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ANALYSIS OF A MIXED-FEM FOR THE PSEUDOSTRESS-VELOCITY
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Abstract. We propose and analyse a mixed finite element method for the nonstandard pseudostress-velocity
formulation of the Stokes problem with varying density ρ in Rd, d ∈ {2, 3}. Since the resulting variational formulation
does not have the standard dual-mixed structure, we reformulate the continuous problem as an equivalent fixed-
point problem. Then, we apply the classical Babuška-Brezzi theory to prove that the associated mapping T is well
defined, and assuming that ‖∇ρ

ρ
‖L∞(Ω) is sufficiently small, we show that T is a contraction mapping, which implies

that the variational formulation is well-posed. Under the same hypothesis on ρ we prove stability of the continuous
problem. Next, adapting to the discrete case the arguments of the continuous analysis, we are able to establish
suitable hypotheses on the finite element subspaces ensuring that the associated Galerkin scheme becomes well-posed.
A feasible choice of subspaces is given by Raviart-Thomas elements of order k ≥ 0 for the pseudostress and polynomials
of degree k for the velocity. Finally, several numerical results illustrating the good performance of the method with
these discrete spaces, and confirming the theoretical rate of convergence, are provided.

Key words. Stokes, varying density, pseudostress-velocity formulation, mixed finite elements, a priori error
analysis.
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1. Introduction. The numerical simulation of incompressible fluid flow problems, modelled
by the Stokes equations, has been widely studied during the last decades. Different formulations
(velocity-pressure, vorticity-velocity-pressure and pseudostress-velocity, among others) and different
numerical methods (conforming and nonconforming methods) have been introduced and analyzed,
all of them with different advantages and disadvantages. In particular, the study of numerical
methods for the stress- and pseudostress-based fomulations for the Stokes problem has become a
very active research area during the last decade (see e.g. [5], [6], [7], [9], [12],[13], [15]), motivated by
the fact that they provide a direct approximation of the stress or pseudostress tensor (besides the
approximation of the velocity and/or pressure). This kind of formulations have been also extended
to the case of quasi-Newtonian flows and multiphysics problems such as the Stokes-Darcy coupled
problem (see e.g.[11], [14] and [16]).

Now, concerning the fluid flow problem studied in this paper, the first work in studying con-
forming finite element methods for the Stokes problem with varying density is [3], where the authors
propose and analyse two variational formulations to solve the fluid flow problem. The first one is
a velocity-pressure formulation which yields a nonsymetric saddle point formulation, whereas the
second one is a momentum-pressure formulation which yields a standard saddle-point formulation.
Well-posedness of the velocity-pressure formulation is analyzed by using a generalization of the
Babuška-Brezzi theory introduced in [18] (see also [2]) whereas the classical Babuška-Brezzi theory
is applied to prove well-posedness of the momentum-pressure formulation. It is important to notice
that, in both cases, existence and uniqueness of solution of the continuous and discrete problems are
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Chile, and Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción, Concepción, Chile
(dmora@ubiobio.cl). Partially supported by CONICYT-Chile through FONDECYT project No. 11100180 and by
project Anillo ACT 1118 (ANANUM).
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Chile, and Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción, Concepción, Chile
(royarzua@ubiobio.cl). Partially supported by CONICYT-Chile through FONDECYT project No. 11121347 and
by project Anillo ACT 1118 (ANANUM).

1



2 S. CAUCAO, D. MORA, AND R. OYARZÚA

attained by assuming that ∇ρρ is not too large. Additionally, well-posedness of the discrete problem
is fulfilled by assuming that the discretization parameter h is sufficiently small.

In this paper, we introduce and analyze a pseudostress-velocity formulation for the Stokes prob-
lem with varying density analyzed in [3]. Since the resulting variational formulation does not have
the standard dual-mixed structure, we reformulate the continuous problem as an equivalent fixed-
point problem. Then, we apply the classical Babuška-Brezzi theory to prove that the associated
mapping T is well defined, and assuming that ‖∇ρρ ‖L∞(Ω) is sufficiently small, we show that T is a
contraction mapping, which implies that the variational formulation is well-posed. We observe that
this assumption is consistent with the approach in [3]. Next, we adapt the theory developed for
the continuous problem to the discrete case, and derive sufficient conditions on the finite element
subspaces ensuring that the associated Galerkin scheme becomes well-posed. We mention here that,
unlike the approach in [3], we prove that our Galerkin scheme becomes well-posed without requiring
any assumption on the discretization parameter h.

The rest of this work is organized as follows. In Section 2 we introduce the model problem
and derive the mixed variational formulation. In Section 3 we analyse the well-posedness of the
continuous problem. For the existence and uniqueness of solution we introduce an equivalent fixed-
point problem and we prove that it has a unique solution, assuming that ‖∇ρρ ‖L∞(Ω) is sufficiently
small. Under a similar assumption we prove that the solution is stable. Next, in Section 4 we define
the Galerkin scheme and derive general hypotheses on the finite element subspaces ensuring that,
on the one hand, the discrete scheme becomes well-posed, and on the other hand, it satisfies a Cea
estimate. Specific choices of finite element subspaces satisfying these assumptions are introduced
in Section 5. Finally, numerical results illustrating the performance of the method are reported in
Section 6.

2. Continuos problem. In this section we introduce and analyze a weak dual-mixed formula-
tion for the Stokes problem with varying density analyzed in [3]. In particular, we discuss existence,
uniqueness and stability of solution. We start by introducing some definitions and fixing some
notations.

2.1. Preliminaries. Given a vector field v := (v1, . . . , vd) and a tensor field τ := (τij)i,j=1,...,d,
with d = 2, 3, we define the operators:

∇v =

(
∂vi
∂xj

)
, and div τ =

(
div (τi1, . . . , τid)

)
,

where div is the usual divergence operator acting on vector fields.

Now, let O be a domain in Rd, with Lipschitz boundary Γ. For r ≥ 0 and p ∈ [1,∞], we denote
by Lp(O) and W r,p(O) the usual Lebesgue and Sobolev spaces endowed with the norms ‖ · ‖Lp(O)

and ‖ · ‖W r,p(O), respectively.

Note that W 0,p(O) = Lp(O). If p = 2, we write Hr(O) in place of W r,2(O), and denote the
corresponding Lebesgue and Sobolev norms by ‖ · ‖0,O and ‖ · ‖r,O, respectively. We define

Hr(O) := [Hr(O)]d , Hr(O) := [Hr(O)]d×d , and Hr(Γ) := [Hr(Γ)]d .

