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A FINITE ELEMENT ANALYSIS OF A PSEUDOSTRESS

FORMULATION FOR THE STOKES EIGENVALUE PROBLEM

SALIM MEDDAHI, DAVID MORA, AND RODOLFO RODRÍGUEZ

Abstract. In this paper we analyze a finite element approximation of the
Stokes eigenvalue problem. We present a variational formulation of the prob-
lem relying only on the pseudostress tensor. We present an H(div)-conforming
discretization of the problem by means of the lowest order Brezzi-Douglas-
Marini mixed finite element. We show that the resulting scheme provides
a correct approximation of the spectrum and prove quasi-optimal error esti-
mates. Finally, We present some numerical experiments supporting our theo-
retical results.

1. Introduction

The finite element approximation of eigenvalue problems is the object of great
interest from both the practical and theoretical point of view. We refer to [1, 3,
19] and the references therein for the state of art in this subject area. We are
particularly interested here in the finite element analysis of the Stokes eigenvalue
problem. The practical interest in Stokes eigenvalues and eigenmodes is explained
in [16]. One motivation may be, for example, the study of a plate buckling problem.
Indeed, it is well known that when this problem is subject to clamped boundary
conditions it admits an equivalent formulation in terms of a Stokes problem, see
[19, Section 7(d)] and [7].

Two formulations of the Stokes eigenvalue problem were analyzed in Mercier
et al. [19, Section 7(d,e)]. More recently, an alternative study was presented in
[4] (see also Part 3 of [3] and the references therein). This approach relies on the
usual velocity-pressure formulation of the Stokes system and it was also used in
[17] to perform an a posteriori error analysis. The aim of this paper is to propose a
new formulation of the problem. We follow the strategy used in [6, 12, 13] for the
stationary source Stokes problem and introduce the so-called pseudostress tensor
as a variable. Actually we will eliminate the pressure and velocity fields from
the eigenvalue variational formulation and keep the pseudostress σ as the only
unknown of the problem. As this variable will be sought in H(div; Ω), we illustrate
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our spectral approximation theory by means of the lowest order Brezzi-Douglas-
Marini (BDM) mixed finite element. It is worth mentioning that although we are
using the pseudostress as a unique variable, the velocity and the pressure fields can
be easily post-processed.

The well-known Babuška-Osborn abstract spectral approximation theory (see
[1]) can not be used to deal with the analysis of our problem. Indeed, the kernel of
the bilinear form defining the variational formulation has, in our case, an infinite
dimensional kernel. The corresponding the solution operator is not compact and a
nontrivial essential spectrum may, in such cases, originate a spectral pollution at
the discrete level. We follow here [18], and take advantage of the classical theory
developed in [8, 9] for non-compact operators, to prove that our numerical scheme
provides a safe approximation of the eigenvalues at a quasi-optimal convergence
rate.

The outline of this article is as follows: we introduce in section 2 the variational
formulation of the eigenvalue Stokes problem and define the solution operator.
Section 3 is devoted to the spectrum characterization of the solution operator. In
section 4, we introduce the discrete eigenvalue problem and describe the spectrum
of the discrete solution operator. In section 5, we prove that the numerical scheme
provides a correct spectral approximation and establish quasi-optimal error esti-
mates for the eigenvalues and eigenfunctions. Finally, we present in section 6 a set
of numerical experiments to confirm that the method is not polluted with spurious
modes and to show that the experimental rates of convergence are in accordance
with the theoretical ones.

We end this section with some notations that will be used below. Given any
Hilbert space V , let V n and V n×n denote, respectively, the space of vectors and
tensors of order n (n = 2 or 3) with entries in V . Given τ := (τij) and σ :=
(σij) ∈ Rn×n, we define as usual the transpose tensor τ t := (τji), the tensor inner
product τ : σ :=

∑n

i,j=1 τijσij , the trace tr τ :=
∑n

i=1 τii and the deviatoric tensor

τ D := τ − 1
n
(tr τ ) I, where I stands for the identity matrix of Rn×n.

Let Ω be a generic Lipschitz bounded domain ofRn with boundary ∂Ω. For s ≥ 0,
‖·‖s,Ω stands indistinctly for the norm of the Hilbertian Sobolev spaces Hs(Ω),

Hs(Ω)n or Hs(Ω)n×n, with the convention H0(Ω) := L2(Ω). We also define for s ≥ 0
the Hilbert space Hs(div; Ω) := {τ ∈ Hs(Ω)n×n : div τ ∈ Hs(Ω)n}, whose norm is

given by ‖τ‖2Hs(div;Ω) := ‖τ‖2s,Ω + ‖div τ‖2s,Ω and denote H(div; Ω) := H0(div; Ω).

Finally, we employ 0 to denote a generic null vector or tensor and use C to
denote generic constants independent of the discretization parameters, which may
take different values at different places.

