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CONVERGENCE OF A LEVEL-SET ALGORITHM IN SCALAR

CONSERVATION LAWS

ANÍBAL CORONEL†, PATRICIO CUMSILLE†, AND MAURICIO SEPÚLVEDA‡

Abstract. This paper is concerned with the convergence of the level-set algorithm introduced
by Aslam (2001, J. Comput. Phy. 167, 413-438) for tracking the discontinuities in scalar

conservation laws in the case of linear or strictly convex flux function. The numerical method is
deduced by an appropriate level-set representation of the entropy solution: the zero of a level-
set function is used as an indicator of the discontinuity curves and two auxiliary states, which
are assumed continuous through the discontinuities, are introduced. We rewrite the numerical

level-set algorithm as a procedure consisting of three big steps: initialization, evolution and
reconstruction. In the initialization step we choose an entropy admissible level-set representation
of the initial condition. In the evolution step we solve at each iteration step an uncoupled system
of three equations (two conservation laws for the auxiliary states and the level-set equation

for the approximation of the level set function) and select the entropy admissible level-set
representation of the solution profile at the end of the time iteration, which is used as the initial
condition by the next iteration. The reconstruction is naturally given by the recuperation of

the entropy solution by using the level-set representation with auxiliary states and the level-set
function determined at the evolution step. We prove the convergence of the numerical solution
to the entropy solution in L

p
loc

for every p ≥ 1, using L∞-weak BV estimates and a cell entropy
inequality. In addition, some numerical examples focused on the elementary wave interaction

are presented.

1. Introduction

In this paper we study the convergence of a level-set approximation for tracking the admissible
discontinuities of the following Cauchy problem:

ut + (f(u))x =0, (x, t) ∈ Q := R × R
+
0 , (1.1a)

u(x, 0) =u0(x), x ∈ R, (1.1b)

under the following data assumptions

u0 ∈ L∞(R), i.e. u0(x) ∈ [um, uM ] = [ess infR(u0), ess supR(u0)] for a.e. x ∈ R; and (1.2)

f(u) = au (a constant) or f ∈ C2(R, R) and f ′′(u) ≥ α > 0,∀u ∈ R and some α > 0, (1.3)

based on the method of lines [2] and a level set technique [3, 4, 5, 6]. T. Aslam [1] has numerically
studied the algorithm and also make an extension to the system of gas dynamics [7]. However, he
lefts out the theoretical convergence analysis and in our knowledge that kind of results are still
missing.

We recall that under (1.3), in the case of strictly convexity of the flux, the admissible disconti-
nuities or shock waves are characterized by the Rankine-Hugoniot jump condition

s(t) =
f(uL) − f(uR)

uL − uR
(1.4)

and the Lax entropy inequality

f ′(uL) > s(t) > f ′(uR), (1.5)
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where s is the speed of the shock curve, uL and uR are the values of u just on the left and right of
the shock at time t, respectively, see for instance [8, 9]. We note that, the hypothesis (1.3) in the
linear case, implies that the discontinuities in the weak solutions satisfies only (1.4) with s(t) = a
and the condition (1.5) is not required.

Now, we briefly discuss, at continuous level, the key ideas motivating the level-set algorithm.
Let us consider that u admits the representation u = H (p, v, w), where the change of variable
H and the auxiliary states p, v and w will be specified later. Assuming that the entropy solution
profile u(·, t1) is given, then the construction of the entropy admissible profile u(·, t2), for t2 > t1,
via the original level-set algorithm can be interpreted at continuous level as a procedure consisting
of three stages, as described below:

(i) Selection of initial states at t = t1. We select three functions p1, v1, w1 : R → R such that

p1(c) = 0 on each c where u(·, t1) is discontinuous;

p1, v1 and w1 are continuous through the zeros of p1; and (1.6)

u(·, t1) = H

(

p1(·), v1(·), w1(·)
)

satisfies (1.4)-(1.5).

(ii) Calculus of the states at t = t2. By the relation u = H (p, v, w), we can perform the
following formal calculus

ut + f(u)x = ∂1H (p, v, w)
[

pt + Fp(p)x

]

+ ∂1H (p, v, w)px

[

f ′(u) − F ′
p(p)

]

+∂2H (p, v, w)
[

vt + Fv(v)x

]

+ ∂2H (p, v, w)vx

[

f ′(u) − F ′
v(v)

]

+∂3H (p, v, w)
[

wt + Fw(w)x

]

+ ∂3H (p, v, w)wx

[

f ′(u) − F ′
w(w)

]

. (1.7)

If we select, Fp, Fv, Fw and H , such that

Fp(p(x, t)) = s(t1) for each x = c zero of p1, Fv = Fw = f,
∂1H (p, v, w) = 0 for p 6= 0,
∂2H (p, v, w) = 0 for p > 0 and F ′

v = f ′ for p ≤ 0,
∂3H (p, v, w) = 0 for p ≤ 0 and F ′

w = f ′ for p > 0,

(1.8)

it is enough to demand that p(·, t2), v(·, t2) and w(·, t2) must be solutions of
{

zt + Fz(z)x = 0, (x, t) ∈ R×]t1, t2[,
z(x, t1) = z1(x) x ∈ R,

with z1 ∈ {p1, v1, w1}, (1.9)

to deduce that u(·, t2) is a weak solution of (1.1).
(iii) Definition of an entropy admissible states at t = t2. The information about the discon-

tinuities of u(·, t2) are given by the zeros of p(·, t2), then we can select p2 = p(·, t2). The
construction of v2 and w2 are done in terms of p2, v(·, t2) and w(·, t2) and in order to have

that u(·, t2) = H

(

p2(·), v2(·), w2(·)
)

satisfies (1.4)-(1.5).

We note that, when the flux function is linear the relation (1.7) is satisfied with Fp = Fv = Fw = a
and the step (iii) is dropped.

The numerical level-set algorithm can be stated as an iterative process where each iteration is
the discrete analogue of the steps (i)-(iii). A systematical analysis of this process implies that we
can define the algorithm in three main steps: initialization, evolution and reconstruction. Indeed,
let H the natural level representation of u with the level set function p, see (3.1). First, we
remark that, the step (i) is applied only for the initial condition, since in the next iterations the
condition (1.6) is naturally satisfied by the construction of the step (iii) at the previous iteration.
Then, in the numerical level-set algorithm, we define the first step called initialization to select the
entropy admissible initial states p0, v0 and w0 representing to u0. Second, we solve numerically the
equations (1.9) at each level of time and define the entropy admissible auxiliary states v and w,
which are used as initial conditions by the next time level. Thus, we introduce the second step of
the numerical level-set algorithm called evolution. Finally, we remark that the numerical entropy
solution of (1.1) can be reconstructed in a natural way by the function H , this third step of the
level-set algorithm is called the reconstruction step.
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The aim of this paper is the development of a convergence theory for the level-set numerical
algorithm, considering that the equations (1.9) (in the evolution step) are solved by monotone
finite volume methods. In this sense, we recall that the first convergence theory of monotone
finite volume methods for scalar multidimensional conservation laws on cartesian triangulations
was introduced in a seminal paper by Crandall and Majda [10], where the three central key issues
are: (a) The regularity assumptions: f ∈ Lip(R) and u0 ∈ L∞(R)∩BV (R); (b) The compactness
proof of the numerical scheme is derived from uniform estimate of the bounded variation norm
of the numerical solution and Helly’s theorem; and (c) The convergence proof of the numerical
solution towards the unique entropy solution is deduced from a single cell entropy inequality. In
general, the main drawback, for application of this theory, for instance in the case of general
triangulations, is the uniform control of the bounded variation norm. In particular, we note that,
a straightforward application of Crandall-Majda theory to study the convergence of the level-set
algorithm is not possible, since the required bounded variation estimates are difficult to get even
in the case of linear flux function with upwind approximation of the auxiliary states and the level
set function. Afterwards, in order to overcome this difficulty, two theories have been introduced.
First, maybe the second big approach to prove convergence of finite volume methods without
using the bounded variation estimate, was given by Coquel and Lefloch [11], where the proof
is developed using the notion of measured valued solutions which was defined by Szepessy [12]
inspired in the work of Diperna [12], for further details and the application of this theory to
monotone finite volume methods we refer to the work of Cockburn, Coquel and Lefloch [13].
Second and more recently, Eymard, Gallouët and Herbin [8] gave a new methodology to prove
convergence of finite volume methods using a weak bounded variation estimate and a new notion
of generalized solutions to conservation laws called entropy process solutions. In this paper, we
make an application (adaptation and improvements) of the ideas given by Eymard, Gallouët and
Herbin.

The outline of this paper is as follows. In Section 2, we recall some concepts and results used
through of the paper. In Section 3, we describe at continuous level the fundamental ideas of the
numerical level set method. Based on the described ideas on Section 3 we introduce in detail the
discrete level set scheme on Section 4. In section Section 5, we show that the level set scheme used
for approximation of the linear equation converge to the weak solution. In Section 6, assuming
strictly convexity flux function, we prove that the numerical scheme solution converges towards
the entropy solution. In Section 7, we give some numerical examples focused on the elementary
wave interaction. Finally, in Section 8, we make the conclusion of the paper.

2. Preliminaries

In this section, we recall the notions of entropy process solutions and nonlinear weak-⋆ con-
vergence, the notation and concepts concerning to monotone finite volume methods, the general
ideas of level set methods and some technical results used in the proof of the convergence.

2.1. Entropy process solutions and nonlinear weak-⋆ convergence. The entropy process
solutions can be defined for any convex entropy-entropy flux pairs, see [8]. However, it is well
known that it can be characterized in terms of Kružkov’s entropies [8, 14]. Then, in this paper we
consider that characterization as definition of entropy process solutions.

