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Abstract. This paper is devoted to the design and the mathematics of a new

sorption-coagulation equation type, modeling interactions between metal ions

and water-soluble polymers. We motivate a new brand model that accounts
for the evolution of the configurational density of polymers and metal ions,

which consists in a non-linear transport equation with a quadratic source term,

the coagulation. A global in time existence result is establish and a time
explicit finite volume scheme for a conservative reformulation of the problem

is proposed. Then, we prove a convergence result of the sequence of numerical

approximation thanks to L1 - weak compactness arguments.
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1. Introduction

1.1. Motivations. A class of polymers containing metals has emerged for their
potential applications in various fields, as superconducting materials, liquid crystal,
and biocompatible polymers. Also, in environmental science, they can be used for
instance to remove pollutant from aqueous solutions, or bacteria, fungi and algae
[39]. Such polymers are called water-soluble polymers (WSP) and here we are
particularly interested in their interactions with metal ions such as copper ions,
lead ions, and many others.

These polymers are highly soluble macromolecules, basically composed of a re-
peated unit. The latter is generally a charged group, easily ionizable, which entails
a high affinity of one or more metal ions with the polymers [38,39].

One of the applications of this concept, being very promising, lies in membrane
separation process. Indeed, a very high level of metal ions can be released by indus-
trial processes in the environment. The idea is to take advantage of the polymers-
ions interactions in order to extract free metal ions from an aqueous solution (water)
and then filtrate the resulting solution by a membrane to separate polymers-ions
from the solution, also called “washing method”. The objective is to obtain water
free of metal ions. Various techniques based on this method exist, and we refer to
[37] and the reviews [38,39] for a more precise description.

Nevertheless, the development of these techniques leads to some technical difficul-
ties and gives rise to questions in order to produce an efficient method. Among these
interrogations are the role of fouling effect (adhesion of polymers to the membrane),
aggregation phenomenon, concentration effect, interaction with the wall of the cell
(recipient) and interaction with the fluid. For recent findings, techniques and mod-
els on the subject we refer to the works in [31–36, 41] and references herein-above.
Here, to go further in this direction of a better understanding of such process, we
decide to propose a new model that accounts for polymer-ion and polymer-polymer
interactions which would apply to particular experiments designed in laboratory to
understand specifically such interactions [40].

The polymer-metal ions is the fundamental interaction to study and takes several
aspects: long and short range electrostatic interactions and coordination theory;
while the polymer-polymer interactions occur naturally in the solution particularly
by forming coordination center, i.e. polymers are linked by one or more metal
ions [39]. In the model developed below, we omit voluntary various phenomena,
in accordance with [40], to focus on these two interactions. The point of view we
chose, is a statistical or mean-field approach, so that we describe the evolution
of the polymers thanks to a density function with respect to their configurations,
namely the “number” of repeat unit and the “number” of bound metal ions. Then,
we describe the binding process of a metal ion onto polymer (adsorption) and its
elution (desorption) thank to a reversible interaction reaction (sorption process)
while the polymer-polymer interaction is seen as a coagulation process.

Such approach has been used in physics for clusters formation (for instance par-
ticles of matter or droplet) and in biology for polymerization, amyloid formation.
We refer to the Section 1.3 further down to get an overview of these models. For
now we state in the next section the equations of the model.

1.2. Equations. The configuration of polymers is given by two variables. First,
the size p ∈ R+ := (0,+∞) related to the number of functional groups or metal ions
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possible sites. Second, the occupied size q ∈ R+ related to the number of occupied
functional groups/sites of the polymer by metal ions. Thus, the set of admissible
configurations (p, q) of a given polymer is:

S :=
{

(p, q) ∈ R2
+ : 0 < q < p

}
,

Then, we define the density function of polymers, denoted by f(t, p, q), as a function
of time t ≥ 0 and configuration given by (p, q) ∈ S. The system governing the
evolution of f is given by

∂f

∂t
+

∂

∂q
(Vf) = Q(f, f), on R+ × S , (1.1)

where Q is the coagulation operator and V denotes the rate of sorption which de-
termines the mechanism of ions transfer with a polymer (adsorption and desorption
of ions), both defined below. To complete the model, we define the concentration
of free metal-ions (living in the solution but not bound to polymers), denoted by
u(t), as a function of time t ≥ 0, given by the constraint of metal ions conservation
(bound and free), namely

u(t) +A

∫
S

qf(t, p, q)dqdp = ρ, on R+ , (1.2)

where ρ > 0 is the total mass and A > 0 is a parameter for the dimension of the
balance.

Let us now define more precisely the sorption rate V. As a general form for V
we consider the following chemical reactions rate

V(u(t), p, q) = k(p, q)u(t)γ − l(p, q) ,

where k is the adsorption rate at which a free monomers bind to a polymer (de-
pending on the type of interaction and the diffusion rate of the particles) and l
is the desorption rate (depending on the strength of the interaction). For sake of
simplicity we restrict our self to γ = 1 which is the order of the reaction. A relevant
example of sorption rate would be an analogy to the Langmuir’s law, namely

V(u(t), p, q) = k0(p− q)αu(t)γ − l0qβ , (1.3)

with k0, l0 > 0 parameters and α, β > 0 geometrical factor, see [42].
Next we explicit the coagulation operator Q. We introduce first the notation Cp,q

for a polymer chain with configuration (p, q) ∈ S. Then, the coagulation can be
written in term of a kinetic scheme, that is for any two polymers (p, q)×(p′, q′) ∈ S2,

Cp,q + Cp′,q′
a(p,q;p′,q′)−−−−−−−→ Cp+p′,q+q′ ,

where the coagulation rate a is defined as a nonnegative function over S × S satis-
fying the symmetry assumption

a(p, q; p′, q′) = a(p′, q′; p, q) . (1.4)

Thus, Q can be decomposed by a gain term Q+ and a depletion term Q− that is

Q = Q+ −Q−,
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where

Q+(f, f)(p, q) =
1

2

∫ p

0

∫ p′

0

a(p′, q′, p− p′, q − q′) 1(0,p−p′)(q − q′)

× f(p′, q′)f(p− p′, q − q′) dq′dp′ , (1.5)

Q−(f, f)(p, q) = L(f)(p, q)f(p, q) ,

with L(f)(p, q) =

∫ ∞
0

∫ p′

0

a(p, q, p′, q′)f(p′, q′) dq′dp′ . (1.6)

The problem (1.1)-(1.2) is completed with a boundary condition:

f = 0, on ∂S , (1.7)

which of course suppose suitable assumptions on the characteristics discussed later.
Finally, we require two initial conditions:

f(t = 0, ·) = f in on S, and u(t = 0) = uin . (1.8)

1.3. Contents of the paper and related works. The remainder of this paper is
devoted to the existence of global solutions to problem (1.1)-(1.2) and its numerical
approximation.

In Section 2, we investigate the existence of solutions for any time interval with
the result states by Theorem 2.2. We give a sketch of proof including the main
arguments which lead to the use of two fix point theorems, one to treat the co-
agulation operator (1.5)-(1.6) , the second for the constraint (1.2). The technique
used, implying hypotheses of regularity on the coefficients, is based on the works
on Lifshitz-Slyozov (LS) equation in [6] and LS with encounters (coagulation) in
[5]. Techniques also re-adapted in [22] for biological polymers. The LS equation
is a size structured model for clusters (polymers or more general) formation by
addition-depletion of monomers [30], while LS with encounters also take into ac-
count merging clusters . The coagulation (only size-dependent) is part of the class
of coagulation-fragmentation (CF) equation, where fragmentation is the reverse op-
erator (break-up, splitting of clusters), and it has been studied from a mathematical
point of view for instance in [11, 26], also in [1, 29] for the CF equation with space
diffusion, and in [3] which generalized CF equation with a kinetic approach (maybe
in some sense the closest operator to the one here). In the references right before,
the assumptions on the coagulation rate are relaxed, and much more general than
the one use here since it authorizes unbounded rate. Nevertheless, as in [28] for
LS and [27] for LS with coagulation, a possible approach to extend the result is to
combine a weak stability principle to a sequence of approximation (with bounded
rate or cut-off). So, the result given here, states the framework, introduces the
particularity of the coagulation operator presented here, and appears to be a first
step toward a generalization of the class of coefficients.

In Section 3, we propose a finite volume scheme to construct numerical solutions
to this problem. The numerical scheme, which is proposed, is in the spirit of the
works made in [2] and [15], where the authors propose a reformulation of the CF
equation in a manner well-adapted to a finite volume scheme, namely a conservative
form. Here, we write a similar conservative form, but as a cross derivative with
respect to both variables. For suitable numerical scheme, we also refer to [17]
for LS, to [20] for LS with encounters and to [19] for a model with space diffusion.
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Then the rest of the section is devoted to the proof of the convergence result given in
Theorem 3.4. It is based on L1 weak compactness of sequences of approximations.
Thus, the technique used here has the advantage to provide the basic ideas and
estimations that could extend the result of Section 2 to a larger class of coefficients
by weak stability principle.

2. Rescaling and existence of global solutions

2.1. Rescaled problem. The space of configuration S is not really convenient for
computations both for the theoretical point of view and the numerical implemen-
tation. Thus, we decide to rescale the problem and operate a change of variable in
the density f , introducing a physically relevant new variable r ∈ (0, 1), called ion
ratio, such that for (p, q) ∈ S we let

r :=
q

p
.

One can see the number of polymers in an infinitesimal volume dqdp, center in
(p, q) ∈ S at a time t ≥ 0, as

f(t, p, q)dqdp = f(t, p, rp)pdrdp .

We introduce the new unknown f̃ , on the new configuration space S := R+× (0, 1),
given by

f̃(t, p, r) = Apf(t, p, rp) .

The constant A is the normalization parameter involved in the constraint (1.2).
Then, we operate a rescaling of the sorption and coagulation rate, by introducing
Ṽ define over R× S and ã over S × S, such that

Ṽ(u, p, r) = V(u, p, rp), and ã(p, r; p′, r′) =
1

A
a(p, pr; p′, p′r′) .

Thus, they satisfy
Ṽ(u, p, r) = k̃(p, r)u− l̃(p, r) , (2.1)

with k̃(p, r) = k(p, rp) and l̃(p, r) = l(p, rp). Also, the symmetry assumption (1.4)
becomes

ã(p, r; p′, r′) = ã(p′, r′; p, r) . (2.2)

A formal computation leads to the assessment

∂tf̃(t, p, r) +
1

p
∂r

(
Ṽ(u(t), p, r)f̃(t, p, r)

) ∣∣∣
r=q/p

= pAQ(f, f)(t, p, q) .