Also, we shall make use of the Hilbert space

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

which is standard in the realm of mixed problems (see [4] or [17] for instance). This spaces is endowed
with the norm

‖w‖2div,O = ‖w‖20,O + ‖div w‖20,O.
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The space of matrix valued functions whose rows belong to H(div ;O) will be denoted H(div;O)
endowed with the norm ‖ · ‖div,O, which can be characterized as

H(div;O) :=
{
τ ∈ L2(O) : ctτ ∈ H(div ;O), ∀ c ∈ Rd

}
.

Note that if τ ∈ H(div;O), then div τ ∈ L2(O).

Next, for the sake of simplicity, we will also use the notations:

(u, v)Ω :=

∫
Ω

u v, (u,v)Ω :=

∫
Ω

u · v, (σ, τ )Ω :=

∫
Ω

σ : τ ,

where σ : τ = tr (σtτ ) =

2∑
i,j=1

σijτij , with τ t = (τji) and tr τ =

d∑
i=1

τii, for any tensor τ = (τ ij).

In addition, we denote by

τ d := τ − 1

d
tr (τ )I

the deviatoric part of tensor τ , where I is the identity matrix in Rd×d. It is not difficult to see that
there hold

‖τ d‖20,Ω = ‖τ‖20,Ω −
1

d
‖tr τ‖20,Ω and ‖tr τ‖0,Ω ≤

√
d‖τ‖0,Ω. (2.1)

Furthermore, given a non-negative integer k, we denote by Pk(O) the space of polynomials defined
on O of degree ≤ k

In addition, it is easy to see that there holds:

H(div;O) = H0(div;O) ⊕ P0(O) I , (2.2)

where

H0(div;O) :=

{
τ ∈ H(div;O) :

∫
O

tr τ = 0

}
. (2.3)

More precisely, each τ ∈ H(div;O) can be decomposed uniquely as:

τ = τ 0 + c I , with τ 0 ∈ H0(div;O) and c :=
1

d |O|

∫
O

tr τ ∈ R . (2.4)

This decomposition will be utilized below to analyze the weak formulation of our problem.

We end this section by mentioning that, throughout the rest of the paper, we shall frequently
use the notation C and c, with or without subscripts, bars, tildes or hats, to denote generic positive
constants independent of the discretization parameters.

2.2. Model Problem. In this paper we shall consider a viscous fluid occupying a bounded
polygon or polyhedra domain Ω in Rd, d = 2, 3, with boundary Γ = ∂Ω, governed by the Stokes
equations with varying density:

σ = ν(ρ∇u)− pI in Ω, −divσ = f in Ω

div (ρu) = 0 in Ω, u = 0 on Γ, (p, 1)Ω = 0.
(2.5)
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Here, the unknowns are the pseudostress tensor σ, the fluid velocity u and the pressure p. The
given data are the external force per unit mass f ∈ L2(Ω), the viscosity ν > 0, which is assumed to
be constant, and the density function ρ ∈ H1(Ω) ∩W 1,∞(Ω), satisfying:

∇ρ
ρ
∈ L∞(Ω) and 0 < ρ0 < ρ(x) < ρ1, a.e. in Ω, (2.6)

where ρ1 and ρ2 are positive constants.

The model in (2.5), which is derived from the full steady Navier-Stokes equations for viscous
fluids, is well-justified if we assume the following assumptions (justifications on the model can be
found in [8]):

i) Only the laminar case is considered and the second-order diffusion term in the viscous stress
tensor is neglected.

ii) The Mach number is small enough, which implies that the coupling between the pressure
and the temperature can be neglected.

In particular, ii) implies that the state law can be chosen as a simple equation linking the density
and the temperature, in which the temperature is approximated by a reference one.

Now, in order to rewrite equations (2.5) as a pseudostress-velocity formulation, we first observe
that identity div (ρu) = 0 in Ω implies

ρdiv u = −u · ∇ρ in Ω. (2.7)

Then, observing that trσ = νρdiv u − d p, (2.7) implies that the pressure can be written in terms
of the pseudostress and the velocity as follows:

p = −1

d
(νu · ∇ρ+ trσ) in Ω. (2.8)

In this way, we eliminate the pressure from (2.5) and obtain the equivalent system of equations:

ν−1

ρ
σd = ∇u +

1

d

(
u · ∇ρ

ρ

)
I in Ω, −divσ = f in Ω,

u = 0 on Γ, (trσ, 1)Ω = −ν(u · ∇ρ, 1)Ω.

(2.9)

2.3. Dual-mixed variational formulation. Now, we introduce the variational formulation
of the model problem (2.9). To do that, we test equations (2.9) by suitable test functions, integrate
by parts and use the homogeneous boundary condition to obtain the variational problem: Find
(σ,u) ∈ H(div; Ω)× L2(Ω) such that (trσ + νu · ∇ρ, 1)Ω = 0 and

ν−1(
1

ρ
σd, τ d)Ω + (divτ ,u)Ω −

1

d
(u · ∇ρ

ρ
, tr τ )Ω = 0,

(divσ,v)Ω = −(f ,v)Ω.

(2.10)

for all (τ ,v) ∈ H(div; Ω)× L2(Ω)

Let us now define the tensor

σ0 := σ +
ν

d|Ω|
(u · ∇ρ, 1)ΩI. (2.11)

It is clear that

σ0 ∈ H0(div; Ω) if and only if (trσ + νu · ∇ρ, 1)Ω = 0. (2.12)
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In this way, thanks to (2.11) and (2.4), problem (2.10) can be reformulated equivalently as: Find
(σ0,u) ∈ H0(div; Ω)× L2(Ω) such that

ν−1(
1

ρ
σd0, τ

d)Ω + (divτ ,u)Ω −
1

d
(u · ∇ρ

ρ
, tr τ )Ω = 0,

(divσ0,v)Ω = −(f ,v)Ω,

(2.13)

for all (τ ,v) ∈ H0(div; Ω)× L2(Ω).

The following lemma establishes that problems (2.10) and (2.13) are in fact equivalent.

