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Abstract

We first establish a relaxed version of Dines theorem associated to quadratic

minimization problems with finitely many linear equality and a single (noncon-

vex) quadratic inequality constraints. The case of unbounded optimal valued is

also discussed. Then, we characterize geometrically the strong duality, and some

relationships with the conditions employed in Finsler theorem are established. Fur-

thermore, necessary and sufficient optimality conditions with or without the Slater

assumption are derived. Our results can be used to situations where none of the

results appearing elsewhere are applicable. In addition, a revisited theorem due to

Frank and Wolfe along with that due to Eaves is established for asymptotically

linear sets.

Key words. Strong duality, Nonconvex optimization, Quadratic programming,

Relaxed Dines’s theorem.

Mathematics subject classification 2000. Primary: 90C20, 90C46, 49N10,

49N15, 52A10.

1 Introduction

Given a subset C of a finite dimensional space Rn, and functions f : Rn → R, g : Rn →

R, let us consider the following minimization problem:

µ
.
= inf

g(x)≤0
x∈C

f(x). (1)
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†Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Concepción,

Chile (gabcarcamo@udec.cl)

1



2 Characterizing strong duality

The Lagrangian dual problem associated to (1) is

ν
.
= sup

λ≥0
inf
x∈C

[f(x) + λg(x)], (2)

We say Problem (1) has a (Lagrangian) zero duality gap if the optimal values of (1)

and (2) coincide, that is, µ = ν. Problem (1) is said to have strong duality if it has a

zero duality gap and Problem (2) admits a solution. In general, the lack of convexity

makes the problem of characterizing strong duality very difficult.

Quadratic functions have proved to be very important in applications (telecommu-

nications, robust control [30, 35], trust region problems [19, 36]) and enjoy very nice

properties. After the result (C = R
n) due to Gay [19] and Sorensen [36] concerning a

characterization of solutions for a special quadratic optimization problem without any

convexity assumptions, several authors extended such a result for general quadratic

optimization with a single inequality constraint. In particular, we mention the work

by Moré [31] who considered the general case of a single equality constraint and then

used it to cover the single inequality constraint under the standard Slater condition.

Moré actually provided necessary and sufficient optimality conditions for a point to

be optimal under no convexity conditions. Certainly, this may be seen as a strong

duality-type result.

More recently, when C = R
n with g being a quadratic function that is not identically

zero, the authors in [23] prove that, (1) has strong duality for each quadratic function f

if, and only if there exists x̄ ∈ R
n such that g(x̄) < 0, that is, the standard Slater con-

dition holds. Unlike this result and many others established in [22, 24, 26, 25, 27], our

approach allows us to derive conditions on the pair, f and g jointly, that ensure that

(1) has strong duality without satisfying the Slater condition, and under no convexity

assumptions on f or g. This is carried out by further developing the geometric approach

introduced in [15], where strong duality is characterized under a single inequality con-

straint for any (not necessarily quadratic) functions f and g. We actually characterize

completely the strong duality in the presence of finitely many linear equality and a sin-

gle quadratic inequality constraints without convexity assumptions or Slater condition

(Theorem 3.5), and derive necessary and sufficient optimality conditions.

Among the main results showing some of the nice properties of quadratic functions

we mention two of them. The first one is due to Dines [12] (see also [34]) and it

ensures the convexity of the set {(f(x), g(x)) ∈ R
2 : x ∈ R

n} for any homogeneous

quadratic functions f and g. For general quadratic non homogeneous functions we

provide a relaxed version of this result, see Theorem 3.3 when µ is finite, and when

µ = −∞ it is provided conditions under a Dines-type result holds. A second result

showing another nice property of these functions is that due to Frank and Wolfe [17],
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which asserts that any quadratic function bounded from below on a nonempty (possibly

unbounded) polyhedral set attains its infimum value. We establish several equivalences

(including that due to Frank and Wolfe) for a larger family of sets than polyhedral,

whose proof uses elementary analysis and it is related to that by Blum and Oettli [5],

being suitable for expository purposes; whereas the original proof of Frank and Wolfe

requires a decomposition theorem for convex polyhedra.

More precisely, in the present paper, we deal with the case where f and g are

quadratic functions and C = H−1(d) = {x ∈ R
n : Hx = d} where H is a real matrix

of order m×n and d ∈ R
m, and the regularized Lagrangian dual problem is considered.

It means that instead of considering the standard Lagrangian dual problem

sup
λ≥0,γ∈Rm

inf
x∈Rn

[f(x) + λg(x) + γ(Hx− d)], (3)

we choose the regularized Lagrangian dual problem

sup
λ≥0

inf
x∈H−1(d)

[f(x) + λg(x)], (4)

which is more suitable for our purpose since there are instances, specially in trust-

region problems, showing a non zero duality gap between (1) and (3) against with the

zero duality gap between (1) and (4), even if the Slater condition holds, as stated in

[27].

Apart from these characterizations several sufficient conditions of the zero duality

gap for convex programs have been established in the literature, see [18, 1, 2, 41, 6, 8,

9, 37, 32].

The paper is structured as follows. Section 2 provides the formulation of the prob-

lem we are going to discuss along with a characterization of a separation between

a convex set and an open cone in terms of the convexity of the conic hull of some

sets. It contains also a Dines-type theorem when the optimal value µ = −∞. The

main Section 3 starts by proving a relaxed version of Dines theorem when µ is finite,

along with a geometric characterization of strong duality for the minimization problem

with finitely many linear equality and a single quadratic inequality constraints with-

out convexity or Slater assumptions. This will serve to obtain necessary and sufficient

optimality condition, both under or without Slater condition. Some relationships with

the conditions employed in Finsler theorem are also established. Section 4 presents a

refinement and an improvement of the Frank and Wolfe theorem and that due to Eaves

for asymptotically linear sets. In Section 5 some necessary conditions for existence are

derived.



4 Characterizing strong duality

2 Basic notations and formulation of the problem

This section will provides the necessary notations to be employed throughout this

paper along with the formulation of the problem in the nonquadratic situation.

Given a set A ⊆ R
n, its closure is denoted by A; its convex hull by co(A) which is

the smallest convex set containing A; its topological interior by int A. We set cone(A)
.
=

⋃

t≥0

tA, being the smallest cone containing A; cone+(A)
.
=
⋃

t>0

tA, and cone(A)
.
=
⋃

t≥0

tA.

Obviously, cone(A) = cone+(A) ∪ {0}.

Furthermore, A∗ stands for the (non-negative) polar cone of A which is defined by

A∗ .
= {ξ ∈ R

n : 〈ξ, a〉 ≥ 0 ∀ a ∈ A},

where 〈·, ·〉 means the scalar or inner product in R
n; P is a cone if tP ⊆ P for all t ≥ 0.

Another notion to be used in the last section is the asymptotic cone of a set K,

denoted by K∞, and defined by

K∞ .
= {v ∈ R

n : ∃ tk ↓ 0, ∃ xk ∈ K, tkxk → v}.

When K is closed and convex we get K∞ = {v ∈ R
n : x0 + tv ∈ K, ∀ t > 0} for any

x0 ∈ K.

Finally we set R2
++

.
= int R2

+.

2.1 The general case with finite optimal value

In this subsection we assume the real-valued functions f and g are defined in a Haus-

dorff topological space X, and C is a nonempty subset of X.

We associate to Problem (1) the usual linear Lagrangian

L(γ, λ, x)
.
= γf(x) + λg(x),

where γ ≥ 0 and λ ≥ 0 are called the Lagrange multiplier. By setting K = {x ∈

C : g(x) ≤ 0}, we obtain the trivial inequality

γ inf
x∈K

f(x) ≥ inf
x∈K

L(γ, λ, x) ≥ inf
x∈C

L(γ, λ, x), ∀ γ ≥ 0, ∀ λ ≥ 0. (5)

In order to get the equality, we need to find conditions under which the reverse in-

equality holds, that is, we must have:

γ(f(x)− µ) + λg(x) ≥ 0 ∀ x ∈ C. (6)

This will imply strong duality once we get γ > 0, and by recalling that µ = inf
x∈K

f(x).

