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A MODEL OF CLARIFIER-THICKENER CONTROL WITH
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AND SEBASTIAN FARÅSC

Abstract. A one-dimensional model of the process of continuous sedimentation in a clarifier-
thickener unit is presented. The model is expressed as a system of two nonlinear partial
differential equations describing the solids volume fraction and the varying settling velocity
of the solids as functions of depth and time. The governing model extends the well-known
model for the dynamics of a flocculated suspension in a clarifier-thickener advanced by
Bürger, Karlsen and Towers [SIAM J. Appl. Math. 65 (2005) 882–940]. Operating charts
are calculated to be used for the control of steady states, in particular, to keep the sediment
level and the underflow volume fraction at desired values. A numerical scheme and a simple
regulator are proposed and numerical simulations are performed.

1. Introduction

1.1. Scope. Water consumption has become an important problem in the mineral processing
industry, especially for countries where most plants are located in desert areas. The necessity
to increase the capacity of many metals concentrators, led by higher metal prices, calls
for additional efforts in recovering the maximum possible amount of water in solid-liquid
separation of the suspensions arising as tailings from the stage of froth filtration. Thickeners
are widely used as a first stage in this process. They operate continuously, producing a
concentrated underflow while particle-free supernatant water overflows. This principle is
well explained in handbook entries (Osborne, 1981; Fitch, 1993; Chapter 18 of Perry et al.,
1998; Chapter 15 of Wills and Napier-Munn, 2006). Thickeners are equipped with a rake
mechanism that helps moving the sediment to the underflow outlet. The rake drive provides
torque to move the rake arms against the resistence exerted by the thickened material. Due
to limitations of the available torque and to protect the rake, one wishes to control the
operation of a thickener in such a way that the sediment level is kept at a relatively small
fraction, say 30%, of the thickener height. In fact, a failure in the drive equipment generally
means that the thickener has to be dug out (Schoenbrunn and Laros, 2002).
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Figure 1. Schematic illustrations of the clarifier-thickener (CT): (a) principle
of operation, (b) idealized one-dimensional model. The height of the clarifi-
cation zone is denoted by H and the depth of the thickening zone by B. The
indices of the volume fractions (φ) and volumetric flows (Q) stand for f = feed,
e = effluent and u = underflow.

Furthermore, the performance of a thickener depends on the settling velocity of solid
particles. This velocity depends on the size of the particles and in the density difference
between solids and liquid. For mono-sized spherical particles of diameter D and density ρs

settling in an unbounded fluid of density ρf and viscosity µf , the settling velocity is given by
the Stokes velocity

vSt =
D2(ρs − ρf)g

18µf

, (1)

where g is the acceleration of gravity. In fact, to maximize the recovery in the flotation
process, mineral particles are reduced in size in crushers and mills before entering flotation
to sizes of 50–200µm. The small particle sizes constitute a challenge for the dewatering
stages since particles settle very slowly. Usually the effective particle sizes, thereby the
settling velocities, are increased by flocculation. This is achieved by addition of a flocculant,
which causes small particles to aggregate into large units, called flocs. Since the flocculation
process is fairly rapid, the dosage of the flocculant added to the feed suspension can be
regarded as an independent variable that can be adjusted for purposes of thickener control,
for example with the aim to maintain the sediment level at constant height, in response
to variations of the solid feed flux and concentration which cannot be controlled. It is the
purpose of this paper to introduce a new model for thickener simulation and control that
explicitly includes variations in the state of flocculation as an additional control variable.
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A seminal work in thickener modelling is the kinematic theory by Kynch (1952), which
describes the batch settling of an ideal suspension of small, equal-sized rigid spheres in a
viscous fluid. Numerous studies (see Concha and Bürger, 2002, 2003 for historical overviews)
and extensive use in industry made this theory a powerful tool to model and design settling
equipments (Concha and Barrientos, 1993). Bürger et al. (2005) extended the Kynch theory
to a complete model of a continuous thickener by including sediment compressibility and
modeling the feed, overflow and discharge mechanisms by discontinuous spatial variations in
the bulk flows and a singular source term. This model corresponds to a simplified, spatially
one-dimensional setup (see Figure 1). The model is described by the following nonlinear
partial differential equation (PDE) for the volume fraction of solids φ as a function of depth z
and time t (Bürger et al. 2005, 2011, 2012):

∂φ

∂t
+

∂

∂z
F (φ, z, t) =

∂

∂z

(
γ(z)d(φ)

∂φ

∂z

)
+
Qf(t)φf(t)

A
δ(z). (2)