Definition 2.1. A function µ ∈ L∞(R × R
+
0 ×]0, 1[) is called an entropy process solution of the

cauchy problem (1.1) if the following inequality
∫

R

∫

R
+

0

∫ 1

0

{

|µ(x, t, α) − k|ϕt(x, t) +
(

f(µ(x, t, α)⊤k) − f(µ(x, t, α)⊥k)
)

ϕx(x, t)
}

dxdtdα

+

∫

R

|u0(x) − k|ϕt(x, 0)dx ≥ 0, ∀k ∈ R, ∀ϕ ∈ C1
0 (R × R

+, R+), (2.1)

is satisfied. Here a⊤b = max{a, b} and a⊥b = min{a, b} for all a, b ∈ R.

The convergence towards the entropy process solution is related with the following notion of
convergence and compactness result in L∞(Ω), see [8].
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Definition 2.2. Let Ω be an open subset of R
d, {un} ⊂ L∞(Ω) and u ∈ L∞(Ω×]0, 1[). The

sequence {un} converge towards u in the nonlinear weak-⋆ sense if
∫

Ω

θ(un(x))ϕ(x)dx →
∫ 1

0

∫

Ω

θ(u(x, α))ϕ(x)dxdα, as n → ∞,

for all ϕ ∈ L1(Ω) and θ ∈ C(R, R).

Proposition 2.1. Let Ω be an open subset of R
d and {un} a bounded sequence of L∞(Ω).

Then there exists a subsequence of {un}, which will still be denoted by {un}, and a function
u ∈ L∞(Ω×]0, 1[) such that the subsequence {un} converges towards u in the the nonlinear weak-⋆
sense.

We comment that the function θ in the definition 2.2 in the convergence analysis is taking as
the entropy or entropy fluxes, i.e. θ = | · −k| or θ = f(·⊤k) − f(·⊥k).

2.2. Finite volume method and Monotone flux schemes. Let us consider the standard
notation of an homogeneous discretization of R × R+, i. e.

R × R+ =
⋃

j∈Z

⋃

n∈N

[xj−1/2, xj+1/2[×[tn, tn+1[, xj+1/2 = (j + 1/2)∆x, tn = n∆t, (2.2)

where ∆x and ∆t are the given spatial and temporal step sizes, respectively. We recall that, see
[8, 9], the basis of finite volume schemes for (1.1a) is given by its integral form:

∫ k2

k1

u(x, τ2)dx −
∫ k2

k1

u(x, τ1)dx +

∫ τ2

τ1

f(u(k2, t))dt −
∫ τ2

τ1

f(u(k1, t))dt = 0, (2.3)

where [k1, k2[⊂ R is a generic computational cell (control volume) and [τ1, τ2[⊂ R
+
0 is the evolution

interval. The first two terms in (2.3) can be rewritten using the average of u(·, τi) on the control
volume [k1, k2] and the last two terms can be approximated by choosing a suitable function called
the numerical flux function. To be precise, if we select k1 = xj−1/2, k2 = xj+1/2, τ1 = tn and
τ2 = tn+1, the relation (2.3) implies that the finite volume discretization of (1.1) is given by

un+1
j − un

j + λ(fn
j+1/2 − fn

j−1/2) = 0, (j, n) ∈ Z × N, (2.4a)

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z, (2.4b)

where

λ =
∆t

∆x
, un

j =
1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx and fn
j+1/2 ≈ 1

∆t

∫ tn+1

tn

f(u(xj+1/2, t))dt.

In the case of 2p + 1 points fn
j+1/2 may be written as follows

fn
j+1/2 = g(un

j−p+1, . . . , u
n
j+p) where g ∈ Lip(R2p, R) and g(u, . . . , u) = f(u). (2.5)

The function g is called the numerical flux function and the last property in (2.5) is known as the
consistence for the finite volume scheme (2.4). A particular and interesting case are the well-known
monotone flux schemes, where g : R

2 → R satisfies the following assumptions [8]:

(G1) Lip-regularity. g is locally lipschitz with respect to each of its variables on [um, uM ]2,
(G2) Consistence. g(u, u) = f(u), for all u ∈ [um, uM ],
(G3) Monotonicity. g is non-decreasing with respect to its first variable and non-increasing with

respect to its second variable on [um, uM ]2.

The explicit monotone flux schemes have played a very important role in the development of
numerical analysis for conservation laws due to its good properties: consistence in the finite
volume sense, L∞-stability, BV -stability and convergence of the numerical solution to the entropy
solution under a CFL condition, see [8, 9] for further details.
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2.3. Level set method. The level set method was introduced by S. Osher and J. A. Sethian
in [3] to give an answer to the following situation: given an interface Γ in R

d of co-dimension one,
bounding an open region Ω, analyse and compute its subsequent motion under a velocity field v

depending of the geometry and physics. The main idea of the level set methodology is to capture
the propagating interface as the zero level set of a higher dimensional smooth (at least Lipschitz
continuous) function ϕ : R

d×R
+ → R and the bounded region Ω is such that ϕ > 0. The function

ϕ is called the level set function and has the following properties:

ϕ(x, t) > 0, for x ∈ Ω(t),

ϕ(x, t) < 0, for x /∈ Ω(t),

ϕ(x, t) = 0, for x ∈ ∂Ω = Γ(t).

Thus, the interface Γ(t) is captured for all later time by solving the level set equation

∂ϕ

∂t
+ vN |∇ϕ| = 0, where vN = v · ∇ϕ

|∇ϕ| , (2.6)

and locating the set where ϕ vanishes, for a detailed discussion see [4, 5, 6]. Here |∇ϕ| is the
euclidian norm of ϕ. We remark that, the numerical approximation of a level set equation (2.6)
should be done following the ideas of [5], where the finite volume method for general Hamilton-
Jacobi equations is developed.

2.4. Some technical results. In this subsection we consider two results which are needed in the
proof of the convergence.

Lemma 2.1. Consider g : R → R a monotonic lipschitz continuous function with Lipschitz
constant G > 0. Then the following inequality holds

∣

∣

∣

∣

∣

∫ d

c

(

g(x) − g(c)
)

dx

∣

∣

∣

∣

∣

≥ 1

2G
(g(d) − g(c))2 (2.7)

for all c, d ∈ R.

We refer to [8] for the proof of Lemma 2.1.

Proposition 2.2. Consider Φ : R → R defined by

Φ(s) =

∫ s

A

τ
d

dτ
F (τ, τ)dτ,

for some given A ∈ R and F ∈ C1(R × R, R). Then

Φ(b) − Φ(a) = b
[

F (b, b) − F (a, b)
]

− a
[

F (a, a) − F (a, b)
]

−
∫ b

a

[

F (τ, τ) − F (a, b)
]

dτ,

for all a, b ∈ [A,∞[.

Proof. If we make an integration by parts, we see that Φ can be written as

Φ(s) = sF (s, s) − A F (A,A) −
∫ s

A

F (τ, τ)dτ.

Now, for a, b ∈ [A,∞[, we have that

Φ(b) − Φ(a) =

{

bF (b, b) − A F (A,A) −
∫ b

A

F (τ, τ)dτ

}

−
{

aF (a, a) − A F (A,A) −
∫ a

A

F (τ, τ)dτ

}

= bF (b, b) − aF (a, a) −
∫ b

a

F (τ, τ)dτ,

which implies the desired identity. ¤
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3. Motivation of the level set numerical approximation of (1.1)

In this section we consider a contextualized interpretation of the steps (i)-(iii) given at the
introduction. Asumming that the flux satisfying (1.3), we consider first the case of strictly convex
flux function case and the case of linear flux function.

3.1. Strictly convex flux function. Let us consider that u (solution of (1.1)) is represented,
using three unknown functions p, v and w : R × R

+
0 → R, as follows

u(x, t) =

{

w(x, t), p(x, t) > 0,
v(x, t), p(x, t) ≤ 0,

(3.1)

where p(., t) ∈ C0(R) and denotes a level set function such that p = 0 on the discontinuity curves
of u, and w and v are artificial states such that v(., t) and w(., t) are continuous through the zeros
of p. Furthermore, in the representation (3.1), we require that u must be the entropy admissible
solution. Then the selected (or calculated) p, v and w are not at all arbitrary and must be done
such that u satisfies the entropy condition (1.5) extended to everywhere of Q as follows:

f ′
(

uL(x, t)
)

> f ′
(

uR(x, t)
)

, (x, t) ∈ Q, (3.2)

where

uL(x, t) =

{

w(x, t), px(x, t) > 0,
v(x, t), px(x, t) ≤ 0,

and uR(x, t) =

{

v(x, t), px(x, t) ≤ 0,
w(x, t), px(x, t) > 0.

(3.3)

Note that the definition of uL and uR is quite natural. Indeed, let c such that p(c, t) = 0, then, if
the profile p(·, t) is decreasing in a neighbourhood of c, by (3.1), we have that uL(x, t) = w(x, t)
and uR(x, t) = v(x, t), whereas that, if p(·, t) is increasing in a neighbourhood of c we deduce that
uL(x, t) = v(x, t) and uR(x, t) = w(x, t).

In the rest of the section, we consider that the entropy profile solution u(·, τ) is given and we
introduce systematically the formal calculus of the entropy profile solution u(·, τ + ∆t), via the
level-set technique:

(C1) Let us consider that the functions pτ , vτ and wτ : R → R are known and such that: pτ = 0
on the discontinuities of u(·, τ); vτ and wτ are continuous through the points where pτ = 0;
and that u(·, τ) defined via (3.1) satisfies (3.2).

(C2) For the evolution, we start by noticing that (3.1) formally implies the following equivalence

ut + (f(u))x = 0 ⇔
{

wt + (f(w))x = 0, p(x, t) > 0,
vt + (f(v))x = 0, p(x, t) ≤ 0.