By setting F (x)
.
= (f(x), g(x)) and so F (C) = {(f(x), g(x)) ∈ R

2 : x ∈ C} along with
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ρ
.
= (γ, λ), the previous inequality can be written as

〈ρ, a〉 ≥ 0 ∀ a ∈ F (C)− µ(1, 0). (7)

The following result, which is important by itself, characterizes completely (7). Part of

this result was established in [16, Theorem 4.1].

Theorem 2.1. Let P ⊆ R
2 be a convex closed cone such that int P 6= ∅, and A ⊆ R

2

be any nonempty set. Then the following assertions are equivalent:

(a) ∃ λ ∈ P ∗ \ {0}, 〈λ, a〉 ≥ 0 ∀ a ∈ A;

(b) A ∩ (−int P ) = ∅ and cone(A+ P ) is convex;

(c) A ∩ (−int P ) = ∅ and cone+(A+ int P ) is convex;

(d) A ∩ (−int P ) = ∅ and cone(A+ int P ) is convex;

(e) cone(A+ int P ) is pointed;

(f) co(A) ∩ (−int P ) = ∅.

Proof. Obviously (c) =⇒ (d) =⇒ (b).

(f) =⇒ (a) It follows from a simple use of a separation result of convex sets.

(a) =⇒ (b): Clearly 〈λ, x〉 ≥ 0 for all x ∈ cone(A+P ). Choose u ∈ int P . Let y, z ∈ A.

Then obviously

cone({y}) + cone({u}) = {sy + tu : s, t ≥ 0}

is a closed convex cone containing y and u and contained in cone(A + P ). The same

is true for the cone cone({z}) + cone({u}). The two cones have the line cone({u})

in common and their union is contained in cone(A + P ), thus it is contained in

the halfspace
{

x ∈ R
2 : 〈λ, x〉 ≥ 0

}

. Hence, the set B
.
= (cone({y}) + cone({u})) ∪

(cone({z}) + cone({u})) is a convex cone. Since y, z ∈ B we deduce that [y, z] ⊆ B ⊆

cone(A + P ). Thus co(A) ⊆ cone(A + P ), from which we infer that cone(A + P ) is

convex since P ⊆ cone(A+ P ) holds as well.

(b) ⇐⇒ (c): Obviously (c) implies (b). If cone(A+ P ) is convex then ([18])

int(cone(A+ P )) = int(cone+(A) + P ) = cone+(A) + int P = cone+(A+ int P )

is convex as well.

(c) =⇒ (e): Let x,−x ∈ cone(A + int P ). Then x = t1(a1 + p1, −x = t2(a2 + p2) for

some ti ≥ 0, ai ∈ A, pi ∈ int P for i = 1, 2. Assuming ti > 0, for i = 1, 2, we have

x,−x ∈ cone+(A + int P ). By convexity, 0 = x + (−x) ∈ cone+(A + int P ), which
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implies that 0 ∈ A+ int P , contradicting the first part of (c).

(e) =⇒ (f): Assume on the contrary that co(A) ∩ (−int P ) 6= ∅. Then, there exist

ai ∈ A, p0 ∈ int P , αi ≥ 0, satisfying
∑m

i=1 αi = 1 and 0 =
∑m

i=1 αiai + p0. Thus,

0 =
∑m

i=1 αi(ai + p0). By pointedness, we get αi(ai + p0) = 0 for all i = 1, · · · ,m.

Hence, 0 = aj + p0 ∈ A+ int P for some j, which implies that cone+(A+ int P ) = R
2,

contradicting (e).

Remark 2.2. An example showing that the preceding result is not valid in dimen-

sion higher than two is given in [15]. This paper also proved that two dimensionality

characterizes the validity of the equivalences in Theorem 2.1 for all sets A.

By virtue of the preceding result and following the reasoning developed in [15], we

need to split the set cone(F (C)−µ(1, 0) +R
2
++). To that purpose, some notations are

in order. By setting K
.
= {x ∈ C : g(x) ≤ 0}, we get K = S−

g (0) ∪ S=
g (0), where

S−
g (0)

.
= {x ∈ C : g(x) < 0}, S=

g (0)
.
= {x ∈ C : g(x) = 0}, S+

g (0)
.
= {x ∈ C : g(x) > 0}.

Similarly, we define

S−
f (µ)

.
= {x ∈ C : f(x) < µ}, S+

f (µ)
.
= {x ∈ C : f(x) > µ},

S=
f (µ)

.
= {x ∈ C : f(x) = µ}.

Furthermore, whenever S−
g (0) ∩ S+

f (µ) 6= ∅ and S−
f (µ) 6= ∅, we set

r
.
= inf

x∈S+
f
(µ)∩S−

g (0)

g(x)

f(x)− µ
, s

.
= sup

x∈S−
f
(µ)

g(x)

f(x)− µ
.

Evidently, −∞ ≤ r < 0, −∞ < s ≤ 0. Notice that

x ∈ S−
f (µ) =⇒ x ∈ S+

g (0).

The latter and other basic facts about the previous sets are collected in the next

proposition.

Proposition 2.3. Let µ ∈ R, we have the following:

(a) C = K ⇐⇒ S+
g (0) = ∅;

(b) [argmin
K

f ∩ S−
g (0) = ∅ and S+

f (µ) ∩ S−
g (0) = ∅] ⇐⇒ S−

g (0) = ∅;

(c) S+
f (µ) ∩ S−

g (0) = ∅ ⇐⇒ S−
g (0) ⊆ argmin

K

f ;

(d) S−
f (µ) = ∅ ⇐⇒ µ = inf

x∈C
f(x);
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(e) S−
f (µ) ⊆ S+

g (0).

Proof. (a), (c) and (e) are straightforward.

(b): Suppose on the contrary that S−
g (0) 6= ∅. Then, by assumption every x ∈ C such

that g(x) < 0 satisfies f(x) ≤ µ. Thus f(x) = µ yielding a contradiction. The other

implication is obvious.

(d): It follows by noticing that S−
f (µ) = ∅ if and only if f(x) ≥ µ for all x ∈ C.

We now proceed to split the set cone[F (C) − µ(1, 0) + R
2
++] by writing F (C) −

µ(1, 0) + R
2
++ = Ω1 ∪ Ω2 ∪ Ω3. This gives

cone(F (C)− µ(1, 0) + R
2
++) = cone(Ω1) ∪ cone(Ω2) ∪ cone(Ω3), (8)

where

Ω1
.
=

⋃

x∈argmin
K

f∩S=
g (0)

[(0, 0) + R
2
++] ∪

⋃

x∈argmin
K

f∩S−
g (0)

[(0, g(x)) + R
2
++];

Ω2
.
=

⋃

x∈S+
f
(µ)∩S−

g (0)

[(f(x)− µ, g(x)) + R
2
++] ∪

⋃

x∈S+
f
(µ)∩S=

g (0)

[(f(x)− µ, 0) + R
2
++];

Ω3
.
=

⋃

x∈S−
f
(µ)

[(f(x)− µ, g(x)) + R
2
++] ∪

⋃

x∈S=
f
(µ)∩S+

g (0)

[(0, g(x)) + R
2
++]∪

∪
⋃

x∈S+
f
(µ)∩S+

g (0)

[(f(x)− µ, g(x)) + R
2
++].

This decomposition will be used in Section 3.

2.2 The general case with unbounded optimal value

We continue by considering real-valued functions defined in a Hausdorff topological

space X.

The case µ = −∞ deserves a special attention and it will be discussed in this subsection.

First of all, it is not difficult to check that

µ = −∞ ⇐⇒ (F (C) + R
2
+) ∩ [(ρ, 0) − (R++ × {0})] 6= ∅, ∀ ρ ∈ R. (9)

By denoting S−
f (0)

.
= {x ∈ C : f(x) < 0} and S+

f (0)
.
= {x ∈ C : f(x) > 0}, we set

γ
.
= inf

x∈S−
g (0)

g(x)

f(x)
,

whenever S−
g (0) 6= ∅. Furthermore, set

W
.
= {(u, v) ∈ R

2 : v > γu, v ≤ 0}, if γ ∈ R.
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The following theorem establishes the geometric structure of the set cone[F (C)+R
2
++]

in case µ = −∞.

Theorem 2.4. Let µ = −∞. Then

R× R+ ⊆ F (C) + R
2
+. (10)

Furthermore,

(a) If S−
g (0) = ∅ then F (C) + R

2
+ = R× R+.