Lemma 2.1. If (σ,u) is a solution of (2.10), then (σ0,u) := (σ+ ν
d|Ω| (u·∇ρ, 1)ΩI,u) is a solution

of (2.13). Conversely, if (σ0,u) is a solution of (2.13), then (σ,u) := (σ0 − ν
d|Ω| (u · ∇ρ, 1)ΩI,u) is

a solution of (2.10).

Proof. The first assertion is evident. On the other hand, by testing the first equation of (2.13) by

τ := (ρ− (ρ,1)Ω

|Ω| )I ∈ H0(div; Ω), it follows that (u · ∇ρρ , 1)Ω = 0, which implies the second assertion.

As a consequence of the above, in what follows we focus on analysing problem (2.13).

3. Analysis of the continuous problem. In this section we analyse the well-posedness of
problem (2.13), that is, we establish stability, existence and uniqueness of solution. In order to
do that, we start by writing our problem in the classical variational setting and state the main
properties of the bilinear forms involved.

In the following, when no confusion arises, for the sake of brevity we omit the subscript 0 on σ0.

3.1. Variational formulation. First, let us define the spaces H := H(div; Ω), H0 := H0(div; Ω),
Q := L2(Ω) and the product norm

‖(τ ,v)‖H×Q := (‖τ‖2div,Ω + ‖v‖20,Ω)1/2.

Then, defining the bilinear forms a(·, ·) : H×H→ R, b(·, ·) : H×Q→ R and c(·, ·) : H×Q→ R,
as

a(σ, τ ) := ν−1(
1

ρ
σd, τ d)Ω, b(τ ,v) := (divτ ,v)Ω, c(τ ,v) :=

1

d
(v · ∇ρ

ρ
, tr τ )Ω, (3.1)

the variational formulation (2.13) reads: Find (σ,u) ∈ H0 ×Q such that

a(σ, τ ) + b(τ ,u)− c(τ ,u) = 0,

b(σ,v) = −(f ,v)Ω,
(3.2)

for all (τ ,v) ∈ H0 ×Q.

It is clear that assumption (2.6), Hölder’s inequality and (2.1) imply the continuity of these
bilinear forms:

|a(σ, τ )| ≤ 1

νρ0
‖σ‖div,Ω‖τ‖div,Ω, σ, τ ∈ H,

|b(τ ,v)| ≤ ‖τ‖div,Ω‖v‖0,Ω, τ ∈ H, v ∈ Q,

|c(τ ,v)| ≤ 1√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖τ‖div,Ω‖v‖0,Ω, τ ∈ H, v ∈ Q

(3.3)
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Furthermore, it is well known that the bilinear form b satisfies the inf-sup condition (see, for instance
[4]):

sup
τ∈H0\0

b(τ ,v)

‖τ‖div,Ω
≥ β‖v‖0,Ω ∀v ∈ Q. (3.4)

Finally, the following inequality holds (see for instance, Lemma 3.1 in [1] or Chapter IV in [4]):

Ca‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖divτ‖20,Ω ∀ τ ∈ H0, (3.5)

with Ca only depending on Ω. This inequality, and assumption (2.6) imply the ellipticity of a on
the subspace

K0 := {τ ∈ H0 : divτ = 0 in Ω},

that is

a(τ , τ ) ≥ Ca
νρ1
‖τ‖2div,Ω, ∀ τ ∈ K0. (3.6)

3.2. Stability. Now, we establish the stability of (3.2).

Lemma 3.1. Let (σ,u) ∈ H0 ×Q be a solution to (3.2). Assume that

Cdep

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

≤ 1

2
, (3.7)

with

Cdep :=
1

β
√
d

(
1 + 2

ρ1

Caρ0

)
.

Then, there exist constants Cσ and Cu, only depending on the stability constants in (3.3), (3.4),
(3.5), such that

‖σ‖div,Ω ≤ Cσ ‖f‖0,Ω and ‖u‖0,Ω ≤ Cu ‖f‖0,Ω. (3.8)

(Explicit expressions for Cσ and Cu can be found in (3.13) and (3.14)).

Proof. Let (σ,u) ∈ H0 × Q be a solution to (3.2). First, we observe that from the second
equation of (3.2), it is easy to conclude that divσ = −f , which implies

‖divσ‖0,Ω = ‖f‖0,Ω. (3.9)

Now, from the inf-sup condition in (3.4), the first equation of (3.2), Hölder’s inequality, the inequality
in (2.1), and the continuity of the bilinear forms a and c in (3.3), we observe that

‖u‖0,Ω ≤ 1

β
sup

τ∈H0\0

b(τ ,u)

‖τ‖div,Ω
=

1

β
sup

τ∈H0\0

| − a(σ, τ ) + c(τ ,u)|
‖τ‖div,Ω

,

≤ 1

νρ0β
‖σ‖div,Ω +

1

β
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖u‖0,Ω.
(3.10)

Then, thanks to assumption (3.7), we obtain

‖u‖0,Ω ≤
2

νρ0β
‖σ‖div,Ω. (3.11)
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On the other hand, from the first equation of (3.2) with τ = σ, there holds

a(σ,σ) = −b(σ,u) + c(σ,u) = (f ,u)Ω + c(σ,u),

which together to assumption (2.6), the continuity of c in (3.3), and Hölder’s inequality, implies

‖σd‖20,Ω ≤ νρ1‖u‖0,Ω‖f‖0,Ω +
νρ1√
d
‖u‖0,Ω

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖σ‖div,Ω. (3.12)

Hence, adding (1 + Ca)‖divσ‖20,Ω on both sides of (3.12), and using (3.5), (3.9) and (3.11), we get

‖σ‖2div,Ω ≤ νρ1

Ca
‖u‖0,Ω

(
‖f‖0,Ω +

1√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖σ‖div,Ω

)
+

(1 + Ca)

Ca
‖σ‖div,Ω‖f‖0,Ω,

≤
(

2ρ1

Caρ0β
+

1 + Ca
Ca

)
‖σ‖div,Ω‖f‖0,Ω +

2ρ1

Caρ0β
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖σ‖2div,Ω.

In this way, from assumption (3.7) it follows that

‖σ‖div,Ω ≤ 2

(
2ρ1

Caρ0β
+

1 + Ca
Ca

)
‖f‖0,Ω, (3.13)

which together to (3.11) implies

‖u‖0,Ω ≤
4

νρ0β

(
2ρ1

Caρ0β
+

1 + Ca
Ca

)
‖f‖0,Ω, (3.14)

which completes the proof.