Finally, letting Q̃ = Q̃+ − Q̃− such that

Q̃+(f̃ , f̃)(p, r) =
1

2

∫ p

0

∫ 1

0

p

p− p′
ã(p′, r′, p− p′, r∗) 1(0,1)(r

∗)

× f̃(p′, r′)f̃(p− p′, r∗) dr′dp′ , (2.3)

Q̃−(f̃ , f̃)(p, r) = L̃(f̃)(p, r)f̃(p, r)

with L̃(f̃)(p, r) =

∫ ∞
0

∫ 1

0

ã(p, r; p′, r′)f̃(p′, r′) dr′dp′ , (2.4)

with r∗ = rp−r′p′
p−p′ , we get

Q̃(f̃ , f̃)(t, p, r) = pAQ(f, f)(t, p, rp) .
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In the following and for the rest we drop tildes in the rescaled problem, for sake of
clarity. Now, we are able to reformulate the problem which is to find the density f
satisfying

∂f

∂t
+

1

p

∂

∂r
(Vf) = Q(f, f), on R+ × S , (2.5)

with the constraint

u(t) +

∫∫
S
rpf(t, p, r)drdp = ρ, on R+ . (2.6)

and boundary condition (1.7) remains given by

f = 0, on ∂S , (2.7)

while the initial conditions is a rescaled version of (1.8):

f(t = 0, ·) = f in on S, and u(t = 0) = uin . (2.8)

2.2. Hypotheses and result. In order to study rigorously the problem (2.5)-(2.6),
some natural and other technical assumptions are made. Namely we assume that:

H1. The initial density f in ∈ L1 (S, (1 + p)drdp) is nonnegative and uin ≥ 0 such
that

ρ := uin +

∫∫
S
rpf in(p, r) drdp < +∞ . (2.9)

H2. The coagulation rate a ∈ L∞(S × S) is nonnegative, satisfies (2.2) and

‖a‖L∞ ≤ K . (2.10)

H3. The rates functions p 7→ k(p, ·), l(p, ·) ∈ L∞(R+;W 2,∞(0, 1)) are both non-
negatives and

‖k‖L∞(R+;W 2,∞(0,1)) + ‖l‖L∞(R+;W 2,∞(0,1)) ≤ K . (2.11)

and for all p ∈ R+,

‖k(p, ·)‖W 2,∞(0,1) + ‖l(p, ·)‖W 2,∞(0,1) ≤ Kp . (2.12)

H4. For all u ≥ 0 and p ∈ R+,

V(u, p, r = 0) ≥ 0, and V(u, p, r = 1) ≤ 0 , (2.13)

and
∂rV(u, p, r) = ∂rk u− ∂rl ≤ 0 a.e. (u, p, r) ∈ R+ × SP . (2.14)

Here, K > 0 denotes a constant. Note that (2.13) ensures the characteristics remain
in the set S and allows us to prescribe condition the boundary (2.7). In fact, it is
equivalent with respect to (2.1) and (H4) to

k(p, 0) ≥ 0, l(p, 0) = 0 and k(p, 1) = 0, l(p, 1) ≥ 0 , (2.15)

for all p ∈ R+.

Remark 2.1. With such scaling, we note that example (1.3) becomes

1

p
V(u(t), p, r) = k0p

α−1(1− r)αu(t)− l0pβ−1rβ .

And, hypothesis (H4) is consistent with this example.

Now, we are in position to give a definition of the solutions to the problem
(2.5)-(2.6).
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Definition 2.1 (weak solution 1). Let T > 0 and the initial conditions f in and
uin satisfying (H1). A weak solution to (2.5)-(2.6) on [0, T ) is a couple (f, u) of
nonnegative functions such that

f ∈ C
(
[0, T );w − L1(S)

)
∩ L∞

(
[0, T ), L1(S, pdrdp)

)
, (2.16)

and u ∈ C([0, T )), satisfying for all t ∈ [0, T ) and ϕ ∈ C1
c (R+ × [0, 1])∫

S

f(t, p, r)ϕ(p, r) drdp−
∫
S

f in(p, r)ϕ(p, r) drdp

=

∫ t

0

∫
S

1

p
V(u(s), p, r)f(s, p, r)∂rϕ(p, r) drdpds

+

∫ t

0

∫
S

Q(f, f)(s, p, r)ϕ(p, r) drdpds , (2.17)

together with (2.6)

We remark here that regularity (2.16), where C ([0, T );w −X) means continuous
from [0, T ) to X a Banach space with respect to the weak topology of X. Hypothesis
(H1) to (H3) suffice to define (2.17). Particularly, (2.3)-(2.4) entail, as we will see
later, that Q(f, f) belongs to L∞

(
0, T ;L1(S)

)
.

We can now state the main result:

Theorem 2.2 (Global existence). Let T > 0. Assume that f in and uin satisfy (H1)
and that hypotheses (H1)-(H4) are fulfilled. Then, there exists a solution (f, u) to
the problem (2.5)-(2.6) in the sense of Definition 2.1. Moreover, the solution has
the regularity

f ∈ C
(
[0, T );L1(S)

)
,

with both ∫
S

f(t, p, r)drdp ≤
∫
S

f in(p, r) drdp ,

and ∫
S

pf(t, p, r)drdp =

∫
S

pf in(p, r) drdp .

Proof of Theorem 2.2 relies on 2 main steps, which are similar to the ones that
have been used for instance in [5] and [6] for LS equation: The first step consists in
building a mild solution f for a given u to (2.5) via a fixed point theorem by virtue
of contraction property of the coagulation; The second step is another fixed point
in order to couple the problem to the constraint (2.6) on u.

Since the method is rather classical, we will only provide in the next section the
essentials arguments useful to achieve the proof enlightening the differences between
our problem and LS equation with encounter.

2.3. Existence of solutions.

2.3.1. The autonomous problem. We start the analysis of the problem for a given
nonnegative u ∈ C([0, T ]) with T > 0, i.e. we avoid the difficulty induced by
the constraint (2.6). A well-know approach is to construct the characteristics of
the transport operator. These latter are the curves parametrized by p ∈ R+ and
associated to u given, for any (t, r) ∈ [0, T ]× (0, 1), by the solution of
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d

ds
Rp(s; t, r) =

1

p
V(u(s), p, Rp(s; t, r)) on [0, T ]

Rp(t; t, r) = r .

According to (2.11)-(2.12) and (2.15), there exists a unique solution Rp(·; t, r) ∈
C1([0, T ]). We only consider the characteristic while they are defined, i.e Rp(s; t, r) ∈
(0, 1). We remark that (H4) ensures the characteristic remains in (0, 1) for any
s ≥ t (once in the domain it cannot go out). Moreover, we define the origin time
σp(t, r) = inf{s ∈ [0, t] : 0 < Rp(s; t, r) < 1}. So, to these latter we associate the
so-called mild-formulation which is f solution of

f(t, p, r) =



f in(p,Rp(0; t, r))Jp(0; t, r)

+

∫ t

0

Q(f, f)(s, p,Rp(s; t, r))Jp(s; t, r) ds , if σp(t, r) = 0∫ t

σp(t,r)

Q(f, f)(s, p,Rp(s; t, r))Jp(s; t, r) ds , otherwise.

(2.18)

for all t ∈ [0, T ] and a.e. (p, r) ∈ S and

Jp(s; t, r) :=
∂Rp
∂r

(s; t, r) = exp

(
−
∫ t

s

1

p
(∂rV)(σ, p,Rp(σ; t, r)) dσ

)
.

Note that, for an enough regular solution, the boundary condition (2.7) is satisfy
by (2.18) since σp(t, 0) = σp(t, 1) = t.

Then, to prove Theorem 2.2 we need to link the notion of mild formulation and
the one of weak solution. This is given by the following the result:

Lemma 2.3. If f in ∈ L1(S) and Q(f, f) ∈ L1((0, T )×S) then, Then the following
statements are equivalent:

i) f ∈ C([0, T ], L1(S)) and is solution in the weak sense, i.e. satisfies (2.17).
ii) f is a mild solution, i.e. satisfies (2.18).

This result is well known and comes from a change of variable and an identifi-
cation process, we refer to [5, 6] for LS equation or [10] for Boltzmann equation.
It is important to take care with the boundary so that we proceed as in [22] with
the origin of the characteristic σ in (2.18). The monotonicity in hypothesis (2.14)
is here to separate continuously the characteristics coming from 0 and 1 and hence
to be able to construct the weak solution from (2.18). Thanks to this property it
is now sufficient prove the existence of mild solution.

Before claiming the existence of mild solution for a given u, let us introduce
some a priori properties of the coagulation operator. Namely, for any f and g both
belongs to L1 (S), we have

‖Q(f, f)‖L1(S) ≤ 2K ‖f‖2L1(S) , (2.19)

‖Q(f, f)−Q(g, g)‖L1(S) ≤ 2K
(
‖f‖L1(S) + ‖g‖L1(S)

)
‖f − g‖L1(S) . (2.20)

These latter ensure that Q maps L1(S) into itself and as a Lipschitz operator on
any bounded subset of L1(S). Finally, we remark that for any f ∈ L1(S) and
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ϕ ∈ L∞(S),∫∫
S
Q(f, f)(p, r)ϕ(p, r) drdp =

1

2

∫∫
S×S

a(p, r; p′, r′)f(p, r)f(p′, r′)

×
[
ϕ(p+ p′, r#)− ϕ(p, r)− ϕ(p′, r′)

]
dr′dp′drdp . (2.21)

with r# = (rp + r′p′)/(p + p′) ∈ (0, 1). It is obtained by inversion of integrals
applying Fubini’s theorem, then changes of variable. In particular, when ϕ = 1S ,∫∫

S
Q(f, f)(p, r) drdp ≤ 0 . (2.22)

And, if moreover f ∈ L1(S, pdrdp), then∫∫
S
pQ(f, f)(p, r) drdp = 0 . (2.23)

Now, we claim the following proposition when u belongs to

B = {u ∈ C([0, T ]) : 0 ≤ u(t) ≤ ρ} .

Proposition 2.4. Let T > 0 and ρ > 0 with u belongs to the associated set
B.f in ∈ L1 (S, (1 + p)drdp), then there exists a unique nonnegative mild solution,
i.e. satisfying (2.18),

f ∈ L∞
(
0, T ;L1 (S, (1 + p)drdp)

)
.

Moreover, for all t ∈ (0, T ) we have∫∫
S
f(t, p, r) drdp ≤

∫∫
S
f in(p, r) drdp , (2.24)

and ∫∫
S
pf(t, p, r) drdp =

∫∫
S
pf in(p, r) drdp . (2.25)

Proof. Here we only give a sketch of the proof.