(b) If S−
g (0) ∩ S−

f (0) 6= ∅ then cone+[F (C) + R
2
+] = R

2.

(c) If S−
g (0) 6= ∅ and S−

g (0) ∩ S−
f (0) = ∅ then −∞ = inf

g(x)=0
x∈C

f(x), −∞ ≤ γ < 0 and

(c1) cone+[F (C) + R
2
++] = (R× R++) ∪W if −∞ < γ < 0;

(c2) cone+[F (C) + R
2
++] = (R× R++) ∪ (R++ × R) if γ = −∞.

Proof. Let us prove (10). Take any (ξ1, ξ2) ∈ R×R+; by (9), there exist x ∈ C, p ≥ 0,

q ≥ 0, r > 0, such that f(x) + p = ξ1 − r and g(x) + q = 0. It follows that

(ξ1, ξ2) = (f(x), g(x)) + (p+ r, q + ξ2) ∈ F (C) + R
2
+.

(a): Since g(x) ≥ 0 for all x ∈ C, we obtain

F (C) + R
2
+ ⊆ [f(C)× g(C)] + R

2
+ ⊆ (R × R+) + R

2
+ = R× R+.

(b): By assumption, there exists x0 ∈ C satisfying g(x0) < 0 and f(x0) < 0. This implies

that (0, 0) ∈ F (x0) + R
2
++, which gives cone+(F (x0) + R

2
++) = R

2 and therefore the

conclusion follows.

(c): By assumption, f(x) ≥ 0 for all x ∈ S−
g (0), which implies that −∞ = inf

g(x)=0
x∈C

f(x)

and −∞ ≤ γ < 0.

(c1): Let (u0, v0) ∈ W . Then, u0 > 0 and there exists x0 ∈ C satisfying g(x0) < 0 and

γ ≤
g(x0)

f(x0)
<

v0
u0

.

We choose ε > 0 satisfying v0f(x0) = u0g(x0) + ε(u0 − v0) and write

u0 =
u0

f(x0) + ε
(f(x0) + ε), v0 =

u0
f(x0) + ε

(g(x0) + ε).

This proves that (u0, v0) ∈ cone+[F (C) +R
2
++]. This result along with (10) prove one

inclusion in (c1).

For the other inclusion we reason as follows. Take any (u0, v0) ∈ cone+[F (C) + R
2
++].
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Then, for some (p, q) ∈ R
2
++, t0 > 0, x0 ∈ C, we have u0 = t0(f(x0) + p) and v0 =

t0(g(x0)+q). If (u0, v0) 6∈ R×R++ then v0 ≤ 0. This implies that g(x0) < g(x0)+q ≤ 0,

and therefore, by assumption, f(x0) ≥ 0. Clearly f(x0) > 0 since otherwise γ = −∞.

Hence γ ≤
g(x0)

f(x0)
, and so

γu0 = γt0(f(x0) + p) ≤ t0g(x0) + γt0p < t0g(x0) < t0(g(x0) + q) = v0,

showing that (u0, v0) ∈ W . Hence, the proof of (c1) is completed.

(c2): It is similar to (c1).

3 The quadratic non-homogeneous case with linear and

quadratic constraints

In this section we consider the case of quadratic functions defined in a finite dimensional

space Rn. Problems arising in telecommunications, robust control [30, 35], trust region

[19, 36], may be modeled via quadratic non-homogeneous functions.

Consider the following quadratic optimization problem:

µ
.
= inf

{1

2
x⊤Ax+ a⊤x+ α :

1

2
x⊤Bx+ b⊤x+ β ≤ 0, Hx = d

}

, (11)

where A,B are symmetric matrices of order n; a, b ∈ R
n; d ∈ R

m; α, β ∈ R, and H is

a real matrix of order m× n.

Setting, C
.
= H−1(d)

.
= {x ∈ R

n : Hx = d}, it is known that

C = x0 + ker H, ∀ x0 ∈ C.

Let

f(x) =
1

2
x⊤Ax+ a⊤x+ α, g(x) =

1

2
x⊤Bx+ b⊤x+ β.

One of the most important results concerning quadratic functions refers to Dine’s

theorem [12] (motivated by Finsler theorem [14]), which ensures that

{

(x⊤Ax, x⊤Bx) : x ∈ R
n
}

is convex.

This result does not hold in the non-homogeneous case as the next example shows.

Example 3.1. Take f(x, y) = x + y − x2 − y2 − 2xy, g(x, y) = x2 + y2 + 2xy − 1,

and consider the set M
.
= {(f(x, y), g(x, y)) ∈ R

2 : (x, y) ∈ R
2}. Clearly (0, 0) =

(f(0, 1), g(0, 1)) ∈ M and (−2, 0) = (f(−1, 0), g(−1, 0)) ∈ M . We claim that (−1, 0) =
1
2(0, 0) +

1
2(−2, 0) /∈ F (R2). Indeed, if −1 = f(x, y) and 0 = g(x, y), then |x+ y| = 1
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and x+ y = 0, reaching a contradiction. Hence, (−1, 0) ∈ co F (R2) \ F (R2), showing

that F (R2) is nonconvex. More precisely, one can check that

F (R2) = {(t− t2, t2 − 1) : t ∈ R}.

Let us consider the minimization problem

µ
.
= inf

g(x,y)≤0

(x,y)∈R2

f(x, y)

We claim that µ = −2. Indeed,

f(x, y) + 2 +
3

2
g(x, y) = x+ y − (x+ y)2 + 2 +

3

2
((x+ y)2 − 1)

= 2(x+ y + 1)2 ≥ 0, ∀ (x, y) ∈ R
2.

In particular, if (x, y) is such that g(x, y) ≤ 0, we obtain f(x, y) ≥ −2 = f(−1, 0),

proving our claim. We actually have argmin
K

f = {(x, y) ∈ R
2 : x+y = −1} and λ = 3

2

is a Lagrange multiplier. Furthermore, S+
f (µ) ∩ S−

g (0) = {(x, y) ∈ R
2 : |x + y| < 1}

and S−
f (µ) = {(x, y) ∈ R

2 : x+ y < −1} ∪ {(x, y) ∈ R
2 : 2 < x+ y}. Therefore

r = inf
|x+y|<1

(x+ y)2 − 1

x+ y − (x+ y)2 + 2
= inf

|t|<1

t2 − 1

t− t2 + 2
= inf

|t|<1
−
t− 1

t− 2
= −

2

3
;

s = sup
(x,y)∈S−

f
(µ)

(x+ y)2 − 1

x+ y − (x+ y)2 + 2
= −

2

3
.

However, we can prove a relaxed version of Dines theorem. To that purpose the

next result, valid for quadratic functions, will play an important role.

Proposition 3.2. [25, Theorem 3.6] Let f, g : Rn → R be any quadratic functions not

necessarily homogeneous, let x0 ∈ R
n, and let S0 be a subspace of Rn. Then exactly

one of the following statements holds:

(a) ∃ x ∈ x0 + S0, f(x) < 0, g(x) < 0;

(b) ∃ (λ1, λ2) ∈ R
2
+ \ {(0, 0)}, λ1f(x) + λ2g(x) ≥ 0, ∀ x ∈ x0 + S0.

On combining the preceding result and Theorem 2.1, we obtain the following theo-

rem which may be considered as a relaxed version of the Dines theorem and, according

to the author’s knowledge, it is new in the literature. Obviously our result is weaker

than that provided by Dines when f and g are homogeneous quadratic functions (for

the case µ = −∞ we refer Theorem 2.4).
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Theorem 3.3. (Relaxed Dines theorem) Let f : Rn → R, g : Rn → R be any quadratic

functions as above, and C
.
= H−1(d) = x0 + ker H. If µ ∈ R, then

cone(F (C)− ρ(1, 0) + R
2
++) is convex for all ρ ≤ µ.

Proof. Since there is no x satisfying g(x) < 0, Hx = d and f(x)−ρ < 0, by Proposition

3.2 we obtain the existence of (γ, λ) ∈ R
2
+ \ {(0, 0)} such that

γ(f(x)− ρ) + λg(x) ≥ 0 ∀ x ∈ x0 + ker H = C. (12)

The desired result is a consequence of Theorem 2.1.

In case µ = −∞ Theorem 2.4 provides a complete description of cone+(F (C)+R
2
+);

in particular, it establishes conditions under which cone+(F (C) +R
2
+) is convex.

