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Abstract

In this work we consider the two-dimensional linear elasticity problem with pure non-homogeneous
Neumann boundary conditions, and derive a reliable and efficient residual-based a posteriori error
estimator for the corresponding stress-displacement-rotation dual-mixed variational formulation.
The proof of reliability makes use of a suitable auxiliary problem, the continuous inf-sup conditions
satisfied by the bilinear forms involved, and the local approximation properties of the Clément
and Raviart-Thomas interpolation operators. In turn, inverse and discrete trace inequalities, and
the localization technique based on triangle-bubble and edge-bubble functions, are the main tools
yielding the efficiency of the estimator. Several numerical results confirming the properties of the
estimator and illustrating the performance of the associated adaptive algorithm are also reported.

Key words: elasticity equation, pure Neumann conditions, mixed finite element method, a posteriori
error estimator, PEERS
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1 Introduction

The possibility of introducing further unknowns of physical interest, such as stresses and rotations,
and the need of locking-free numerical schemes when the corresponding Poisson ratio approaches
1/2, constitute the main reasons for the utilization of dual-mixed variational formulations and the
associated mixed finite element methods to solve elasticity problems. Consequently, the derivation
of appropriate finite element subspaces yielding well posed Galerkin schemes has been extensively
studied and several choices, including the classical PEERS element and recent approaches, are already
available in the literature (see, e.g. [4], [5], [6], [7], [8], [15], [32], [39], and [42]). It is also well known
that, within the framework of dual-mixed formulations, and on the contrary to the usual primal
ones, the Dirichlet and Neumann data exchange their roles and become now natural and essential
boundary conditions, respectively. In particular, non-homogeneous Neumann data usually lead to non-
conforming Galerkin schemes and respective consistency terms, which need to be suitably estimated
to be able to prove stability and convergence of the discrete methods. These facts explain why most
of the works dealing with dual-mixed finite element methods in continuum mechanics consider either
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pure Dirichlet or mixed boundary conditions with homogeneous Neumann datum, thus avoiding the
additional difficulties arising from the presence of non-homogeneous essential boundary conditions.
Nevertheless, one way of successfully handling these conditions consists of the introduction of appro-
priate Lagrange multipliers enforcing them weakly, as done originally in [9] for the primal finite element
method with non-homogeneous Dirichlet boundary conditions. The extension of the method from [9]
to a large class of dual-mixed variational formulations was studied in [10], where a second order elliptic
equation in divergence form with mixed boundary conditions and non-homogeneous Neumann datum
was considered as a model problem.

In turn, the extension of the results from [10] to the dual-mixed variational formulation of the linear
elasticity problem in the plane was performed in [28]. More precisely, the stress-displacement-rotation
formulation for the case of non-homogeneous pure traction boundary conditions was considered in [28],
and a new dual-mixed finite element method for approximating its solution was developed there. The
main novelty of the approach in [28] lies on the weak enforcement of the non-homogeneous Neumann
boundary condition, similarly as done in [10], through the introduction of the boundary trace of the
displacement as a Lagrange multiplier. In addition, since the rigid body motions solve the associated
homogeneous boundary value problem, the displacements lie in the respective orthogonal complement
and are computed through the introduction of an artificial unknown as an additional Lagrange mul-
tiplier. A suitable combination of PEERS and continuous piecewise linear functions on the boundary
are employed to define the dual-mixed finite element scheme, and the classical Babuška-Brezzi theory
is applied to show the well-posedness of the continuous and discrete formulations. A priori rates of
convergence of the method, including an estimate for the global error when the stresses are measured
with the L2-norm, are also derived in [28]. It is important to remark that this work is actually the
first one dealing with the dual-mixed finite element method for the above mentioned boundary value
problem, in which the stress-displacement-rotation formulation and triangular elements are employed.
Moreover, the analysis of the corresponding continuous variational formulation, which is also provided
there, was not available before. On the contrary, the analysis of the continuous and discrete primal
variational formulations for the linear elasticity problem with pure Neumann boundary conditions is
nowadays very well established (see, e.g. [14, Chapter 9], [13], [23], and [33] for detailed analyses).