Step 1. Existence and uniqueness. The local existence of a unique nonnegative
solution f ∈ L∞

(
0, T ′;L1(S)

)
, for some T ′ > 0 small enough, readily follows from

the Banach fixed point theorem applied to the operator that maps f to the right-
hand side of (2.18) on a bounded subset of L∞

(
0, T ′;L1(S)

)
. To that, we follow

line-to-line [5] using properties (2.19) and (2.20).
Then, the global existence, for any time T > 0, is obtained using estimation

(2.24), indeed by a classical argument we construct a unique solution on inter-
vals [0, T ′], [T ′, 2T ′], etc. So, it remains to prove (2.24), which follows from the
integration of (2.18), using that f in ∈ L1(S) and (2.22).

Step 2. Mass conservation. It remains to prove (2.25). We have to prove that
indeed f ∈ L∞

(
0, T ;L1(S, pdrdp)

)
, so that Q(f, f) too. But, identity (2.21) holds

only for ϕ ∈ L∞(S) and a priori pQ(f, f) is not integrable. We follow the proof
of [5, Lemma 4] which involves a regularization procedure using aP (p, r; p′, r′) =
a(p, r; p′, r′) 1(0,P )(p) 1(0,P )(p

′) in (2.18) to construct a sequence of approximation

fP ∈ L∞
(
0, T ;L1(S)

)
and to prove that it converge strongly toward the solution

f when P → +∞ with ∫∫
S
pfP (t, p, r) ≤ C(T ) ,
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for some constant C(T ) > 0 obtained by a Gronwall’s lemma. So, we obtain that
f ∈ L∞

(
0, T ;L1(S, (1 + p)drdp)

)
and that pQ(f, f) is integrable. Coming back to

(2.18) and integrating it against p, it yields (2.25) thanks to (2.23). �

We close this section by stating the key argument to couple the constraint (2.6)
to (2.5). It is given by the additional regularity of the pseudo-moment of the mild
solution given in the following corollary.

Corollary 2.5. Under hypotheses of Proposition 2.4,

M(t) :=

∫∫
S
rpf(t, p, r) drdp ≤

∫∫
S
pf in(p, r) drdp ,

and M ∈W 1,∞([0, T ]) with

M ′(t) =

∫∫
S
V(u(t), p, r)f(t, p, r) drdp . (2.26)

Proof. The first estimation is a direct consequence of Proposition 2.4. Then, we
use the formulation (2.17) and as a test function we let ϕε(p, r) = rξε(p) such that
ξε ∈ C1

c (R+ and ξε(p) = p over (2ε, 1/2ε) with supp ξ ⊂ (ε, 1/ε), thus∫∫
S
rf(t, p, r)ξε(p) drdp =

∫∫
S
rf in(p, r)ξε(p) drdp

+

∫ t

0

∫∫
S

1

p
V(u(s), p, r)f(s, p, r)ξε(p) drdpds

+

∫ t

0

∫∫
S
rQ(f, f)(s, p, r)ξε(r) drdpds ,

Since we have f ∈ L∞
(
0, T ;L1(S, (1 + p)drdp)

)
, by the use of (2.12) and (2.23),

with the Lebesgue theorem we pass to the limit ε→ 0 and we get

M(t) =

∫∫
S
rpf in(p, r) drdp+

∫ t

0

∫∫
S
V(u(s), p, r)f(s, p, r) drdpds .

So, we conclude that

d

dt
M(t) =

∫∫
S
V(u(t), p, r)f(t, p, r) drdp .

�

We are now ready to apply the second fix point to connect u and f in the system.

2.3.2. Fix point on u. Again we follow [5, 6], i.e we let T > 0 and we define the
map

M : u ∈ C([0, T ]) 7→ ũ =

[
ρ−

∫∫
S
rpf(t, p, r) drdp

]
+

,

where [ · ]+ is the positive part and f the unique mild solution on [0, T ] associated
to u thanks to Proposition 2.4. It follows that M maps B into itself. Moreover,
using (2.26)

t 7→ ρ−
∫∫
S
rpf(t, p, r) drdp ∈W 1,∞(0, T ) ,

then, since [ · ]+ is Lipschitz, it holds that ũ ∈W 1,∞(0, T ) with
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d

dt
ũ =


0 , if

∫∫
S
rpf(t, p, r) drdp ≥ ρ ,

−
∫∫
S
V(u(t), p, r)f(t, p, r) drdp , otherwise.

a.e. t ∈ (0, T ), see [43, Theorem 2.1.11]. Thus, for any u ∈ B by using hypothesis
on the rates (H3), it yields∥∥∥∥ ddt ũ

∥∥∥∥
L∞(0,T )

≤ K(ρ+ 1)
∥∥f in∥∥

L1(S)
.

Next, we invoke Ascoli theorem to claim that M(B) ⊂ B is relatively compact in
C([0, T ]). Now, a Schauder fix point theorem would achieve the proof of Theorem
2.2. It remains to prove the continuity of the map M. Let (un)n be a sequence of
B converging to u for the uniform norm. We need to prove that

lim
n→+∞

‖ũn − ũ‖L∞(0,T ) = 0 ,

which is done by estimating

sup
t∈(0,T )

∣∣∣∣∫∫
S
rpfn(t, p, r) drdp−

∫∫
S
rpf(t, p, r) drdp

∣∣∣∣
≤ sup
t∈(0,T )

∫∫
S
p |fn(t, p, r)− f(t, p, r)| drdp .

Indeed, the right hand side of this inequality goes to zero following line-to-line the
proof of [5, Lemma 5 and 6] to conclude on the one hand the continuity and on the
other that, in fact, ∫∫

S
rpf(t, p, r) < ρ ∀t ∈ [0, T ] ,

to drop [ · ]+. Thus, there exist u ∈ B such that

u(t) =M(u) = ρ−
∫∫
S
rpf(t, p, r) ≥ 0 .

This achieves the proof of Theorem 2.2.

3. Numerical approximation

3.1. A conservative truncated formulation. The discretization of the problem
(1.1)-(1.2) gives rise to three main difficulties. First, the unboundedness of the
space. Indeed, one of the two variables has been reduced to the interval (0, 1),
with a physical meaning, but the p-variable can reach any size in R+. Thus, we
decided to proceed as in [2] and carry out a truncation of the problem considering
a “maximal reachable size”, or cut-off, P > 0. The link between both problems,
truncated and full, when P → +∞ is not taken in consideration here. The reader
can refer to Section 1.3 to get some hints related to this topic. The purpose is to
provide a converging numerical approximation of a truncated problem for a fixed
P . The second issue arises when we look toward conservations of the system. In [2],
the authors propose a reformulation of the coagulation operator into a divergence
form. We are inspired by this method and adapt it to our problem. Indeed, this
formulation appears natural for finite volume scheme and has the advantage to
provide exact conservations at the discrete level.
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The departing point is the formal identity (2.21). One can take ϕ(u, v) =
u1(0,p)(u) 1(0,r)(v) for some (p, r) ∈ S and we formally get an expression of the
form

∂C

∂p∂r
= pQ(f, f)

where the coagulation reads now

C(f, f)(p, r)

=

∫ p

0

∫ 1

0

∫ p−u

0

∫ 1

0

ua(u, v;u′, v′) 1(0,r)(v
#)f(u, v)f(u′, v′) dv′du′dvdu

−
∫ p

0

∫ r

0

uL(f)(u, v)f(u, v) dvdu , (3.1)

where v# = (uv + u′v′)/(u+ u′). Now the coagulation operator has been reformu-
lated in a manner well adapted to a finite volume scheme (the volumes averages of
f are brought out directly). It remains to truncate the problem. It can be achieved
in two different ways as mentioned in [2,17], the authors discuss about conservative
and non-conservative form. These two options can be derived respectively by tak-
ing a := a1(0,P )(u + u′) or a := a1(0,P )(u) 1(0,P )(u

′). The first option avoids the
formation of clusters larger than P thus it will preserve the mass, while the second
induces a loss of polymers due to the creation of larger clusters than P . This latter
is convenient to study gelation phenomenon, see [13] for a review on coagulation.
Here, we restrict ourself to the conservative form and obtain the truncated operator
by taking

LP (f)(u, v) =

∫ P−u

0

∫ 1

0

a(u′, v′;u, v)f(u′, v′)dv′du′ .

Then, replacing L by LP in (3.1) it yields, for any (p, r) ∈ SP := (0, P )× (0, 1), to

CP (f, f)(p, r)

=

∫ p

0

∫ 1

0

∫ p−u

0

∫ 1

0

ua(u, v;u′, v′) 1(0,r)(v
#)f(u, v)f(u′, v′) dv′du′dvdu

−
∫ p

0

∫ r

0

uLP (f)(u, v)f(u, v) dvdu . (3.2)

The last main issue lies in the discretization of (1.2), i.e. the algebraic con-
straint driving u. We will not be able to properly derive an approximation of
1(0,r)(v

#) in the coagulation operator which would allow us to control the sign of

ρ −
∫
SP rpf(t, p, r) drdp. Once again, we reformulate this constraint obtaining an

evolution equation on u by a time derivation of it. Thus the problem (1.1)-(1.2)
reads now

p
∂f

∂t
+

∂

∂r
(Vf) =

∂CP (f, f)

∂p∂r
, (t, p, r) ∈ R+ × SP , (3.3)

and
d

dt
u(t) = −

∫∫
SP
V(u(t), p, r)f(t, p, r) drdp, t ≥ 0 . (3.4)

The boundary condition reads now

f = 0, on ∂SP , (3.5)
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and the initial data are

f(t = 0, ·) = f in over SP and u(t = 0) = uin . (3.6)

It is now appropriate to introduce the technical assumptions used through this
section:

H1. The initial density f in ∈ L1(SP ) is nonnegative and uin ≥ 0, with

ρ := uin +

∫∫
SP
rpf in(p, r) drdp < +∞ . (3.7)

H2. The coagulation rate a ∈ L∞(SP × SP ) is nonnegative and

‖a‖L∞ ≤ K . (3.8)

H3. The rate functions p 7→ k(p, ·), l(p, ·) ∈ L∞
(
0, P ;W 1,∞(0, 1)

)
are nonnega-

tives and

‖k‖L∞(0,P ;W 1,∞) + ‖l‖L∞(0,P ;W 1,∞) ≤ K . (3.9)

H4. The function r 7→ V(u, p, r) is a non-increasing function:

∂rV(u, p, r) = ∂rk u− ∂rl ≤ 0 a.e. (u, p, r) ∈ R+ × SP . (3.10)

Remark 3.1. We emphasize that hypotheses 2 and 3 are not so restrictive in front
of the truncation, it could allow unbounded rate on the full configuration space S
locally bounded which seems reasonable.

We are now in position to give an alternative definition to our problem (2.5)-
(2.6).