The convective flux function F incorporates the in- and outgoing bulk flows of the vessel
and a constitutive assumption on the hindered settling flux. The compression of solids at
high concentrations is modelled by the term containing the function d which includes a
constitutive assumption on the effective solid stress function. The source term models the
feed inlet located at z = 0. In contrast to previous models that include the thickening
zone only and describe the feed, discharge and overflow mechanisms by boundary conditions
(Shannon and Tory, 1966; Petty, 1975; Bustos et al., 1990a, 1990b, 1999; Concha and Bustos,
1992), the model based on (2) includes a clarification zone, located above the thickening zone
(see Figure 1), which may handle situations of thickener overload and permits to describe the
high-rate mode of operation (i.e., when the sediment level is located above the feed source).
To be consistent with previous treatments, we refer to a thickener described by Figure 1 and
modeled by (2) as a clarifier-thickener (CT).

In this work, we present an extension of the CT model developed by Bürger et al. (2005)
taking into account changes in the physical properties of the solid particles that are fed to the
CT. The extension can be posed as an additional partial differential equation that describes
a scalar quantity which corresponds to the free settling velocity determined by the state of
flocculation of the solids particles. Roughly speaking, this quantity may be interpreted as
the flocculant concentration, and it passively travels with the solids particles. Moreover, a
simple regulator, a numerical scheme and simulation examples are shown.

1.2. Related work. To put this paper further in the proper perspective, we recall that the
flocculation process consists of 3 steps (Hogg, 2000), namely (i) destabilization of suspended
particles, (ii) floc formation and growth and (iii) floc degradation. Step (i) is usually con-
trolled by pH modifications. In mineral processing, step (ii) consists of the adsorption of fine
particles in high molecular weight polymer, also called bridging flocculation (Hogg, 2013).
The adsorption rate is determined by particle-polymer collisions. The most important way
in which particles are brought into contact with the polymer is due to the fluid motion (or-
thokinetic flocculation) (Gregory, 2005; McFarlane et al., 2005). It is well known that the
number of collisions is proportional to the shear rate of the suspension, the concentration
of solid particles and flocculant concentration. However, floc degradation is also related to
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shear and then there is a trade-off between floc formation and floc degradation in agitated
suspensions. To avoid this problem, normally, the used shear rate in flocculation steps is less
than 100 s−1.

The authors are well aware that flocculation is a complex operation, which is however
not part of the model. Rather, we assume that the settling velocity of a single particle
(floc) that enters the CT, vSt, is an explicit known function of the (properly normalized)
flocculant concentration c, i.e. vSt = vSt(c). Experimental information that helps to provide
this relationship includes the papers by Ye et al. (1998), Aziz et al. (2000), Besra et al.
(1996), Glover et al. (2000, 2004), Balastre et al. (2002), Jin et al. (2003), Zhao (2004),
Chen et al. (2007), McGuire et al. (2008), Chakrabarthi et al. (2008), Kourki and Famili
(2012) and Eswaraiah et al. (2012).

The available model by Bürger et al. (2005), which gives rise to the governing equation
(2), combines several non-standard mathematical properties, including the appearance of
discontinuous solutions, discontinuities in the definition of the flux F with respect to z,
and the fact that the sediment compressibility function d = d(φ) becomes zero whenever
the volume fraction φ is smaller than a critical concentration (or gel point) φc. The latter
properties means that the second-order PDE (2) degenerates into a first-order PDE wherever
φ ≤ φc, where the location of the type-change interface φ = φc, that is, the sediment
level, is unknown beforehand. While Bürger et al. (2005) provide the full mathematical
detail including a numerical scheme and the corresponding convergence analysis, particularly
accessible introductions to the model formulation and mathematical treatment are provided
by Bürger et al. (2011) and Diehl (2012). A hands-on description of a numerical scheme
for the approximate solution of (2), and therefore for the simulation of the dynamics of a
clarifier-thickener, is given by Bürger et al. (2013).

As for the control of CTs modelled by PDEs, we refer to Barton et al. (1992), Chancelier
et al. (1994), Diehl (2006, 2008), Bürger and Narváez (2007), Betancourt et al. (2013) and
Diehl and Far̊as (2013).

The basic novelty in terms of the governing equations is an additional PDE that describes
the transport of a scalar quantity that reflects a variable property by which the solid par-
ticles entering the CT are “marked”, and which in general influences the rheology of the
suspension. A similar concept, though in a more involved model, was advanced by Lester et
al. (2010). Their so-called microstructural parameter χ is an abstract quantity that repre-
sents the thixotropic state of the suspension, and which is advocated with the solids phase
velocity.

