (3.30) we deduce that, up to terms of order O
(

∆2
) ∥

∥η̄nX̄n

∥

∥

q
, the second

and third moments of η̄n+1X̄n+1 − η̄nX̄n coincide with that of

Bη̄nX̄n∆ +

m
∑

k=1

σkη̄nX̄nŴ k
n

√
∆,

and then with that of
(

B∆ +
∑m

k=1 σk
(

W k
Tn+1

− W k
Tn

))

η̄nX̄n. Therefore, combining

classical arguments [20, 32, 33] with (3.24) and (3.31) we can assert that (3.11) holds
for all T/N ≤ ∆0 (see also Theorem 14.5.2 of [18]).

3.4.3. Proof of Theorem 3.3. From (3.16) we have

ln (ρ̄n+1) = ln (ρ̄0)+
n
∑

j=0

(

ln
(∥

∥eB∆X̄j

∥

∥

)

+
m
∑

k=1

(

1

2

∥

∥σkX̄j

∥

∥

2 − 〈X̄j , σ
kX̄j〉2

)

∆

)

+Sn,

where Sn =
∑n

j=0

∑m
k=1〈X̄j , σ

kX̄j〉
√

∆Ŵ k
n . Since Yn (t) := exp (B (t − Tn)) X̄n satis-

fies (3.12), using
∥

∥X̄j

∥

∥ = 1 we get

ln (‖Yn (t)‖) =

∫ t

Tn

〈 Ys

‖Ys‖
, B

Ys

‖Ys‖
〉ds ≤ (t − Tn) sup

‖x‖=1

〈x, Bx〉,

and so ln
(∥

∥exp (B∆) X̄j

∥

∥

)

≤ ∆sup‖x‖=1〈x, Bx〉. We now apply (3.18) to obtain

ln (ρ̄n+1) ≤ ln (ρ̄0) − (n + 1)∆λ̃ + Sn,

As in the proof of Theorems 2.1 and 3.1, a generalized law of large numbers gives
Sn/ (n + 1) → 0 a.s., and the theorem follows.

4. Conclusion. We introduce a new idea to solve numerically multidimensional
SDEs with multiplicative noise, whose dynamical properties can be meaningfully in-
fluenced by the noise terms. Applying the new methodology we obtain stable numer-
ical methods for bilinear systems of SDEs, which have good numerical performances.
Bilinear SDEs appears in applications such as dynamical studies of the motion of heli-
copter rotor blades in a turbulent wind. We also develop a promising stable numerical
scheme for scalar SDEs with multiplicative noise.

REFERENCES

[1] A. Abdulle and S. Cirilli, S-ROCK: Chebyshev methods for stiff stochastic differential equa-
tions, SIAM J. Sci. Comput., 30 (2008), pp. 997–1014.

[2] J. Alcock and K. Burrage, A note on the Balanced method, BIT, 46 (2006), pp. 689–710.
[3] D. F. Anderson and J. C. Mattingly, A weak trapezoidal method for a class of stochastic

differential equations, Commun. Math. Sci., 9 (2011), pp. 301–318.
[4] L. Arnold, Random dynamical systems, Springer, Berlin, 1998.
[5] P. H. Baxendale, Moment stability and large deviations for linear stochastic differential equa-

tions, in Probabilistic Methods in Mathematical Physics, Proc. 1985 Katata/Kyoto conf.,
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