2. The spectral problem

Let Ω ⊂ Rn (n=2,3) be a bounded and connected Lipschitz domain. We assume
that the boundary ∂Ω admits a disjoint partition ∂Ω = Γ∪Σ and denote by ν the
outward unit normal vector to ∂Ω.
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The Stokes eigenvalue problem is formulated as follows (see [17]): Find (λ,u, p)
such that,

(2.1)





−div(∇u) +∇p = λu in Ω,
divu = 0 in Ω,

u = 0 on Γ,
(∇u− pI)ν = 0 on Σ.

Our aim is to employ a dual-mixed approach to derive a variational formulation of
this problem. To this end, we introduce the pseudostress tensor (see [6])

(2.2) σ := ∇u− pI

and reformulate (2.1) as follows in terms of this variable: Find (λ,σ,u) such that,

(2.3)





−divσ = λu in Ω,
σD −∇u = 0 in Ω,

u = 0 on Γ,
σν = 0 on Σ.

We point out that the pressure p disappeared from the formulation but it can be
recovered since

(2.4) p = −
1

n
tr(σ).

We notice that the vector space

W := {τ ∈ H(div; Ω) : τν = 0 on Σ}

endowed with the H(div; Ω)-inner product is a Hilbert space. Testing the second
equation of (2.3) with τ ∈ W and integrating by parts yield

∫

Ω

σD : τ +

∫

Ω

u · div τ = 0.

Next, we eliminate u from the last identity by using the first equation of (2.3) to
obtain ∫

Ω

divσ · div τ = λ

∫

Ω

σD : τ D ∀τ ∈ W ,

Consequently, the pseudostress Stokes eigenvalue formulation reads as follows:

Problem 1. Find λ ∈ R, 0 6= σ ∈ W, such that
∫

Ω

divσ · div τ = λ

∫

Ω

σD : τ D ∀τ ∈ W .

It is convenient to use a shift argument to rewrite this eigenvalue problem in the
form:

Problem 2. Find λ ∈ R, 0 6= σ ∈ W, such that

a(σ, τ ) = (λ+ 1)b(σ, τ ) ∀τ ∈ W ,

where the bounded bilinear forms a(·, ·) and b(·, ·) are given by

a(σ, τ ) :=

∫

Ω

σD : τ D +

∫

Ω

divσ · div τ , σ, τ ∈ W ,

b(σ, τ ) :=

∫

Ω

σD : τ D, σ, τ ∈ W .
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We introduce the solution operator

T : W −→ W ,

f 7−→ T (f) := σ∗,

where σ∗ ∈ W is the solution of the source problem

a(σ∗, τ ) = b(f , τ ) ∀τ ∈ W .(2.5)

The following lemma allows us to establish the well-posedness of problem (2.5).

Lemma 2.1. There exists a constant α > 0, depending on Ω, such that

a(τ , τ ) ≥ α‖τ‖H(div;Ω) ∀τ ∈ W .

Proof. For any τ ∈ H(div; Ω), let τ 0 := τ − 1
n|Ω|

(∫
Ω
tr τ

)
I. It is proved in [5,

Proposition IV.3.1] that there exists C1 > 0, depending only on Ω, such that
(∥∥τ D

∥∥2
0,Ω

+ ‖div τ‖20,Ω

)
≥ C1 ‖τ 0‖

2
0,Ω ∀τ ∈ H(div; Ω).

On the other hand, one can easily adapt the proof from [11, Lemma 2.2] to show
that there exists C2 > 0, depending only on Ω, such that

‖τ 0‖
2
H(div;Ω) ≥ C2 ‖τ‖

2
H(div;Ω) ∀τ ∈ W .

The result follows now immediately from the last two inequalities and the fact that
div τ 0 = div τ in Ω. �

We deduce from Lemma 2.1 that the linear operator T is well defined and
bounded. Notice that (λ,σ) ∈ R×W solves Problem 1 if and only if (1/(1+λ),σ)
is an eigenpair of T , i.e., if and only if

Tσ = µσ, with µ :=
1

1 + λ
.

It is important to realize that T is self-adjoint with respect to the inner product
a(·, ·) in W . Indeed, given f , g ∈ W , we let σ and τ be the solutions of (2.5) with
sources f and g, respectively. Therefore σ = Tf and τ = Tg and

a(Tf , g) = a(σ, g) = b(f , g) = b(g,f) = a(f , τ ) = a(f ,Tg).

3. Spectral characterization

Our aim here is to describe the spectrum sp(T ) of the solution operator. To this
end, we consider

K := {τ ∈ W : div τ = 0 in Ω} .

It is straightforward that T |K : K −→ K reduces to the identity. Thus, µ = 1 is an
eigenvalue of T and the corresponding eigenfunction σ satisfies by definition

∫

Ω

divσ · div τ = 0, ∀τ ∈ W .

Consequently, the following result holds true.