1.3. Outline of the paper. This paper is organized as follows: Section 2 describes the
phenomenological model and its relation with flocculation. Section 3.1 describes the steady-
state solution of the model and some operating charts for control of steady-state solutions.
The proposed numerical scheme is given in the Appendix. Section 4 is devoted to numerical
simulations. Finally, in Section 5, conclusions are given and future research is outlined.

2. Mathematical model

We consider an idealized CT shown in Figure 1 with the volumetric overflow or effluent
rate Qe ≥ 0, the volumetric discharge or underflow rate Qu ≥ 0, the volume feed rate
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Qf = Qu+Qe, and the feed, underflow and effluent solids volume fractions φf , φu and φe. The
downward-pointing z-axis can be divided into the effluent zone (z < −H), the clarification
zone (−H < z < 0), the thickening zone (0 < z < B), and the underflow zone (z > B). We
assume that the cross-sectional area is constant (denoted by A) and that the solids volume
fraction φ only depends on depth z and time t.

2.1. Model for non-varying feed properties (Bürger et al., 2005). The conservation
of mass yields the PDE (2), where the convective flux function is

F (φ, z, t) :=


−Qe(t)φ/A for z < −H,

−Qe(t)φ/A+ vhs(φ)φ for −H ≤ z < 0,

Qu(t)φ/A+ vhs(φ)φ for 0 < z ≤ B,

Qu(t)φ/A for z > B,

(3)

which involves the hindered settling velocity function

vhs(φ) := vStV (φ), (4)

where V is a dimensionless constitutive function modelling the hindered effect satisfying
V (0) = 1. In mineral processing, the expression by Richardson and Zaki (1954)

V (φ) = (1− φ)nRZ

with nRZ > 1 is often used. The function d = d(φ) describing sediment compressibility is
given by Bürger et al. (2005):

d(φ) :=
vhs(φ)σ′e(φ)

(ρs − ρf)g
, (5)

where σe is the effective solid stress function, whose derivative satisfies

σ′e(φ)

{
= 0 for 0 ≤ φ < φc,

> 0 for φ > φc,

where φc is the material-dependent critical concentration. A typical effective solid stress
function is given by

σe(φ) =

{
0 for φ < φc,

α exp(βφ) for φ ≥ φc,

where α [Pa] and β are parameters that can be determined through experiments (Garrido et
al., 2000). The function γ = γ(z) appearing in the right-hand side of (2) indicates whether
z is inside or outside of the CT, i.e.,

γ(z) :=

{
1 for −H ≤ z ≤ B,

0 for z < −H or z > B.
(6)

The outlet concentrations at the effluent and underflow are given by the respective expres-
sions

φe(t) := φ(−H−, t), φu(t) = φ(B+, t).
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Here the notation φ(−H−, t) indicates that we take the limit of φ(z, t) as z approaches −H
from above (z < −H), corresponding to the exterior of the CT. Likewise, φ(B+, t) means
that we take the limit z → B from below (z > B). Both notations consider that the solution
φ = φ(z, t) is, in general, discontinuous at z = −H and z = B.

The definition of the function F in (3) in combination with (6) implies that outside the
CT, the solid and liquid phases move at the same velocity, i.e. the suspension is just advected
away from the CT.

2.2. Model for varying feed properties. Suppose now that some property of the solids
that are fed to the CT changes with time. This property may be the colour of the particles
or, which we are interested in, the sedimentation velocity of each particle defined by the
flocculant dosage. We let k = k(z, t) denote a positive dimensionless number describing
such a property at the depth z and time t within the CT. For a grey scale, k could be a
number between zero and one. For a varying settling velocity, k = 0 means a zero particle
settling velocity and k = 1 the maximal possible velocity, which occurs when the suspension
is flocculated in the optimal way, possibly by adding an adequate dosage of flocculant. If the
parameter v0 denotes such a maximal velocity for a single particle, then the single settling
velocity vSt should in the model be replaced by k(z, t)v0. Hence, the constitutive function
(4) should be replaced by

vhs(φ, k) : = kv0V (φ) = kvhs(φ). (7)

Replacing vhs(φ) in (5) by vhs(φ, k), we obtain the new diffusion coefficient

d(φ, k) : =
kvhs(φ)σ′e(φ)

(ρs − ρf)g
= kd(φ),

and Equation (2) becomes

∂φ

∂t
+

∂

∂z

(
F (φ, k, z, t)

)
=

∂

∂z

(
γ(z)k

∂D(φ)

∂z

)
+
Qf(t)φf(t)

A
δ(z), (8)

where we have redefined F as follows:

F (φ, k, z, t) :=


−Qe(t)φ/A for z < −H,

−Qe(t)φ/A+ kvhs(φ)φ for −H ≤ z < 0,

Qu(t)φ/A+ kvhs(φ)φ for 0 < z ≤ B,

Qu(t)φ/A for z > B,

and we define

D(φ) :=

∫ φ

0

d(s) ds.