We next present an application of the previous theorem to derive the S-lemma

for any (not necessarily homogeneous) quadratic functions already appeared in [33,

Theorem 2.2]; [25, Corollary 3.7]). Some variants of the S-lemma may be found in

[11].

Theorem 3.4. (The S-lemma) Let f, g : R
n → R be any quadratic functions and

assume that there is x̄ ∈ C
.
= H−1(d) such that g(x̄) < 0. Then, (a) and (b) are

equivalent:

(a) There is no x ∈ C such that

f(x) < 0, g(x) ≤ 0.

(b) There is λ ≥ 0 such that

f(x) + λg(x) ≥ 0, ∀ x ∈ C.

Proof. Obviously (b) =⇒ (a) always holds. Assume therefore that (a) is satisfied. This

means that x ∈ C, g(x) ≤ 0 implies f(x) ≥ 0, that is, 0 ≤ µ
.
= inf

x∈K
f(x). It follows

that

cone[F (C)− µ(1, 0) + R
2
++] ∩H = ∅,

H
.
= {(u, v) ∈ R

2 : u < 0, v ≤ 0}. By the previous theorem cone[F (C)−µ(1, 0)+R
2
++]

is convex, and so by a separation theorem, there exist (γ, λ) ∈ R
2
+ \ {(0, 0)} and α ∈ R

such that

γ(f(x)−µ+p)+λ(g(x)+q) ≥ α ≥ γu+λv, ∀ x ∈ C, ∀ (p, q) ∈ R
2
++, ∀ u < 0, ∀ v ≤ 0.
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This implies α ≥ 0, γ ≥ 0 and λ ≥ 0. Thus

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C,

that is, γf(x) + λg(x) ≥ γµ ≥ 0, ∀ x ∈ C. The Slater condition yields γ > 0,

completing the proof of the theorem.

The important case, when f and g are quadratic, with C = R
n, was studied by

Yakubovich [38, 39], see the survey by Pólik and Terlaky in [33, Theorem 2.2]. Its proof

uses the Dines theorem which asserts the convexity of the set {(f(x), g(x)) ∈ R
2 : x ∈

R
n} when f and g are homogeneous quadratic functions.

We observe that (12) for ρ = µ amounts to writing that

(γ, λ) ∈ [cone(F (C)− µ(1, 0) + R
2
++)]

∗, (13)

and we also get

cone(F (C)− µ(1, 0) + R
2
++) = cone+(F (C)− µ(1, 0) + R

2
++) ∪ {(0, 0)}.

The slightly dark region in Figures 1 and 2 represents cone+(F (C)− µ(1, 0) + R
2
++).

Taking into account the splitting (8) introduced in Subsection 2.1, we establish

the main theorem which is new in the literature and describes all the situations may

happen when considering quadratic minimization problems with finitely many linear

equality and a single quadratic inequality constraints. It provides also the solution set

of the regularized Lagrangian dual (4).

Theorem 3.5. Let f : R
n → R, g : R

n → R be the quadratic functions f(x) =
1
2x

⊤Ax+ a⊤x+ α, g(x) = 1
2x

⊤Bx+ b⊤x+ β, and C = H−1(d) as above. Let (γ, λ) ∈

R
2
+ \ {(0, 0)} and µ be finite. Then, exactly one of the following assertions holds:

(a1) If either argmin
K

f ∩ S−
g (0) 6= ∅ or [S+

f (µ) ∩ S−
g (0) 6= ∅ with r = −∞], then

S−
f (µ) = ∅ and

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : u > 0}.

Hence,

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ > 0, λ = 0.

(a2) If argmin
K

f ∩ S−
g (0) = ∅, S+

f (µ) ∩ S−
g (0) = ∅ = S−

f (µ), then

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : u > 0, v > 0}.

Hence

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ (γ, λ) ∈ R
2
+ \ {(0, 0)}.
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(a3) If S+
f (µ)∩S−

g (0) 6= ∅ with −∞ < r < 0 and S−
f (µ) 6= ∅, then argmin

K

f ∩S−
g (0) =

∅, s ≤ r and

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : v > ru, v > su}.

Hence,

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ > 0, −
1

s
γ ≤ λ ≤ −

1

r
γ.

(a4) If S+
f (µ) ∩ S−

g (0) = ∅, S−
f (µ) 6= ∅ with −∞ < s < 0, then argmin

K

f ∩ S−
g (0) = ∅

and

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : v > su, v > 0}.

Hence

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ ≥ 0, λ ≥ −
1

s
γ, λ 6= 0.

(a5) If argmin
K

f ∩ S−
g (0) = ∅, S+

f (µ) ∩ S−
g (0) 6= ∅ with −∞ < r < 0 and S−

f (µ) = ∅,

then

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : v > ru, u > 0}.

Hence,

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ > 0, 0 ≤ λ ≤ −
1

r
γ.

(a6) If S−
f (µ) 6= ∅, s = 0, then argmin

K

f ∩ S−
g (0) = ∅ and

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : v > 0}.

Hence

γ(f(x)− µ) + λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ γ = 0, λ > 0.

Proof. Since the proof uses a frequent application of the convexity of cone+(F (C) −

µ(1, 0)+R
2
++), the splitting (8) and (13) along with Figures 1, 2, we simply prove (a1)

and (a2) just to give an idea of the reasoning to be employed.

(a1): By assumptions and due to the convexity of cone+(F (C)−µ(1, 0)+R
2
++), looking

at Figure 1(a1), we immediately get that S−
f (µ) = ∅, and so

cone+(F (C)− µ(1, 0) + R
2
++) = {(u, v) ∈ R

2 : u > 0}.

From this, the equivalence follows in view of (13).

(a2): It is a consequence of the splitting (8) and (13).

As mentioned above all other assertions follow in similar way by taking into account

the convexity of cone(F (C)− µ(1, 0) + R
2
++), (8) and (13), see Figures 1, 2.
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•
0

u

v

(γ∗, 0)
•

0
u

v
(γ, λ)

•
0

v = ru

v = su

u

v

(a1) (a2) (a3)

(γ, λ)

Figure 1: Theorem 3.5:(a1), (a2), (a3)

•
0

v = su

u

v
(γ, λ)

•
0

v = ru

u

v

(γ, λ)

(0, λ)

•
0

u

v

(a4) (a5) (a6)

Figure 2: Theorem 3.5:(a4), (a5), (a6)

One can check that Example 3.1 satisfies (a3), since

(0,−2) ∈ S−
f (µ) and argmin

K

f ∩ S−
g (0) = ∅.

We have also obtained r = s = −
2

3
; therefore λ =

2

3
γ.

Before providing a characterization of strong duality, some preliminaries are neces-

sary for linking the behaviour of the Hessians of f and g and the number r and s. We

first provide a necessary condition to have µ ∈ R.

Proposition 3.6. Assume that µ is finite. Then,

0 6= v ∈ ker H, v⊤Bv ≤ 0 =⇒ v⊤Av ≥ 0. (14)

Proof. Let v ∈ ker H, v 6= 0, we distinguish the discussion into two cases: v⊤Bv < 0

and v⊤Bv = 0.

In the first case, given x ∈ H−1(d), we obtain g(x+tv) = g(x)+t∇g(x)⊤v+ t2

2 v
⊤Bv →

−∞ as |t| → +∞ since v⊤Bv < 0. Thus, there exists t1 > 0 such that x+ tv ∈ S−
g (0)

for all |t| ≥ t1, which gives f(x) + t∇f(x)⊤v + t2

2 v
⊤Av = f(x+ tv) ≥ µ for all |t| ≥ t1

since x+ tv ∈ H−1(d). On dividing by t2 and letting t → +∞, we get v⊤Av ≥ 0.

Now assume that v⊤Bv = 0, and suppose on the contrary that v⊤Av < 0. This

yields, given any x ∈ H−1(d), f(x + tv) → −∞ for all |t| → +∞. Then g(x + tv) =

g(x) + t∇g(x)⊤v > 0 for all |t| sufficiently large, which implies that ∇g(x)⊤v = 0, and

therefore g(x) = g(x+ tv) > 0 for all t ∈ R and all x ∈ H−1(d). This cannot happen if

we choose x satisfying in addition g(x) ≤ 0.
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The necessary condition (14) given in the previous proposition is stronger than the

condition

0 6= v ∈ ker H, v⊤Bv = 0 =⇒ v⊤Av ≥ 0. (15)

This is related to a relaxed version of Finsler’s theorem due to Moré [31, Theorem 2.3]

and independently to Hamburger [20]: assume that B be indefinite, then (i) and (ii)

below are equivalent:

(i) v ∈ ker H, v⊤Bv = 0 =⇒ v⊤Av ≥ 0.