Lemma 3.1. The operator T admits the eigenvalue µ = 1 and K is the associated
eigenspace.
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Let us introduce now the auxiliary operator

P : W −→ W ,

σ 7−→ P (σ) := σ̃,

where (σ̃, ũ) ∈ W × L2(Ω)n is the solution of the following mixed problem:
∫

Ω

σ̃
D : τ D +

∫

Ω

ũ · div τ = 0 ∀τ ∈ W ,(3.1)

∫

Ω

v · div σ̃ =

∫

Ω

v · divσ ∀v ∈ L2(Ω)n.(3.2)

The Babuška-Brezzi theory shows that this problem is well posed. Indeed, it is
well-known that the inf-sup condition

sup
τ∈W

∫
Ω v · div τ

‖τ‖H(div;Ω)
≥ β‖v‖0,Ω ∀v ∈ L2(Ω)n

holds true and Lemma 2.1 guaranties that the bilinear form
∫
Ω σD : τ D is elliptic

on K. Therefore, the linear operator P is well defined and bounded. Actually,
Problem (3.1)–(3.2) is none other than the dual-mixed formulation of the following
Stokes problem with external body force −divσ:

−div σ̃ = −divσ in Ω,(3.3)

σ̃
D = ∇ũ in Ω,(3.4)

σ̃ν = 0 on Σ,(3.5)

ũ = 0 on Γ.(3.6)

It is straightforward to check that (σ̃, ũ) ∈ H(div; Ω) × H1(Ω)n satisfies these
equations if and only if (σ̃, ũ) ∈ W × L2(Ω)n is the solution to (3.1)–(3.2).

Owing to the regularity result for the classical Stokes problem (see, for instance,
[10, 14, 21]), we know that the solution ũ to (3.3)–(3.6) belongs to H1+s(Ω)n for
some s ∈ (0, 1] depending on the geometry of Ω and

(3.7) ‖ũ‖1+s,Ω ≤ C ‖divσ‖0,Ω ,

with C > 0 independent of σ. From now on, s ∈ (0, 1] denotes a constant such that
this inequality holds true. As a consequence of this regularity result, we can state
the following lemma.

Lemma 3.2. There exists C > 0 such that for all σ ∈ W, if (σ̃, ũ) ∈ W×L2(Ω)n

is the solution to equations (3.1)–(3.2), then

‖σ̃‖s,Ω + ‖ũ‖1+s,Ω ≤ C ‖divσ‖0,Ω .

Consequently, P (W) ⊂ Hs(Ω)n×n.

It is easy to check that the operator P is idempotent and that its kernel is
given by Ker(P ) = K. Therefore, being P a projector, we have the direct sum
W = K ⊕ P (W). Moreover, it is clear that K and P (W) are orthogonal with
respect to the inner product a(·, ·) of W .

Lemma 3.3. The subspace P (W) is invariant for T .
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Proof. The result is a direct consequence of the a(·, ·)-orthogonality of the decom-
positionW = K⊕P (W) and of the fact that T is self-adjoint operator with respect
to the same bilinear form. Indeed, for any σ ∈ W ,

a(T (Pσ), τ )) = a(Pσ,Tτ ) = a(Pσ, τ ) = 0 ∀τ ∈ K.

Hence, T (Pσ) is orthogonal to K with respect to a(·, ·), which is equivalent to
T (Pσ) ∈ P (W). �

The properties of T , as an operator from P (W) into itself, are established in
the following result.

Proposition 3.1. The self-adjoint operator T satisfies

(3.8) T (P (W)) ⊂
{
σ∗ ∈ Hs(Ω)n×n : divσ∗ ∈ H1(Ω)n

}
,

and there exists C > 0 such that for all f ∈ P (W), if σ∗ = Tf , then

(3.9) ‖σ∗‖s,Ω + ‖divσ∗‖1,Ω ≤ C ‖f‖H(div;Ω) .

Consequently, the operator T |P (W) : P (W) −→ P (W) is compact.

Proof. According to Lemma 3.3, T |P (W) : P (W) −→ P (W) is correctly defined.

Let us consider σ∗ = Tf with f ∈ P (W). Testing (2.5) with τ ∈ D(Ω)n×n ⊂ W

yields

σ∗D −∇ (divσ∗) = fD,

which proves that divσ∗ ∈ H1(Ω)n.
On the other hand, from Lemmas 3.3 and 3.2, σ∗ ∈ T (P (W)) ⊂ P (W) ⊂

Hs(Ω)n×n, so that (3.8) holds true and estimate (3.9) follows from Lemma 3.2.
Finally, the compactness of T |P (W) is a consequence of the compact embedding of
the subspace {

σ∗ ∈ Hs(Ω)n×n : divσ∗ ∈ H1(Ω)n
}
∩W

in W . �

We are now in a position to provide a spectral characterization of T .

Theorem 3.1. The spectrum of T decomposes as follows: sp(T ) = {0, 1}∪{µk}k∈N
,

where:

i) µ = 1 is an infinite-multiplicity eigenvalue of T and its associated eigenspace
is K;

ii) {µk}k∈N
⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T which

converge to 0 and the corresponding eigenspaces lie in P (W); moreover,
the ascent of each of these eigenvalues is 1;

iii) µ = 0 is an eigenvalue of T and its associated eigenspace is {τ ∈ W : τ D =
0} = {qI : q ∈ H1(Ω), and q = 0 on Σ}.