In the feed inlet, the time variation of the property is described by kf = kf(t) ∈ [0, 1]. The
feed flux of particles carrying the property kf(t) at time t is kf(t)φf(t)Qf(t). To formulate an
equation for the depth and time variation of k(z, t), we postulate that

w(z, t) := k(z, t)φ(z, t)
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is the density of a conserved quantity. Consider an arbitrary interval of the depth axis,
(z1, z2), and let Φ|z=z1 denote the total flux per area unit of particles passing z = z1. The
flux of the property k across z = z1 at time t is then AkΦ|z=z1 . The Reynolds Transport
Theorem then yields

d

dt

∫ z2

z1

Ak(z, t)φ(z, t) dz = A
(
(kΦ)|z=z1 − (kΦ)|z=z2

)
+

∫ z2

z1

kf(t)Qf(t)φf(t)δ(z) dz,

where the total flux Φ is given by

Φ

(
φ,
∂φ

∂z
, k, z, t

)
= F (φ, k, z, t)− γ(z)k

∂D(φ)

∂z
.

This yields the PDE

∂(kφ)

∂t
+

∂

∂z

(
kF (φ, k, z, t)

)
=

∂

∂z

(
γ(z)k2∂D(φ)

∂z

)
+
Qf(t)kf(t)φf(t)

A
δ(z), (9)

which together with (8) constitutes our model. Defining wf := kfφf we arrive at the following
system of conservation equations:

∂φ

∂t
+

∂

∂z

(
F (φ,w/φ, z, t)

)
=

∂

∂z

(
γ(z)

w

φ

∂D(φ)

∂z

)
+
Qf(t)φf(t)

A
δ(z), (10)

∂w

∂t
+

∂

∂z

(
w

φ
F (φ,w/φ, z, t)

)
=

∂

∂z

(
γ(z)

w2

φ2

∂D(φ)

∂z

)
+
Qf(t)wf(t)

A
δ(z). (11)

The final form, which we will also refer to in the numerical discretization, is obtained by
introducing the bulk velocity function:

q(z, t) :=

{
−Qe(t)/A for z < 0,

Qu(t)/A for z > 0,

incorporating the source terms into the convective flux by writing δ(z) = H ′(z), where H is
the Heaviside step function, and noting that for φ > 0 and any number p we have

1

φp
∂D(φ)

∂z
=
∂Dp(φ)

∂z

for p = 1, 2, where

Dp(φ) :=

∫ φ

0

d(s)

sp
ds.

This gives

∂φ

∂t
+

∂

∂z

(
q(z, t)(φ− φf) + γ(z)k(φ,w)vhs(φ)φ

)
=

∂

∂z

(
γ(z)w

∂D1(φ)

∂z

)
, (12)

∂w

∂t
+

∂

∂z

(
q(z, t)(w − wf) + γ(z)k(φ,w)vhs(φ)w

)
=

∂

∂z

(
γ(z)w2∂D2(φ)

∂z

)
, (13)
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0
c [−]

v S
t(c

)

copt

v
min

v
0

Figure 2. Schematic graph of the unimodal relation between the Stokes ve-
locity and the flocculant concentration: vSt = vSt(c). The concentration copt

gives the maximal velocity vSt(c
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where we now treat k as a function of φ and w:

k(φ,w) =

{
k̃, if φ = 0,

w/φ, otherwise.

We remark that when φ = 0, the value of k̃ is irrelevant, since w = 0k̃ = 0, hence both
conserved variables are zero. Physically this means that there is no particle that can carry
any information of k.

2.3. Feed properties and flocculation. Our goal is to use the property described by k to
mark particles by the state of flocculation encountered when entering the CT, expressed in
terms of the modulated hindered settling velocity vhs (see (7)). Let c denote the dimensionless
flocculent concentration (mass of added flocculant per mass suspension). It is well known that
the floc size is a unimodal function of the flocculant concentration due to the re-stabilization
of particles by flocculant excess. Therefore, the particle settling velocity (Stokes velocity)
vSt follows the same rule. A typical example of this behavior is shown in Figure 2. Since the
function vSt(c) is increasing on [0, copt], the dimensionless and normalized function

k̄(c) := vSt(c)/v0, 0 ≤ c ≤ copt,

means a one-to-one increasing relation between the flocculant concentration c ∈ [0, copt] and
the property k = k̄(c) ∈ [vmin/v0, 1]. Note that it is sufficient and desired to consider only this
increasing relation, since the decreasing part would mean an unnecessary waste of flocculant.