On the other hand, in order to guarantee a good convergence behaviour of the finite element
solutions, particularly under the presence of singularities, one usually needs to apply an adaptive
strategy based on a posteriori error estimates. These are usually represented by global quantities θ
that are expressed in terms of local estimators θT defined on each element T of a given triangulation
of the domain. The estimator θ is said to be reliable (resp. efficient) if there exists Crel > 0 (resp.
Ceff > 0), independent of the meshsizes, such that

Ceff θ + h.o.t. ≤ ‖error‖ ≤ Crel θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. Most of the a
posteriori error estimators for the mixed finite element formulation of the linear elasticity problem are
derived similarly as those for elliptic partial differential equations of second order in divergence form
(see. e.g. [2] where estimators based on residuals and on the solution of local problems, using Raviart-
Thomas and Brezzi-Douglas-Marini spaces, are provided). In connection with Raviart-Thomas spaces,
one may also refers to [12], [16], and [27], where reliable and efficient residual-based a posteriori error
estimators for the Poisson problem are obtained. The main tools of the corresponding analyses include
Helmholtz decompositions, the localization technique based on bubble functions, discrete trace and
inverse inequalities, and the approximation properties of the Clément interpolant. The extension of
the results in [16] to the linear elasticity problem is developed in [18] and [34]. In addition, energy
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norm a posteriori error estimates based on postprocessing are obtained in [35], and functional-type
error estimates are presented in [37].

Motivated by the preceding remarks, the main purpose of the present paper is to consider the
plane linear elasticity problem with pure traction boundary conditions and derive a reliable and
efficient residual-based a posteriori error estimator for the corresponding dual-mixed finite element
method introduced and analyzed in [28]. The rest of this work is organized as follows. In Section 2 we
recall from [28] the boundary value problem of interest and its dual-mixed variational formulation. In
Section 3 we reconsider the mixed finite element scheme from [28] and introduce some improvements in
its definition and solvability analysis that have arisen in recent related works. The core of the present
work is Section 4, where we develop the announced a posteriori error analysis. The reliability and
efficiency of the proposed estimator are proved in Sections 4.1 and 4.2, respectively. Finally, several
numerical examples confirming these properties and showing the good performance of the associated
adaptive algorithm, are provided in Section 5.

We end this section with further notations to be used below. In what follows, I is the identity
matrix of R2×2, tr denotes the matrix trace, t stands for the transpose of a matrix, and given τ :=
(τij), ζ := (ζij) ∈ R2×2, we define the deviator tensor τ d := τ − 1

2 tr(τ ) I, and the tensor product

τ : ζ :=
∑2

i,j=1 τij ζij . Also, we utilize standard simplified terminology for Sobolev spaces and norms.
In particular, if O is a domain, S is a closed Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2 , Hr(O) := [Hr(O)]2×2 , and Hr(S) := [Hr(S)]2 .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S),
respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and Hr(O)) and
‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we use H and H to denote
H2 and H2×2, respectively. In addition, we use 〈·, ·〉S to denote the usual duality pairings between
H−1/2(S) and H1/2(S), and between H−1/2(S) and H1/2(S). Furthermore, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [15], [31]). The space of matrix valued functions whose
rows belong to H(div;O) will be denoted H(div;O). Note that if τ ∈ H(div;O), then div τ ∈ L2(O),
where div stands for the usual divergence operator div acting on each row of the tensor, The Hilbert
norms of H(div;O) and H(div;O) are denoted by ‖ · ‖div,O and ‖ · ‖div,O, respectively. Finally, we
employ 0 to denote a generic null vector (including the null functional and operator), and use C and
c, with or without subscripts, bars, tildes or hats, to denote generic constants independent of the
discretization parameters, which may take different values at different places.