Definition 3.1 (Weak solutions 2). Let T > 0, a cut-off P > 0 and let f in and
uin satisfying (3.7). A weak solution to (3.3)-(3.4) on [0, T ) is a couple (f, u) of
nonnegative functions, such that

f ∈ C
(
[0, T );L1(SP )

)
and u ∈ C([0, T )) (3.11)

satisfying for all t ∈ [0, T ) and ϕ ∈ C2(SP )∫∫
SP
pf(t, p, r)ϕ(p, r) drdp =

∫∫
SP
pf in(p, r)ϕ(p, r) drdp

+

∫ t

0

∫∫
SP

(
V(u(s), p, r)f(s, p, r)

∂ϕ

∂r
(p, r) + CP (s, p, r)

∂ϕ

∂p∂r
(s, p, r)

)
drdpds

−
∫ t

0

∫ 1

0

CP (s, P, r)
∂ϕ

∂r
(s, P, r) drds−

∫ t

0

∫ P

0

CP (s, r, 1)
∂ϕ

∂p
(s, p, 1) dpds , (3.12)

with

u(t) = uin −
∫ t

0

∫∫
SP
V(u(s), p, r)f(s, p, r) dpdrds . (3.13)

Remark 3.2 (Consistence of Definition 3.1). First, we emphasize that weak formu-
lation (3.12) is classically obtained after multiplying (3.3) by p, then integrating
over (0, t) × SP . An integration by parts with respect to the boundary condi-
tions (3.5). Note that the two last integrals in the right hand side correspond
to the remaining terms coming from the integration of the coagulation. Second,
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the regularity (3.11) of f together with the definition of the coagulation opera-
tor (3.2) provide that for any t ∈ [0, T ) we have CP (f, f) ∈ L∞ ((0, t)× SP ),
CP (f, f)(p = P ) ∈ L∞ ((0, t)× (0, 1)) and CP (f, f)(r = 1) ∈ L∞ ((0, t)× (0, P )).
Third, by virtue of hypothesis (H3), for any U > 0 we get

sup
u∈(0,U)

||V(u, ·)||L∞(SP ) ≤ ||k||L∞(SP )U + ||l||L∞(SP ) ≤ K(U + 1) .

Thus, V ∈ L∞ ([0, t)× SP ). This ensures that equation (3.12)-(3.13) are well de-
fined under such regularity and hypotheses.

Remark 3.3. A solution in the sense of Definition 3.1 regular enough, with an initial
datum compactly supported in (0, P ), is also a solution in the sense of Definition
2.1, i.e on the entire space S, at least up to a time T small enough. Indeed, since
Q is Lipschitz by (2.20), the speed of propagation of the support of f is finite.

Remark 3.4. In general, the definition can be relaxed by taking the solution f
belongs to C

(
[0, T );w − L1(SP , pdrdp)

)
which is sufficient to define the formula-

tion (3.12). Nevertheless, we will see that the sequence of approximation is in
fact equicontinuous for the strong topology of L1(SP ) thus Definition 3.1 remains
stronger but true.

3.2. The numerical scheme and convergence statement. This section is de-
voted to introduce an approximation of the truncated problem presented in Section
3.1. Thus in the remainder of this section, both, the truncation parameter P > 0
and the time parameter T > 0 are fixed. Our aim is to provide a discretization of
[0, T ] × SP on which we will approach the problem (3.3-3.4). Once the scheme is
established, we present the main result, namely the convergence in a sense defined
later.

Formulation (3.3) allow us to use a finite volume method for the configuration
space. This is approaching the average of the solution on volume controls at discrete
times tn for n ∈ {0, . . . , N} such that

tn = n∆t with ∆t = T/N and N ∈ N∗ .
We turn now to the discretization of the configuration space SP . For sake of sim-
plicity, we consider a uniform mesh of SP that is given, for some large integer J
and I, by (Λj,i)(j,i)∈{0,...,J}×{0,...,I} where

Λj,i = (pj−1/2, pj+1/2)× (ri−1/2, ri+1/2) ⊂ SP ,
such that (pj−1/2)j∈{0,...,J+1} and (ri−1/2)i∈{0,...,I+1} are given by

pj−1/2 = j∆p and ri−1/2 = i∆r ,

with ∆p = P/(J + 1) < 1 and ∆r = 1/(I + 1).

Remark 3.5. We believe that for a non-uniform mesh it would work, we refer
for instance to [2] for a non-uniform discretization of the so-called coagulation-
fragmentation equation.

The average of the solution f to (3.3) at a time tn+1 on a cell Λj,i is obtain
by integration of (3.3) over [tn, tn+1)× Λj,i and dividing by the volume of the cell
|Λj,i| = ∆p∆r. We aim to derive an induction, in order to obtain an approximation
of this average at time tn+1, knowing the approximation at time tn given by

fnj,i ≈
1

|Λj,i|

∫
Λj,i

f(tn, p, r) drdp ,
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The integration of (3.3) lets appear two types of fluxes which need to be approached.
First, the transport term that accounts for the sorption phenomenon given by the r-
derivative, leads to the numerical fluxes (Fnj,i−1/2)(j,i)∈{0,...,J}×{0,...,I+1}, hopefully

consistent approximation of:

Fnj,i−1/2 '
1

∆p

∫ tn+1

tn

∫ pj+1/2

pj−1/2

V(u(t), p, ri−1/2)f(t, p, ri−1/2) dpdt ,

We will use an Euler explicit scheme in time t. Moreover, we use the so-called first
order upwinding method to get

Fnj,i−1/2 = Vn+
j,i−1/2f

n
j,i−1 − Vn−j,i−1/2f

n
j,i , (3.14)

where the velocity at the interface, in function of un ≈ u(tn), is given by

Vnj,i−1/2 = V(un, pj−1/2, ri−1/2) ,

and using the notation x+ = max(x, 0) and x− = max(−x, 0) for any x ∈ R. The
boundary are conventionally taken, for any j ∈ {0, . . . , J}, by

Fnj,−1/2 = Fnj,I+1/2 = 0 , (3.15)

which is in accordance with (3.5). Then the fluxes of coagulation given by the
second order derivative is also approached by an Euler explicit method in time,
namely our fluxes read

Cnj−1/2,i−1/2 =

j−1∑
j′=0

I∑
i′=0

(j−1)−j′∑
j′′=0

I∑
i′′=0

pj′aj′,i′;j′′,i′′δ
i−1
j′,i′;j′′,i′′f

n
j′,i′f

n
j′′,i′′(∆p∆r)

2

−
j−1∑
j′=0

i−1∑
i′=0

J−j′∑
j′′=0

I∑
i′′=0

pj′aj′,i′;j′′,i′′f
n
j′,i′f

n
j′′,i′′(∆p∆r)

2 , (3.16)

where the discrete coagulation rate is

aj,i;j,i′ =
1

|Λj,i| × |Λj′,i′ |

∫
Λj,i×Λj′,i′

a(p, r; p′, r′) drdpdr′dp′ , (3.17)

and the characteristic function 1(0,r)(v
#) is approached by

δi−1
j′,i′;j′′,i′′ =

{
1 if V #

j′,i′;j′′,i′′ =
ri+1/2pj+1/2+ri′+1/2pj′+1/2

pj−1/2+pj−1/2
< ri−1/2

0 otherwise.
(3.18)

Finally, we use the convention that

Cn−1/2,i−1/2 = Cnj−1/2,−1/2 = 0, ∀(j, i) . (3.19)

Now, we are almost ready to define the scheme. Indeed, it remains to ap-
proach the initial data (3.6) which are classically obtained, for (j, i) ∈ {0, . . . , J} ×
{0, . . . , I}, by

f0
j,i =

1

|Λj,i|

∫
Λj,i

f in(p, r) drdp . (3.20)

and which is nothing but

u0 = uin . (3.21)

Thus, the scheme is defined as follows.
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Definition 3.2 (Numerical scheme). Let us consider the discretization mentioned
above and a given initial data (3.20)-(3.21). The numerical scheme gives us a
sequence (fnj,i)n,j,i and (un)n, for n ∈ {0, . . . , N} and (j, i) ∈ {0, . . . , J}×{0, . . . , I},
defined recursively by

pjf
n+1
j,i = pjf

n
j,i −

∆t

∆r

(
Fnj,i+1/2 − F

n
j,i−1/2

)
+

∆t

∆r∆p
Cnj,i , (3.22)

and

un+1 = un −∆t

J∑
j=0

I∑
i=0

Fnj,i−1/2 ∆r∆p , (3.23)

where

Cnj,i =
(
Cnj+1/2,i+1/2 − C

n
j+1/2,i−1/2

)
−
(
Cnj−1/2,i+1/2 − C

n
j−1/2,i−1/2

)
. (3.24)

In the above definition, the coagulation is written with fluxes defined by (3.16).
But, note that it can be also expressed as follows

Cnj,i =

j∑
j′=0

I∑
i′=0

I∑
i′′=0

pj′aj′,i′;j−j′,i′′f
n
j′,i′f

n
j−j′,i′′δ

i,i−1
j′,i′;j−j′,i′′ (∆p∆r)

2

−

J−j∑
j′=0

I∑
i′=0

pj′aj,i;j′,i′f
n
j′,i′∆p∆r

 fnj,i ∆p∆r . (3.25)

where

δi,i−1
j′,i′;j−j′,i′′ =

{
1 if ri−1/2 ≤ V #

j′,i′;j′′,i′′ < ri−1/2

0 otherwise.

This is obtained when reordering summation behind (3.24). Such a formulation is
not only simpler to implement numerically, but also useful in several estimations
in the next section. We also remark, by virtue of (3.19) and (3.24), that the
coagulation satisfy

J∑
j=0

I∑
i=0

Cnj,i = 0, ∀n ∈ {0, . . . , N} , (3.26)

which will ensure mass conservation at the discrete level.
Now the scheme is stated, we focus on its convergence. This will be achieved by

a well-suited construction of sequences of approximations. For this purpose, we let
h = max(∆r,∆p,∆t).

Definition 3.3 (Sequences of approximations). Let the sequences (fnj,i)n,j,i and
(un)n construct by virtue of Definition 3.2. We define the piecewise constant ap-
proximation fh on [0, T )× SP by

fh(t, p, r) =

N−1∑
n=0

J∑
j=0

I∑
i=0

fnj,i 1Λj,i(p, r) 1[tn,tn+1)(t) , (3.27)
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and then the piecewise linear (in time) approximation f̃h

f̃h(t, p, r) =

N−1∑
n=0

J∑
j=0

I∑
i=0

(
fn+1
j,i − fnj,i

∆t
(t− tn) + fnj,i

)
× 1Λj,i(p, r) 1[tn,tn+1)(t) . (3.28)

Moreover, we define the piecewise approximation of u on [0, T )

uh(t) =

N−1∑
n=0

un 1[tn,tn+1)(t), on [0, T ) . (3.29)

Here, we mention that under such definition both approximations satisfy at time
t = 0 the same initial condition which is given by fh(0, p, r) = f̃h(0, p, r) = f inh (p, r)
where

f inh (p, r) =
∑

(j,i)∈σJ,I

f0
j,i 1Λj,i(p, r), on SP . (3.30)

and that uh(0) = uin. We are now ready to state the convergence result we obtain.