During CT operation, let ṁfl(t) denote the mass of added flocculant per unit time just
before the feed inlet to the CT. Then the dimensionless flocculant concentration varies with
time according to

c(t) =
ṁfl(t)

ρsφf(t)Qf(t)
, (14)
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and we define the feed function of the property k as

kf(t) := k̄
(
c(t)
)
. (15)

This function fits exactly in the framework of Section 2.2 and allows us to model the behavior
of the CT due to changes in flocculant addition.

3. Thickening operation and control

3.1. Steady-state solutions and operating charts. For the operation of a CT, it is
important to establish the dependence of the steady-state solutions on the possible control
variables Qf , Qu and kf . Assume that all functions and variables of Equations (8) and (9)
are independent of time t. There are steady-state solutions φ = φ(z) with solids in the
clarification zone, and then the effluent concentration φe may be positive or zero. If φe = 0,
then the sediment level, i.e., the position of the interface zc such that φ(zc) = φc, is located
in the clarification zone. This mode of operation is sometimes called high-capacity mode
(Bürger and Narváez, 2007). However, here we only consider the most desirable steady-state
solutions for which the concentration in the clarification zone is zero (hence φe = 0), and for
which the sediment level is located in the thickening zone. This means that the feed flux
(per area unit) Qfφf/A equals the flux in the thickening zone. Then Equations (8) and (9)
reduce to the following four equalities for the unknowns φ(z), k(z), φu, ku:

Qfφf

A
= F (φ, k)− kdD(φ)

dz
=
Quφu

A
, (16)

Qfkfφf

A
= kF (φ, k)− k2 dD(φ)

dz
=
Qukuφu

A
. (17)

Assume that Qfφf > 0. Multiplying Equation (16) by k and subtracting Equation (17), we
get

k(z)− kf = 0 = k(z)− ku,

which implies that

kf = k = ku = constant.

Then the left equality of (16) is an equation for the unknown φ(z); see Bürger and Narváez
(2007). It is known that φ(z) is a non-decreasing function for 0 < z < B, which may have
at most one discontinuity (for physically relevant vhs; e.g., a sufficient condition is that vhs

is decreasing). We are interested in the case when φ(B−) > φc. This implies that (16) is an
ordinary differential equation as long as φ > φc, namely

dφ

dz
=

1

kd(φ)

(
F (φ, k)− Qfφf

A

)
. (18)

This equation is easiest integrated from the bottom, with the initial value

φ(B−) = φu =
Qfφf

Qu

, (19)
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and upwards to the unique coordinate zc where the volume fraction has reached the critical
concentration, i.e. φ(zc) = φc. At z = zc, there is a discontinuity above which the solution
is constant and equal to φ1, also called conjugate concentration, which satisfies

F (φ1, k) =
Qfφf

A
.

One should bear in mind that, for a given k, there exists a (possibly) small interval of
values of the underflow concentration φu that yield a discontinuity within the thickening
zone, i.e. zc ∈ (0, B). Furthermore, for a given value of φu, the location of the discontinuity
is influenced by the property k. This relation is well known in dewatering plants and many
control systems use this feature to hold the sediment level modifying the flocculant dosage
(see, for instance, Furness et al., 1980).

Since at steady state the value of k remains constant, the procedure detailed by Bürger
and Narváez (2007) is sufficient to construct a chart of feasible steady states. However,
there is no rule that permits us to know a priori whether the tuple (φf , k, φu, φe, Qf) yields
an attainable steady state. Usually numerical integration must be used to determine whether
a given tuple (φf , k, φu, φe, Qf) produces a real steady state.

To illustrate the connection between k, φu and zc, we consider a CT of 60 m in diameter
with H = 0.8 m and B = 3.2 m. We choose the following constitutive relations, which have
been experimentally measured for copper ore tailings by Becker (1982).

vhs(φ) =

{
6.05 · 10−4(1− φ)12.59 ms−1 for 0 ≤ φ ≤ 1,

0 otherwise,

σe(φ) =

{
0 for φ ≤ 0.23,

5.35 exp(17.9φ) Pa for φ > 0.23.

The solids have the density ρs = 2650 kg m−3 and the liquid considered here is water (ρf =
1000 kg m−3). For simulations, it will be assumed that the value of vSt determined by Becker
(1982) corresponds to the maximal value v0. We plot contours of zc = zc(kf , φu), with values
Qfφf = 30, 60 and 90 m3 h−1. The results are shown in Figure 3.