2 The boundary value problem

In this section we recall from [28] the boundary value problem of interest, its associated dual-mixed
variational formulation, and the corresponding well-posedness result. To this end, we let Ω be a
bounded and simply connected polygonal domain in R2 with Lipschitz-continuous boundary Γ. Our
goal is to determine the displacement u and stress tensor σ of a linear elastic material occupying the
region Ω and which is subject to a volume force and pure traction boundary conditions. In other
words, given f ∈ L2(Ω) and g ∈ H−1/2(Γ), we seek a symmetric tensor field σ and a vector field u
such that

σ = C ε(u) , divσ = − f in Ω , and σν = g on Γ , (2.1)
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where C is the elasticity operator determined by Hooke’s law, that is, given Lamé constants λ, µ > 0,

C ζ := λ tr(ζ) I + 2µ ζ ∀ ζ ∈ L2(Ω) , (2.2)

ε(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations, and ν is the unit outward normal

to Γ. Concerning the existence of solution of (2.1), we first recall (see, e.g. [14, Theorem 9.2.30]) that
this problem is solvable if and only if∫

Ω
f · χ + 〈g,χ〉Γ = 0 ∀χ ∈ RM(Ω) , (2.3)

where RM(Ω), the space of rigid body motions in Ω, is defined as

RM(Ω) :=
{
χ : Ω→ R2 : χ(x) =

(
a
b

)
+ c

(
x2

−x1

)
∀x :=

(
x1

x2

)
∈ Ω , a, b , c ∈ R

}
.

Hence, throughout the rest of the paper we assume that the compatibility condition (2.3) holds.

Next, following the usual procedure for the stress-displacement-rotation formulation of the elastici-
ty problem (see, e.g. [4], [15], [39]), that is defining the rotation γ := 1

2(∇u− (∇u)t) ∈ L2
skew(Ω) as

an auxiliary unknown, where

L2
skew(Ω) :=

{
τ ∈ L2(Ω) : τ + τ t = 0

}
is the space of skew-symmetric tensors, and introducing the trace ϕ := −u ∈ H1/2(Γ) as an addi-
tional Lagrange multiplier, we obtain, at first instance, the dual-mixed variational formulation: Find
(σ, (u,ϕ,γ)) ∈ H(div; Ω)×Q such that

a(σ, τ ) + b(τ , (u,ϕ,γ)) = 0 ∀ τ ∈ H(div; Ω) ,

b(σ, (v,ψ,η)) = −
∫

Ω
f · v + 〈g,ψ〉Γ ∀ (v,ψ,η) ∈ Q ,

(2.4)

where
Q := L2(Ω)×H1/2(Γ)× L2

skew(Ω) ,

and a : H(div; Ω)×H(div; Ω)→ R and b : H(div; Ω)×Q→ R are the bilinear forms given by

a(ζ, τ ) :=

∫
Ω
C−1ζ : τ ∀ (ζ, τ ) ∈ H(div; Ω)×H(div; Ω) , (2.5)

and

b(τ , (v,ψ,η)) :=

∫
Ω

v · div τ + 〈τν,ψ〉Γ +

∫
Ω
τ : η ∀ (τ , (v,ψ,η)) ∈ H(div; Ω)×Q . (2.6)

However, it is easy to see that, given any χ ∈ RM(Ω), (0, (χ,−χ|Γ,∇χ)) solves the homogeneous
system associated to (2.4), and therefore, in order to avoid these spurious solutions, we now look for
displacements u in the orthogonal complement of the rigid body motions. According to the foregoing
analysis, we arrive at the following dual-mixed variational formulation of (2.1): Find ((σ,ρ), (u,ϕ,γ))
∈ H×Q such that

A((σ,ρ), (τ ,χ)) + B((τ ,χ), (u,ϕ,γ)) = 0 ∀ (τ ,χ) ∈ H ,

B((σ,ρ), (v,ψ,η)) = −
∫

Ω
f · v + 〈g,ψ〉Γ ∀ (v,ψ,η) ∈ Q ,

(2.7)
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where
H := H(div; Ω)× RM(Ω) ,

and A : H×H→ R and B : H×Q→ R are the bilinear forms given by

A((ζ,%), (τ ,χ)) := a(ζ, τ ) +

∫
Ω
% · χ ∀ (ζ,%), (τ ,χ) ∈ H , (2.8)

and

B((τ ,χ), (v,ψ,η)) := b(τ , (v,ψ,η)) +

∫
Ω
χ · v ∀ (τ ,χ) ∈ H , ∀ (v,ψ,η) ∈ Q . (2.9)

The following lemmas are needed to establish the well-posedness of (2.7) and also to carry on the
announced a posteriori error analysis in Section 4.