3.3. Existence and uniqueness of solution. As mentioned before, in order to prove exis-
tence and uniqueness of solution, we now introduce the linear mapping:

T : (ξ, z) ∈ H0 ×Q → (σ,u) ∈ H0 ×Q,

as the solution to the following variation of problem (3.2): Find (σ,u) ∈ H0 ×Q such that

a(σ, τ ) + b(τ ,u) = c(τ , z),

b(σ,v) = −(f ,v)Ω,
(3.15)

for all (τ ,v) ∈ H0 ×Q. With the stability properties in Section 3.1, it is not difficult to see that
problem (3.15) is uniquely solvable, and hence the operator T is well defined (see Theorem 2.1 in
[15]).

The following lemma establishes that T is a contraction mapping and hence, according to the
Banach fixed point theorem, it has a unique fixed point in H0 ×Q.

Lemma 3.2. Assume that

CT

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

< 1, (3.16)

with

CT :=
1

β
√
d

(
1 +

ρ1

Caρ0

)
+

ρ1ν

Ca
√
d
. (3.17)
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Then, T is a contraction mapping in H0 ×Q.

Proof. Let (σ1,u1), (σ2,u2), (ξ1, z1), (ξ2, z2) in H0 ×Q, such that

T(ξ1, z1) = (σ1,u1) and T(ξ2, z2) = (σ2,u2).

From the definition of T in (3.15), it follows that

a(σ1 − σ2, τ ) + b(τ ,u1 − u2) = c(τ , z1 − z2),

b(σ1 − σ2,v) = 0,
(3.18)

for all (τ ,v) in H0 ×Q, which implies

div(σ1 − σ2) = 0, (3.19)

and

a(σ1 − σ2,σ1 − σ2) = c(σ1 − σ2, z1 − z2). (3.20)

Then, from (3.19), (3.20), the ellipticity of a on K0 in (3.6), and the continuity of c in (3.3), there
holds

‖σ1 − σ2‖div,Ω ≤
ρ1ν

Ca
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖z1 − z2‖0,Ω. (3.21)

Now, from (3.3), (3.4), and the first equation of (3.18), we obtain

‖u1 − u2‖0,Ω ≤ 1

β
sup

τ∈H0(div;Ω)\0

|b(τ ,u1 − u2)|
‖τ‖div,Ω

,

=
1

β
sup

τ∈H0(div;Ω)\0

|c(τ , z1 − z2)− a(σ1 − σ1, τ )|
‖τ‖div,Ω

,

≤ 1

β
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖z1 − z2‖0,Ω +
1

νρ0β
‖σ1 − σ2‖div,Ω,

which together to (3.21) implies

‖u1 − u2‖0,Ω ≤
1

β
√
d

(
1 +

ρ1

Caρ0

)∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖z1 − z2‖0,Ω. (3.22)

In this way, from (3.21) and (3.22), there holds

‖T(ξ1, z1)− T(ξ2, z2)‖H×Q ≤ ‖σ1 − σ2‖div,Ω + ‖u1 − u2‖0,Ω,

≤ CT

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖z1 − z2‖0,Ω,

≤ CT

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖(ξ1 − ξ2, z1 − z2)‖H×Q.

Therefore, according to assumption (3.16), we obtain that T is a contraction mapping, which con-
cludes the proof.

Now we establishes the main result of this section.
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Theorem 3.3. Assume that

CWP

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

≤ 1

2
, (3.23)

with

CWP :=
1

β
√
d

(
1 + 2

ρ1

Caρ0

)
+

ρ1ν

Ca
√
d
. (3.24)

Then, there exist a unique (σ,u) ∈ H0 ×Q satisfying (3.2). Moreover, the solution is stable in the
sense that, it satisfies inequalities (3.8).

Proof. It is clear that (σ,u) ∈ H0 ×Q is the unique solution of problem (3.2) if and only if it is
the unique fixed point of the mapping T. Then, noting that CT ≤ CWP , from Lemma 3.2 and the
classical Banach fixed point theorem, it follows that T has a unique fixed point in H0 ×Q, which
implies the first assertion.

In turn, since Cdep ≤ CWP , the stability of (σ,u) follows from Lemma 3.1.

4. The mixed finite element scheme. In this section we introduce the Galerkin scheme
of problem (3.2) and analyze its well-posedness by establishing suitable assumptions on the finite
element subspaces involved. Then, we provide specific examples for these subspaces, satisfying the
required hypotheses.

4.1. Preliminaries. We start by selecting the following arbitrary discrete spaces:

Hh ⊆ H(div; Ω), Qh ⊆ L2(Ω). (4.1)

Then we define the subspaces

Hh :=
{
τ ∈ H(div; Ω) : ctτ ∈ Hh ∀ c ∈ Rd

}
,

Hh,0 := Hh ∩H0(div; Ω),

Qh := Qdh.

(4.2)

In this way, the Galerkin scheme for (3.2) reduces to: Find (σh,uh) ∈ Hh,0 ×Qh such that

a(σh, τh) + b(τh,uh)− c(τh,uh) = 0,

b(σh,vh) = −(f ,vh)Ω,
(4.3)

for all (τh,vh) ∈ Hh,0 ×Qh.

Now, we establish general hypotheses on the finite element subspaces (4.2), ensuring later on the
well-posedness of (4.3). We start by observing that in order to have meaningful space Hh,0, we need
to be able to eliminate multiples of the identity matrix from Hh. This request is certainly satisfied
if we assume that:

(H.0) [P0(Ω)]d×d ⊆ Hh.

Then, it follows that I ∈ Hh, for all h, and hence there holds the decomposition:

Hh = Hh,0 ⊕ P0(Ω)I.
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Now, we look at the discrete kernel on b, which is defined by:

Kh,0 := {τh ∈ Hh,0 : b(τh,vh) = 0 ∀v ∈ Qh}.

In order to have a more explicit definition of Kh,0 we introduce the following assumption:

(H.1) div Hh ⊆ Qh.

Then, it follows from the definition of b that

Kh,0 := {τh ∈ Hh,0 : divτh = 0 in Ω} ⊆ K0.