(3.4)

Then, in a natural way, the artificial states w(·, τ + ∆t) and v(·, τ + ∆t) are calculated by
solving everywhere x ∈ R the equations defined locally in (3.4)

(

pτ (x) > 0 or pτ (x) ≤ 0
)

.
In other words and more precisely w(·, τ + ∆t) and v(·, τ + ∆t) are determined by solving

{

wt + (f(w))x = 0, for (x, t) ∈ R × [τ, τ + ∆t],
w(x, τ) = wτ (x), for x ∈ R,

(3.5)

and
{

vt + (f(v))x = 0, for (x, t) ∈ R × [τ, τ + ∆t]
v(x, τ) = vτ (x), for x ∈ R.

(3.6)

Now, the determination of the level set function profile p(·, τ + ∆t) is done by solving the
level set equation:

{

pt + s(·, τ)px = 0, for (x, t) ∈ R × [τ, τ + ∆t]
p(x, τ) = pτ (x), for x ∈ R,

(3.7)

where s(·, τ) is calculated by extendeding everywhere in Q the shock speed (1.4), recasted
as follows:

s(x, t) =
f
(

uL(x, t)
)

− f
(

(uR(x, t)
)

uL(x, t) − uR(x, t)
, with uL and uR given by (3.3). (3.8)
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(C3) In order to obtain an entropy admissible solution profile u(·, τ + ∆t), the new profiles
v(·, τ+∆t) and w(·, τ+∆t) are corrected by selecting the entropy admissible discontinuities
using the information given by the zero level of p(·, τ + ∆t). In this way, the new level set
function profile is given by pτ+∆t(x) = p(x, τ + ∆t) and the new auxiliary profiles v and
w at t = τ + ∆t are defined by

wτ+∆t(x) =

{

w(x, τ + ∆t), pτ+∆t(x) > 0 or (uL, uR) does not satisfies (3.2),
v(x, τ + ∆t), pτ+∆t(x) ≤ 0 (uL, uR) satisfies (3.2),

(3.9)

and

vτ+∆t(x) =

{

v(x, τ + ∆t), pτ+∆t(x) < 0 or (uL, uR) does not satisfies (3.2),
w(x, τ + ∆t), pτ+∆t(x) ≥ 0 and (uL, uR) satisfies (3.2),

(3.10)

where uL = uL(x, τ + ∆t) and uR = uR(x, τ + ∆t) are calculated by (3.3).

We remark that some calculus and assumptions in (C1)-(C3) are only formal, in the sense that
we cannot rigourosly prove these steps. Maybe p can be discontinuos in space since the velocity s
defined by (3.8) is not always a continuous function. However, some properties can be rigourosly
stated, for instance the fact that the real state solution w for p > 0 never reaches the solution of
the ghost state w for p ≤ 0, we refer to [1] for further details.

3.2. Linear flux function. In the case of the linear flux function, we assume that the weak
solution u is represented by (3.1) for some functions p, v and w. Noticing that the entropy condition
it is not required, the steps (C1)-(C3) are replaced by:

(L1) Let us consider that the functions pτ , vτ and wτ : R → R are known and such that: pτ = 0
on the discontinuities of u(·, τ); and vτ and wτ are continuous through the points where
pτ = 0.

(L2) For the evolution, we note that (3.5), (3.6) and (3.7) are replaced by
{

wt + (aw)x = 0, for (x, t) ∈ R × [τ, τ + ∆t],
w(x, τ) = wτ (x), for x ∈ R,

(3.11)

{

vt + (av)x = 0, for (x, t) ∈ R × [τ, τ + ∆t]
v(x, τ) = vτ (x), for x ∈ R,

(3.12)

and
{

pt + apx = 0, for (x, t) ∈ R × [τ, τ + ∆t]
p(x, τ) = pτ (x), for x ∈ R

(3.13)

respectively. Then pτ+∆t(x) = p
(

x − (τ + ∆t)a
)

, vτ+∆t(x) = v
(

x − (τ + ∆t)a
)

and

wτ+∆t(x) = w
(

x − (τ + ∆t)a
)

.

We note that the equations (3.12)-(3.13) are uncoupled, which implies that these equations can
be separated solved.

4. The numerical method

The hybrid scheme introduced by Aslam [1], based on level set and finite volume methods, can
be described as a numerical algorithm consisting of three big steps, called initialization, evolution
and reconstruction steps, which will be fully detailed on subsections 4.2, 4.3 and 4.4, respectively.

4.1. Notation. Let us first introduce some notation. We recall the notation sgn± for the ap-
plications from R to {0, 1} defined by sgn+(x) = 1R+(x) and sgn−(x) = −sgn+(−x), where
1A : X → {0, 1} is the well known indicator function defined by 1A(x) = 1 for x ∈ A and
1A(x) = 0 for x ∈ X − A. As usual we set the notation a+ = max{a, 0} and a− = min{a, 0} and
note that a+ = asgn+(a) and a− = (−a)+. Additionally, we define the indicators of the monotonic
behaviour of the level set function p denoted by Pn

j and the entropy verification denoted by E n
j ,

as follows:

P
n
j = sgn+

(

pn
j+1 − pn

j−1

2∆x

)

and E
n
j = 1 − sgn−

(

f ′(un
L,j) − f ′(un

R,j)
)

, (j, n) ∈ Z × N.

(4.1)
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Note that E n
j = 1 when the Lax entropy condition is satisfied and 0 otherwise.

4.2. Initialization step: Calculus of u0,p0,w0 and v0. In this step we introduce the dis-
cretization corresponding to the initial condition, the initial level set function and the initial
admissible states for the level set representation of the initial condition. In addition, we calculate
the extended initial speed of propagation for discontinuities. More precisely, we proceed as follows.
First, we discretize the initial condition u0 by applying (2.4b). Then, we consider a continuous
function p0 : R → R such that it vanishes over the control volumes where the function u0 is dis-
continuous, and in the natural way of the finite volume methodology, we introduce the following
initial level set function discretization

p0
j =

1

∆x

∫ xj+1/2

xj−1/2

p0(x)dx, j ∈ Z. (4.2)

Later, we can make the calculus of entropy admissible states w0 and v0 and the initial speed s0

as follows

w0
j =w

−1/2
j +

(

v
−1/2
j − w

−1/2
j

)(

1 − sgn+(p0
j )

)

E
0
j , (4.3)

v0
j =v

−1/2
j +

(

w
−1/2
j − v

−1/2
j

)

sgn+(p0
j )E

0
j and (4.4)

s0
j =

f(u0
L,j) − f(u0

R,j)

u0
L,j − u0

R,j

, (4.5)

where

w
−1/2
j = u0

jsgn+(p0
j ) + ũj

(

1 − sgn+(p0
j )

)

, v
−1/2
j = u0

j

(

1 − sgn+(p0
j )

)

+ ũjsgn+(p0
j ),

u0
L,j = P

0
j w

−1/2
j + (1 − P

0
j ) v

−1/2
j and u0

R,j = (1 − P
0
j ) w

−1/2
j + P

0
j v

−1/2
j .

Here ũj denotes an arbitrary discretization of a local continuous extension of u0, in order to have
that w and v are continuous across of discontinuities of u0.

For the convergence analysis we assume the following hypothesis

p0 ∈ L∞(R) with p0(x) ∈ [pm, pM ] = [ess infR(p0), ess supR(p0)] for a.e. x ∈ R;

v0 ∈ L∞(R) with v0(x) ∈ [um, uM ] for a.e. x ∈ R; and (4.6)

w0 ∈ L∞(R) and w0(x) ∈ [um, uM ] for a.e. x ∈ R,

where um and uM are defined in (1.2). We note that, the hypothesis given on (4.6) are the natural
regularity required by the methodology of entropy process solutions [8].

4.3. Evolution step: Calculus of pn,wn and vn for n = 1, . . . , N . Let us consider that
for some arbitrary n ∈ {0, . . . , N − 1}, the states un,pn,wn,vn and the speed sn, are given.
We calculate the new states un+1,pn+1,wn+1,vn+1 and the new speed vn+1 via four sequential
iterative steps. First, we calculate the intermediate states wn+1/2 and vn+1/2 by applying a finite
volume scheme for conservation laws. Subsequently, by a finite volume scheme for Hamilton-
Jacobi equations we obtain pn+1. Afterwards, we update the speed of discontinuities propagation
using a discrete version of Rankine-Hugoniot jump condition. Then, we characterize the entropy
satisfying discontinuities in order to define wn+1 and vn+1 and update n before to apply again
the sequence of the four evolution stages. More precisely, in this paper, we apply iteratively on
n ∈ {0, . . . , N − 1} the following calculations:

(E.i) Intermediate states. The intermediate states wn+1/2 and vn+1/2 are calculated by apply-
ing a monotone scheme with numerical flux g (see section 2.2):

w
n+1/2
j =wn

j − λ
(

g(wn
j , wn

j+1) − g(wn
j−1, w

n
j )

)

and (4.7)

v
n+1/2
j =vn

j − λ
(

g(vn
j , vn

j+1) − g(vn
j−1, v

n
j )

)

. (4.8)
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(E.ii) Level set evolution. The level set equation state pn+1 is calculated by applying a general-
ized upwind scheme:

pn+1
j =pn

j − λ(sn
j )+(pn

j − pn
j−1) − λ(sn

j )−(pn
j+1 − pn

j ). (4.9)

(E.iii) Extended shock speed. Using the notation Pn
j defined on (4.1), we introduce the discrete

left-right states and the extended discrete shock speed as follows:

un+1
L,j =P

n+1
j w

n+1/2
j + (1 − P

n+1
j ) v

n+1/2
j , (4.10)

un+1
R,j =(1 − P

n+1
j ) w

n+1/2
j + P

n+1
j v

n+1/2
j and (4.11)

sn+1
j =

f(un+1
L,j ) − f(un+1

R,j )

un+1
L,j − un+1

R,j

· (4.12)