Lemma 2.1. Let V := { (τ ,χ) ∈ H : B((τ ,χ), (v,ψ,η)) = 0 ∀ (v,ψ,η) ∈ Q }. Then there
holds

V = V × {0} , (2.10)

with

V :=
{
τ ∈ H(div; Ω) : div τ = 0 in Ω , τν = 0 on Γ , τ = τ t in Ω

}
, (2.11)

and there exists α > 0, independent of λ, such that

A((τ ,χ), (τ ,χ)) ≥ α ‖(τ ,χ)‖2H ∀ (τ ,χ) ∈ V .

Proof. See [28, Lemma 3.3].

Lemma 2.2. There exists β > 0, independent of λ, such that

sup
(τ ,χ)∈H
(τ ,χ) 6=0

|B((τ ,χ), (v,ψ,η)) |
‖(τ ,χ)‖H

≥ β ‖(v,ψ,η)‖Q ∀ (v,ψ,η) ∈ Q .

Proof. See [28, Lemma 3.4].

The well-posedness of the variational formulation (2.7) is stated as follows.

Theorem 2.1. There exists a unique solution ((σ,ρ), (u,ϕ,γ)) ∈ H×Q to (2.7). In addition, ρ = 0
and there exists C > 0, independent of λ, such that

‖(σ, (u,ϕ,γ))‖H(div; Ω)×Q ≤ C
{
‖f‖0,Ω + ‖g‖−1/2,Γ

}
. (2.12)

Proof. See [28, Theorem 3.1].

Actually, thanks to Lemmas 2.1 and 2.2, we can establish the following more general result.

Theorem 2.2. Given F̄ ∈ H′ and Ḡ ∈ Q′, there exists a unique ((σ̄, ρ̄), (ū, ϕ̄, γ̄)) ∈ H×Q such that

A((σ̄, ρ̄), (τ ,χ)) + B((τ ,χ), (ū, ϕ̄, γ̄)) = F̄
(
(τ ,χ)

)
∀ (τ ,χ) ∈ H ,

B((σ̄, ρ̄), (v,ψ,η)) = Ḡ
(
(v,ψ,η)

)
∀ (v,ψ,η) ∈ Q .

(2.13)

In addition, there exists C > 0, depending only on β, α, ‖a‖, and ‖b‖, such that

‖(σ̄, ρ̄)‖H + ‖(ū, ϕ̄, γ̄)‖Q ≤ C
{
‖F̄‖H′ + ‖Ḡ‖Q′

}
. (2.14)
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We end this section with the converse of the derivation of (2.7). Indeed, the following theorem
establishes that the unique solution of (2.7) solves the original boundary value problem (2.1). This
result will be used later on in Section 4.2 to prove the efficiency of the a posteriori error estimator.

Theorem 2.3. Let ((σ,ρ), (u,ϕ,γ)) ∈ H ×Q be the unique solution of (2.7). Then ρ = 0 in Ω,
divσ = −f in Ω, ∇u = C−1σ + γ in Ω (which yields u ∈ H1(Ω)), u = −ϕ on Γ, σ = σt in Ω,
γ = 1

2 (∇u− (∇u)t) in Ω (which yields σ = C ε(u)), and σ ν = g on Γ.

Proof. It suffices to apply integration by parts backwardly in (2.7) and then use suitable test functions.
Further details are omitted.