Next, we assume that the discrete version of (3.4) holds, that is:

(H.2) There exists β̂ > 0, independent of h, such that

sup
τh∈Hh,0\0

b(τh,vh)

‖τh‖div,Ω
≥ β̂‖vh‖0,Ω ∀vh ∈ Qh. (4.4)

4.2. Well-posedness of the discrete problem. In this section, we adapt the analysis from
Section 3 to the discrete case to prove the well-posedness of (4.3). First we observe that, since we
are considering conforming finite element subspaces, the continuity of the bilinear forms a, b, and c
(cf. (3.3)) are inherited from the continuous case, with the exact same constants. Moreover, since
Kh,0 ⊆ K0, we deduce that the ellipticity of a on Kh,0 holds:

a(τh, τh) ≥ Ca
νρ1
‖τh‖2div,Ω ∀ τh ∈ Kh,0. (4.5)

In this way, according to (3.3), (4.4), (4.5), and the classical Babuška-Brezzi theory, and similarly
to the analysis of the continuous problem, we are able to introduce the well-defined linear mapping

T̂ : (ξh, zh) ∈ Hh,0 ×Qh → (σh,uh) ∈ Hh,0 ×Qh

as the solution to the problem: Find (σh,uh) ∈ Hh,0 ×Qh such that

a(σh, τh) + b(τh,uh) = c(τh, zh),

b(σh,vh) = −(f ,vh)Ω,
(4.6)

for all (τh,vh) ∈ Hh,0 ×Qh.

Remark 4.1. It is easy to see that (σh,uh) is the solution of (4.3), if and only if, T̂(σh,uh) =
(σh,uh). In this way, in order to prove that (4.3) is well-posed, we proceed analogously to Section

3.3, and prove that T̂ has a unique fixed-point in Hh,0 ×Qh.

Theorem 4.2. Assume that hypotheses (H.0), (H.1) and (H.2) hold. In addition, assume that

ĈWP

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

≤ 1

2
, (4.7)

with

ĈWP :=
1

β̂
√
d

(
1 + 2

ρ1

Caρ0

)
+

ρ1ν

Ca
√
d
. (4.8)
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Then there exists a unique (σh,uh) ∈ Hh,0 × Qh satisfying (4.3). Moreover, there exist positive

constants Ĉσ and Ĉu, only depending on the stability constants in (3.3), (4.4) and (4.5), such that

‖σh‖div,Ω ≤ Ĉσ ‖f‖0,Ω and ‖uh‖0,Ω ≤ Ĉu ‖f‖0,Ω. (4.9)

(Explicit expressions for Ĉσ and Ĉu can be found in (4.10) and (4.11)).

Proof. Let

ĈT̂ :=
1

β̂
√
d

(
1 +

ρ1

Caρ0

)
+

ρ1ν

Ca
√
d
.

It is clear that ĈT̂ ≤ ĈWP . Then, we proceed analogously to Lemma 3.2, to prove that the mapping

T̂ has a unique fixed point (σh,uh) ∈ Hh,0×Qh which, according to Remark 4.1, is also the unique
solution of (4.3).

Next, we let

Ĉdep :=
1

β̂
√
d

(
1 + 2

ρ1

Caρ0

)
,

and observe that Ĉdep ≤ ĈWP . Then, noting that from the second equation of (4.3) the holds

‖divσh‖0,Ω ≤ ‖f‖0,Ω,

we proceed as in the proof of Lemma 3.1 to obtain that

‖σh‖div,Ω ≤ 2

(
2ρ1

Caρ0β̂
+

1 + Ca
Ca

)
‖f‖0,Ω, (4.10)

and

‖uh‖0,Ω ≤
4

νρ0β̂

(
2ρ1

Caρ0β̂
+

1 + Ca
Ca

)
‖f‖0,Ω. (4.11)

which concludes the proof.

4.3. A priori error estimate. Now, we establish the corresponding Cea a priori error esti-
mate. To that end, we first introduce some notations and state some previous results. We begin by
defining the set:

Hf
h := {τh ∈ Hh,0 : b(τh,vh) = −(f ,vh)Ω, ∀vh ∈ Qh},

which is clearly non-empty, since (4.4) hold. Also, it is not difficult to see that, due to the inf-sup
condition (4.4), the following inequality holds (see for instance [4]):

inf
τh∈Hf

h

‖σ − τh‖div,Ω ≤
(

1 +
1

β̂

)
inf

τh∈Hh,0

‖σ − τh‖div,Ω. (4.12)

In turn, in order to simplify the subsequent analysis, we write eu = u − uh and eσ = σ − σh.
As usual, we shall then decompose these errors into

eσ = ξσ + χσ = (σ − τ̂h) + (τ̂h − σh), (4.13)

eu = ξu + χu = (u− v̂h) + (v̂h − uh), (4.14)
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for a given (τ̂h, v̂h) ∈ Hf
h ×Qh.

Finally, we observe that the Galerkin orthogonality holds:

a(eσ, τh) + b(τh, eu)− c(τh, eu) = 0,

b(eσ,vh) = 0,
(4.15)

for all (τh,vh) ∈ Hh,0 ×Qh.

We now establish the main result of this section.

Theorem 4.3. Assume that hypotheses (H.0), (H.1) and (H.2) hold. In addition, assume that

max{CWP , ĈWP }
∥∥∥∥∇ρρ

∥∥∥∥
L∞(Ω)

≤ 1

2
, (4.16)

with CWP and ĈWP defined in (3.24) and (4.8), respectively. Let (σ,u) ∈ H0 ×Q and (σh,uh) ∈
Hh,0 ×Qh be the unique solutions of the continuous and discrete problems (3.2) and (4.3), respec-
tively. Then there exists Ccea > 0, independent of h, such that

‖σ − σh‖div,Ω + ‖u− uh‖0,Ω ≤ Ccea
{

inf
τh∈Hh,0

‖σ − τh‖div,Ω + inf
vh∈Qh

‖u− vh‖0,Ω
}
. (4.17)

Proof. Let (τ̂h, v̂h) ∈ Hf
h×Qh, and define ξσ, ξu, χσ and χu, as in (4.13) and (4.14). It is easy

to see that the first equation of (4.15) can be rewritten as

a(χσ, τh) + b(τh,χu)− c(τh,χu) = −a(ξσ, τh)− b(τh, ξu) + c(τh, ξu) ∀ τh ∈ Hh,0. (4.18)

Then, from the inf-sup condition (4.4), the continuity of a, b and c in (3.3) and (4.18), it follows
that

‖χu‖0,Ω ≤
1

β̂
sup

τh∈Hh,0

b(τh,χu)