(E.iv) New artificial entropy satisfying states. Using the indicator E n
j defined on (4.1), we intro-

duce the states wn+1 and vn+1 such that un+1 is consistent with the entropy condition:

wn+1
j =w

n+1/2
j +

(

v
n+1/2
j − w

n+1/2
j

)(

1 − sgn+(pn
j )

)

E
n
j and (4.13)

vn+1
j =v

n+1/2
j +

(

w
n+1/2
j − v

n+1/2
j

)

sgn+(pn
j )E n

j . (4.14)

4.4. Reconstruction step: Calculus of un+1. In this we apply the definition of level set
representation to reconstruct un+1 from pn+1,wn+1 and vn+1, i.e.

un+1
j =sgn+(pn+1

j ) wn+1
j +

(

1 − sgn+(pn+1
j )

)

vn+1
j . (4.15)

5. Convergence analysis for the linear flux function

In this section, we study the convergence analysis of the numerical scheme described on section 4,
in the case of a linear flux function. Furthermore, without loss of generality, we assume that the
velocity is positive. To be precise we assume that

f(u) = au, a > 0. (5.1)

The assumption (5.1) implies that the evolution and reconstruction steps can be rewrited in the
following short form:

wn+1
j =wn

j − λa(wn
j − wn

j−1), (5.2a)

vn+1
j =vn

j − λa(vn
j − vn

j−1), (5.2b)

pn+1
j =pn

j − λa(pn
j − pn

j−1), (5.2c)

un+1
j =sgn+(pn+1

j ) wn+1
j +

(

1 − sgn+(pn+1
j )

)

vn+1
j . (5.2d)

Here, we note that the schemes are uncoupled and can be separated solved.

Lemma 5.1. Consider f given by (5.1), u0 with the regularity required by the hypothesis (1.2); p0,
v0 and w0 satisfying (4.6) and the requirements specified by the initialization step (see equations
(4.2)-(4.5)); and λ satisfying the following CFL condition

λa < 1 − ξ, with ξ ∈]0, 1[. (5.3)

Then wn
j , vn

j , pn
j and un

j obtained by the scheme (5.2) satisfies the following properties:

(a) (L∞-estimates) The functions w∆, v∆, p∆ and u∆ defined from R × R
+
0 to R by

w∆(x, t) =
∑

j∈Z

∑

n∈N

wn
j 1Qn

j
(x, t), v∆(x, t) =

∑

j∈Z

∑

n∈N

vn
j 1Qn

j
(x, t),

p∆(x, t) =
∑

j∈Z

∑

n∈N

pn
j 1Qn

j
(x, t) and u∆(x, t) =

∑

j∈Z

∑

n∈N

un
j 1Qn

j
(x, t), (5.4)

where Qn
j := [xj−1/2, xj+1/2[×[tn, tn+1[,
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belong to L∞(R × R
+
0 ). Furthermore, w∆, v∆, u∆ ∈ [um, uM ] and p∆ ∈ [pm, pM ] in the

almost everywhere sense.
(b) (Weak BV -estimates) Let i0, i1 ∈ Z and R ∈ R

+ such that −R ∈]xi0−1/2, xi0+1/2[ and

R ∈]xi1−1/2, xi1+1/2[. Then, there exists C ∈ R
+ only depending on R, T, u0 and ξ such

that

√
∆x

i1
∑

j=i0

N
∑

n=0

a∆t|wn
j − wn

j−1| ≤ C. (5.5)

A similar estimate is valid for vn
j and pn

j .

Proof. To prove the lemma we apply the standard arguments detailed in [8]. ¤

Theorem 5.1. Consider the hypothesis of Lemma 5.1 and un
j for (n, j) ∈ N × Z obtained by the

scheme (5.2). Then, the approximate solution u∆ defined by (5.4) converges to the weak solution
u of (1.1) in L∞(R × R

+
0 ) for the weak-⋆ topology when ∆x → 0.

Proof. By Lemma 5.1-(a) and Proposition 2.1, we deduce that w∆ → w, v∆ → v, p∆ → p and
u∆ → u in L∞(R × R

+
0 ) for the weak-⋆ topology, when ∆x → 0.

Let us consider ϕ ∈ C1
0 (R × R

+, R) and we select the indexes Jmin, Jmax, Nmax ∈ N such that
supp(ϕ) ⊂ [xJmin

, xJmax
] × [0, tNmax

[. We multiply (5.2a) by sgn+(pn+1
j )

∫ xj+1/2

xj−1/2
ϕ(x, tn+1)dx and

summing over j ∈ Z and n ∈ N we get

A + B = 0, (5.6)

where

A =

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

(

wn+1
j − wn

j

)

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx and

B =

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

λa
(

wn
j − wn

j−1

)

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx.

We analyse separately the convergence of A and B. In the case of A, by summing by parts we
deduce that A can be rewrite as follows

A =

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

wn
j

{

sgn+(pn
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn)dx − sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx

}

+

Jmax
∑

j=Jmin

{

wNmax

j sgn+(pNmax

j )

∫ xj+1/2

xj−1/2

ϕ(x, tNmax
)dx − w0

j sgn+(p0
j )

∫ xj+1/2

xj−1/2

ϕ(x, 0)dx

}

= −
Jmax
∑

j=Jmin

Nmax−1
∑

n=0

wn
j sgn+(pn+1

j )

∫ xj+1/2

xj−1/2

{

ϕ(x, tn+1) − ϕ(x, tn)
}

dx

+

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

wn
j

(

sgn+(pn+1
j ) − sgn+(pn

j )
)

∫ xj+1/2

xj−1/2

ϕ(x, tn)dx

−
i1

∑

j=i0

w0
j sgn+(p0

j )

∫ xj+1/2

xj−1/2

ϕ(x, 0)dx

:= A1 + A2 + A3,

which implies that

A → −
∫

R

∫

R+

w(x, t)sgn+(p(x, t))ϕt(x, t)dxdt −
∫

R

w0(x)sgn+(p0(x))ϕ(x, 0)dxdt, (5.7)
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when ∆x → 0, since

A1 → −
∫

R

∫

R+

w(x, t)sgn+(p(x, t))ϕt(x, t)dxdt,

A2 → 0 and

A3 → −
∫

R

w(x, 0)sgn+(p(x, 0))ϕ(x, 0)dxdt.

For the term B, by applying the rectangle rule and summation by parts, we can make the following
calculus

B +

∫

R

∫

R+

aw(x, t)sgn+(p(x, t))ϕx(x, t)dxdt

=

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

λa
(

wn
j − wn

j−1

)

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx

+

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

awn
j sgn+(pn

j )
(

ϕn
j+1/2 − ϕn

j−1/2

)

∆t

=

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

λa
(

wn
j − wn

j−1

)

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx

+

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

a∆t
(

wn
j−1 − wn

j

)

sgn+(pn
j )ϕn

j−1/2

+

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

a∆twn
j−1

(

sgn+(pn
j−1) − sgn+(pn

j )
)

ϕn
j−1/2

+

Nmax−1
∑

n=0

{

wn
Jmax

sgn+(pn
Jmax

)ϕn
Jmax+1/2 − wn

Jmin−1sgn+(pn
Jmin−1)ϕ

n
Jmin−1/2

}

=

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

λa
(

wn
j − wn

j−1

)

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

(

ϕ(x, tn+1) − ϕn
j−1/2

)

dx

+

Jmax
∑

j=Jmin

Nmax−1
∑

n=0

a∆twn
j−1

(

sgn+(pn
j−1) − sgn+(pn

j )
)

ϕn
j−1/2

:= B1 + B2.

Now, since B1 → 0 when ∆x → 0 by weak BV -estimate for w∆ and B2 → 0 when ∆x → 0 by the
L∞-estimate for p∆ (see Lemma 5.1), we deduce that

B → −
∫

R

∫

R+

aw(x, t)sgn+(p(x, t))ϕx(x, t)dxdt, when ∆x → 0. (5.8)

Replacing (5.7)-(5.8) in (5.6) we obtain

∫

R

∫

R+

w sgn+(p)
(

ϕt + aϕx

)

dxdt +

∫

R

w0 sgn+(p0)ϕ(·, 0)dx = 0. (5.9)

On the other hand, proceeding in a similar way with (5.2b) we obtain that the limit v of v∆

satisfies
∫

R

∫

R+

v
(

1 − sgn+(p)
)(

ϕt + aϕx

)

dxdt +

∫

R

v0

(

1 − sgn+(p0)
)

ϕ(·, 0)dx = 0. (5.10)
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Summing (5.9) and (5.10) we deduce that u is a weak solution of (1.1) with f defined by (5.1),
which concludes the proof of the theorem. ¤

6. Convergence analysis for the non-linear convex flux function

6.1. L∞ estimate.

Lemma 6.1. Consider the assumptions

(A1) f satisfies the hypothesis of strictly convexity given on (1.3);
(A2) u0 satisfies the hypothesis (1.2);
(A3) p0, v0 and w0 satisfies (4.6) and the requirements specified by the initialization step (see

equations (4.2)-(4.5));
(A4) g is a monotone flux;
(A5) The functions w∆, v∆, p∆ and u∆ defined from R × R

+
0 are determined by the correspon-

dence rules given at (5.4) with un
j , pn

j , vn
j and wn

j obtained by (4.15), (4.9), (4.14) and
(4.13), respectively; and

(A6) λ satisfies the following CFL condition

λ‖f ′‖L∞([um,uM ]) < 1 − ξ, with ξ ∈]0, 1[. (6.1)

Then u∆, p∆, v∆, and w∆ belong to L∞(R × R
+
0 ). Furthermore, w∆, v∆, u∆ ∈ [um, uM ] and

p∆ ∈ [pm, pM ] in the almost everywhere sense.