3 The mixed finite element scheme

We now recall from [28] the mixed finite element scheme for (2.7). As said there, we could define
this discrete scheme by utilizing any of the classical finite element subspaces available in the literature
(see, e.g. [15] and the references therein), or those that have emerged recently from the finite element
exterior calculus (see, e.g. [6], [7]). However, for simplicity of the presentation, we consider in what
follows the well known PEERS elements. To this end, we first let {Th}h>0 be a regular family of
triangulations of the polygonal region Ω̄ by triangles T of diameter hT with global mesh size h :=
max{hT : T ∈ Th }, such that they are quasi-uniform around Γ. In what follows, given an integer
` ≥ 0 and a subset S of R2, P`(S) denotes the space of polynomials defined in S of total degree
≤ `. Recall that, according to the notation convention explained in the introduction, we denote
P`(S) := [P`(S)]2. Furthermore, given T ∈ Th and x := (x1, x2)t a generic vector of R2, we let

RT0(T ) := span
{

(1, 0), (0, 1), (x1, x2)
}

be the local Raviart-Thomas space of order 0 (cf. [15], [38]),

and let curlt bT :=
(
∂bT
∂x2

,− ∂bT
∂x1

)
, where bT is the usual cubic bubble function on T . Then we define

the finite element subspaces Hσh , Qu
h , and Q

γ
h , associated with the unknowns σ, u, and γ, respectively,

as follows:

Hσh :=
{
τ h ∈ H(div; Ω) : ct τ h|T ∈ RT0(T )⊕ P0(T ) curlt bT ∀T ∈ Th , ∀ c ∈ R2

}
, (3.1)

Qu
h :=

{
vh ∈ L2(Ω) : vh|T ∈ P0(T ) ∀T ∈ Th

}
, (3.2)

and

Q
γ
h :=

{(
0 ηh
−ηh 0

)
: ηh ∈ C(Ω̄) , ηh|T ∈ P1(T ) ∀T ∈ Th

}
. (3.3)

Note here that Hσh × Qu
h × Q

γ
h constitutes the classical PEERS introduced in [4] for a mixed finite

element aproximation of the linear elasticity problem with Dirichlet boundary conditions. Next, in
order to set the finite dimensional subspace Q

ϕ
h associated with the unknown ϕ, we let Γh be the

partition of Γ inherited from the triangulation Th, and suppose, without loss generality, that the
numbers of edges of Γh is even. The case of an odd number of edges is easily reduced to the even
case (see [30, remark at the end of Section 5.3] for details). Then, we let Γ2h be the partition of Γ
arising by joining pairs of adjacent edges of Γh. Because of the assumptions on the triangulations, Γh
is automatically of bounded variation, and, therefore, so is Γ2h. Hence, we now define

Q
ϕ
h :=

{
ψh ∈ C(Γ) : ψh|e ∈ P1(e) ∀e edge of Γ2h

}
. (3.4)

It is important to remark at this point that the above choice of Q
ϕ
h , using the “double” partition Γ2h

instead of an independent partition Γĥ of Γ as in the original work [28], constitutes a clear simplification
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of the discrete analysis of our problem. In fact, thanks to the recent results obtained in [30, Section
5.3, particularly Lemma 5.2] (see also [25, Section 4.4]), the restriction on the mesh sizes given by
h ≤ C0 ĥ, with an unknown constant C0, which is required in [28, Lemmas 4.2 and 4.3] to prove the
discrete inf-sup condition for B, is not needed any more. Moreover, the aforementioned requirement
of quasi-uniformity of the triangulations around Γ, which is a key ingredient in [30], was removed
recently in [36, Sections 4 and 5] for the 2D case. However, we prefer to keep it here since the a
posteriori error analysis to be developed below can also be extended to three-dimensional problems,
for which that assumption is still necessary.