‖τh‖div,Ω
,

=
1

β̂
sup

τh∈Hh,0

−a(χσ, τh)− a(ξσ, τh)− b(τh, ξu) + c(τh,χu) + c(τh, ξu)

‖τh‖div,Ω
,

≤ 1

νρ0β̂
(‖ξσ‖div,Ω + ‖χσ‖div,Ω) +

1

β̂

(
1 +

1√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

)
‖ξu‖0,Ω,

+
1

β̂
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖χu‖0,Ω,

which, together to assumption (4.16) implies

‖χu‖0,Ω ≤
2

νρ0β̂
(‖ξσ‖div,Ω + ‖χσ‖div,Ω) +

2

β̂

(
1 +

1√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

)
‖ξu‖0,Ω. (4.19)

In turn, since τ̂h ∈ Hf
h, we observe that χσ ∈ Kh,0, and then, from (4.18) with τh = χσ, we

obtain

a(χσ,χσ) = −a(ξσ,χσ) + c(χσ, ξu) + c(χσ,χu),
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and using the continuity of a and c in (3.3), and the ellipticity of a in (4.5), we get

‖χσ‖div,Ω ≤
ρ1

Caρ0
‖ξσ‖div,Ω +

νρ1

Ca
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖ξu‖0,Ω,

+
νρ1

Ca
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖χu‖0,Ω.
(4.20)

In this way, combining (4.19) and (4.20) it follows that

‖χσ‖div,Ω ≤
k1

2
‖ξσ‖div,Ω +

k2

2
‖ξu‖0,Ω +

2ρ1

ρ0Caβ̂
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

‖χσ‖0,Ω,

which together to assumption (4.16), yields

‖χσ‖div,Ω ≤ k1‖ξσ‖div,Ω + k2‖ξu‖0,Ω, (4.21)

with

k1 :=
ρ1

Caρ0

(
1 +

2

β̂
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

)
,

k2 :=
νρ1

Ca
√
d

(
1 +

2

β̂
+

2

β̂
√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

)∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

.

As a consequence, combining (4.19) and (4.21), we get

‖χu‖0,Ω ≤ k3‖ξσ‖div,Ω + k4‖ξu‖0,Ω, (4.22)

with

k3 :=
2

νρ0β̂
(1 + k1),

k4 :=
2

β̂

(
1 +

1√
d

∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

+
k2

νρ0

)
.

Therefore, according to the triangle inequality, from (4.21) and (4.22), we obtain

‖eσ‖div,Ω + ‖eu‖0,Ω ≤ (1 + k1 + k3)‖ξσ‖div,Ω + (1 + k2 + k4)‖ξu‖0,Ω,

and since (τ̂h, v̂h) ∈ Hf
h ×Qh is arbitrary, we get

‖eσ‖div,Ω + ‖eu‖0,Ω ≤ (1 + k1 + k3) inf
τh∈Hf

h

‖σ − τh‖div,Ω + (1 + k2 + k4) inf
vh∈Qh

‖u− vh‖0,Ω,

which together to (4.12), concludes the proof.

4.4. Approximating the pressure and the original pseudostress. First, we propose a
post-processing procedure to approximate the pressure. To do that, we observe that if (σ,u) ∈
H0 ×Q is the unique solution of (3.2), then, according to (2.8) and (2.11), it is possible to recover
the pressure p ∈ L2

0(Ω) from the identity

p = −ν
d

(
u · ∇ρ − 1

|Ω|
(u,∇ρ)Ω

)
− 1

d
trσ. (4.23)
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In this way, if (σh,uh) ∈ Hh,0×Qh is the unique solution of (4.3), it is reasonable to think that the
function

ph = −ν
d

(
uh · ∇ρ −

1

|Ω|
(uh,∇ρ)Ω

)
− 1

d
trσh, (4.24)

is a good approximation of the pressure. This result is established next.

Corollary 4.4. Assume that hypotheses of Theorem 4.3 hold. Let (σ,u) ∈ H0 × Q and
(σh,uh) ∈ Hh,0 × Qh be the unique solutions of the continuous and discrete problems (3.2) and
(4.3), respectively. Then, there exists C > 0, independent of h, such that

‖p− ph‖0,Ω ≤ C
{

inf
τh∈Hh,0

‖σ − τh‖div,Ω + inf
vh∈Qh

‖u− vh‖0,Ω
}
.

Proof. From (4.23) and (4.24), Hölder and the triangle inequalities, it follows that

‖p− ph‖0,Ω ≤
ν

d
‖(u− uh) · ∇ρ‖0,Ω +

ν

d|Ω|1/2
|(u− uh,∇ρ)Ω|+

1

d
‖tr (σ − σh)‖0,Ω

≤ ν

d
‖ρ‖W 1,∞(Ω)‖u− uh‖0,Ω +

ν

d|Ω|1/2
‖ρ‖1,Ω ‖u− uh‖0,Ω +

1

d
‖tr (σ − σh)‖0,Ω.

Then, the result follows from Theorems 5.1 and 5.3.

In what follows, for the sake of clarity we again make the difference between σ0 ∈ H0 and σ ∈ H,
as in Section 2.

In order to approximate the original pseudostress in (2.11), let us remind that in Section 2,
Lemma 2.1, we have proved that formulations (2.10) and (2.13) are equivalent. That is, we have
proved that (σ,u) ∈ H ×Q is the unique solution of (2.10) if and only if (σ0,u) ∈ H0 ×Q is the
unique solution of (2.13), where σ0 and σ are related by

σ := σ0 −
ν

d|Ω|
(u,∇ρ)ΩI. (4.25)

In turn, in this section we have propose a mixed finite element method to approximate the
solution of (2.13) (or equivalently (3.2)).

As a result, if (σh,0,uh) ∈ Hh,0 ×Qh is the unique solution of (4.3), it is easy to see that the
tensor

σh := σh,0 −
ν

d|Ω|
(uh,∇ρ)ΩI (4.26)

approximates σ ∈ H defined by (4.25). This result is established in the following Corollary.