Theorem 3.4 (Convergence). Let T > 0, assume that f in and uin satisfy (H1),
and that hypotheses (H2) to (H4) are fulfilled. Moreover, we make the stability
assumption that

4
∆t

∆r
||V||L∞((0,UT )×SP ) < 1 and 2KM in(1 + P )∆t < 1 , (3.31)

where

UT = eKM
inTuin and M in =

∫
Sp
f in(p, r) drdp . (3.32)

Then there exists a couple (f, u) solution of the problem (3.3-3.4) in the sense of
Definition 3.1 such that, up to a subsequence (not relabeled)

fh −−−⇀
h→0

f, w − L1((0, T )× SP ) , (3.33)

f̃h −−−→
h→0

f, C
(
[0, T ];w − L1(SP )

)
, (3.34)

uh −−−→
h→0

u, ∀t ∈ [0, T ] . (3.35)

with
∥∥∥f−h f̃h∥∥∥

L∞(0,T ;L1(SP ))
→ 0 when h→ 0.

Remark 3.6. At this stage, we emphasize that hypothesis (3.31) involved in Theo-
rem 3.4 is classical. The first one is the so-called Courant-Friedrich-Lax condition
(or CFL condition) which ensures a well-know convex formulation of the transport
part. The second is to control the sign of the coagulation term.

For technical reasons we consider a carefully reconstruction of the coagulation
term. This one involves the coagulation kernel which is approached by

ah(p, r; p′, r′) =

J∑
j=0

I∑
i=0

J∑
j′=0

I∑
i′=0

aj,i;j′,i′ 1Λj,i
(p, r) 1Λj′,i′ (p

′, r′) .

where the aj,i;j′,i′ are given by (3.17). A classical result of piecewise approximation,
since a satisfy (3.8), is

ah −→
h→0

a, L1(SP ).
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Further, we mention that ah converges towards a a.e. SP ×SP , which holds true up
to a subsequence. Also, we will reconstruct the characteristic function (3.18), this
delicate point responsible of a lack of conservation in our scheme will be discussed
later, as well as the rate of sorption V.

Remark 3.7. In the remainder of the paper most of the result will involve more
extraction of sequences, so that, for sake of clarity, we use the same index even for
all the sequences, even if we extract a new subsequence of the previous one.

3.3. Estimations and weak compactness. The aim of this section is to in-
troduce the well-suited estimations leading to the required compactness to prove
Theorem 3.4. The method used here has been extensively developed in the field of
coagulation-fragmentation equations and/or LS equation and their derivatives, see
Section 1.3 for more details. Briefly, here we proceed in two steps. We provide some
discrete properties of the scheme. Then, we establish compactness results on both
fh and f̃h and we treat uh by classical results on sequences of bounded variation
functions.

First of all, we introduce here some useful notation which will help us lighten
the next computation:

Ph(p) =

J∑
j=0

pj 1[pj−1/2,pj+1/2) , Rh(r) =

I∑
i=0

ri 1[ri−1/2,ri+1/2) ,

P−h (p) =

J∑
j=0

pj−1/2 1[pj−1/2,pj+1/2) , R−h (r) =

I∑
i=0

ri−1/2 1[ri−1/2,ri+1/2) ,

P+
h (p) =

J∑
j=0

pj+1/2 1[pj−1/2,pj+1/2) , R+
h (r) =

I∑
i=0

ri+1/2 1[ri−1/2,ri+1/2) .

and

Θ∆t(t) =

N−1∑
n=0

tn 1[tn,tn+1)(t) .

Moreover, for sake of conciseness we denote

σ := {0, . . . , J} × {0, . . . , I} ,

when no confusion on I and J holds. Then, as long as it does not entail any
ambiguity, we use

σ∗ =

{
{0, . . . , J − j} × {0, . . . , I} if indexed on (j′, i′) ,

{0, . . . , J − j′} × {0, . . . , I} if indexed on (j′′, i′′) .
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Also, we denote l = (j, i), l′ = (j′, i′) and l′′ = (j′′, i′′). Thus, the summation
notation in a compact form are

J∑
j=0

I∑
i=0

=
∑
l∈σ

,

J∑
j=0

I∑
i=0

J−j∑
j′=0

I∑
i′=0

=
∑
l∈σ

∑
l′∈σ∗

,

J∑
j′=0

I∑
i′=0

J−j′∑
j′′=0

I∑
i′′=0

=
∑
l′∈σ

∑
l′′∈σ∗

.

3.3.1. Discrete estimations. To begin, we establish some properties of the sequences
constructed in Definition 3.2. We emphasize that the original continuous problem
involves, a decreased of the moment of order 0 (2.22), while the p-moment of order
1 (2.23) is conserved and the total balance (1.2) remains constant. This latter will
be discussed later, while the two other remain true at the discrete level and will be
part of the next proposition. To that, we introduce the discrete moments of the
sequences defined in Definition 3.2, given by

Mn
0,h =

∑
l∈σ

fnj,i ∆r∆p, and Mn
1,h =

∑
l∈σ

pjf
n
j,i ∆r∆p . (3.36)

So, the next proposition establish the basic properties of our scheme and particularly
of these moments.

Proposition 3.5 (Non-negativeness, moments and conservation). Let f in and
uin satisfying (H1), together with (fnj,i)(n,j,i)∈σ and (un)n construct by virtue of
Definition 3.2. We assume that the stability condition (3.31) holds true. Then,
the sequences (fnj,i)(n,j,i) and (un)n are both nonnegatives and satisfy for all n ∈
{0, . . . , N − 1}:

0 ≤Mn+1
0,h ≤M

n
0,h ≤M in ,

and n ∈ {0, . . . , N}
0 ≤Mn

1,h = M0
1,h and 0 ≤ un ≤ UT ,

where M in and UT are both given in (3.32). Moreover, there exist a constant C > 0
independent on h such that for all n ∈ {0, . . . , N − 1} we have∑

(j,i)∈σ

|fn+1
j,i − f

n
j,i|∆r∆p ≤ C∆t and |un+1 − un| ≤ C∆t .

Proof. We prove this proposition by induction. We suppose that (fnj,i)(j,i) is a non-
negative sequence and un a nonnegative data, both given for some n ∈ {0, . . . , N−1}
satisfying

0 ≤Mn
0,h ≤M in, and un ≤ (1 + ∆tKM in)nu0 .

We easily check that it is true for n = 0. Indeed, the nonnegativeness is given
by hypothesis (H1) on f in and uin together with the initial approximation (3.20)-
(3.21). Then, by the definitions of f inh in (3.30) and the constant M in in (3.32), we
get

M0
0,h =

∫∫
SP
f inh (p, r) drdp = M in, (3.37)



20 E. HINGANT AND M. SEPÚLVEDA

and

M0
1,h =

∫∫
SP
Ph(p)f inh (p, r) drdp ≤ PM in. (3.38)

The rest of the proof is separated in four steps. We start by estimate the moments,
next we bound un+1, then we prove the nonnegativeness of fn+1 and finally we
prove the last two “time” estimations of the proposition.

Step 1. Moments estimation. We first remark the sorption fluxes Fn are null at
the boundary, it is (3.15), thus

I∑
i=0

(Fnj,i+1/2 − F
n
j,i−1/2) = 0, ∀j .

It remains to estimate the contribution of the coagulation in the moments. The
first order moment is naturally conserved from the construction of our scheme, it
is (3.26). These two remarks lead, by equation (3.22) giving the fn+1

j,i , to the fact
that

Mn+1
1,h = Mn

1,h .

Now, for the zeroth order moment, we estimate∑
l∈σ

1

pj
Cnj,i =

∑
l∈σ

∑
l′∈σ∗

pj
pj+j′

aj,i;j′,i′f
n
j,if

n
j′,i′ (∆p∆r)

2

−
∑
l∈σ

∑
l′∈σ∗

pj′

pj
aj,i;j′,i′f

n
j′,i′f

n
j,i (∆p∆r)2 ,

which is obtained from expression (3.25) after inverting and re-indexing the sum-
mation. Next, we remark that −pj′/pj ≤ −pj′/pj+j′ and by nonnegativeness of
(fnj,i)(j,i)∈σ and aj,i,j′,i′ together with its symmetry, we get∑

l∈σ

1

pj
Cj,i ≤ 0.

It proves the discrete zeroth order moment decreases which is the desired property.

Step 2. properties of un+1. By definition of the fluxes Fn in (3.14), the nonnega-
tiveness of (fnj,i)(j,i) and hypothesis (H3) on the rate V, we get that

Fnj,i−1/2 ≤ V
n+
j,i−1/2f

n
j,i−1 ≤ Kunfnj,i−1 .

which implies by the expression of un+1 in (3.23) that

un+1 ≥

(
1−K∆t

∑
l∈σ

fnj,i∆p∆r

)
un .

Finally, since we hypothesized that Mn
0,h ≥ 0 is bounded by M in, we get

un+1 ≥
(
1−KM in∆t

)
un.

This latter entails the nonnegativeness of un+1 by the stability assumption (3.31).
It remains to bound un+1. Indeed, we have

un+1 ≤ un + ∆t
∑
l∈σ

V n−j,i−1/2fj,i∆p∆r ≤ (1 + ∆tKM in)un .
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Step 3. Nonnegativeness of fn+1. We prove this result by studying separately the
transport part and the coagulation part. On the one hand, using the definition of
the fluxes Fn in (3.14) and since we have Vnj,i−1/2 = Vn+

j,i−1/2 −V
n−
j,i−1/2, we get the

following decomposition

Fnj,i+1/2 − F
n
j,i−1/2 = (Vnj,i+1/2 − V

n
j,i−1/2)fnj,i

+ Vn−j,i+1/2(fnj,i − fnj,i+1) + Vn+
j,i−1/2(fnj,i − fnj,i−1) . (3.39)

Now, we denote by

Anj,i =
1

∆r

∫ ri+1/2

ri−1/2

(
− ∂

∂r
V(un, pj−1/2, r)

)
dr =

Vnj,i−1/2 − V
n
j,i+1/2

∆r
, (3.40)

which is nonnegative for any (j, i) ∈ σ by the monotonicity hypothesis (H4). It
results from the formulation (3.39) that

1

2
fnj,i −

∆t

∆r

(
Fnj,i+1/2 − F

n
j,i−1/2

)
= ∆tAnj,if

n
j,i

+
1

4

[(
1− 4

∆t

∆r
Vn−j,i+1/2

)
fnj,i + 4

∆t

∆r
Vn−j,i+1/2f

n
j,i+1

]
+

1

4

[(
1− 4

∆t

∆r
Vn+
j,i−1/2

)
fnj,i + 4

∆t

∆r
Vn+
j,i−1/2f

n
j,i−1

]
, (3.41)

Thus, the nonnegativeness of the Anj,i in (3.40) and the convex combination of the

nonnegative fnj,i, we get by the definition of the fn+1
j,i in (3.22) that

fn+1
j,i ≥

1

2
−∆t

J−j∑
j′=0

I∑
i′=0

pj′aj,i;j′,i′f
n
j′,i′∆p∆r

 fnj,i .