(ii) ∃ t ∈ R such that A+ tB is positive semidefinite on ker H.

Proposition 3.7. Let v ∈ ker H, v⊤Av = 0 and v⊤Bv < 0, and assume that µ is

finite. Then,

(a) ∃ t1 > 0 such that x+ tv ∈ S−
g (0), ∀ x ∈ H−1(d) and ∀ |t| ≥ t1;

(b) ∇f(x)⊤v = 0, ∀ x ∈ H−1(d), or equivalently, f(x+ tv) = f(x) ∀ x ∈ H−1(d)

and ∀ t ∈ R, or equivalently, ∃ y ∈ R
m such that Av = H⊤y and d⊤y+ a⊤v = 0;

(c) S−
f (µ) = ∅, and therefore µ = inf

x∈H−1(d)
f(x) with argmin

H−1(d)

f 6= ∅;

(d) S+
f (µ) 6= ∅ =⇒ r = −∞.

Proof. (a): Let x ∈ H−1(d). Then, g(x+ tv) = g(x) + t∇g(x)⊤v + t2

2 v
⊤Bv → −∞ as

|t| → +∞ since v⊤Bv < 0. Thus, there exists t1 > 0 such that x+ tv ∈ S−
g (0) for all

|t| ≥ t1.

(b): For the first equivalence; from (a), f(x + tv) ≥ µ for all |t| ≥ t1 because of

x+ tv ∈ H−1(d) and g(x + tv) < 0. By writting µ ≤ f(x+ tv) = f(x) + t∇f(x)⊤v,

we conclude that ∇f(x)⊤v = 0, and therefore f(x+ tv) = f(x) for all t ∈ R.

One implication for the second equivalence is as follows. By noticing that H−1(d) =

x0+ker H for all x0 ∈ H−1(d), the equality (Ax+a)⊤v = 0 for all x ∈ H−1(d) implies

that Av ∈ (ker H)⊥ = H⊤(Rm). Thus, there exists y ∈ R
m such that Av = H⊤y and

therefore

0 = x⊤Av + a⊤v = x⊤H⊤y + a⊤v = d⊤y + a⊤v.

The remaining implication is obvious.

(c): It follows from (a) and (b), along with Proposition 2.3 and Corollary 4.3.

(d): Take any x0 ∈ S+
f (µ). Then, from (b) it follows that f(x0 + tv) = f(x0) > µ for

all |t| ≥ t1. For such t, (a) implies that x0 + tv ∈ S+
f (µ) ∩ S−

g (0). Hence, since

r ≤
g(x0) + t∇g(x0)

⊤v + t2

2 v
⊤Bv

f(x0)− µ
, ∀ |t| ≥ t1,

we infer that r = −∞.
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Proposition 3.8. Let f, g : Rn → R be quadratic functions as above: f(x) = 1
2x

⊤Ax+

a⊤x+ α, g(x) = 1
2x

⊤Bx+ b⊤x+ β, C = H−1(d) with µ finite. Then,

(a) r = −∞ =⇒



































argmin
K

f 6= ∅, or;

µ = inf
x∈H−1(d)

f(x) with argmin
H−1(d)

f 6= ∅, or;

∃ xk ∈ S+
f (µ) ∩ S−

g (0) : ‖xk‖ → +∞, xk

‖xk‖
→ v ∈ ker H, and

v⊤Av = 0, v⊤Bv = 0.

(b) s = 0 =⇒



















argmin
K

f ∩ S=
g (0) 6= ∅, or;

∃ xk ∈ S−
f (µ) : ‖xk‖ → +∞, xk

‖xk‖
→ v ∈ ker H, and

v⊤Av = 0, v⊤Bv = 0.

Proof. (a): By assumption, there exists a sequence xk ∈ S+
f (µ) ∩ S−

g (0) such that

lim
k→+∞

g(xk)

f(xk)− µ
= −∞.

We distinguish two cases.

Case 1. sup
k∈N

‖xk‖ < +∞. Up to a subsequence we may assume that xk → x0 as

k → +∞. Thus, g(x0) ≤ 0 and f(x0) ≥ µ. The case g(x0) = 0, f(x0) = µ (resp.

g(x0) < 0, f(x0) = µ) yields argmin
K

f ∩ S=
g (0) 6= ∅ (resp. argmin

K

f ∩ S−
g (0) 6= ∅). The

other situations cannot occur since

lim
k→+∞

g(xk)

f(xk)− µ
=



















g(x0)

f(x0)− µ
6= −∞ , if g(x0) < 0, f(x0) > µ;

0 , if g(x0) = 0, f(x0) > µ.

Case 2. sup
k∈N

‖xk‖ = +∞. Then, we can assume that

‖xk‖ → +∞,
xk

‖xk‖
→ v, as k → +∞, (16)

and therefore v ∈ ker H, v⊤Av ≥ 0 and v⊤Bv ≤ 0. Moreover, we obtain, as in Case 1,

lim
k→+∞

g(xk)

f(xk)− µ
=



















v⊤Bv

v⊤Av
6= −∞ , if v⊤Av > 0, v⊤Bv < 0;

0 , if v⊤Av > 0, v⊤Bv = 0.

Hence, we must have v⊤Av = 0 and v⊤Bv ≤ 0. In case v⊤Av = 0 and v⊤Bv < 0, we

apply Proposition 3.7(c) to get the second posibility of (a).

(b): We have the existence of a sequence xk ∈ S−
f (µ) such that

lim
k→+∞

g(xk)

f(xk)− µ
= 0.
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We likewise distinguish two cases.

Case 1. sup
k∈N

‖xk‖ < +∞. Up to a subsequence, we obtain xk → x0 ∈ H−1(d), g(x0) ≥ 0

and f(x0) ≤ µ. Since g(x0) = 0 and f(x0) < µ is impossible, and because of

lim
k→+∞

g(xk)

f(xk)− µ
=



















g(x0)

f(x0)− µ
6= 0 , if g(x0) > 0, f(x0) < µ;

−∞ , if g(x0) > 0, f(x0) = µ,

we must have g(x0) = 0 and f(x0) = µ.

Case 2. sup
k∈N

‖xk‖ = +∞. Passing to a subsequence, if necessary, we have (16), and

therefore v ∈ ker H, v⊤Av ≤ 0 and v⊤Bv ≥ 0. As in (a), we get necessarily v⊤Av ≤ 0

and v⊤Bv = 0. The conclusion follows after noticing that v⊤Av < 0 and v⊤Bv = 0

cannot occur by Proposition 3.6.

In view of Propositions 3.7, 3.6 and 3.8, the following conditions arise:

• [0 6= v ∈ ker H, v⊤Bv ≤ 0] =⇒ v⊤Av > 0; (17)

• [0 6= v ∈ ker H, v⊤Bv = 0] =⇒ v⊤Av > 0; (18)

• [v ∈ ker H, v⊤Av = 0 = v⊤Bv] =⇒ v = 0; (19)

• [0 6= v ∈ ker H, v⊤Bv = 0] =⇒ v⊤Av 6= 0; (20)

• 0 6= v ∈ ker H =⇒ [v⊤Av 6= 0 or v⊤Bv 6= 0]. (21)

Clearly,

(17) =⇒ (18) =⇒ (19) ⇐⇒ (20) ⇐⇒ (21).

By Finsler’s theorem [14] (see also [20]), condition (18) is equivalent to:

∃ t ∈ R, A+ tB is positive definite on ker H. (22)

When this condition is satisfied it is said that the Simultaneous Diagonalization prop-

erty holds, since it implies the existence of a nonsingular matrix C such that both

C⊤AC and C⊤BC are diagonal [21, Theorem 7.6.4]. Such an assumption allowed the

authors in [4] to re-write the original problem in a more tractable one.