It can be observed that only a subset of the rectangle [φc, 1] × (0, 1] yields zc ∈ (0, B).
This subset represents all possible values for controlling the CT unit under the restriction of
no solids in the clarification zone and the sediment level in the thickening zone.

3.2. Thickener Control. In the design of thickener controllers there are two independent
variables, flocculant rate and underflow rate. The dependent variables include rake torque,
underflow concentration, overflow concentration, sediment level, solids inventory, solids set-
tling rate and underflow viscosity (Schoenbrunn and Toronto, 1999). In the case studied
here, we propose to use the underflow rate to control the underflow concentration and the
property kf to control the sediment level. Recalling that Qfφf in (19) is a given quantity,
Qu can be used as a control variable to obtain a desired φu (see Diehl, 2008 and Betancourt
et al., 2013). For controlling the sediment level, let us suppose that it is possible to ma-
nipulate the value of kf , for instance by modifying the flocculant concentration c. Suppose
that Qf(t), φf(t) are perturbations that cannot be modified. For desired set point values
φSP

u and zSP
c , Figure 3 indicates that there exists at most one value of kf (that we call
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Figure 3. Contour plots of the sediment level zc [m] for Qfφf = 30, 60 and
90 m3/h, respectively, which can be used as operating charts for control. Given
a desired zc in steady-state operation, the corresponding curve in a chart gives
the possible values of φu and k in the steady-state solution of the model.
When φu is also chosen, k is given uniquely. Then the control variables are
determined by Qu = Qfφf/φu and kf = k.

kSP
f ) such that the steady-state determined by (Qf(t), φf(t), φe = 0, φSP

u , zSP
c ) is reachable,

i.e., kSP
f = kSP

f

(
Qf(t), φf(t), φe = 0, φSP

u , zSP
c

)
. Consider the following simple proportional
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regulator:

Qu(t) =
Qf(t)φf(t)

φSP
u

+KP1φu(t),

kf(t) = kSP
f

(
φSP

u , zSP
c

)
+KP2zc(t),

(20)

where we define the deviation variables

φu(t) := φu(t)− φSP
u ,

zc := zSP
c − zc(t),

and the positive (constant) gains KP1 and KP2. The first terms on the right-hand side of (20)
contain the steady-state values according to operating charts as in Figure 3. If a deviation
is nonzero, the regulator automatically adjusts the control variable in a way that speeds up
the transient behaviour of the system towards the given set point values φSP

u and zSP
c . In

Section 4, a numerical example showing the improvement in the CT behavior due to the
introduction of regulator (20) is presented.

Finally, an operator would like to know the time-variation c(t) (or ṁfl(t)) instead of kf(t),
and we have in Section 2.3 described how this can be achieved uniquely.

4. Simulations

We illustrate the behaviour of the model (8)–(9) (or (12)–(13)) and the possibilities for
control of steady states of the CT by two numerical examples. All simulations are performed
by the numerical scheme outlined in the Appendix with a cell depth of ∆z = 0.003 m and
the tank dimensions and parameter values given in Section 3.1.

4.1. Example 1. We perform three simulations. In all three, we start at steady state with
kf = 0.5078, φf = 0.1500, Qf = 400 m3 h−1 and

Qu =
60

0.32
m3 h−1 = 187.5 m3 h−1,

which means that Qfφf = 60 m3 h−1 and φu = 0.32. As a reference back to the operating
charts of Section 3.1, we are positioned on the contour zc = 2.65 m in Figure 3 (b). A
step change of the feed flux from Qfφf = 60 m3 h−1 to Qfφf = 90 m3 h−1 is imposed at time
t = 20 h by increasing the feed concentration φf but keeping the volumetric feed flow rate
Qf constant. We thus have to consult Figure 3 (c) to consider the new steady state of the
system.

Figure 4 (a) shows the dynamics of the volume fraction φ in Simulation 1, during which
kf and Qu are kept constant. (Since kf is constant and we start at steady state, k(z, t) ≡ kf

in the thickening zone, we do not show any 3D graph of k.) Clearly the sediment level rises
from the thickening zone, through the clarification zone and we end up with a steady-state
overflow.

In Simulation 2 (Figure 4 (b)), the previous overflow situation caused by the step increase
in the feed flux at t = 20 h is prevented by immediately increasing Qu to (90/0.32) m3 h−1.
This means that we move horizontally to the left in Figure 3 (c) until we meet the underflow
volume fraction φu = 0.32 keeping kf = 0.5078. The corresponding new contour is zc =
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Figure 4. (a) Simulation 1: A step increase of the feed flux is imposed at
time t = 50 h, but no control action is performed. (b) Simulation 2: A step
increase of the feed flux is imposed at time t = 50 h, kf is kept constant but Qu

is changed to keep the initial sediment level. (c) Simulation 3: A step increase
of the feed flux is imposed at time t = 50 h, kf and Qu are changed to keep
the initial sediment level and underflow volume fraction constant. (d) Zoom
of profile in Simulation 3.