Proof. The proof of the required properties for p∆, v∆ and w∆ is a straightforward application of
the standard arguments, see [8]. Then, we omit the details and only prove the result for u∆.

We proceed by induction on n. For n = 0 the assertion is valid by definition of the discretization.
Before giving the proof for n ≥ 1, we comment two points. Firstly, we notice that the identity

un+1
j = rn

w,j w
n+1/2
j + rn

v,j v
n+1/2
j , where

rn
w,j = sgn+(pn+1

j )
[

1 −
(

1 − sgn+(pn
j )

)

E
n
j

]

+
(

1 − sgn+(pn+1
j )

)

sgn+(pn
j )E n

j (6.2)

rn
v,j = sgn+(pn+1

j )
(

1 − sgn+(pn
j )

)

E
n
j +

(

1 − sgn+(pn+1
j )

)(

1 − sgn+(pn
j )E n

j

)

is satisfied. In the second place, we have that

w
n+1/2
j = λA(wn

j−1, w
n
j )wn

j−1

+(1 − λA(wn
j−1, w

n
j ) + λB(wn

j , wn
j+1))w

n
j−1 − λB(wn

j , wn
j+1)w

n
j and

v
n+1/2
j = λA(vn

j−1, v
n
j )vn

j−1

+
[

1 − λA(vn
j−1, v

n
j ) + λB(vn

j , vn
j+1)

]

vn
j−1 + λB(vn

j , vn
j+1)v

n
j , (6.3)

where A and B denote the functions from R
2 to R defined as follows

A(x1, x2) =







g(x1, x2) − f(x2)

x1 − x2
, x1 6= x2,

0, otherwise,
and

B(x1, x2) =







g(x1, x2) − f(x1)

x2 − x1
, x1 6= x2,

0, otherwise.

Thus, for n ≥ 1 we assume that wn
j , vn

j ∈ [um, uM ] and by the monotonicity of g, the CFL

condition (6.1) and (6.3), we have that w
n+1/2
j , v

n+1/2
j ∈ [um, uM ]. Then by (6.2), noticing that

rn
w,j , r

n
v,j ∈ {0, 1} and rn

w,j + rn
v,j = 1 (see Appendix A) we can deduce the following estimates

um = (rn
w,j + rn

v,j)um ≤ (rn
w,jw

n+1/2
j + rn

v,jv
n+1/2
j ) ≤ (rn

w,j + rn
v,j)uM = uM ,

which concludes the proof of the lemma. ¤
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6.2. Weak BV estimate.

Lemma 6.2. Consider the hypothesis of lemma 6.1. Then for i0, i1 ∈ Z and N1 ∈ N there exists
C > 0, independent of ∆x and ∆t, such that w∆ satisfies the inequality

i1
∑

j=i0

N1
∑

n=0

∆t
[

max
(a,b)∈W n

j

(

g(a, b) − f(a)
)

+ max
(a,b)∈W n

j

(

g(a, b) − f(b)
)]

≤ C

∆x
, (6.4)

where W n
j = [wn

j−1⊥wn
j , wn

j−1⊤wn
j ]. Furthermore, the inequality (6.4) is valid for v∆.

Proof. Multiplying (4.7) by ∆xwn
j and summing over j ∈ {i0, . . . , i1} and n ∈ {0, . . . , N1}, we

deduce that

Ã + B̃ = 0, (6.5)

where

Ã = ∆x

i1
∑

j=i0

N1
∑

n=0

(

w
n+1/2
j − wn

j

)

wn
j and B̃ = ∆t

i1
∑

j=i0

N1
∑

n=0

(

g(wn
j , wn

j+1) − g(wn
j−1, w

n
j )

)

wn
j .

Now, the proof is reduced to get a lower bounds for Ã and B̃, since it implies that exists C > 0,
independent of ∆x and ∆t, satisfying

L := ∆t

i1
∑

j=i0

N1
∑

n=0

[(

g(wn
j−1, w

n
j ) − f(wn

j−1)
)2

+
(

g(wn
j−1, w

n
j − f(wn

j )
)2]

≤ C. (6.6)

Then, by the Cauchy-Schwarz inequality applied to the left side of (6.4) and using (6.6), we get
the desired estimate (6.4).

Bound for Ã. We consider the algebraic identity: 2(x− y)y = −(x− y)2 +x2 − y2 for all x, y ∈ R,

to rewrite Ã and from the finite volume scheme (4.7) together with the CFL condition (6.1), we
see that

Ã = −∆x

2

i1
∑

j=i0

N1
∑

n=0

(

w
n+1/2
j − wn

j

)2

+
∆x

2

i1
∑

j=i0

N1
∑

n=0

[(

w
n+1/2
j

)2

−
(

wn
j

)2]

≥ −1 − ξ

4M

i1
∑

j=i0

N1
∑

n=0

∆t
(

g(wn
j , wn

j+1) − g(wn
j−1, w

n
j )

)2

+
∆x

2

i1
∑

j=i0

N1
∑

n=0

[(

w
n+1/2
j

)2

−
(

wn
j

)2]

:= −1 − ξ

4M
Ã2 + Ã1. (6.7)

Additionally, the inequality (x + y)2 ≤ 2(x2 + y2) leads to

Ã2 ≤ 2∆t

i1
∑

j=i0

N1
∑

n=0

[(

g(wn
j , wn

j+1) − f(wn
j )

)2

+
(

g(wn
j−1, w

n
j ) − f(wn

j )
)2]

= 2∆t

i1
∑

j=i0

N1
∑

n=0

[(

g(wn
j−1, w

n
j ) − f(wn

j−1)
)2

+
(

g(wn
j−1, w

n
j ) − f(wn

j )
)2]

+2∆t

N1
∑

n=0

[(

g(wn
i1 , w

n
i1+1) − f(wn

i1+1)
)2

+
(

g(wn
i0−1, w

n
i0) − f(wn

i0−1)
)2]

:= 2L + Ã3. (6.8)

Then, from (6.7) and (6.8), we get the following bound for Ã

Ã ≥ −1 − ξ

2M
L − 1 − ξ

2M
Ã3 + Ã1. (6.9)



14 CORONEL, CUMSILLE, AND SEPÚLVEDA

Bound for B̃. Summing by parts and considering the identity of Proposition 2.2 with g instead of
F , we deduce that

B̃ = ∆t

i1
∑

j=i0

N1
∑

n=0

([

g(wn
j−1, w

n
j ) − g(wn

j−1, w
n
j−1)

]

wn
j−1 −

[

g(wn
j−1, w

n
j ) − g(wn

j , wn
j )

]

wn
j

)

+∆t

i1
∑

j=i0

N1
∑

n=0

([

g(wn
i1 , w

n
i1+1) − g(wn

i1 , w
n
i1)

]

wn
i1 −

[

g(wn
i0−1, w

n
i0) − g(wn

i0 , w
n
i0)

]

wn
i0

)

= ∆t

i1
∑

j=i0

N1
∑

n=0

(

Φ(wn
j ) − Φ(wn

j−1) +

∫ wn
j

wn
j−1

[

g(τ, τ) − g(wn
j−1, w

n
j )

]

dτ
)

+ B̃1

= ∆t

i1
∑

j=i0

N1
∑

n=0

∫ wn
j

wn
j−1

[

g(τ, τ) − g(wn
j−1, w

n
j )

]

dτ + ∆t

N1
∑

n=0

[

Φ(wn
i1) − Φ(wn

i0−1)
]

+ B̃1

:= B̃3 + B̃2 + B̃1.

Here we note that, the application of Lemma 2.1 and the CFL condition (6.1) implies the inequality

B̃3 ≥ L/2M . Then B̃ satisfies

B̃ ≥ 1

2M
L + B̃2 + B̃1. (6.10)

Proof of (6.6). From (6.5), (6.9) and (6.10), and the bounds

−Ã1 ≤ N

2
max{(wm)2, (wM )2} := C1, Ã3 ≤ 2MtN1

max{|wn
i0−1|, |wn

i0 |, |w
n
i1 |, |w

n
i1+1|} := C2

−B̃2 ≤:= C3, −B̃3 ≤:= C4,

we have that

L ≤ 2M

ξ

(

1 − ξ

2M
Ã3 − Ã1 − B̃1 − B̃2

)

≤ 2M

ξ

(

1 − ξ

2M
C1 + C2 + C3 + C4

)

:= C,

which proves (6.6). The proof of the Lemma is completed. ¤

6.3. Cell entropy inequality.

Lemma 6.3. Consider the hypothesis of Lemma 6.1 and the notation a⊤b := max{a, b} and
a⊥b := min{a, b} for a, b ∈ R. Then, w∆ satisfies the following local o cell entropy inequality

ηk(w
n+1/2
j ) − ηk(wn

j ) + λ
(

Gk(wn
j , wn

j+1) − Gk(wn
j−1, w

n
j )

)

≤ 0, ∀(j, n) ∈ Z × N, ∀k ∈ R, (6.11)

where ηk : R → R and Gk : R × R → R are defined by

ηk(x) = |x − k| and Gk(x, y) = g(x⊤k, y⊤k) − g(x⊥k, y⊥k).

Furthermore, a similar inequality to (6.11) is valid for v∆.

Proof. From (4.7) and the monotonic behaviour of g, we deduce that

wn
j ⊤k − wn

j ⊤k + λ
(

g(wn
j ⊤k,wn

j+1⊤k) − g(wn
j−1⊤k,wn

j ⊤k)
)

≥ w
n+1/2
j ⊤k and

wn
j ⊥k − wn

j ⊥k + λ
(

g(wn
j ⊥k,wn

j+1⊥k) − g(wn
j−1⊥k,wn

j ⊥k)
)

≤ w
n+1/2
j ⊥k.