In [40] when H = 0 and d = 0, some relationships between (15), (18), (19) and

the Yakuvobich S-lemma (with quadratic homogeneous functions) are estalished. They

are related with the non-strict Finsler’s, strict Finsler’s and Finsler-Calabi’s theorem,

respectively.

Under assumption (20), (b) of Proposition 3.8, implies the following corollary
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Corollary 3.9. Assume that f , g be as above with C = H−1(d) and µ ∈ R. If s = 0

and (20) is satisfied then argmin
K

f ∩ S=
g (0) 6= ∅ and strong duality does not hold.

Proof. If s = 0 then by (b) of Proposition 3.8 we obtain that either argmin
K

f∩S=
g (0) 6= ∅

or there exists 0 6= v ∈ ker H satisfying v⊤Av = 0 and v⊤Bv = 0. By assumption the

second situation is not possible, and therefore the first holds proving the desired result.

The lack of strong duality is a consequence of (a6) in Theorem 3.5.

In contrast to a similar result due to Moré [31] where condition (17) (stronger than

(20)) is imposed, our corollary applies to situations where Theorem 3.3 in [31] does

not.

Corollary 3.10. Assume that f , g be as above with C = H−1(d) and µ ∈ R. If

r = −∞ and (20) is satisfied then strong duality holds and either argmin
K

f 6= ∅ or

µ = inf
x∈H−1(d)

f(x) with argmin
H−1(d)

f 6= ∅.

Proof. It is a direct consequence of (a) in Proposition 3.8.

Next result, which is new, on one hand characterizes the regularized strong duality

without requiring the nonemptiness of argmin
K

f , and where the Slater condition may

fail, and on the other, gives a sufficient or necessary condition in terms of inequality

systems.

Theorem 3.11. Let µ be finite with C = H−1(d). Let us consider the following asser-

tions:

(a) argmin
K

f ∩ S=
g (0) = ∅ and (21) holds;

(b) strong duality holds;

(c) either S−
f (µ) = ∅ or [S−

f (µ) 6= ∅ with s < 0] holds;

(d) either inf
x∈C

f(x) = µ or [v ∈ ker H, v⊤Av ≤ 0 =⇒ v⊤Bv ≥ 0] holds.

Then, we have the following relationships:

(a) =⇒ (b) ⇐⇒ (c) =⇒ (d).

Proof. (a) =⇒ (c): We have to check that s < 0. If on the contrary, s = 0, by using

Proposition 3.8(b) we get a contradiction.

(b) =⇒ (c): Suppose that S−
f (µ) 6= ∅. Strong duality implies the existence of λ0 ≥ 0

such that f(x) + λ0g(x) ≥ µ for all x ∈ C, which yields λ0 > 0. Indeed, if λ0 = 0, the
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previous inequality gives f(x)− µ ≥ 0 for all x ∈ C, which is impossible if S−
f (µ) 6= ∅.

Now, suppose that s = 0. Then, there exists x̄ ∈ S−
f (µ) 6= ∅ such that

g(x̄)

f(x̄)− µ
> −

1

λ0
.

It follows that f(x̄) + λ0g(x̄) < µ, giving a contradiction; this proves that s > 0.

(c) =⇒ (b): It is simply a consequence of Theorem 3.5 by looking at those items where

γ∗ > 0 is possible.

(c) =⇒ (d) : If S−
f (µ) = ∅ then f(x) ≥ µ for all x ∈ C by Proposition 3.2. Assume

now that S−
f (µ) 6= ∅ and s < 0. Due to the convexity of cone(F (C) − µ(1, 0) + R

2
++),

we obtain argmin
K

f ∩ S−
g (0) = ∅. We consider two cases: S−

g (0) = ∅ or S−
g (0) 6= ∅.

Obviously in the first case, the implication in (d) holds vacuously. If S−
g (0) 6= ∅, it

follows that S+
f (µ)∩S−

g (0) 6= ∅ since otherwise S−
g (0) = ∅ by Proposition 2.3(b). Thus,

we must have −∞ < s ≤ r < 0 again by the convexity of cone(F (C)− µ(1, 0) +R
2
++).

From Proposition 3.7(d) it follows that v ∈ ker H, v⊤Bv < 0 =⇒ v⊤Av 6= 0, which

together with (14) yields the desired implication.

Example 3.1 shows that the implication (c) =⇒ (a) may be false, and the next

instance shows the second part of (d) does not necessarily imply the second part of (c).

Example 3.12. Let C = R
n, f(x1, x2) = x1+x2 and g(x1, x2) = (x1+x2)

2. Clearly it

satisfies the second part of (d), but it holds S−
f (µ) 6= ∅ with s = 0. Indeed, K = {(0, 0)}

and

S−
f (µ) = {(x1, x2) ∈ R

2 : x1 + x2 < 0}.

Hence,

s = sup
x1+x2<0

(x1 + x2)
2

x1 + x2
= 0,

and the strong duality does not hold, since for any λ > 0, the inequality

x1 + x2 + λ(x1 + x2)
2 ≥ 0, ∀ (x1, x2) ∈ R

2

yields a contradiction. This agrees with (a6) of Theorem 3.5.

Next example illustrates a situation where our main Theorem 3.5 applies, exhibiting

that strong duality holds without satisfying the Slater condition: there exists x0 ∈

H−1(d) such that g(x0) < 0.
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Example 3.13. Take H(x1, x2) = x1 − x2, d = 0, f(x1, x2) = 2x21 − x22, g(x1, x2) =

x21 − x22. Here, K = {(x1, x2) ∈ R
2 : x1 = x2, x21 − x22 ≤ 0} = {(t, t) ∈ R

2 : t ∈ R}.

Clearly, S−
g (0) = ∅ = S−

f (µ) and µ = 0 with argmin
K

f = {(0, 0)}. According to (a2) of

Theorem 3.5, we conclude that strong duality holds by choosing any λ∗ ≥ 0.

Given a vector subspace P ⊆ R
n, we recall that a symmetric matrix A is positive

semidefinite on P if x⊤Ax ≥ 0 for all x ∈ P . By M⊥ we mean the orthogonal subspace

of M ⊆ R
m, that is, M⊥ = {ξ ∈ R

m : 〈ξ, x〉 = 0 ∀ x ∈ M}. Next theorem, which is

new in the literature, considers non-convex situations.

Theorem 3.14. Let f and g be quadratic functions as above, µ finite and x̄ feasible

for (11). Set C = {x ∈ R
n : Hx = d}. The following assertions are equivalent:

(a) x̄ is a solution to (11) and either S−
f (µ) = ∅ or [S−

f (µ) 6= ∅ with s < 0] holds;

(b) ∃ λ ≥ 0 ∃ y ∈ R
m such that ∇f(x̄) + λ∇g(x̄) +H⊤y = 0, λg(x̄) = 0, A+ λB is

positive semidefinite on ker H.

Proof. (a) =⇒ (b): By Theorem 3.11, strong duality holds, thus, there exists λ ≥ 0

such that

f(x̄) + λg(x̄) ≤ f(x̄) = inf
x∈C

(f(x) + λg(x)).

This implies that λg(x̄) = 0 and x̄ is a minimum for L(x) = f(x) + λg(x) on C. The

necessary optimality condition yields

〈∇f(x̄) + λ∇g(x̄), x− x̄〉 ≥ 0 ∀ x ∈ C.

Since x− x̄ ∈ ker H for all x ∈ C, we obtain ∇f(x̄) + λ∇g(x̄) ∈ (ker H)⊥ = H⊤(Rm).

Thus, there exists y ∈ R
m such that ∇f(x̄) + λ∇g(x̄) + H⊤y = 0. On the other

hand, we also have f(x) + λg(x) ≥ f(x̄) for all x ∈ C, which gives λg(x̄) = 0 and

v⊤(A+ λB)v ≥ 0 for all v ∈ ker H, i.e., A+ λB is positive semidefinite on ker H.

(b) =⇒ (a): Setting L(x) = f(x) + λg(x), x ∈ C, we write

L(x)− L(x̄) = 〈∇f(x̄) + λ∗∇g(x̄), x− x̄〉+
1

2
〈(A+ λB)(x− x̄), x− x̄〉.