1.2441 m. As can be seen in Figure 4 (b), the sediment level rises slowly and it takes a long
time to reach this new sediment level.

To keep both zc and φu at the same levels as before the disturbance in the feed occurs,
it is necessary to change both Qu and kf to new values. In Simulation 3, which is shown in
Figure 4 (c), this is done by increasing Qu to (90/0.32) m3 h−1 and kf to 0.7615. In Figure 4
(d) a zoom of Figure 4 (c) for t ∈ [19, 25] is presented. We observe the appearance of a
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Figure 5. The steady state profiles for φ (t = 8000 h).

wave in the profile due to the collision of incoming particles with greater velocity (i.e. with
greater value of kf) with the slower particles.

It must be noted that the process has not reached steady state in the simulations shown
in Figure 4 (a)–(d). The steady-state volume fraction profiles (simulated profiles at time
t = 8000 h) of all three simulations are shown together with the initial profile in Figure 5.

4.2. Example 2. In Simulation 3 of Example 1, it was shown that a manual control action
by immediate changes of Qu and kf is sufficient to meet disturbances in the feed stream.
Suppose now we wish to introduce a step change in the set point value of zc. Unfortunately,
simulations have shown that this type of manual action gives a very slow convergence to the
new reference value (see Figure 6 (a)). In order to improve the performance, the regulator
proposed in (20) is connected to the system. This is now demonstrated by two simulations.

In Simulations 4 and 5, we start at a steady state with kf = 0.4949, φf = 0.15, Qf =
400 m3 h−1 and

Qu =
60

0.35
m3 h−1 ≈ 171.43 m3 h−1.

We thus have Qfφf = 60 m3 h−1, φu = 0.35 and zc = 1.0 m. During the first 20 hours,
the setpoint values of φu, zc and kf are kept constant equal to the initial values i.e. φSP

u =
0.35, zSP

c = 1.0 m and kSP
f = 0.4949. At time t = 20 h a step increase in zSP

c to the new
value zSP

c = 1.5 m is imposed, which means that we also have to change kSP
f to kSP

f =
0.5281. In Simulation 4, shown in Figures 6 (a) and 7 (a), no controller is connected while
in Simulation 5, shown in Figures 6 (b)–(c) and 7 (b), the controller (20) with KP1 =
800 m3 h−1 and KP2 = 0.8 is used. These gain parameter values have been determined
by ad-hoc numerical experiments. The improvement in the response with the controller
connected is well visible. On the other hand, the introduction of the controller produces an
overshoot in the values of kf and Qu (see Figure 6 (c)). This behavior can be attenuated
through the incorporation of an integral term in controller (20); however, it would also
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Figure 6. Dynamics of different variables (black) and set point values (red).
(a) Simulation 4: manual control action of only kSP

f . (b)–(c) Simulation 5: the
regulator (20) is used.

incorporate oscillations. The stability properties of this controller is an open question because
of the lack of a well-posedness theory for (12)–(13), nevertheless the numerical results show
desirable results. The convergence for similar controllers for the model with non-varying feed
properties (Subsection 2.1) have been studied by Diehl (2008) and Betancourt et al. (2013).

5. Conclusions

An extension of an accepted model of a CT is presented together with a simple regulator
and a numerical scheme. The model predicts the behavior of a CT under time-varying
settling velocity of the solid particles that are fed to the CT. The sediment level appears to
be a very sensitive variable with respect to changes in the particle settling velocity. This is
in agreement with knowledge from real operation and applied control strategies.
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Figure 7. Concentration profile of a CT under a change in the set point
of sediment level (a) modifying just kSP

f (Simulation 4), (b) connecting the
regulator (20) (Simulation 5).

We have shown how manual control of steady states can be made by changing the two
control variables Qu and kf(t), where the latter in turn can be controlled via addition of a
flocculant in the feed stream. The actual values of the control variables are determined by
operating charts, which are produced by numerical computations of an ordinary differen-
tial equations. This framework facilitates the possibilities of developing more sophisticated
controllers for the unit, and already a simple proportional controller improves the transient
behaviour substantially.

The well-posedness of the governing equations (12), (13) is a major task, as with any
system of conservation laws, and it is out of the scope of the paper. However the numerical
results are reasonable with the physics of the problem.