Proof. As W = K⊕ P (W), T |K : K −→ K reduces to the identity and T |P (W) :
P (W) −→ P (W) is compact (cf. Proposition 3.1), the decomposition of sp(T ) fol-
lows immediately from the classical spectral characterization of compact operators.
Property (i) was established in Lemma 3.1. Property (ii) follows from Proposi-
tion 3.1. Finally, it is easy to check that {τ ∈ W : τ D = 0} is the eigenspace of T
associated to µ = 0. The result follows by noting that τ D = 0 if and only if τ = qI,
with q = 1

n
tr τ ∈ L2(Ω), ∇q = div τ ∈ L2(Ω)n and qn = τn on Σ. �
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As an immediate consequence of Proposition 3.1 (cf. (3.9)) we have the following
additional regularity result for the eigenfunctions of T lying in P (W).

Corollary 3.1. Let σ ∈ W be an eigenfunction of T associated to an eigenvalue
µ ∈ (0, 1). Then, σ ∈ Hs(Ω)n×n, divσ ∈ H1(Ω)n, and

‖σ‖s,Ω + ‖divσ‖1,Ω ≤ C ‖σ‖H(div;Ω) ,

with C > 0 depending on the eigenvalue.

4. The discrete problem

Let {Th(Ω)}h>0 be a shape-regular family of triangulations of the polyhedral
(polygonal) domain Ω by tetrahedra (triangles) T with mesh size h. In what follows,
given an integer k ≥ 0 and a subset S of Rn, Pk(S) denotes the space of polynomials
defined in S of total degree less or equal than k.

We define the discrete version of W by

Wh :=
{
τh ∈ W : τh|T ∈ P1(T )

n×n ∀T ∈ Th(Ω)
}
.

In addition, for the analysis below, we will need the space

Uh :=
{
vh ∈ L2(Ω)n : vh|T ∈ P0(T )

n ∀T ∈ Th(Ω)
}
.

Let us recall now some well-known approximation properties of the finite element
spaces introduced above. Given s ∈ (0, 1], we denote byΠh : Hs(Ω)n×n∩W → Wh

the usual BDM interpolation operator (see [5]) characterized by the conditions:
∫

F

(Πhτ )νF · p =

∫

F

τνF · p ∀p ∈ P1(F )n

for all face (edge) F of T ∈ Th(Ω), where νF is a unit normal vector to the face
(edge) F . The following commuting diagram property holds true (cf. [5]):

(4.1) div(Πhτ ) = Lh(div τ ) ∀τ ∈ Hs(Ω)n×n ∩ H(div; Ω),

where Lh : L2(Ω)n −→ Uh is the L2(Ω)n-orthogonal projector. In addition, it is
well-known (see, e.g., [15, Theorem 3.16]) that there exists C > 0, independent of
h, such that for any τ ∈ Hs(Ω)n×n ∩ H(div; Ω) there holds

(4.2) ‖τ −Πhτ‖0,Ω ≤ Chs
(
‖τ‖s,Ω + ‖div τ‖0,Ω

)
.

Thus, for any s ∈ (0, 1], we have:

‖v −Lhv‖0,Ω ≤ Chs ‖v‖s,Ω ∀v ∈ Hs(Ω)n,(4.3)

‖τ −Πhτ‖H(div;Ω) ≤ Chs ‖τ‖Hs(div;Ω) ∀τ ∈ Hs(div; Ω) ∩W .(4.4)

Actually, (4.4) is a straightforward consequence of (4.1), (4.2), and (4.3).
Let us now introduce the discrete counterpart of Problem 1.

Problem 3. Find λh ∈ R, 0 6= σh ∈ Wh, such that
∫

Ω

divσh · div τh = λh

∫

Ω

σD
h : τ D

h ∀τh ∈ Wh.

The discrete version of the operator T is then given by

T̃ h : W −→ W ,

f 7−→ T̃ h(f ) := σ∗
h,
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where σ∗
h ∈ Wh is the solution of the discrete source problem,

a(σ∗
h, τh) = b(f , τ h) ∀τ h ∈ Wh.

Because of Lemma 2.1 and the Lax-Milgram Theorem, T̃ h is well defined and
uniformly bounded with respect to h. Moreover, Céa lemma ensures the existence
of a constant C > 0, independent of h, such that for all σ ∈ W ,

(4.5) ‖Tσ − T̃ hσ‖H(div;Ω) ≤ C inf
τh∈Wh

‖Tσ − τh‖H(div;Ω) .

Notice that, as T̃ h(W) ⊂ Wh, we are allowed to introduce

T h := T̃ h|Wh
: Wh −→ Wh.

It is well-known that sp(T̃ h) = sp(T h) ∪ {0} (see, for instance, [2, Lemma 4.1]).
Once more, as in the continuous case, (λh,σh) ∈ R × Wh solves Problem 3 if

and only if (1/(1 + λh),σh) is an eigenpair of T h, i.e., if and only if

T hσh = µhσh, with µh :=
1

1 + λh

.