Then, using the algebraic identity: a⊤b − a⊥b := |a − b| for all a, b ∈ R, we deduce that (6.11) is
satisfied. ¤
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6.4. Convergence towards the entropy process solution.

Lemma 6.4. Consider the hypothesis of lemma 6.1. Then,

(a) There exists p ∈ L∞(R × R
+
0 ) such that p∆ converges towards p in L∞(R × R

+
0 ) for the

weak-⋆ topology when ∆x → 0 and p is the weak solution of the level-set equation.
(b) There exists µw ∈ L∞(R×R

+
0 ×]0, 1[) such that w∆ converges towards µw in the nonlinear

weak-⋆ sense when ∆x → 0 and µw satisfies the following inequality
∫

R

∫

R
+

0

∫ 1

0

{

ηk

(

µw(x, t, α)
)

sgn+
(

p(x, t)
)

ϕt(x, t) +

(

f(µw(x, t, α)⊤k) − f(µw(x, t, α)⊥k)
)

sgn+
(

p(x, t)
)

ϕx(x, t)

}

dxdt (6.12)

+

∫

R

|w0(x) − k|sgn+
(

p0(x)
)

ϕt(x, 0)dx ≥ 0,

∀k ∈ [um, uM ], ∀ϕ ∈ C1
0 (R × R

+, R+).

(c) There exists µv ∈ L∞(R × R
+
0 ×]0, 1[) such that v∆ converges towards µv in the nonlinear

weak-⋆ sense when ∆x → 0 and µv satisfies the following inequality
∫

R

∫

R
+

0

∫ 1

0

{

ηk

(

µv(x, t, α)
)

(

1 − sgn+
(

p(x, t)
)

)

ϕt(x, t) +

(

f(µv(x, t, α)⊤k) − f(µv(x, t, α)⊥k)
)

(

1 − sgn+
(

p(x, t)
)

)

ϕx(x, t)

}

dxdt (6.13)

+

∫

R

|v0(x) − k|
(

1 − sgn+p0(x)

)

ϕt(x, 0)dx ≥ 0,

∀k ∈ [um, uM ], ∀ϕ ∈ C1
0 (R × R

+, R+).

(d) There exists µ ∈ L∞(R × R
+
0 ×]0, 1[) such that u∆ converges towards µ in the nonlinear

weak-⋆ sense when ∆x → 0 and µ is the entropy process solution of (1.1).

Proof. For (a), by Lemma 6.1 and Proposition 2.1, we note that p∆ is uniformly bounded in
L∞(R×R

+
0 ), then there exists p ∈ L∞(R×R

+
0 ) such that p∆ converges towards p in L∞(R×R

+
0 )

for the weak-⋆ topology when ∆x → 0. Now, we prove that p is a weak solution of the level-set
equation by standard arguments as in [8].

For (b), by Lemma 6.1 and Proposition 2.1, we note that w∆ is uniformly bounded in L∞(R×R
+
0 ).

This fact implies the existence of µw ∈ L∞(R × R
+
0 ×]0, 1[) such that w∆ → µw in the nonlinear

weak-⋆ sense when ∆x → 0. Now, we prove that µw satisfies (6.12). First we rewrite (6.11) as
follows

ηk(wn+1
j ) − ηk(wn

j ) + λ
(

Gk(wn
j , wn

j+1) − Gk(wn
j−1, w

n
j )

)

≤ ηk(wn+1
j ) − ηk(w

n+1/2
j ). (6.14)

Then, we consider ϕ ∈ C1
0 (R × R

+, R), such that supp(ϕ) ⊂ [xJmin
, xJmax

] × [0, tNmax
[ for some

Jmin, Jmax ∈ Z and Nmax ∈ N. Now, if we multiply (6.14) by sgn+(pn+1
j )

∫ xj+1/2

xj−1/2
ϕ(x, tn+1)dx and

summing over (j, n) ∈ Z × N, we get

A + B ≤ C, (6.15)

where

A =

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

ηk(wn+1
j ) − ηk(wn

j )
]

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx,

B = λ

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

Gk(wn
j , wn

j+1) − Gk(wn
j−1, w

n
j )

]

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx and
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C =

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

ηk(wn+1
j ) − ηk(w

n+1/2
j )

]

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx.

Next, we analyse the limit of each term in (6.15) and obtain the desired inequality.

Analysis of A. By, a summation by parts, we have that A can be rewrited equivalently as follows

A =

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

ηk(wn+1
j ) − ηk(wn

j )
]

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx

= −
Jmax
∑

j=Jmin

Nmax
∑

n=0

ηk(wn
j )sgn+(pn+1

j )

∫ xj+1/2

xj−1/2

[

ϕ(x, tn+1) − ϕ(x, tn)
]

dx

−
Jmax
∑

j=Jmin

Nmax
∑

n=0

ηk(wn
j )

[

sgn+(pn+1
j ) − sgn+(pn

j )
]

∫ xj+1/2

xj−1/2

ϕ(x, tn)dx

+

Jmax
∑

j=Jmin

[

ηk(wNmax−1
j )sgn+(pNmax

j )

∫ xj+1/2

xj−1/2

ϕ(x, tNmax
)dx

−ηk(w0
j )sgn+(p0

j )

∫ xj+1/2

xj−1/2

ϕ(x, 0)dx
]

= −
∫

R

∫

R
+

0

ηk(w∆(x, t))sgn+(p(x, t))ϕt(x, t)dxdt + AExt
∆

−
∫

R

ηk(w∆(x, 0))sgn+(p(x, 0))ϕt(x, 0)dx.

Letting ∆x → 0, we obtain that

A → −
∫

R

∫

R
+

0

∫ 1

0

ηk(µw(x, t, α))sgn+(p(x, t))ϕt(x, t)dxdt

−
∫

R

ηk(w(x, 0))sgn+(p(x, 0))ϕt(x, 0)dx. (6.16)

since AExt
∆ converges to 0.

Analysis of B. The consistence property of the numerical flux and a rearrangement of B leads to

B = λ

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

f(wn
j ⊤k) − f(wn

j ⊥k)
]

[

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx − sgn+(pn+1
j+1 )

∫ xj+3/2

xj+1/2

ϕ(x, tn+1)dx
]

+λ

Jmax
∑

j=Jmin

Nmax
∑

n=0

[{

g(wn
j ⊤k,wn

j ⊤k) − f(wn
j ⊥k)

}

+
{

f(wn
j ⊥k) − g(wn

j ⊥k,wn
j ⊥k)

}]

[

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx − sgn+(pn+1
j+1 )

∫ xj+3/2

xj+1/2

ϕ(x, tn+1)dx
]

+λ

Nmax
∑

n=0

{

Gk(wn
Jmax

, wn
Jmax+1)sgn+(pn+1

Jmax
)

∫ xJmax+1/2

xJmax−1/2

ϕ(x, tn+1)dx

− Gk(wn
Jmin

, wn
Jmin+1)sgn+(pn+1

Jmin
)

∫ xJmin+1/2

xJmin−1/2

ϕ(x, tn+1)dx

}

:= B1 + B2 + B3. (6.17)
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Now, we get three bounds related to B1, B2 and B3. First, for B1, we note that
∣

∣

∣

∣

∣

B1 +

∫

R

∫

R
+

0

[

f(w∆(x, t)⊤k) − f(w∆(x, t)⊥k)
]

sgn+(p∆(x, t))ϕx(x, t)dtdx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

B1 +

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

f(wn
j ⊤k) − f(wn

j ⊥k)
]

sgn+(pn
j )

∫ tn+1

tn

∫ xj+1/2

xj−1/2

ϕx(x, t)dtdx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

f(wn
j ⊤k) − f(wn

j ⊥k)
]

[

λ
{

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx − sgn+(pn+1
j+1 )

∫ xj+3/2

xj+1/2

ϕ(x, tn+1)dx
}

+sgn+(pn
j )

∫ tn+1

tn

∫ xj+1/2

xj−1/2

ϕx(x, t)dtdx
]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

f(wn
j ⊤k) − f(wn

j ⊥k)
][

sgn+(pn+1
j ) − sgn+(pn+1

j+1 ) + sgn+(pn
j )

]

[

∫ tn+1

tn

∫ xj+1/2

xj−1/2

{

− ϕ(x + ∆x, tn+1) − ϕ(x, tn+1)

∆x
+ ϕx(x, t)

}

dtdx
]

∣

∣

∣

∣

∣

≤ 2∆x tNmax
(xJmax

− xJmin
) ‖f‖Lip(R) ‖ϕxx‖L∞(R×R

+

0
). (6.18)

Later, for B2, we apply the weak-BV estimate (Lemma 6.2), and obtain the following bound

|B2| ≤ C‖ϕx(·, t)‖L∞(R)

√
∆x. (6.19)

Meanwhile, for B3, by the selection of Jmin and Jmax, we clearly have that

|B3| ≤ tNmax
‖g‖L∞([um,uM ]2)

{

|ϕ(xJmax
, t)| + |ϕ(xJmin

, t)|
}

= 0. (6.20)

Then, from (6.18), (6.19) and (6.20), when ∆x → 0, we obtain that

B → −
∫

R

∫

R
+

0

∫ 1

0

[

f(µw(x, t, α)⊤k) − f(µw(x, t, α)⊥k)
]

sgn+(p∆(x, t))ϕx(x, t)dtdxdα. (6.21)

Analysis of C. We remark that (see Appendix B)
[

ηk(wn+1
j ) − ηk(w

n+1/2
j )

]

sgn+(pn+1
j )

=

{

ηk(v
n+1/2
j ) − ηk(w

n+1/2
j ), sgn+(pn+1

j ) = 1, sgn+(pn
j ) = 0 and E n

j = 1,

0, otherwise.