We conclude using hypothesis (H2) on the coagulation kernel, the stability assump-
tion (3.31) and estimation (3.38) that

fn+1
j,i ≥

1

2

(
1− 2KPM in∆t

)
fnj,i ≥ 0 .

Step 4. Time estimation. From the definition of fn+1
j,i in (3.22), we easily obtain

|fn+1
j,i − f

n
j,i|∆r∆p ≤ ∆t

1

pj
|Fnj,i+1/2 − F

n
j,i−1/2|∆p+ ∆t

1

pj
|Cnj,i| .

On the one hand, we have from the definition of the discrete coagulation in (3.25)
and hypothesis (H1) that ∑

(j,i)∈σ

1

pj
|Cnj,i| ≤ 2KPM in2 .

On the other hand, since for all j ∈ {0, . . . , J} we have pj ≥ ∆p/2, then∑
(j,i)∈σ

∆p

pj
|Fnj,i+1/2 − F

n
j,i−1/2| ≤ 8M in sup

u∈(0,UT )

||V(u, ·)||L∞(SP ) .

Thus, summing the first inequality together with the two last ones we prove the
required estimation. Finally, we remark that from the expression of un+1 in (3.23),
we have

un+1 − un = ∆t
∑

(j,i)∈σ

Fnj,i−1/2.
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We have to bound the fluxes (3.14). Indeed, we have for any (j, i) ∈ σ and i 6= 0∣∣∣Fnj,i−1/2

∣∣∣ ≤ sup
u∈(0,UT )

||V(u, ·)||L∞(SP )(f
n
j,i−1 + fnj,i) ,

and then summing over σ we get

|un+1 − un| ≤ 2 sup
u∈(0,UT )

||V(u, ·)||L∞(SP )M
in∆t .

It ends the proof. �

This proposition establishes the main properties of our scheme, we now derive a
corollary that transposes these properties to the sequences of approximations.

Corollary 3.6. Under hypothesis of Proposition 3.5. Let the sequences of ap-
proximations (fh)h, (f̃h)h and (uh)h construct by Definition 3.3. Then, for all
discretization parameter h,

fh ∈ L∞(0, T ;L1(SP )) and f̃h ∈ C([0, T ];L1(SP ))

together with uh ∈ L∞(0, T ). Moreover, we have for the sequence (fh)h the uniform
estimation∫∫

SP
fh(t, r, p) drdp ≤

∫∫
SP
fh(s, r, p) drdp ≤M in, ∀t ≥ s , (3.42)

and ∫∫
SP
Ph(p)fh(t, r, p) drdp =

∫∫
SP
Ph(p)f inh (r, p) drdp, ∀t ∈ [0, T ) . (3.43)

For the sequence (f̃h)h, we have

0 ≤
∫∫
SP
f̃h(t, r, p) drdp ≤M in, ∀t ∈ [0, T ] , (3.44)

and there exist a constant C > 0 independent on h such that∥∥∥f̃h(t, ·)− f̃h(s, ·)
∥∥∥
L1(SP )

≤ C|t− s|, ∀s, t ∈ [0, T ] . (3.45)

Finally, the sequence (uh)h satisfy the uniform bound

‖uh‖L∞(0,T ) ≤ UT , and ‖uh‖BV (0,T ) < CT . (3.46)

Proof. The regularity and non negativeness of the sequences (fh)h and (uh)h readily
follow from Proposition 3.5 and Definition 3.3. And for now, by the same arguments,
it is clear that f̃h ∈ L∞(0, T ;L1(SP )). Next, (3.42) and (3.43) follow from the
properties of the discrete moment in Proposition 3.5, by a simple reformulation
using the definition of fh in 3.27. Then, for all n ∈ {0, . . . , N−1} and t ∈ [tn, tn+1),

fn+1
j,i − fnj,i

∆t
(t− tn) + fnj,i =

(t− tn)

∆t
fn+1
j,i +

(
1− (t− tn)

∆t

)
fnj,i . (3.47)

Thus, by definition of f̃h in 3.28, the discrete moment (3.36) and the convex com-
bination mentioned above, we have for all t ∈ [0, T ]:

0 ≤
∫∫
SP
f̃h(t, r, p) drdp ≤ sup

n∈{0,...,N−1}
max(Mn+1

0,h ,Mn
0,h) ≤M in .

and that f̃h are nonnegatives. It provides the uniform bound (3.44). Next, estima-
tion (3.45) is against a direct consequence of Proposition 3.5 (last estimation). It
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provides the regularity in time of the sequence f̃h. Finally, (3.46) is a consequence
of Proposition 3.5 and the definition of uh in (3.29).

�

Before coming back to the proof of Theorem 3.4, we emphasize on the fact that, as
mentioned before, our scheme preserves the mass (3.43). Nevertheless, the algebraic
condition (1.2), transformed into (3.4) is no more preserved at the discrete level.
The following corollary is not use in the demonstration of the convergence, but only
state that the lack of mass that occurs in our scheme can be control. Indeed, the
deviation from the initial value is of magnitude ∆r.

Corollary 3.7. Under hypotheses of Proposition 3.5, for any n ∈ {0, . . . , N} we
define

ρn := un +
∑

(j,i)∈σ

ripjf
n
j,i,

then we have for some constant C = C(M in,K) ≥ 0 that

|ρn − ρ0| ≤ CT∆r.

Proof. We remark that summing (3.22) tested against ri and with (3.23), we get

ρn+1 − ρn = ∆t
∑

(j,i)∈σ

riC
n
j,i.

Then by (3.24), we obtain∑
(j,i)∈σ

riC
n
j,i =

I∑
i=0

CJ+1/2,i+1/2∆r.

Combining these two equalities and by definition of the flux (3.16) and the bound
M in in (3.32), we get ∣∣ρn+1 − ρn

∣∣ ≤ 2KPM in2∆r∆t,

which ends the proof. �

3.3.2. Weak compactness. We introduced, from the scheme established in Definition
3.2, sequences of approximations in Definition 3.3 satisfying the properties stated in
Corollary 3.6 that suppose to approach the solution to our problem. An important
issue in proving this result is to get the convergence, towards some functions, of
these sequences in a sense that allow us to obtain an enough regular solution to
(3.3)-(3.4). The answer to this issue is obtain by argument of compactness. In this
section, we provide the necessary compactness estimates to pass to the limit.

The first estimate will follow from a refined version of the De La Vallée-Poussin
Theorem [24], also we refer to [8, Chap. II, Theorem 22] for a probabilistic approach.
Indeed, since f in ∈ L1(SP ) is nonnegative, there exists

φ ∈ C1([0,+∞)) nonnegative, convex, with concave derivative,

with φ(0) = 0, φ′(0) = 0, and
φ(r)

r
−→
r→+∞

+∞ ,
(3.48)

such that ∫∫
SP
φ(f in(p, r)) drdp < +∞ . (3.49)
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Therefore, proving that (3.49) can be propagated in time, uniformly according to

h, will give us the uniform integrability of the sequences fh and f̃h.

Lemma 3.8. Let φ satisfying (3.48) such that (3.49) holds true. Then, there exists
C ≥ 0 independent on h, such that for any t ∈ [0, T ), we have∫∫

SP
φ(f∆t

h (t, p, r)) drdp ≤ eCT
∫
SR
φ(f in(p, r)) drdp . (3.50)

and ∫∫
SP
φ(f̃∆t

h (t, p, r)) drdp ≤ eCT
∫
SR
φ(f in(p, r)) drdp . (3.51)

Proof. Let us derive first (3.51) from (3.50). By the definition of f̃h in (3.28),
the convex combination (3.47), and since φ is convex by (3.48), we have for any
t ∈ [0, T ]∫∫

SP
φ(f̃h(t, p, r)) drdp ≤ sup

n∈{0,...,N}

∑
(j,i)∈σ

φ(fnj,i)∆r∆p

≤ sup
t∈[0,T ]

∫
SP
φ(fh(t, p, r)) drdp

Thus, it remains to prove (3.50) to conclude. We split the computation into two
parts, in order to treat first the transport part and then the coagulation.

Step 1. The transport. This first part involves the convexity of φ and is closely
related to the estimation done in [16, Lemma 3.5]. Indeed, let us denote the inter-
mediate value:

f̃nj,i = fnj,i −
∆t

∆r
(Fnj,i+1/2 − F

n
j,i−1/2) . (3.52)

From the convex formulation (3.41), we easily obtain for any (j, i) ∈ σ the following
expression

f̃nj,i = (
1

2
+ ∆tAnj,i)f

n
j,i +

1

4

[(
1− 4

∆t

∆r
Vn−j,i+1/2

)
fnj,i + 4

∆t

∆r
Vn−j,i+1/2f

n
j,i+1

]
+

1

4

[(
1− 4

∆t

∆r
Vn+
j,i−1/2

)
fnj,i + 4

∆t

∆r
Vn+
j,i−1/2f

n
j,i−1

]
(3.53)

with the convention fj,I+1 = fj,−1 = 0 and Anj,i the discrete gradient defined in

(3.40). Our aim is to write f̃nj,i as a complete convex combination of the fnj,i’s
together with 0. Thus, let us introduce the coefficients

λ0
j,i =

1

2
+ ∆tAnj,i,

λ1
j,i =

1

4
− ∆t

∆r
Vn−j,i+1/2 , λ2

j,i =
∆t

∆r
Vn−j,i+1/2 ,

λ3
j,i =

1

4
− ∆t

∆r
Vn+
j,i−1/2 , λ4

j,i =
∆t

∆r
Vn+
j,i−1/2 ,

which are non negatives since Anj,i ≥ 0, by monotonicity hypothesis (H4), and
by stability assumption (3.31). Then, by virtue of hypothesis (H3) and since uh
satisfies the bound (3.46), we get that

||∂rV(u, p, r)||L∞((0,UT )×SP ) = ||∂rk||L∞(SP )UT + ||∂rk||L∞(SP ) ≤ KT ,
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where KT = K(UT + 1). Thus, we renormalized the coefficients as follows

λ̃kj,i =
λkj,i

1 + 2KT∆t
, k = 0, . . . , 4 .