Moreover, T h is also self-adjoint with respect to a(·, ·). To describe the spectrum
of this operator, we will proceed as in the continuous case and decompose Wh into
a convenient direct sum. To this end, we define

Kh := K ∩Wh = {τh ∈ Wh : div τh = 0 in Ω}

and notice that, here again, T h|Kh
: Kh −→ Kh reduces to the identity. Hence,

µh = 1 is an eigenvalue of T h and Kh is the associated eigenspace. Therefore, we
have the following discrete analogue to Lemma 3.1.

Lemma 4.1. The operator T h admits the eigenvalue µh = 1 and Kh is the asso-
ciated eigenspace.

We define the discrete version of the auxiliary operator P by

P h : W −→ Wh,

σ 7−→ P h(σ) := σ̃h,

where (σ̃h, ũh) ∈ Wh×Uh is the solution of the following mixed discrete problem:
∫

Ω

σ̃
D
h : τ D

h +

∫

Ω

ũh · div τh = 0 ∀τh ∈ Wh,(4.6)

∫

Ω

vh · div σ̃h =

∫

Ω

vh · divσ ∀vh ∈ Uh.(4.7)

We point out that the inf-sup condition

sup
τh∈Wh

∫
Ω vh · div τh

‖τh‖H(div;Ω)
≥ β̂‖vh‖0,Ω ∀vh ∈ Uh

is satisfied with a constant β̂ independent of h (see [5]). Moreover, the ellipticity of
the bilinear form

∫
Ω
σD : τ D on the discrete kernelKh follows easily from Lemma 2.1

and the fact that div(Wh) ⊂ Uh. Hence, as a consequence of the Babuška-Brezzi
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theory, problem (4.6)–(4.7) is well posed. The linear operator P h is then well de-
fined and uniformly bounded with respect to h. Finally, the following Céa estimate
holds true:

(4.8) ‖σ̃ − σ̃h‖H(div;Ω) + ‖ũ− ũh‖0,Ω

≤ C

[
inf

τh∈Wh

‖σ̃ − τh‖H(div;Ω) + inf
vh∈Uh

‖ũ− vh‖0,Ω

]
,

where (σ̃, ũ) and (σ̃h, ũh) are the solutions to (3.1)–(3.2) and (4.6)–(4.7), respec-
tively. This estimate, combined with the approximation properties (4.4)–(4.3),
leads to

(4.9) ‖Pσ − P hσ‖H(div;Ω) ≤ Chs
[
‖σ̃‖Hs(div;Ω) + ‖ũ‖s,Ω

]

whenever σ̃ ∈ Hs(Ω)n×n, ũ ∈ Hs(Ω)n, and div σ̃ ∈ Hs(Ω)n. We already know
from Lemma 3.2 that σ̃ ∈ Hs(Ω)n×n and ũ ∈ Hs(Ω)n. However, div σ̃ cannot be
in Hs(Ω)n when σ is arbitrary in W . Indeed, from (3.2), div σ̃ = divσ which is
in general only in L2(Ω)n. In spite of this fact, there are two cases (see Lemma
4.2 below) in which an O(hs) convergence for ‖Pσ − P hσ‖H(div;Ω) can be proved.

Fortunately, this is enough to develop the spectral approximation theory of our
problem.

Lemma 4.2. There exists C > 0 such that:

i) if σ is an eigenfunction of T associated to an eigenvalue µ ∈ (0, 1), then

‖Pσ − P hσ‖H(div;Ω) ≤ Chs ‖σ‖H(div;Ω) ;

ii) if σh ∈ Wh, then

‖Pσh − P hσh‖H(div;Ω) ≤ Chs ‖divσh‖0,Ω .

Proof. Case (i). The estimate follows from (4.9), Lemma 3.2, and Corollary 3.1.
Case (ii). For σh ∈ Wh, let σ̃ = Pσh and σ̃h = P hσh. By virtue of (4.8),

(4.3) and Lemma 3.2, we have that

‖Pσh − P hσh‖H(div;Ω) ≤ C

[
inf

τh∈Wh

‖σ̃ − τh‖H(div;Ω) + hs ‖divσh‖0,Ω

]
.

Now, as σ̃ ∈ W ∩ Hs(Ω)n×n (cf. Lemma 3.2), τ h := Πhσ̃ ∈ Wh is well defined
and, according to (4.2),

‖σ̃ −Πhσ̃‖0,Ω ≤ Chs
(
‖σ̃‖s,Ω + ‖div σ̃‖0,Ω

)
.

On the other hand, from (3.2), div σ̃ = divσh in Ω. Therefore, because of (4.1),

div(Πhσ̃) = Lh(div σ̃) = Lh(divσh) = divσh = div σ̃,

which proves that
‖σ̃ −Πhσ̃‖H(div;Ω) = ‖σ̃ −Πhσ̃‖0,Ω

and the result follows. �

We point out that for any σ ∈ W , (4.7) implies that
∫

Ω

vh · div(P hσ) =

∫

Ω

vh · divσ, ∀vh ∈ Uh.