This means that the term C is simplified to the discontinuity curves (since sgn+(pn
j ) = 0 and

sgn+(pn+1
j ) = 1) satisfying the entropy condition (since E n

j = 1). Then,

C =

Jmax
∑

j=Jmin

Nmax
∑

n=0

[

ηk(wn+1
j ) − ηk(w

n+1/2
j )

]

sgn+(pn+1
j )

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx.

=
∑

(j,n)∈E

[

ηk(v
n+1/2
j ) − ηk(w

n+1/2
j )

]

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx. (6.22)

where

E =
{

(j, n) ∈ {Jmin, . . . , Jmax} × {0, . . . , Nmax} : sgn+(pn+1
j ) = E

n
j = 1 and sgn+(pn

j ) = 0
}

.



18 CORONEL, CUMSILLE, AND SEPÚLVEDA

Now, by the strictly convexity of the flux function and the definition of un+1
L,j and un+1

R,j given by

(4.10) and (4.11), respectively, for each (j, n + 1) ∈ E we have that

E
n+1
j = 1 ⇒ f ′

(

un+1
L,j

)

> f ′

(

un+1
R,j

)

⇒ un+1
L,j > un+1

R,j

⇒ (1 − 2P
n+1
j )(v

n+1/2
j − w

n+1/2
j ) > 0

⇒
(

v
n+1/2
j > w

n+1/2
j ∧ P

n+1
j = 0

)

∨
(

v
n+1/2
j < w

n+1/2
j ∧ P

n+1
j = 1

)

Then, we can introduce the partition {E1, E2} of E, where

E1 =
{

(j, n + 1) ∈ E : v
n+1/2
j > w

n+1/2
j ∧ P

n+1
j = 0

}

and

E2 =
{

(j, n + 1) ∈ E : v
n+1/2
j < w

n+1/2
j ∧ P

n+1
j = 1

}

.

Here, for k ∈ [um, uM ], we note that

(j, n + 1) ∈ E1 ⇒ 0 ≤ |um − k| < |wn+1/2
j − k| < |vn+1/2

j − k| < |uM − k|
⇒ 0 < ηk(v

n+1/2
j ) − ηk(w

n+1/2
j ) < ηk(uM ) − ηk(um) (6.23)

and

(j, n + 1) ∈ E2 ⇒ 0 ≤ |um − k| < |vn+1/2
j − k| < |wn+1/2

j − k| < |uM − k|
⇒ ηk(v

n+1/2
j ) − ηk(w

n+1/2
j ) < 0. (6.24)

From (6.22)-(6.24) and since ϕ ≥ 0, we deduce that

C =
∑

(j,n)∈E1

[

ηk(v
n+1/2
j ) − ηk(w

n+1/2
j )

]

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx

+
∑

(j,n)∈E2

[

ηk(v
n+1/2
j ) − ηk(w

n+1/2
j )

]

∫ xj+1/2

xj−1/2

ϕ(x, tn+1)dx

≤
[

ηk(uM ) − ηk(um)
]

‖ϕ‖L∞ Tmax Ns ∆x,

where Ns is the number of shock curves of u, which implies that

C ≤ 0, when ∆x → 0. (6.25)

We conclude the proof of this item by noticing that the equations (6.15), (6.16), (6.21) and
(6.25) imply (6.12).

For (c), to prove this item we proceed in a similar way as for the proof of (b).

For (d), by Lemma 6.1 and Proposition 2.1, we note that u∆ is uniformly bounded in L∞(R×R
+
0 ).

This fact implies the existence of µ ∈ L∞(R×R
+
0 ×]0, 1[) such that u∆ → µ in the nonlinear weak-⋆

sense when ∆x → 0. Furthermore, from the recently proved items (a), (b), (c) and by (4.15) we
deduce that

µ(x, t, α) = sgn+(p(x, t))µw(x, t, α) +
(

1 − sgn+(p(x, t))
)

µv(x, t, α),

which implies

ηk(µ(x, t, α)) = ηk(µw(x, t, α))sgn+(p(x, t)) + ηk(µv(x, t, α))
(

1 − sgn+(p(x, t))
)

and

f(µ(x, t, α)⊤k) − f(µ(x, t, α)⊥k)

=
(

f(µw(x, t, α)⊤k) − f(µw(x, t, α)⊥k)
)

sgn+(p(x, t))
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+
(

f(µv(x, t, α)⊤k) − f(µv(x, t, α)⊥k)
)(

1 − sgn+(p(x, t))
)

.

Then, using this identities and adding the inequalities (6.12) and (6.13) we conclude that µ is a
entropy process solution of (1.1). ¤

6.5. Convergence towards the Kružkov’s entropy solution. The prove the convergence of
u∆ to the entropy solution we first deduce the link between the notions of entropy process solutions
and Kružkov entropy solutions for (1.1) and then prove the convergence. More precisely we have
the following two results.

Theorem 6.1. Under the assumptions (1.2)-(1.3), the entropy process solution of the prob-
lem (1.1) is unique. Moreover there exists a function u ∈ L∞(R×R

+
0 ) such that u(x, t) = µ(x, t, α)

for almost every (x, t, α) ∈ R × R
+
0 ×]0, 1[.

Theorem 6.2. Consider the hypothesis of lemma 6.1. Then u∆ converge to u, the entropy solution
of (1.1), in the strong topology of Lp

loc(R × R
+
0 ) for all p > 1 when ∆x → 0.

To prove Theorems 6.1 and 6.2 we can follow line by line the proofs of the results given in [8]
for a scalar multidimensional conservation law. The proof of theorem 6.1 is based on the doubling
of variables technique introduced by Kružkov in [14]. Meanwhile, the proof of theorem 6.1 is given
by a contradiction argument.

7. Numerical examples for Burgers equation

In this section, we present three numerical examples with the 1D Burgers flux function f(u) =
u2/2 and 2D Burgers flux functions f(u) = g(u) = u2/2. The initial condition in the first two
examples are focused on the 1D elementary wave interaction. We consider the third example for
a 2D extension of the level set method over cartesian grids.

In all numerical examples the function g on the implementation of (4.7) and (4.8) is the Godunov
numerical flux function, see [9].

7.1. Example 1: Rarefaction-Schock interaction. We consider the initial condition

u0(x) =

{

1, x ∈ [−1, 1],
0, otherwise.

(7.1)

The initial increasing discontinuity at x = −1 generates a rarefaction wave, and the initial decreas-
ing discontinuity at x = 1 becomes an entropic shock wave. Both waves interact at (x, t) = (3, 4)
forming a shock wave shaped curved line. More, precisely the analytical entropy solution is given
by

u(x, t) =























0, x ∈] −∞,−1]∪](t + 2)/2,∞[,
(x + 1)/t, x ∈] − 1, t − 1],
1, x ∈ [t − 1, (t + 2)/2],







t ≤ 4

0, x ∈] −∞,−1]∪]3
√

t/2,∞[,

(x + 1)/t, x ∈ [−1, 3
√

t/2],

}

t > 4

According to the criterion of the first stage of the algorithm (1.6), a natural selection for the initial
level set would be (see Figure 1(a))

p0(x) =

{

−x − 1, x ∈] −∞, 0],
x − 1, x ∈]0,∞[,

v−1/2(x) = 1, and w−1/2(x) = 0. (7.2)

However, this selection of initial level set does not satisfies the entropy condition required in (3.2).
That is why we need to rectify this initial level set by redefining v−1/2 and w−1/2, as in Figure 1(b).

For a discretization of ∆t = 0.0266, ∆x = 0.0667, we perform simulations with our level-set
method to the time T = 2 (see Figure 1(c) and Figure 1(d)) and time T = 5 (see Figure 1(e)
and Figure 1(f)). We note that T = 2 and T = 5 are times before and after of the interaction,
respectively. We compare our results with the exact solution and the numerical solution using
the Godunov scheme. We consider a discretization so not too thin to observe graphically the
differences between the two methods of order 1, and compare (on a finer discretization is not
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(b) p, w, v and u at T = 0

−1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

x

u

 

 

God
LS
Ex

(c) u at T = 2
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(d) p, w, v and u at T = 2
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(e) u at T = 5
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(f) p, w, v and u at T = 5

Figure 1. Example 1. (a) The selected initial level set function p0 and the aux-
iliar states w−1/2 and v−1/2, see (7.2). (b) The inital level set profile p∆(·, 0),
the initial conditión u∆(·, 0), and the entropy satisfying auxiliar states profiles
w∆(·, 0) and v∆(·, 0). (c)-(e) Godunov (God), Level set (LS) approximate solu-
tions and Exact (Ex) solution at T = 2 and T = 5, respectively. (d)-(f) The
level set profile p∆(·, T ), the level set aproximate profile u∆(·, T ), and the entropy
satisfying auxiliar states profiles w∆(·, T ) and v∆(·, T ), at T = 2 and T = 5,
respectively.

visually appreciate the differences). Our level set method, is based and is characterized by better
capturing shocks. In this regard, we note a better accuracy of the method level set at time T = 2
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(see Figure 1(e)). In addition, in the right graphics Figure 1(b), Figure 1(d) and Figure 1(f), we
observe the evolution of each of the entropy admissible variables used in the level-set scheme for
T ∈ {0, 2, 5}.
7.2. Example 2: Schock-Schock interaction. We consider the initial condition

u0(x) =







2, x ∈] −∞,−1],
1, x ∈] − 1, 1],
0, x ∈]1,∞[.