The proposed model is built on the assumption that the suspension is completely floccu-
lated before entering the CT and the model does not consider particle interaction during
sedimentation. A more complete model should also include orthokinetic flocculation inside
the CT. This effect has been considered, under different assumptions, in wastewater treat-
ment by Lyn et al. (1992).
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Appendix

We divide the spatial axis in cells of depth ∆z > 0 and define the grid points zj := j∆z
and the staggered grid points zj+1/2 := (j + 1/2)∆z for j = 0,±1, . . .. Similarly, the time
axis is discretized at the points tn := n∆t for n = 0, 1, . . . with the time step length ∆t > 0.
We consider the cell averages of the conserved properties φ and w on each cell [zj−1/2, zj+1/2):

φnj :=
1

∆z

∫ zj+1/2

zj−1/2

φ(z, tn) dz and wnj :=
1

∆z

∫ zj+1/2

zj−1/2

w(z, tn) dz,

while q and γ are considered on the staggered grid:

qnj+1/2 :=
1

∆z

∫ zj+1

zj

q(z, tn) dz = q(zj+1/2, t
n) and γj+1/2 :=

1

∆z

∫ zj+1

zj

γ(z) dz.

The numerical scheme consists of two steps via an operator splitting, where the linear
and nonlinear contributions to the fluxes are considered separately. With the notation
unj := (φnj , w

n
j ), unf := (φnf , w

n
f ) and λ := ∆t/∆z, the first step of the scheme reads

u
n+1/2
j = unj − λ

(
qn,−j+1/2

(
unj+1 − unf

)
+
(
qn,+j+1/2 − q

n,−
j−1/2

)(
unj − unf

)
− qn,+j−1/2

(
unj−1 − unf

))
,

where qn,+j+1/2 := max(qnj+1/2, 0) and qn,−j+1/2 := min(qnj+1/2, 0). This update from the linear bulk

fluxes is then used to approximate the nonlinear fluxes by first computing

k
n+1/2
j :=

{
k̃ if φ

n+1/2
j = 0,

w
n+1/2
j /φ

n+1/2
j otherwise,

and

Vn+1/2
j+1/2 := γj+1/2k

n+1/2
j+1 vhs

(
φ
n+1/2
j+1

)
.

The second step of the scheme is

φn+1
j = φ

n+1/2
j − λ

(
Vn+1/2
j+1/2 φ

n+1/2
j − Vn+1/2

j−1/2 φ
n+1/2
j−1

)
+ µ
(
γj+1/2w

n+1/2
j+1/2

[
D1

(
φ
n+1/2
j+1

)
−D1

(
φ
n+1/2
j

)]
− γj−1/2w

n+1/2
j−1/2

[
D1

(
φ
n+1/2
j

)
−D1

(
φ
n+1/2
j−1

)])
,

wn+1
j = w

n+1/2
j − λ

(
Vn+1/2
j+1/2 w

n+1/2
j − Vn+1/2

j−1/2 w
n+1/2
j−1

)
+ µ
(
γj+1/2

(
w
n+1/2
j+1/2

)2[
D2

(
φ
n+1/2
j+1

)
−D2

(
φ
n+1/2
j

)]
− γj−1/2

(
w
n+1/2
j−1/2

)2[
D2

(
φ
n+1/2
j

)
−D2

(
φ
n+1/2
j−1

)])
,

where µ := λ/∆z and

w
n+1/2
j+1/2 :=

{
min

{
w
n+1/2
j , φ

n+1/2
j+1

}
if φ

n+1/2
j+1 ≤ φ

n+1/2
j ,

min
{
w
n+1/2
j+1 , φ

n+1/2
j

}
otherwise.

(A.1)

The following CFL condition has been used:

max{C1, C2, C3} ≤ 1,
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Figure 8. Convergence test of the numerical scheme.

where

C1 = λ max
0≤t≤T

Qe(t) +Qu(t)

A
,

C2 = λ max
0≤φ≤1

(vhs(φ)− φv′hs(φ)) + 2µ max
0<φ≤1

d(φ)

φ
,

C3 = λ max
0≤φ≤1

vhs(φ) + 4µ max
0<φ≤1

d(φ)

φ2
,

and T is the total simulation time. The convergence of the scheme as ∆z → 0 is tested
numerically by running Simulation 3 with different values of ∆z; see Figure 8.
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gas: Mathematical and numerical analysis of a transient non-linear axisymmetric eddy
current model

2013-10 Ana Alonso-Rodriguez, Jessika Camaño, Rodolfo Rodŕıguez, Alberto
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