Consequently, P h|Wh
is idempotent which permits us to write Wh as a direct sum

of the kernel Kh of P h|Wh
and its range P h(Wh), i.e., Wh = Kh ⊕ P h(Wh).
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Actually, it is easy to show that this decomposition is orthogonal with respect to
a(·, ·). Consequently, the proof of Lemma 3.3 can be reproduced verbatim to obtain
the following analogue result.

Lemma 4.3. The subspace P h(Wh) is invariant for T h.

Theorem 4.1. The spectrum of T h consists of M := dim(Wh) eigenvalues,
repeated accordingly to their respective multiplicities. The spectrum decomposes as

follows: sp(T h) = {0, 1} ∪ {µhk}
K

k=1. Moreover,

i) the eigenspace associated with µh = 1 is Kh;
ii) µhk ∈ (0, 1), k = 1, . . . ,K := M − dim(Kh), are nondefective eigenvalues

with eigenspaces lying on P h(Wh);
iii) µh = 0 is an eigenvalue of T h and its associated eigenspace is {τh ∈ Wh :

τ D
h = 0}.

Proof. Since Wh = Kh ⊕ P h(Wh), T h|Kh
: Kh −→ Kh is the identity and

T h(P h(Wh)) ⊂ P h(Wh) (cf. Lemma 4.3), the theorem follows from Lemmas 4.1
and the definition of T h. �

Remark 4.1. The eigenspace of T h corresponding to µh = 0 can be characterized
by

{τh ∈ Wh : τ D
h = 0} = {qhI : qh ∈ Vh},

where

Vh := {qh ∈ H1(Ω) : qh|T ∈ P1(T ) ∀T ∈ Th(Ω), and q = 0 on Σ}.

This follows from the same arguments used in the proof of Theorem 3.1(iii) and
the fact that for all qh ∈ Vh, qhI ∈ Wh. We notice that this characterization does
not necessarily hold true for other conforming discretization of H(div; Ω) like the
Raviart-Thomas mixed finite element.

5. Spectral approximation

To prove that T h provides a correct spectral approximation of T , we will resort
to the theory developed in [8] for noncompact operators. To this end, we first
introduce some notations. For any linear operator S : W −→ W , we define the
norm

‖S‖h := sup
τh∈Wh

‖Sτh‖H(div;Ω)

‖τh‖H(div;Ω)

.

Given τ ∈ W and two closed subspaces Y and Z of W , we set

δ(τ ,Y) := inf
y∈Y

‖τ − y‖H(div;Ω) , δ(Y ,Z) := sup
y∈Y : ‖y‖H(div;Ω)=1

δ(y,Z),

and

δ̂(Y ,Z) := max {δ(Y ,Z), δ(Z ,Y)} .

The number δ̂(Y ,Z) is usually called the gap between subspaces Y and Z .
The theory from [8] guaranties a good approximation of the spectrum of T if the

following two properties are satisfied:

• (P1): ‖T − T h‖h → 0, as h → 0,
• (P2): ∀τ ∈ W , limh→0 δ(τ ,Wh) = 0.
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Property (P2) follows immediately from the approximation property of the finite
element space (4.4) and the density of smooth functions in W . Hence, it only
remains to show that property (P1) holds true.

Lemma 5.1. There exists C > 0, independent of h, such that

‖T − T h‖h ≤ Chs.

Proof. Given σh ∈ Wh, we have that

(T − T h)(σh) = (T − T h)(P hσh) + (T − T h)((I − P h)(σh))

= (T − T h)(P hσh),

where the last identity is justified by the fact that (I − P h) is a projector onto
Ker(P h) = Kh ⊂ K. We recall that the restriction of both T and T h to this
subspace reduces to the identity. Let us consider now the splitting

(T − T h)(P hσh) = (T − T̃ h)((P h − P )(σh))︸ ︷︷ ︸
E1

+(T − T̃ h)(Pσh)︸ ︷︷ ︸
E2

.

For the first term we use Lemma 4.2 (ii) to obtain the estimate

‖E1‖H(div;Ω) ≤
(
‖T ‖+ ‖T̃ h‖

)
‖(P h − P )(σh)‖H(div;Ω) ≤ C1h

s ‖σh‖H(div;Ω) .

By virtue of Céa estimate (4.5), the second one is bounded as follows

‖E2‖H(div;Ω) ≤ C2 inf
τh∈Wh

‖T (Pσh)− τh‖H(div;Ω) .

Now, according to Proposition 3.1, if we denote σ∗ = T (Pσh), then σ∗ ∈ Hs(Ω)n×n,
divσ∗ ∈ H1(Ω)n and

‖σ∗‖s,Ω + ‖divσ∗‖1,Ω ≤ C3 ‖Pσh‖H(div;Ω) ≤ C4 ‖σh‖H(div;Ω) .

We deduce from the two last estimates and the approximation property (4.4) that

‖E2‖H(div;Ω) ≤ C2 inf
τh∈Wh

‖σ∗ − τh‖H(div;Ω) ≤ C5h
s ‖σh‖H(div;Ω) .