According to the foregoing analysis, we introduce the product spaces

Hh := Hσh × RM(Ω) and Qh := Qu
h ×Q

ϕ
h ×Q

γ
h ,

and consider the following Galerkin approximation of (2.7): Find ((σh,ρh), (uh,ϕh,γh)) ∈ Hh×Qh

such that

A((σh,ρh), (τ h,χh)) + B((τ h,χh), (uh,ϕh,γh)) = 0 ,

B((σh,ρh), (vh,ψh,ηh)) = −
∫

Ω
f · vh + 〈g,ψh〉Γ ,

(3.5)

for all ((τ h,χh), (vh,ψh,ηh)) ∈ Hh ×Qh. Concerning the analysis of (3.5) we remark that, besides
the advances arising from the results in [30, Section 5.3], the asymptotic equivalence of norms given
in [28, Lemma 4.4], which is actually taken from [24, Lemma 4.4], has also been improved lately to
the case of arbitrary mesh sizes (see [22, Lemma 4.9]). Consequently, instead of the original result
provided in [28, Theorem 4.1], the well-posedness of the Galerkin scheme (3.5) is now stated as follows.

Theorem 3.1. There exists a unique ((σh,ρh), (uh,ϕh,γh)) ∈ Hh×Qh solution of (3.5). Moreover,
there exist C , C̃ > 0, independent of h and λ, such that

‖σh‖div,Ω + ‖ρh‖0,Ω + ‖uh‖0,Ω + ‖ϕh‖1/2,Γ + ‖γh‖0,Ω ≤ C
{
‖f‖0,Ω + ‖g‖−1/2,Γ

}
, (3.6)

and
‖σ − σh‖div,Ω + ‖ρh‖0,Ω + ‖u− uh‖0,Ω + ‖ϕ−ϕh‖1/2,Γ + ‖γ − γh‖0,Ω

≤ C̃

{
dist(σ, Hσh ) + dist(u, Qu

h) + dist(ϕ, Q
ϕ
h ) + dist(γ, Q

γ
h )

}
,

(3.7)

where ((σ,0), (u,ϕ,γ)) ∈ H×Q is the unique solution of (2.7).

4 A residual-based a posteriori error estimator

In this section we derive reliable and efficient residual based a posteriori error estimators for (3.5).
We begin by introducing several notations. We let Eh be the set of all edges of the triangulation Th,
and given T ∈ Th, we let E(T ) be the set of its edges. Then we write Eh = Eh(Ω) ∪ Eh(Γ), where
Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. In what follows, he stands for
the length of a given edge e. Also, for each edge e ∈ Eh we fix a unit normal vector νe := (ν1, ν2)t,
and let se := (−ν2, ν1)t be the corresponding fixed unit tangential vector along e. However, when
no confusion arises, we simple write ν and s instead of νe and se, respectively. Now, let τ ∈ L2(Ω)
such that τ |T ∈ C(T ) on each T ∈ Th. Then, given T ∈ Th and e ∈ E(T ) ∩ Eh(Ω), we denote by [τ s]
the tangential jump of τ across e, that is [τ s] := (τ |T − τ |T ′)|e s, where T and T ′ are the triangles
of Th having e as a common edge. Similar definitions hold for the tangential jumps of scalar fields
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v ∈ L2(Ω) such that v|T ∈ C(T ) on each T ∈ Th. Finally, given scalar, vector and tensor valued fields
v, ϕ := (ϕ1,ϕ2) and τ := (τij), respectively we let

curl(v) :=

 ∂v
∂x2

− ∂v
∂x1

 , curl(ϕ) :=

 ∂ϕ1
∂x2

−∂ϕ1
∂x1

∂ϕ2
∂x2

−∂ϕ2
∂x1

 , and curl(τ ) :=

 ∂τ12
∂x1
− ∂τ11

∂x2

∂τ22
∂x1
− ∂τ21

∂x2

 .