From (3.53), it follows that

f̃nj,i
1 + 2KT∆t

= λ̃0
j,if

n
j,i + λ̃1

j,if
n
j,i + λ̃2

j,if
n
j,i+1 + λ̃3

j,if
n
j,i + λ̃4

j,if
n
j,i−1 .

It remains to remark that

0 ≤ 1− λ̃5
j,i =

4∑
k=0

λ̃kj,i =
1 + anj,i∆t

1 + 2KT∆t
≤ 1

2
,

and we obtain by convexity of φ and φ(0) = 0

φ

(
f̃nj,i

1 + 2K∆t

)
≤ λ̃0

j,iφ(fnj,i)+ λ̃1
j,iφ(fnj,i)+ λ̃2

j,iφ(fnj,i+1)+ λ̃3
j,iφ(fnj,i)+ λ̃4

j,iφ(fnj,i−1) .

Then, summing over i, reordering the sum and remarking that

λ̃0
j,i + λ̃1

j,i + λ̃2
j,i−1 + λ̃3

j,i + λ̃4
j,i+1 =

1

1 + 2KT∆t
,

it is straight forward that∑
(j,i)∈σ

φ

(
f̃nj,i

1 + 2K∆t

)
≤

∑
(j,i)∈σ

φ(fnj,i) . (3.54)

Finally, using that the derivative of φ is concave, we have φ′(δy) ≤ δφ′(y) for
(δ, y) ∈ [1,+∞)× R+ and thus integrating over (0, x) this latter, we get that

φ(δx) ≤ δ2φ(x), ∀(δ, x) ∈ [1,+∞)× R+ . (3.55)

We conclude this intermediate estimation, using (3.54) and (3.55),∑
(j,i)∈σ

φ(f̃nj,i) ≤ (1 + 2KT∆t)2
∑

(j,i)∈σ

φ(fnj,i) . (3.56)

Step 2. The coagulation. Now we get the first part of our estimation, it remains to
take into account the coagulation. We estimate the following quantity∑

(j,i)∈σ

φ(fn+1
j,i )− φ(f̃nj,i) ≤

∑
(j,i)∈σ

(fn+1
j,i − f̃

n
j,i)φ

′(fn+1
j,i ) ,

which comes from the convexity of φ. By definition of the f̃nj,i in (3.52) together

with the expression of fn+1
j,i in (3.22)∑

(j,i)∈σ

φ(fn+1
j,i )− φ(f̃nj,i) ≤

∆t

∆p∆r

∑
(j,i)∈σ

Cj,iφ
′(fn+1

j,i ) . (3.57)

Nonnegativity of fn yields

Cj,i ≤ K
j∑

j′=0

I∑
i′=0

I∑
i′′=0

pj′f
n
j′,i′f

n
j−j′,i′′δ

i,i−1
j′,i′;j−j′,i′′(∆p∆r)

2 .
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then summing over j and i, we get

∑
(j,i)∈σ

j∑
j′=0

I∑
i′=0

I∑
i′′=0

pj′f
n
j′,i′f

n
j−j′,i′′δ

i,i−1
j′,i′;j−j′,i′′φ

′(fn+1
j,i ) (∆p∆r)2

=
∑

(j′,i′)∈σ

pj′f
n
j′,i′

 ∑
(j′′,i′′)∈σ∗

fnj′′,i′′φ
′(fn+1

j′+j′′,i#
)

 (∆p∆r)2 (3.58)

where i# ∈ {0, . . . , I} such that δi
#,i#−1
j′,i′;j′′,i′′ = 1. Now, we remark as in [2, Lemma

3.2] and proving for instance with the help of [29, Lemma B.1] that when φ fulfills
(3.48), we get that

xφ′(y) ≤ φ(x) + φ(y), ∀(x, y) ∈ R2
+ .

Using this property and the bound on the first moment (3.38) in (3.58), it follows∑
(j,i)∈σ

Cj,iφ
′(fn+1

j,i )

≤ K
∑

(j′,i′)∈σ

pj′f
n
j′,i′

 ∑
(j′′,i′′)∈σ

φ(fnj′′,i′′) +
∑

(j′′,i′′)∈σ

φ(fn+1
j′+j′′,i#

)

 (∆p∆r)2

≤ KPM in

 ∑
(j,i)∈σ

φ(fnj,i) +
∑

(j,i)∈σ

φ(fn+1
j,i )

∆p∆r . (3.59)

Combining both (3.56) and (3.59) with (3.57), we get∑
(j,i)∈σ

φ(fn+1
j,i ) ≤ (1 + 2KT∆t)2

∑
(j,i)∈σ

φ(fnj,i)

+ PKM in∆t

 ∑
(j,i)∈σ

φ(fnj,i) +
∑

(j,i)∈σ

φ(fn+1
j,i )

 .

or in other term, when ∆t < 1

(1− PKM in∆t)

 ∑
(j,i)∈σ

φ(fn+1
j,i )−

∑
(j,i)∈σ

φ(fnj,i)


≤
(
4KT (KT + 1) + 2PKM in

)
∆t

∑
(j,i)∈σ

φ(fnj,i)

Dividing by 1 − PKM in∆t ≥ 1/2 regarding the stability condition (3.31), thus it
holds that for any n ∈ {0, . . . , N}∑

(j,i)∈σ

φ(fnj,i) ≤ eCT
∑

(j,i)∈σ

φ(f0
j,i) ,

where C = 8KT (KT + 1) + 4PKM in. The conclusion follows from the definition
of fh in (3.27) and f inh in (3.30) with the Jensen inequality, since

φ(f0
j,i) = φ

(
1

|Λj,i|

∫
Λj,i

f in(p, r) dpdr

)
≤ 1

|Λj,i|

∫
Λj,i

φ
(
f in(p, r)

)
dpdr .
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It ends the proof. �

The direct consequence of Lemma 3.8 is that (fh)h is weakly relatively compact
in L1((0, T )×SP ) as a consequence of the Dunford-Pettis theorem, see [12, Theorem
4.21.2]. It proves there exists a subsequence (not relabeled) and f ∈ L1((0, T )×SP )
such that

fh ⇀
h→0

f w − L1((0, T )× SP ).

At this stage, the convergence is too weak to be able to pass to the limit, particularly
in the quadratic term, and to get the final regularity of f in Definition 3.1. To this
end, we will use the piecewise linear in time approximation. Against invoking
the Dunford-Pettis theorem, for all t ∈ [0, T ] we have that f̃h(t, ·) belongs to a
relatively compact subset of L1(SP ). Then, by Corollary 3.6 we have that the
sequence is equicontinuous in time for the strong topology of L1(SP ), thus for the

weak topology. So, applying Ascoli Theorem, there exists a subsequence of f̃∆t
h

(not relabeled) converging towards a g in C
(
[0, T ];w − L1(SP )

)
. Next, we remark

that
sup

t∈(0,T )

||f̃h(t, ·)− fh(t, ·)||L1(SP ) ≤ C∆t, (3.60)

which ensures that g = f . Finally, by weak convergence we get

||f(t, ·)− f(s, ·)||L1(SP ) ≤ lim inf
h→0

||f̃h(t, ·)− f̃h(s, ·)||L1(SP ) ≤ C|t− s|.

And this latter prove the continuity for the strong topology of L1(SP ) of the limit
f . This achieves the proof of the convergence (3.33)-(3.34) towards f (not yet the
solution).

But, it remains to prove the convergence (3.35) of uh before passing to the
limit. Indeed, in Corollary 3.6 we have (3.46) the uniform bound, w.r.t. h, in
L∞(0, T ) ∩ BV (0, T ), then the Helly Theorems, see [25, Theorem 36.4 and 36.5],
entail that up to a subsequence (not-relabeled) there exist u ∈ BV (0, T ) such that
the sequence (uh(t))h converges towards u(t) for every t ∈ [0, T ]. This prove (3.35).

3.4. Convergence of the numerical scheme. Here we prove that the limit f
and u obtained right before are solutions of the problem (3.3)-(3.4) to conclude the
proof of Theorem 3.4.

3.4.1. Reconstruction and convergence of the coagulation operator. One of the del-
icate point in the proof of convergence is to give an appropriate reconstruction of
the quadratic operator, the coagulation, that convergences in a relevant sense. In
order to perform it, we define over [0, T )× SP the following approximation:

Ch(t, p, r)

=

∫
SP×SP

Φ1,h
p,r (p′, r′; p′′, r′′)fh(t, p′, r′)fh(t, p′′, r′′) dr′′dp′′dr′dp′

−
∫
SP×SP

Φ2,h
p,r (p′, r′; p′′, r′′)fh(t, p′, r′)fh(t, p′′, r′′) dr′′dp′′dr′dp′.

where for any (t, p, r) ∈ [0, T )× SP and (p′, r′; p′′, r′′) ∈ SP × SP ,

Φ1,h
p,r (p′, r′; p′′, r′′) = 1(0,P−h (p))(p

′) 1(0,P−h (p)−P−h (p′))(p
′′)

× 1(0,R+
h (r))(V

#
h (p′, r′; p′′, r′′))Ph(p′)ah(p′, r′; p′′, r′′),
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and

Φ2,h
p,r (p′, r′; p′′, r′′) = 1(0,P−h (p))(p

′) 1(0,P−P−h (p′))(p
′′)

× 1(0,R−h (r))(r
′)Ph(p′)ah(p′, r′; p′′, r′′),

with

V #
h (p′, r′; p′′, r′′) =

R+
h (r′)P+

h (p′) +R+
h (r′′)P+

h (p′′)

P−h (p′) + P−h (p′)
.

With such definition, for all n ∈ {0, . . . , N − 1} and (j, i) ∈ σ, it is straightforward
that for any (t, p, r) ∈ [tn, tn+1)× Λj,i we have

Ch(t, p, r) = Cnj−1/2,i−1/2 .

Now the convergence of Ch will be a consequence of the following to lemma. The
first one can be find as is in [2, Lemma 3.5].

Lemma 3.9. Let Ω be an open set of Rm, κ > 0 and let two sequences (vn)n∈N ⊂
L1(Ω) and (wn)n∈N ⊂ L∞(Ω). If we assume that for all n ∈ N, |wn| ≤ κ and there
exist v ∈ L1(Ω) and w ∈ L∞(Ω) satisfying

vn −→
n→+∞

v, weak − L1(Ω), and wn −→
n→+∞

w, a.e. in Ω.

Then,

‖vn(wn − w)‖L1(Ω) −→n→+∞
0, and vnwn −→

n→+∞
vw, weak − L1(Ω).

The second lemma give us some useful properties on the functions Φi,hp,r.