Summing up, we have shown that

‖(T − T h)(σh)‖H(div;Ω) ≤ C6h
s ‖σh‖H(div;Ω) σh ∈ Wh

with C6 independent of h which proves the lemma. �

The following result is a consequence of properties (P1) and (P2), see [8, Theorem
1].

Theorem 5.1. Let F ⊂ C be an open set containing sp(T ). Then, there exist
h0 > 0 such that sp(T h) ⊂ F , for all h < h0.

This theoremmeans that our Galerkin scheme does not introduce spurious modes
with eigenvalues interspersed among the positive eigenvalues of Problem 1. Indeed,
assume that µ ∈ (0, 1) is an isolated eigenvalue of T with finite multiplicity m and
that C is an open circle in the complex plane centered at µ with boundary γ, such
that µ is the only eigenvalue of T lying in C and γ ∩ sp(T ) = ∅. Then, according
to [8, Section 2], for h small enough, there exist m eigenvalues µh1, . . . , µhm of T h

(repeated accordingly to their respective multiplicities) converging to µ as h → 0.
The next step in our analysis is to to apply the results from [9] to obtain error

estimates. To this aim, we consider the eigenspace E of T corresponding to µ and
the invariant subspace Eh of T h spanned by the eigenspaces of T h corresponding
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to µh1, . . . , µhm. Since T and T h are self-adjoint with respect o a(·, ·), we have the
following results from [9].

Theorem 5.2. There exists a constant C > 0, independent of h such that

δ̂ (Eh,E) ≤ Cδ(E ,Wh).

Proof. The result follows from arguments similar to those used in the proof of [9,
Theorem 1]. �

We recall that µ ∈ (0, 1) is an eigenvalue of T with multiplicity m if and only
λ := (1/µ) − 1 is an eigenvalue of Problem 1 with the same multiplicity and the
corresponding eigenfunctions coincide. Analogously, µhi, i = 1, . . . ,m, are the
eigenvalues of T h (repeated accordingly to their respective multiplicities) converg-
ing to µ as h approaches zero if and only if λhi := (1/µhi)− 1 are the eigenvalues
of Problem 3 converging to λ and the corresponding eigenfunctions also coincide.
Thus, the theorem above provides an error estimate for the eigenfunctions of Prob-
lem 1. Finally, we have the following result that provides an error estimate for the
eigenvalues.

Theorem 5.3. There exist constant C > 0, independent of h such that for all h
small enough

|λ− λhi| ≤ Cδ(E ,Wh)
2, i = 1, . . . ,m.

Proof. A proof of this result is given in [9, Theorem 3], but for the sake of com-
pleteness, we include here a simpler demonstration that is well adapted for our
case.

Let σhi be an eigenfunction of Problem 3 corresponding to λhi, normalized so
that ‖σhi‖H(div;Ω) = 1. According to Theorem 5.2, δ(σhi,E) ≤ Cδ(E ,Wh). It

follows that there exists an eigenfunction σ ∈ E of Problem 1 corresponding to λ
such that

(5.1) ‖σ − σhi‖H(div;Ω) ≤ Cδ(E ,Wh).

The key tool in the prove the theorem is the identity (see, for instance, [1,
Lemma 9.1])

(5.2) (λhi − λ) b(σhi,σhi) = a(σ − σhi,σ − σhi)− (λ+ 1) b(σ − σhi,σ − σhi).

It is obtained by straightforward calculations after noticing that, by virtue of Prob-
lems 1 and 3,

a(σ, τ ) = (λ+ 1) b(σ, τ ) ∀τ ∈ W ,

a(σhi, τ h) = (λhi + 1) b(σhi, τ h) ∀τ h ∈ Wh.

Lemma 2.1 and the fact that λhi → λ as h goes to zero yield

b(σhi,σhi) =
a(σhi,σh)

λhi + 1
≥

α‖σhi‖2H(div;Ω)

λhi + 1
≥ C̃.

Using the last estimate to bound the left hand side of (5.2) from below and the
continuity of a and b and (5.1) to bound the right hand side from above we deduce
that

|λ− λhi| ≤ Cδ(E,Wh)
2, i = 1, . . . ,m,

which proves the theorem. �
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The two theorems above yield error estimates depending on δ(E,Wh). The order
of convergence will then depend on the regularity of the eigenfunctions. Since
we already proved additional smoothness of these eigenfunctions (see (4.4) and
Corollary 3.1), we can assert that

‖σ −Πhσ‖H(div;Ω) ≤ Chs ‖σ‖Hs(div;Ω) ≤ Chs ‖σ‖H(div;Ω) ∀σ ∈ E,

which proves that
δ(E ,Wh) ≤ Chs.

6. Numerical Results

We present in this section results from numerical tests carried out with the
method proposed in Section 4 to confirm the theoretical results proved above. The
numerical method was implemented in a MATLAB code. We used uniform meshes
as shown in Figure 1. The refinement parameter N used to label each mesh is the
number of elements on each edge. In all the tables below the results are obtained
by using four successive meshes with an increasing level of refinement. In each case,
we list the lowest eigenvalues λhi of Problem 3 and give an estimate of the order of
convergence of the Galerkin scheme. We also report a more accurate extrapolated
approximation of the eigenvalues obtained by a least-squares fitting.