By taking into account that x − x̄ ∈ ker H for all x ∈ C and the assumptions, the

previous equality implies that

f(x) ≥ L(x) ≥ L(x̄) = f(x̄) + λg(x̄) = f(x̄), ∀ x ∈ C, g(x) ≤ 0,

which yields f(x) ≥ f(x̄), proving that x̄ is a solution to (11).

By applying Theorem 3.3, we re-obtain Theorem 3.8 in [25] which generalizes the

Moré theorem [31, Theorem 3.4].
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Corollary 3.15. [25, Theorem 3.8] (Under Slater condition) Let f , g be any quadratic

functions with µ ∈ R. Assume that Hx0 = d and g(x0) < 0 for some x0 ∈ R
n, and let

x̄ ∈ K (feasible for problem (11)). Then, the following assertions are equivalent:

(a) x̄ ∈ argmin
K

f ;

(b) ∃ λ ≥ 0 ∃ y ∈ R
m such that ∇f(x̄)+λ∇g(x̄)+H⊤y = 0, λg(x̄) = 0 and A+λB

is positive semidefinite on ker H.

Proof. In case S−
f (µ) = ∅ the result is a consequence of Theorem 3.14. If S−

f (µ) 6= ∅ we

need to check that s < 0 and the result again is a consequence of Theorem 3.14. Suppose

on the contrary that s = 0. Then, by the convexity of cone(F (Rn) − µ(1, 0) + R++)

(see Theorem 3.3 or (a6) of Theorem 3.5), we must have

S+
f (µ) ∩ S−

g (0) = ∅ and argmin
K

f ∩ S−
g (0) = ∅.

This implies that S−
g (0) = ∅ by Proposition 2.3, contradicting the Slater condition.

Therefore, s < 0, and the conclusion follows.

For completeness we establish a characterization of solutions when Slater condition

fails, that is,

g(x) ≥ 0, ∀ x ∈ H−1(d). (23)

Under this assumption,

K = {x ∈ H−1(d) : g(x) = 0} = argmin
H−1(d)

g, (24)

provided K 6= ∅. By Corollary 4.3, for x̄ ∈ H−1(d),

x̄ ∈ argmin
H−1(d)

g ⇐⇒

{

B is positive semidefinite on ker H and

∃ y ∈ R
m, Bx̄+ b+H⊤y = 0.

(25)

Therefore, if B is positive semidefinite on ker H, then

x̄ ∈ argmin
K

f ⇐⇒ ∃ y ∈ R
m, (x̄, y) ∈ argmin

K̃

f̃ , (26)

where

K̃ =
{

(x, y) ∈ R
n × R

m :

(

B H⊤

H 0

)(

x

y

)

=

(

−b

d

)

}

and

f̃(x, y) =
1

2
(x y)

(

A 0

0 0

)(

x

y

)

+ (a 0)

(

x

y

)

+ α = f(x).

Hence, an application of Corollary 4.3 to f̃ and K̃ instead of f and K again, leads to

the following corollary.



22 Characterizing strong duality

Corollary 3.16. (Slater condition fails) Let f , g be any quadratic functions with µ ∈ R

and x̄ ∈ K. Assume that (23) holds. Then the following statements are equivalent:

(a) x̄ ∈ argmin
K

f ;

(b) B is positive semidefinite on ker H, A is positive semidefinite on ker H ∩

B−1[(ker H)⊥], and ∃ v ∈ ker H and ∃ (y, z) ∈ R
m × R

m such that

Ax̄+ a+Bv +H⊤z = 0, Bx̄+ b+H⊤y = 0.

4 The Frank-Wolfe and Eaves theorem revisited

In this section motivated by the form of the Lagrangian introduced in the previous sec-

tion, we revisited the Frank and Wolfe theorem [17], by providing several equivalences

to the nonemptiness of the solution set, in contrast to the only equivalence between

(a) and (d) (of Theorem 4.1) established by Frank and Wolfe, or Blum and Oettli (the

latter authors use elementary analysis in their proof). We believe that our proof is still

shorter than that by Blum and Oettli [5], and it is suitable for expository purposes.

The original proof of Frank and Wolfe theorem requires a decomposition theorem for

convex polyhedra. We recall that given a convex cone P , it is said that A is copositive

on P if x⊤Ax ≥ 0 for all x ∈ P . Furthermore, it said that a subset K ⊆ R
n is asymp-

totically linear [2, Definition 2.3.1] if for all ρ > 0 and all sequence xk ∈ K, satisfying

‖xk‖ → +∞,
xk
‖xk‖

→ v ∈ K∞, there exists k0 ∈ N, such that xk − ρv ∈ K for all

k ≥ k0.

Here, K∞ is the asymptotic cone of K defined as in Section 2.

Observe that polyhedral sets are asymptotically linear, but there are asymptotically

linear sets that are not polyhedral, see after Definition 2.3.2 in [2]. For instance, convex

sets without lines (see [2]).

Next theorem is a refinement of the Frank and Wolfe theorem when the constraints set

is asymptotically linear, and likewise it improves some of the main results of Section 3

in [13].

Other extensions in different directions of the Frank-Wolfe theorem may be found in

[28, 3].

Theorem 4.1. Let K ⊆ R
n be closed, convex and asymptotically linear; h(x) =

1
2x

⊤Ax + a⊤x + α with A ∈ Sn, a ∈ R
n, α ∈ R. The assertions (a), (b), (c)

and (d) are equivalent, where

(a) −∞ < ν
.
= inf

x∈K
h(x);
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(b) A is copositive on K∞ and [v⊤Av = 0, v ∈ K∞ =⇒ (Ax+ a)⊤v ≥ 0 ∀ x ∈ K];

(c) A is copositive on K∞ and [v⊤Av = 0, v ∈ K∞, (Ax + a)⊤v ≤ 0, x ∈ K =⇒

(Ax+ a)⊤v = 0];

(d) argmin
K

h 6= ∅.

Furthermore, we have (e) =⇒ (f) =⇒ (g) =⇒ (h), where

(e) h is coercive, i.e., lim
‖x‖→+∞

x∈K

h(x) = +∞;

(f) A is copositive on K∞ and [v⊤Av = 0, v ∈ K∞, (Ax + a)⊤v ≤ 0, x ∈ K =⇒

v = 0].

(g) argmin
K

h is nonempty and bounded;

(h) A is copositive on K∞ and [v⊤Av = 0, v ∈ K∞, (Ax+ a)⊤v ≤ 0, ∀ x ∈ K =⇒

v = 0].

It is worth noticing that under convexity on h, i.e., positive semidefiniteness of A

(which infers that: v⊤Av = 0 if and only if v ∈ ker A), one obtains (h) =⇒ (f), and

therefore all of them are equivalent. In general, (h) does not imply (e) as Example 4.2

shows.

Proof. (a) =⇒ (b): Let us prove first that A is copositive on K∞. For x0 ∈ K and

v ∈ K∞, we obtain by assumption,

h(x0 + tv) = h(x0) + t〈∇h(x0), v〉 +
1

2
t2v⊤Av ≥ ν ∀ t ∈ R. (27)

Thus,
1

t2
h(x0) +

1

t
〈∇h(x0), v〉+

1

2
v⊤Av ≥

ν

t2
∀ t ∈ R, t 6= 0.

Letting t → +∞, we get v⊤Av ≥ 0 for all v ∈ K∞, proving that A is copositive on

K∞. Take v ∈ K∞ such that v⊤Av = 0, then from (27) we obtain, (Ax0 + a)⊤v ≥ 0,

concluding that (b) holds.

(b) =⇒ (c): It is straightforward.

(b) =⇒ (d): For every k ∈ N, setting Bk
.
= {x ∈ K : ‖x‖ ≤ k}, we may assume that

Bk 6= ∅ for all k ∈ N. Let us consider the problem

inf
x∈Bk

h(x), (28)

which always has solution. Let xk be such that

‖xk‖ = min{‖x‖ : x ∈ argmin
Bk

h}.
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Case 1. sup
k∈N

‖xk‖ < ∞. One can check that any limit point of (xk) belongs to argmin
K

h.

Case 2. sup
k∈N

‖xk‖ = +∞. We can assume that ‖xk‖ → +∞ and
xk

‖xk‖
→ v as k → +∞,

thus v ∈ K∞.