Lemma 3.10. For i = 1, 2,

||Φi,hp,r||L∞(SP×SP ) ≤ PK, ∀(p, r) ∈ SP ,

and for all (p, r) ∈ SP ,

Φ1,h
p,r (p′, r′; p′′, r′′) −→

h→0
1(0,p)(p

′) 1(0,p−p′)(p
′′) 1(0,r)(v

#)p′a(p′, r′; p′′, r′′),

Φ2,h
p,r (p′, r′; p′′, r′′) −→

h→0
1(0,p)(p

′) 1(0,P−p′)(p
′′) 1(0,r)(r

′)p′a(p′, r′; p′′, r′′).

a.e. SP × SP .

Proof. The first inequality follows from hypothesis (H2). Then, we only have to

check that 1(0,R+
h (r))(V

#
h (p′, r′; p′′, r′′)) converge almost every where. Indeed for all

r ∈ (0, 1),

∫
SP×SP

∣∣∣1(0,R+
h (r))(V

#
h )− 1(0,r)(v

#)
∣∣∣ dr′′dp′′dr′dp′

≤
∫
SP×SP

∣∣∣1(0,R+
h (r))(V

#
h )− 1(0,R+

h (r))(v
#)
∣∣∣ dr′′dp′′dr′dp′

+

∫
SP×SP

∣∣∣1(0,R+
h (r))(v

#)− 1(0,r)(v
#)
∣∣∣ dr′′dp′′dr′dp′ , (3.61)

where

V #
h (p′, r′; p′′, r′′) =

R+
h (r′)P+

h (p′) +R+
h (r′′)P+

h (p′′)

P−h (p′) + P−h (p′)
≤ v# =

r′p′ + r′′p′′

p′ + p′′
,
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Therefore, the first integral in the right hand side of (3.61) is reduced to the measure
of the set

Ah =
{

(p′, r′, p′′, r′′) ∈ SP × SP : V #
h ≤ R

+
h (r) ≤ v#

}
.

Remarking that V #
h converge everywhere to v# and R+

h (r) towards identity, Ah
converges towards v#−1(r) which is a null set for the Lebesgue measure. It remains
to remark that the second integral in (3.61) converges to zero too, to conclude on the

L1(SP ×SP ) convergence of 1(0,R+
h (r))(V

#
h ) to 1(0,r)(v

#), so the almost everywhere

convergence holds true up to a subsequence (against not relabeled). �

The sequence fh do not have a sufficient regularity so, to pass to the limit, the
trick is to consider the operator

C̃h(t, p, r) =

∫
SP×SP

Φ1,h
p,r (p′, r′; p′′, r′′)f̃h(t, p′, r′)f̃h(t, p′′, r′′) dr′′dp′′dr′dp′

−
∫
SP×SP

Φ2,h
p,r (p′, r′; p′′, r′′)f̃h(t, p′, r′)f̃h(t, p′′, r′′) dr′′dp′′dr′dp′.

Here we proceed as in [2, Section 4], applying twice Lemma 3.9 thanks to Lemma
3.10, we get

C̃h −→
h→0

CP , on [0, T )× SP .

Finally, by Lemma 3.10, Corollary 3.6 and the convergence obtained in (3.60), we
have

|Ch(t, p, r)− C̃h(t, p, r)|

≤ 2KP
(
‖fh‖L∞(0,T ;L1) + ‖f̃h‖L∞(0,T ;L1)

)
‖fh − f̃h‖L∞(0,T ;L1)

−→
h→0

0, ∀(t, p, r) ∈ [0, T )× SP .

Thus, since Ch = Ch − C̃h + C̃h, we have

Ch −→
h→0

CP , on [0, T )× SP .

Moreover, it is obvious that Ch is bounded by the bound (3.42) and Lemma 3.10,
then the Lebesgue dominated convergence theorem yields

Ch(t, ·) −→
h→0

CP (t, ·), L1(SP ) ∀t ∈ [0, T ).

3.4.2. Final stage of the proof. The final stage of the proof is to write the dis-
crete weak formulation of the scheme, when the equation (3.22) is multiplied by
discrete test functions ϕj,i, and then to prove that it converges to the continu-
ous weak formulation. Thus, let ϕ ∈ C2(SP ) and multiply equation (3.22) by
ϕj,i = ϕ(pj−1/2, ri−1/2). Then summing over (j, i) and k = 0, . . . , n − 1 for some
n ∈ {1, . . . , N}, we get

n−1∑
k=0

J∑
j=0

I∑
i=0

pjf
k+1
j,i ϕj,i∆r∆p−

k−1∑
n=0

J∑
j=0

I∑
i=0

pjf
k
j,iϕj,i∆r∆p

= −∆t

n−1∑
k=0

J∑
j=0

I∑
i=0

(
F kj,i+1/2 − F

k
j,i−1/2

)
ϕj,i∆p+ ∆t

n−1∑
k=0

J∑
j=0

I∑
i=0

Ckj,iϕj,i.
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Reordering the sum, and making use of the boundary conditions (3.15) and (3.19),
we infer the following equation

Xn
h = Y nh + Znh , (3.62)

where

Xn
h =

J∑
j=0

I∑
i=0

pjf
n
j,iϕj,i∆r∆p−

J∑
j=0

I∑
i=0

pjf
0
j,iϕj,i∆r∆p,

Y nh = ∆t

n−1∑
k=0

J∑
j=0

I∑
i=1

F kj,i−1/2(ϕj,i − ϕj,i−1)∆p,

Znh = ∆t

n−1∑
k=0

J∑
j=1

I∑
i=1

Ckj−1/2,i−1/2

[
(ϕj−1,i−1 − ϕj−1,i)− (ϕj,i−1 − ϕj,i)

]

+ ∆t

n−1∑
k=0

J∑
j=1

Ckj−1/2,I+1/2(ϕj−1,I − ϕj,I)

+ ∆t

n−1∑
k=0

I∑
i=1

CnJ+1/2,i−1/2(ϕJ,i−1 − ϕJ,i).

Next, we define Xh on [0, T ) by

Xh(t) :=

∫∫
SP
Ph(p)fh(t, p, r)ϕ(P−h (p), R−h (r)) drdp

−
∫∫
SP
Ph(p)f inh (p, r)ϕ(P−h (p), R−h (r)) drdp. (3.63)

Then, we define Yh by

Yh(t) = Y 1
h (t) + Y 2

h (t), (3.64)

with

Y 1
h (t) =

∫ t

0

∫∫
SP

1Θh(t)(s) 1(0,1−∆r)(r)V+(uh(s), P−h (p), R−h (r))fh(s, p, r)

×D0
h[ϕ](p, r) drdpds,

and

Y 2
h (t) = −

∫ t

0

∫∫
SP

1Θh(t)(s) 1(∆r,1)(r)V−(uh(s), P−h (p), R−h (r))fh(s, p, r)

×D0
h[ϕ](p, r) drdpds,

where a Taylor expansion of ϕ gives

D0
h[ϕ](p, r) =

∂ϕ

∂r
((P−h (p), R−h (p))) + o(∆r).

In the same manner, we define Zh by

Zh(t) = Z1
h(t) + Z2

h(t) + Z3
h(t), (3.65)
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such that

Z1
h(t) =

∫ t

0

∫
SR

1(0,Θh(t))(s)Ch(s, p, r)D1
h[ϕ](p, r) drdpds

Z2
h(t) =

∫ t

0

∫ P

0

1(0,Θh(t))(s)Ch(s, p, 1)D2
h[ϕ](p, 1) dpds

Z3
h(t) =

∫ t

0

∫ 1

0

1(0,Θh(t))(s)Ch(s, P, r)D3
h[ϕ](P, r) drds

with the expansion

D1
h[ϕ](p, 1) =

∂2ϕ

∂p∂r
(Ph(p), Rh(r)) + o(∆p) + o(∆r),

D2
h[ϕ](P, r) =

∂ϕ

∂r
(P,R−h (r)) + o(∆r),

D3
h[ϕ](p, r) =

∂ϕ

∂p
(P−h (p), 1) + o(∆p).

It is straightforward that for any n ∈ {1, . . . , N} and t ∈ [tn, tn+1) we have

Xh(t) = Xn
h , Yh(t) = Y nh , and Zh(t) = Xn

h .

Thus, by (3.62), it holds that for all t ∈ [0, T )

Xh(t) = Yh(t) + Zh(t) . (3.66)

For the same reason, we get

uh(t) = uin −
∫ t

0

∫∫
SP

1(0,Θh(t))(s)

(
V+(uh(s), P−h (p), R−h (r))

− V−(uh(s), P−h (p), R−h (r))

)
fh(s, p, r) drdpds (3.67)

In view of (3.66) and (3.67) the conclusion readily follows. We do not detail the
computations, but give to the reader some of the arguments. Indeed, to pass to the
limit in (3.63), it is convenient to introduce X̃h where fh is replaced by f̃h, then

the same arguments as Section 3.4.1 holds true. We write Xh = Xh − X̃h + X̃h,
then it is clear that ∥∥∥Xh − X̃h

∥∥∥
L∞(0,T )

→ 0 ,

by virtue of (3.60). Then, for all t ∈ (0, T ) we prove that X̃h converge towards the
right term by Lemma 3.9. For (3.64) and (3.65) we do the same decomposition,
remarking two points. On one hand, the continuity of V and the pointwise con-
vergence of uh allow us to correctly pass to the limit in the positive and negative
parts of V = V+−V . On the other hand, the time integral is treated thanks to the
Lebesgue dominated convergence theorem. There is no more comments for (3.67).
Proof of Theorem 3.4 is achieved.
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4. Conclusion

In this work, we dealt with a new model with applications to polymers with
particular affinity with metal-ions. These equations can be seen as a variation
around the coagulation equation or LS equation. Nevertheless, it includes various
specificities which make it an original problem. We want to mention particularly
the conservations involved, the nature of the configuration space and the structure
of the coagulation operator. We established a first result of existence for a large
class of initial data. Then, we established a finite volume scheme and we proved
a convergence result. The techniques used was arguments of L1 compactness and
provide de facto the key ingredients to prove a weak stability principle to the
continuous equation in order to prove the existence of solutions for a larger class of
coefficients.

Our next objectives is now to confront our model to simulations and particularly
to get a more precise idea of the long-time asymptotic behavior that remains an
important issue, particularly for chemists. We believe that the link between both
variables and the nature of the configurational space would lead to very particular
asymptotic. Contrary to the LS model in [7,23], here the density would concentrate
to the nullclines of V while the coagulation operator would follow an asymptotic as
in [14], for pure coagulation, i.e. a self-similar profile. We also refers to [9] and [18]
for asymptotic behavior of similar problems. An other challenge would be to take
into account the aqueous solution and/or membranes in the model: we refer to [4]
and [21] for the role of the space and/or the fluid surrounding, and [39] for the role
of the membrane.
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