N = 2 N = 4 N = 6

Figure 1. Uniform meshes.

6.1. Test 1: In this numerical test we take Ω := (−1, 1)× (−1, 1) and consider a
non-slip boundary conditions on the whole ∂Ω. In Table 1, we compare our results
with those obtained in [17] for a velocity-pressure formulation of the Stokes system
and a Galerkin method based on the MINI-element.

Table 1. Lowest eigenvalues λhi, i = 1, . . . , 6 of the Stokes prob-
lem computed with the method analyzed in this paper.

N = 10 N = 20 N = 30 N = 40 Order Extrapolated [17]
λh1 13.4657 13.1823 13.1290 13.1103 1.98 13.0860 13.086

λh2 = λh3 24.2868 23.3472 23.1718 23.1103 1.99 23.0308 23.031
λh4 34.2444 32.6220 32.3075 32.1963 1.93 32.0443 32.053
λh5 41.4711 39.2828 38.8666 38.7201 1.96 38.5252 38.532
λh6 45.9681 42.8124 42.2263 42.0211 2.00 41.7588 41.759

It is clear that the results obtained by the two methods agree and that the
eigenvalue approximation order is quadratic. We also point out that the symmetry
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of the mesh permits to preserve the double multiplicity of the second eigenvalue at
the discrete level.

6.2. Test 2: In this numerical test we compare our method with a finite element
method analyzed in [20] to solved the plate buckling problem. The computational
domain is given this time by the unit square Ω := (0, 1) × (0, 1). As we already
mentioned in the introduction, the Stokes eigenvalue problem with homogeneous
boundary conditions is equivalent to the plate buckling problem (see [7, 19]): Find
λ ∈ R, 0 6= w ∈ H2

0(Ω), such that

(6.1)





∆2w = −λ∆w in Ω,
w = 0 on ∂Ω,

∇w · ν = 0 on ∂Ω,

where the stream function w is related to the velocity by u = curlw = (∂2w,−∂1w).
In Table 2, we list the lowest eigenvalues of problem (6.1) computed by using

the finite element method analyzed in [20]. These results are to be compared with
those of Table 3 where the eigenvalues are obtained by solving Problem 3. It is
clear that our method computes the buckling intensity of a uniformly compressed
clamped plate with a quasi-optimal order of convergence.

Table 2. Lowest eigenvalues λhi, i = 1, . . . , 6 of problem (6.1)
computed with the method from [20].

N = 10 N = 20 N = 30 N = 40 Order Extrapolated
λh1 52.3690 52.3489 52.3464 52.3456 2.61 52.3450

λh2 = λh3 92.4666 92.2058 92.1601 92.1444 2.09 92.1257
λh4 128.8540 128.3586 128.2745 128.2458 2.14 128.2132
λh5 153.7617 154.0403 154.0877 154.1042 2.12 154.1232
λh6 169.3163 167.6182 167.2925 167.1776 1.95 167.0241

Table 3. Lowest eigenvalues λhi, i = 1, . . . , 6 of the Stokes prob-
lem computed with the method analyzed in this paper.

N = 10 N = 20 N = 30 N = 40 Order Extrapolated
λh1 52.7294 52.4412 52.3876 52.3689 1.99 52.3444

λh2 = λh3 93.3889 92.4412 92.2653 92.2036 2.00 92.1249
λh4 130.4880 128.7851 128.4659 128.3538 1.98 128.2070
λh5 157.1313 154.8806 154.4614 154.3145 1.99 154.1236
λh6 171.2498 168.0844 167.4982 167.2930 2.00 167.0293

6.3. Test 3: In this numerical test we will consider our method applied to the
Stokes eigenvalue problem with mixed boundary conditions. The computational
domain is again the unit square Ω := (0, 1)× (0, 1) and Γ := (0, 1)× {0}. We can
see from the results reported in Table 4 that, in this case, the order of convergence
is also quadratic.



A FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM 15

Table 4. Lowest eigenvalues λhi, i = 1, . . . , 6 of the Stokes prob-
lem computed with the method analyzed in this paper.

N = 10 N = 20 N = 30 N = 40 Order Extrapolated
λh1 2.4708 2.4682 2.4678 2.4676 2.00 2.4674
λh2 6.2946 6.2835 6.2813 6.2805 1.85 6.2793
λh3 15.3288 15.2402 15.2232 15.2171 1.94 15.2090
λh4 22.4812 22.2751 22.2371 22.2237 2.00 22.2065
λh5 27.3583 27.0518 26.9945 26.9744 1.98 26.9479
λh6 44.2217 43.4121 43.2619 43.2093 2.00 43.1419

Finally, we show in Figures 2 and 3 the eigenfunctions corresponding to the
lowest four eigenvalues.

Figure 2. Eigenfunctions associated to eigenvalues λh1 (left) and
λh2 (right).

Figure 3. Eigenfunctions associated to eigenvalues λh3 (left) and
λh4 (right).
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References
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