Corollary 4.5. Assume that hypotheses of Theorem 4.3 hold. Let (σ0,u) ∈ H0 × Q and
(σh,0,uh) ∈ Hh,0 × Qh be the unique solutions of the continuous and discrete problems (3.2) and
(4.3), respectively. In addition, let σ ∈ H and σh ∈ Hh be the tensors defined by (4.25) and (4.26),
respectively. Then, there exists C > 0, independent of h, such that

‖σ − σh‖div,Ω ≤ C
{

inf
τh∈Hh,0

‖σ0 − τh‖div,Ω + inf
vh∈Qh

‖u− vh‖0,Ω
}
. (4.27)
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Proof. First, from (4.25), (4.26) and the triangle inequality, it is easy to see that

‖σ − σh‖div,Ω = ‖σ0 − σh,0 −
ν

d|Ω|
(u− uh,∇ρ)ΩI‖div,Ω

≤ ‖σ0 − σh,0‖div,Ω +
ν

d1/2|Ω|1/2
|(u− uh,∇ρ)Ω|

≤ ‖σ0 − σh,0‖div,Ω +
ν‖∇ρ‖0,Ω
d1/2|Ω|1/2

‖u− uh‖0,Ω.

Then, the result is a direct application of Theorem 4.3.

5. Particular choices of discrete spaces. We now specify examples of finite elements sub-
spaces satisfying the hypotheses (H.0), (H.1) and (H.2). To this end we let Th be a regular family of
triangulations of the polygonal region Ω by triangles T of diameter hT such that Ω = ∪{T : T ∈ Th}
and define h := max{hT : T ∈ Th}. Now, given an integer l ≥ 0 and a subset S of Rd, we denote by
Pl(S) the space of polynomials of total degree at most l defined on S.

5.1. The Raviart-Thomas element. For each integer k ≥ 0 and for each T ∈ Th, we define
the local Raviart-Thomas space of order k (see, for instance [4]):

RTk(T ) := [Pk(T )]d ⊕ Pk(T )x,

where x := (x1, · · · , xd)t is a generic vector of Rd. Then, we specify the discrete spaces in (4.2) by
defining:

Hh := {τ ∈ H(div ; Ω) : τ |T ∈ RTk(T ), ∀T ∈ Th} ,

Qh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ), ∀T ∈ Th

}
.

(5.1)

It is well known that these subspaces satisfy the following approximation properties (see, e.g. The-
orem 3.16 in [19]):

For each s ∈ (0, k + 1] and for each τ ∈ Hs(Ω), with div τ ∈ Hs(Ω), there exists τh ∈ Hh,
such that

‖τ − τh‖div ,Ω ≤ Chs {‖τ‖s,Ω + ‖div τ‖s,Ω} . (5.2)

For each s ∈ [0, k + 1] and for each v ∈ Hs(Ω) there exists vh ∈ Qh such that

‖v − vh‖0,Ω ≤ Chs‖v‖s,Ω. (5.3)

Moreover, it is easy to see that the corresponding discrete spaces Hh and Qh satisfy assumptions
(H.0), (H.1) and (H.2). In particular, the proof of the inf-sup condition (4.4) can be found in [15,
Lemma 2.4].

According to the above, and Theorem 4.3, we are able to establish the convergence of the Galerkin
scheme (4.3) for this particular choice of spaces.

Theorem 5.1. Assume that

max{CWP , ĈWP }
∥∥∥∥∇ρρ

∥∥∥∥
L∞(Ω)

≤ 1

2
, (5.4)

with CWP and ĈWP defined in (3.24) and (4.8), respectively. In addition, let Hh,0 and Qh be
the finite element subspaces defined by (4.2) in terms of the specific discrete spaces given by (5.1).
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Then, the Galerkin scheme (4.3) has a unique solution (σh,uh) ∈ Hh,0×Qh and there exists C1 > 0,
independent of h, such that

‖(σh,uh)‖H×Q ≤ C1‖f‖0,Ω.

Moreover, let (σ,u) ∈ H0×Q be the unique solution of the continuous problem (3.2) and assume
that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), and u ∈ Hs(Ω), for some s ∈ (0, k + 1]. Then there exists C2 > 0,
independent of h, such that

‖σ − σh‖div,Ω + ‖u− uh‖0,Ω ≤ C2h
s {‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω} .

Proof. Since the finite element subspaces Hh,0 and Qh satisfy hypotheses (H.0), (H.1) and
(H.2), then the proof is a straightforward application of Theorem 4.2 and properties (5.2) and (5.3).

Finally, from Corollary 4.4 and Theorem 5.1 we obtain the optimal convergence of the post-
processed pressure introduced in (4.24).

Corollary 5.2. Let (σ,u) ∈ H0 ×Q be the unique solution of the continuous problem (3.2),
and p ∈ L2

0(Ω) given by (4.23). In addition let ph be the discrete pressure computed by the post-
processing formula (4.24). Assume that hypotheses of Theorem 5.1 hold. Then, there exists C > 0,
independent of h, such that

‖p− ph‖0,Ω ≤ Chs {‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω} .

5.2. The Brezzi-Douglas-Marini element. Now, for each integer k ≥ 0, we introduce the
following discrete spaces in (4.2):

Hh := {τ ∈ H(div ; Ω) : τ |T ∈ Pk+1(T ), ∀T ∈ Th} ,

Qh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ), ∀T ∈ Th

}
.

(5.5)

We remark that the product space Hh ×Qh constitutes the finite element approximation for mixed
problem introduced by Brezzi, Douglas and Marini (BDM) (see, e.g. [4]).

Again, it is well known that these subspaces satisfy the following approximation properties (see,
e.g. Theorem 3.16 in [19]):

For each s ∈ (0, k + 1] and for each τ ∈ Hs(Ω), with div τ ∈ Hs(Ω), there exists τh ∈ Hh,
such that

‖τ − τh‖div ,Ω ≤ Chs {‖τ‖s,Ω + ‖div τ‖s,Ω} . (5.6)

For each s ∈ [0, k + 1] and for each v ∈ Hs(Ω) there exists vh ∈ Qh such that

‖v − vh‖0,Ω ≤ Chs‖v‖s,Ω. (5.7)

Moreover, the corresponding discrete spaces Hh and Qh satisfy assumptions (H.0), (H.1) and (H.2).
For the proof of the inf-sup condition (4.4) in (H.2), we just comment that it follows analogously to
the Raviart-Thomas case (see, again [15, Lemma 2.4]), recalling that it is also possible to construct
a Fortin operator by using the BDM-projection.
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Now, we establish the convergence of the Galerkin scheme (4.3) for this particular choice of
spaces.