(7.3)

In this case a discontinuity is initially located at x = −1 which propagates as an entropic shock
with velocity σ = 3/2, and a discontinuity initially located at the point x = 1 which propagates
with velocity σ = 1/2. Both shock lines intersect and interact at (x, t) = (2, 2), generating a new
shock with velocity σ = 1. For the initial condition (7.3) the analytical entropy solution of the
burger equation is defined as follows

u(x, t) =























2, x ∈] −∞, (3/2)t − 1],
1, x ∈](3/2)t − 1, (1/2)t − 1],
0, x ∈ [(1/2)t − 1,∞[,







t ≤ 2,

2, x ∈] −∞, t],
1, x ∈ [t,∞[,

}

t > 2.

Now, applying the first stage of the algorithm (1.6), we chose the following initial level set repre-
sentation of u0

p0(x) =

{

x + 1, x ∈] −∞, 0],
x − 1, x ∈]0,∞[,

w−1/2(x) =

{

2, x ∈] −∞, 0],
0, x ∈]0,∞[,

and v−1/2(x) = 1, (7.4)

which results verify the desired entropy inequality (3.2). Thus ensure an approximation consistent
with the entropy solution, see Figure 2(a) and Figure 2(b).

For a discretization of ∆t = 0.0133, ∆x = 0.0667, we perform simulations to the time T = 1
(see Figure 2(c) and Figure 2(d)) and time T = 3 (see Figure 2(e) and Figure 2(f)). We note that
the interaction occurs at t = 2, then T = 1 and T = 3 are before and after of the interaction,
respectively. We compare level-set results with the exact solution and the Godunov numerical
solution. In this example, Godunov method also captures well the shocks, and both methods
of order 1, give very similar results. In addition, in the right graphics Figure 2(b), Figure 2(d)
and Figure 2(f), we observe the evolution of each of the variables used in the level-set scheme,
consistent with the approximate solution at T ∈ {0, 1, 3}.
7.3. Example 3: 2D Burgers equation. We consider the initial condition

u0(x, y) =

{

1, |x| + |y| ≤ 1,
0, otherwise.

At the boundary x+y = 1 for x, y ∈ [0, 1] generates an entropic shock and the boundary x+y = −1
for x, y ∈ [−1, 0] becomes a rarefaction wave.

The main modifications of the 1D algorithm described on section 4 are the definition of 2D
coherent definition of 1D entropy condition given on (3.2). Here, in this simulation, we consider
that 3.2 is reemplaced by the following condition

(

f ′
(

uL

)

− f ′
(

uR

)

)

∂xp +
(

g′
(

uL

)

− g′
(

uR

)

)

∂yp ≥ 0, in Q, (7.5)

where

uL(x, y, t) =

{

w(x, y, t),
(

∂xp + ∂yp
)

(x, y, t) ≥ 0,
v(x, y, t),

(

∂xp + ∂yp
)

(x, y, t) < 0,
and

uR(x, y, t) =

{

v(x, y, t),
(

∂xp + ∂yp
)

(x, y, t) < 0,
w(x, y, t),

(

∂xp + ∂yp
)

(x, y, t) ≥ 0.

Now, according to the criterion of the first stage of the algorithm (1.6), we consider the initial
level set function and auxiliar states defined as follows (see Figure 3)

p0(x, y) = |x| + |y| − 1, v−1/2(x, y) = 1, and w−1/2(x, y) = 0. (7.6)
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(b) p, w, v and u at T = 0
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(c) u at T = 2
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(d) p, w, v and u at T = 2
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(e) u at T = 3
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(f) p, w, v and u at T = 3

Figure 2. Example 2. (a) The selected initial level set function p0 and the aux-
iliar states w−1/2 and v−1/2, see (7.4). (b) The inital level set profile p∆(·, 0),
the initial conditión u∆(·, 0), and the entropy satisfying auxiliar states profiles
w∆(·, 0) and v∆(·, 0). (c)-(e) Godunov (God), Level set (LS) approximate solu-
tions and Exact (Ex) solution at T = 2 and T = 5, respectively. (d)-(f) The
level set profile p∆(·, T ), the level set aproximate profile u∆(·, T ), and the entropy
satisfying auxiliar states profiles w∆(·, T ) and v∆(·, T ), at T = 2 and T = 3,
respectively.

However, the selection (7.6) of initial auxiliar states does not satisfies the entropy condition re-
quired in (7.5). Then, before start the evolution of the algorithm we redefine v−1/2 and w−1/2, as
given in Figure 3(a) and Figure 3(b).
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For a discretization of ∆t = 0.008, ∆x = ∆y = 0.02, we perform a simulation with our level-set
method to the time T = 1 (see Figure 4). We compare our results with the numerical solution
using the Godunov scheme see Figure 5. In addition, in Figure 6 we show the profile u∆(x, x, 1)
of the numerical solutions obtained by Godunov and level set methods with ∆t = 0.0312 and
∆x = ∆y = 0.08.

(a) w at T = 0 (b) v at T = 0

(c) p at T = 0 (d) u at T = 0

Figure 3. Example 3. Initialization step of the level set algorithm. Left: (a)
The auxiliar state w−1/2, (b) The auxiliar state v−1/2 and (e) The selected initial
level set function p0, see (7.6). Right: (b)-(d) The inital entropy satisfying auxiliar
states profiles w∆(·, 0) and v∆(·, 0); and (f) The initial condition u∆(·, 0).

8. Conclusions

In this paper we gave a convergence proof of the level-set algorithm introduced by Aslam [1] for
tracking discontinuities in scalar conservation laws with linear or strictly convex flux function. To
do so, we adapt and improve the ideas introduced by Eymard et al. [8], who have developed a new
approach to show convergence of finite volume methods by using a weak bounded variation estimate
together with a new notion of generalized solutions to conservation laws called entropy process
solutions. Roughly speaking, this method consists in showing that the numerical solution satisfies
a weak bounded variation estimate, then showing that this implies that the numerical solution
converges to a entropy process solution to the conservation law, and finally that this solution is
unique and that the numerical solution strongly converges in suitable spaces. Additionally, we
have fully described the overall numerical method, and some numerical examples dealing with the
elementary wave interaction were given. The numerical examples show that the level-set algorithm
is competitive with respect to the well-known WENO5 method, since in presence of discontinuities
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(a) w∆(x, y, 1) (b) v∆(x, y, 1)

(c) p∆(x, y, 1) (d) u∆(x, y, 1)

Figure 4. Example 3. End profiles obtained of the level set algorithm. The aux-
iliar states w∆(·, ·, 1) and v∆(·, ·, 1), the level set function p∆(·, ·, 1), and aproxi-
mate solution u∆(·, ·, 1) obtained by the level set method with ∆x = ∆y = 0.02
and ∆t = 0.008. See Figure 5(b) for the level curves of u∆(·, ·, 1) plotted on (d).

it is well known that this last one is not of order 5 of accuracy, while the first one suitably tracks the
discontinuities of the solution without requiring a high order formal accuracy in smooth regions,
and at the same time that it retains stable, non-oscillatory and sharp discontinuity transitions. In
addition, the level-set algorithm has the advantage of being easy to implement and computationally
effective, because it requires relatively few grid points in order to that the numerical solution be
satisfactory.
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Appendix A. Coefficients of (6.2)

By definition of sgn+ we have that sgn+(pn+1
j ), sgn+(pn+1

j ),E n
j ∈ {0, 1}. This fact implies that

the coefficients rn
w,j and rn

v,j in (6.2), are such that rn
v,j , r

n
v,j ∈ {0, 1} and rn

v,j + rn
v,j = 1, see

Table 1.

sgn+(pn+1
j ) sgn+(pn+1

j ) E n
j rn

v,j rn
w,j rn

v,j + rn
w,j

1 1 1 1 0 1
1 1 0 1 0 1
1 0 1 0 1 1
1 0 0 1 0 1
0 1 1 1 0 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 0 1 1

Table 1. Posibles coefficients rn
v,j and rn

w,j of (6.2) and its sum

Appendix B. Analysis of C̃ in the proof of Lemma (6.4)

We note that

In
j :=

{

ηk(wn+1
j ) − ηk(w

n+1/2
j )

}

sgn+(pn+1
j )

=

{

ηk(wn+1
j ) − ηk(w

n+1/2
j )

}

sgn+(pn+1
j )

=

{

∣

∣

∣
wn+1

j − k
∣

∣

∣
−

∣

∣

∣
w

n+1/2
j − k

∣

∣

∣

}

sgn+(pn+1
j )

=

{

∣

∣

∣
w

n+1/2
j + (v

n+1/2
j − w

n+1/2
j )(1 − sgn+(pn

j ))E n
j − k

∣

∣

∣
−

∣

∣

∣
w

n+1/2
j − k

∣

∣

∣

}

sgn+(pn+1
j ).

Then, using that sgn+(pn+1
j ), sgn+(pn

j ),E n
j ∈ {0, 1} we deduce that (see Table 2):

In
j = =

{

|vn+1/2
j − k| − |wn+1/2

j − k|, sgn+(pn+1
j ) = 1, sgn+(pn

j ) = 0 and E n
j = 1,

0, otherwise.
.

sgn+(pn+1
j ) sgn+(pn

j ) E n
j In

j

1 1 1 0
1 1 0 0

1 0 1 |vn+1/2
j − k| − |wn+1/2

j − k|
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Table 2. Posibles combinations of sgn+(pn+1
j ), sgn+(pn

j ),E n
j ∈ {0, 1} and the

simplication of In
j
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2013-21 Erwan Hingant, Mauricio Sepúlveda: On a sorption-coagulation equation: state-
ment, existence and numerical approximation

2013-22 Veronica Anaya, Mostafa Bendahmane, Michael Langlais, Mauricio Se-
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