Since K is asymptotically linear given ρ > 0 there exists k0 such that xk − ρv ∈ K

for all k ≥ k0. We can also assume that

∥

∥

∥

∥

xk
‖xk‖

− v

∥

∥

∥

∥

< 1 and
ρ

‖xk‖
< 1 for all k ≥ k0.

Then, by writing

xk − ρv =
(

1−
ρ

‖xk‖

)

xk +
ρ

‖xk‖

(

xk − ‖xk‖v
)

, (29)

we get ‖xk − ρv‖ < ‖xk‖. On the other hand, given any x ∈ K, there exists k1 ∈ N

such that

h(xk) =
1

2
x⊤k Axk + a⊤xk + α ≤ h(x), ∀ k ≥ k1.

It follows that v⊤Av ≤ 0 and so by the copositive assumption v⊤Av = 0. Again by

assumption we have (Ax+ a)⊤v ≥ 0 for all x ∈ K.

Set uk
.
= xk − ρv. Then, for all k ≥ k0, uk ∈ K, ‖uk‖ < ‖xk‖ and

h(uk) = h(xk − ρv) = h(xk)− ρ(Axk + a)⊤v + ρ2v⊤Av ≤ h(xk).

This means that uk ∈ argmin
Bk

h for all k sufficiently large, contradicting the choice of

xk.

Consequently, Case 2 cannot happen, and hence argmin
K

h 6= ∅.

(d) =⇒ (a): It is straightforward.

(e) =⇒ (f): Evidently the coercive property of h implies the first part of (f), and the

second part easily follows as well.

(f) =⇒ (g): That argmin
K

h 6= ∅ follows from (c) implies (d). Suppose there exists a

sequence of minimizers xk such that ‖xk‖ → +∞. Up to a subsequence we may assume

that
xk
‖xk‖

→ v ∈ K∞ \ {0}. From the equality h(xk) = ν it follows that v⊤Av = 0.

On the other hand, by the classical optimality condition, ∇h(xk)
⊤(x− xk) ≥ 0 for all

x ∈ K. Given ρ > 0, as above, we choose k sufficiently large such that xk − ρv ∈ K.

Thus (Axk + a)⊤v ≤ 0, which by assumption yields v = 0, giving a contradiction.

(g) =⇒ (h): The first part of (h) is a consequence of (a) implies (b). Take v ∈ K∞

satisfying v⊤Av = 0 and (Ax + a)⊤v ≤ 0 for all x ∈ K. We suppose on the contrary

that v 6= 0. From the equality in (27) for x0 to be a minimizer, we deduce that

h(x0+ tv) ≤ h(x0) for all t > 0, which says that x0+ tv ∈ argmin
K

h for all t > 0, which

is not possible if argmin
K

h is bounded and v 6= 0.

The following example show that the reverse implications in the preceding theorem

need not to be true in general.
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Example 4.2. This example shows, that in general (h) does not imply (g).

Take h1(x1, x2) = x21 − x22, K1 = {(x1, x2) ∈ R
2 : |x1 − x2| ≤ 1}. Thus

K∞
1 = {(x, x) ∈ R

2 : x ∈ R}. One can easily check that (h) holds but argmin
K1

h1 = ∅.

The case K = H−1(d) = {x ∈ R
n : Hx = d} deserves a special attention, and it is

in connection with the Lagrangian appeared in Section 3.

Corollary 4.3. Let h(x) = 1
2x

⊤Ax+ a⊤x+ α with A ∈ Sn, a ∈ R
n, α ∈ R. The

following assertions are equivalent:

(a) −∞ < ν
.
= inf

x∈H−1(d)
h(x);

(b) A is positive semidefinite on ker H and [v⊤Av = 0, v ∈ ker H =⇒ (Ax+a)⊤v =

0 ∀ x ∈ H−1(d)];

(c) A is positive semidefinite on ker H and [v⊤Av = 0, v ∈ ker H =⇒ ∃ y ∈

R
m : Av = H⊤y and d⊤y + a⊤v = 0];

(d) argmin
H−1(d)

h 6= ∅;

(e) A is positive semidefinite on ker H and there exist x̄ ∈ H−1(d), y ∈ R
m such

that Ax̄+ a+H⊤y = 0.

Proof. By virtue of the previous theorem we need only to check (b) ⇐⇒ (c) and

(d) =⇒ (e) =⇒ (a).

The equivalence between (b) and (c) follows as in (b) of Proposition 3.7.

(d) =⇒ (e): Let x̄ ∈ argmin
H−1(d)

h. Then by the usual necessary optimality condition, we

have 〈∇h(x̄), x − x̄〉 ≥ 0 for all x ∈ H−1(d). Since x − x̄ ∈ ker H for all x ∈ H−1(d),

we get Ax̄+ a = ∇h(x̄) ∈ (ker H)⊥ = H⊤(Rm). Hence there exists y ∈ R
m such that

Ax̄+ a+H⊤y = 0, which is the desired result.

(e) =⇒ (a): it is straightforward, once we notice that H−1(d) = x̄+ ker H and

h(x+ x̄) = h(x̄) + 〈∇h(x̄), x〉+
1

2
x⊤Ax, x ∈ ker H.

When H is the null matrix and d = 0, the previous result admits a more precise

formulation as expressed in the following corollary. Recall that when A < 0, i.e., A is

positive semidefinite (on R
n), we have

v⊤Av = 0 ⇐⇒ v ∈ ker A.



26 Characterizing strong duality

Corollary 4.4. Let h(x) =
1

2
x⊤Ax+ a⊤x+ α with A ∈ Sn, a ∈ R

n, α ∈ R. The

following assertions are equivalent:

(a) −∞ < ν
.
= inf

x∈Rn
h(x);

(b) A < 0 and [v ∈ ker A =⇒ a⊤v = 0];

(c) argmin
Rn

h 6= ∅;

(d) A < 0 and there exists x̄ ∈ R
n such that Ax̄+ a = 0.

5 Nonconvex quadratic objective with nonconvex con-

straints: necessary conditions for existence

We are now interested in establishing a necessary optimality conditions for the existence

of solutions to problem (11) As before, f(x) =
1

2
x⊤Ax + a⊤x + α, g(x) =

1

2
x⊤Bx +

b⊤x+ β. This implies that K
.
= {x ∈ H−1(d) : g(x) ≤ 0} is closed.

Definition 5.1. [10] A feasible point x̄ ∈ K is said to be a local minimum of (11) if

for any feasible direction v 6= 0 and some small enough t > 0, one has

f(x̄) ≤ f(x̄+ tv).

The set of local minima of (11) is denoted by argminloc
K

f .

Next result provides necessary conditions for the nonemptyness and boundedness of

solutions to (11).

Lemma 5.2. Let f , g and C = H−1(d) be as above.

(a) If argminloc
K

f is non-empty then,

Hv = Av = Bv = 0, b⊤v ≤ 0, a⊤v ≤ 0 =⇒ a⊤v = 0. (30)

(b) If argmin
K

f is non-empty and bounded, then

Hv = Av = Bv = 0, b⊤v ≤ 0, a⊤v ≤ 0 =⇒ v = 0. (31)

Proof. (a): Let v ∈ R
n satisfy the left hand side of (30). Then v is a feasible direction

of (11). Suppose, on the contrary, that a⊤v < 0. Then, for any x ∈ K and t > 0, we

have

f(x+ tv)− f(x) = t∇f(x)⊤v + t2v⊤Av = t(x⊤Av + a⊤v) = ta⊤v < 0, (32)
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reaching a contradiction if x is a local minimum.

(b): Suppose that v satisfy the relation in the left hand side of (30). By (a), a⊤v = 0.

It follows that, as above,

f(x+ tv) = f(x), ∀ x ∈ K, ∀ t > 0.

If x ∈ argmin
K

f , the previous equality gives a contradiction if v 6= 0.

When K is polyhedral, sufficient and necessary optimality conditions for a point

to be a local minimum can be found in [29].
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2

MA)

PRE-PUBLICACIONES 2013

2013-02 Julio Aracena, Adrien Richard, Lilian Salinas: Maximum number of fixed
points in AND-OR Boolean network

2013-03 Raimund Bürger, Ricardo Ruiz-Baier, Canrong Tian: Stability analysis and
finite volume element discretization for delay-driven spatial patterns in a predator-prey
model

2013-04 Tomás Barrios, Rommel Bustinza, Galina C. Garćıa, Maŕıa González:
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