Theorem 5.3. Assume that

max{CWP , ĈWP }
∥∥∥∥∇ρρ

∥∥∥∥
L∞(Ω)

≤ 1

2
, (5.8)

with CWP and ĈWP defined in (3.24) and (4.8), respectively. In addition, let Hh,0 and Qh be
the finite element subspaces defined by (4.2) in terms of the specific discrete spaces given by (5.5).
Then, the Galerkin scheme (4.3) has a unique solution (σh,uh) ∈ Hh,0×Qh and there exists C1 > 0,
independent of h, such that

‖(σh,uh)‖H×Q ≤ C1‖f‖0,Ω.

Moreover, let (σ,u) ∈ H0×Q be the unique solution of the continuous problem (3.2) and assume
that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), and u ∈ Hs(Ω), for some s ∈ (0, k + 1]. Then there exists C2 > 0,
independent of h, such that

‖σ − σh‖div,Ω + ‖u− uh‖0,Ω ≤ C2h
s {‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω} .

Proof. Since the finite element subspaces Hh,0 and Qh satisfy hypotheses (H.0), (H.1) and
(H.2), then the proof is a straightforward application of Theorem 4.2 and properties (5.6) and (5.7).

We end this section by establishing the rate of convergence of the post-processed pressure com-
puted by formula (4.24). Its proof follows from Corollary 4.4 and Theorem 5.3.

Corollary 5.4. Let (σ,u) ∈ H0 ×Q be the unique solution of the continuous problem (3.2),
and p ∈ L2

0(Ω) given by (4.23). In addition let ph be the discrete pressure computed by the post-
processing formula (4.24). Assume that hypotheses of Theorem 5.3 hold. Then, there exists C > 0,
independent of h, such that

‖p− ph‖0,Ω ≤ Chs {‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s,Ω} .

6. Numerical results. In this section we present a numerical example in R2, illustrating the
performance of the mixed finite element scheme (4.3). Here we consider the specific finite element
subspaces H0,h and Qh defined in terms of the specific discrete spaces given by (5.1) with k = 0.
In addition, the zero integral mean condition for tensors in the space H0,h is imposed via a real
Lagrange multiplier. In what follows, N stands for the total number of degrees of freedom defining
H0,h×Qh. Denoting by (σ,u) ∈ H0×Q and (σh,uh) ∈ Hh,0×Qh, the solutions of (3.2) and (4.3),
respectively, the individual errors are defined by

e(σ) := ‖σ − σh‖div,Ω, e(u) := ‖u− uh‖0,Ω e(p) := ‖p− ph‖0,Ω,

where the approximate pressure ph is computed by the post-processing formula (4.24). Furthermore,
we define the experimental rates of convergence

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
,
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where h and h′ are two consecutive meshsizes with errors e and e′.

In what follows, we consider a region Ω := (−1, 1)× (−1, 1) and define the density function

ρ(x1, x2) := exp(µ(x1 + x2)) ∀ (x1, x2) ∈ Ω,

where µ is a parameter in R. We notice that∥∥∥∥∇ρρ
∥∥∥∥
L∞(Ω)

= |µ|, (6.1)

and then, as we shall see in Figure 6.4, and as predicted in (4.16), the good performance of our
method depends strongly on the choice of µ.

In turn, we choose the datum f so that the exact solution is given by the smooth functions

u(x1, x2) =
curl (sin2(πx1) sin2(πx1))

ρ(x1, x2)
∀(x1, x2) ∈ Ω,

p(x1, x2) = x1 sin(x2) ∀(x1, x2) ∈ Ω,

where curlϕ :=
(
∂ϕ
∂x2

,− ∂ϕ
∂x1

)
, for any sufficiently smooth function ϕ.

The numerical results shown below were obtained in a Pentium Xeon computer with dual proces-
sor, using a MATLAB code. In Table 6.1 we summarize the convergence history of our mixed finite
element scheme (4.3), with µ = 2 and for a set of shape-regular triangulations of the computational
domain Ω. We observe there that, looking at the experimental rates of convergence, the O(h) pre-
dicted by Theorem 5.1, with s = 1 is attained in all the unknowns. In order to emphasize the good
performance of our scheme, in Figures 6.1 and 6.2 we display some components of the approximate
(left) and exact (right) solutions of our example for N = 82177. We also display in Figure 6.3
the approximate (left) and exact (right) pressures. It is clear from these Figures that the finite
element subspaces employed provide very accurate approximations to the unknowns. In addition,
we observe that the discrete pressure ph, computed via the post-processing formula (4.24), presents
some oscillations, perhaps because ∇ρ is not a polynomial function on each element. Despite this
minor issue, Table 6.1 confirms the fact that ph converges to p with optimal rate of convergence as
predicted.

Finally, having in mind assumption (4.16), in Figure 6.4 we display the relation between µ (cf.
(6.1)) and the condition number of the global matrix given by the left hand side of (4.3) computed
with the command condest in MATLAB, considering a fixed mesh of size h = 1/4. We observe here
that the condition number is stable for |µ| ≤ 6 and blows up for |µ| > 6. This phenomenon shows
that assumption (4.16), beyond of being just a theoretical hypothesis, in practise, it ensures the
good performance of the numerical method for small values of ‖∇ρρ ‖L∞(Ω).

Table 6.1
degrees of freedom, meshsizes, errors, and rates of convergence.

N h e(σ) r(σ) e(u) r(u) e(p) r(p)
89 1 4.530E+01 – 9.770E+00 – 3.795E+00 –

337 1/2 1.232E+01 1.956 5.657E+00 0.821 3.353E+00 0.186
1313 1/4 4.301E+00 1.547 3.367E+00 0.763 1.798E+00 0.916
5185 1/8 1.873E+00 1.211 1.743E+00 0.959 9.026E-01 1.004

20609 1/16 8.954E-01 1.070 8.775E-01 0.995 4.493E-01 1.011
82177 1/32 4.423E-01 1.020 4.394E-01 1.000 2.242E-01 1.005

328193 1/64 2.204E-01 1.006 2.198E-01 1.001 1.121E-01 1.002



A MIXED-FEM FOR THE STOKES PROBLEM WITH VARYING DENSITY 19

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−10

−5

0

5

10

15

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−10

−5

0

5

10

15

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−15

−10

−5

0

5

10

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−15

−10

−5

0

5

10

Fig. 6.1. first (top) and second (bottom) components of uh and u for N = 82177
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