Next, letting
(
(σh,ρh), (uh,ϕh,γh)

)
∈ Hh × Qh be the unique solution of (3.5), we define for

each T ∈ Th the a posteriori error indicator:

θ2
T := ‖f + divσh‖20,T + ‖σh − σt

h‖20,T + ‖ρh‖20,T + h2
T ‖curl

(
C−1σh + γh

)
‖20,T

+ h2
T ‖C−1σh + γh‖20,T +

∑
e∈E(T )∩Eh(Ω)

he ‖[(C−1σh + γh) s]‖20,e

+
∑

e∈E(T )∩Eh(Γ)

he

∥∥∥∥(C−1σh + γh) s +
dϕh
ds

∥∥∥∥2

0,e

+
∑

e∈E(T )∩Eh(Γ)

he ‖g − σh ν‖20,e +
∑

e∈E(T )∩Eh(Γ)

he ‖ϕh + uh‖20,e ,

(4.1)

and introduce the global a posteriori error estimator

θ :=

∑
T∈Th

θ2
T


1/2

.

Then, the following theorem constitutes the main result of this paper.

Theorem 4.1. Let ((σ,ρ), (u,ϕ,γ)) ∈ H×Q and ((σh,ρh), (uh,ϕh,γh)) ∈ Hh×Qh be the unique
solutions of (2.7) and (3.5), respectively. Then, there exists constants Crel > 0 and Ceff > 0,
independent of h, such that

Ceff θ ≤ ‖(σ,ρ)− (σh,ρh)‖H + ‖(u,ϕ,γ)− (uh,ϕh,γh)‖Q ≤ Crel θ . (4.2)

The efficiency of the global a posteriori error estimator (lower bound in (4.2)) is proved below in
Subsection 4.2, whereas the corresponding reliability (upper bound in (4.2)) is derived next.

4.1 Reliability of the a posteriori error estimator

We begin with the following preliminary estimate for the partial error ‖(σ,ρ)− (σh,ρh)‖H.

Lemma 4.1. Let Sh : H(div; Ω)→ R be the functional defined by

Sh(τ ) := a(σh, τ ) + b(τ , (uh,ϕh,γh)) ∀ τ ∈ H(div; Ω) ,

and let Sh|V be its restriction to V , the first component of the kernel V of B (cf. (2.11)). Then, there
exists C > 0, independent of h, such that

‖(σ,ρ) − (σh,ρh)‖H ≤ C
{
‖Sh|V ‖V ′ + ‖f + divσh‖0,Ω

+ ‖σh − σt
h‖0,Ω + ‖ρh‖0,Ω + ‖g − σh ν‖−1/2,Γ

}
,

(4.3)

and there holds Sh(τ h) = 0 for each τ h ∈ Hσh .
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Proof. We make use of a particular problem of the form (2.13). More precisely, let ((σ̄, ρ̄), (ū, ϕ̄, γ̄)) ∈
H×Q be the unique solution of problem (2.13) with F̄ ∈ H′ and Ḡ ∈ Q′ defined by

F̄ (τ ,χ) := 0 ∀ (τ ,χ) ∈ H and Ḡ(v,ψ,η) := B((σ,ρ)− (σh,ρh), (v,ψ,η)) ∀ (v,ψ,η) ∈ Q .

According to the second equation of (2.7) and the definition of B (cf. (2.9)), we easily find that

Ḡ(v,ψ,η) = −
∫

Ω
v ·
(
f + divσh

)
−
∫

Ω
σh : η −

∫
Ω
ρh · v + 〈g − σh ν,ψ〉Γ ,

which, noting that

∫
Ω
σh : η = 1

2

∫
Ω

(σh − σt
h) : η, yields

‖Ḡ‖Q′ ≤ C
{
‖f + divσh‖0,Ω + ‖σh − σt

h‖0,Ω + ‖ρh‖0,Ω + ‖g − σh ν‖−1/2,Γ

}
.

Then, the continuous dependence result (2.14) and the above estimate for ‖Ḡ‖Q′ imply

‖(σ̄, ρ̄)‖H ≤ C
{
‖f + divσh‖0,Ω + ‖σh − σt

h‖0,Ω + ‖ρh‖0,Ω + ‖g − σh ν‖−1/2,Γ

}
. (4.4)

On the other hand, a straightforward application of the triangle inequality gives

‖(σ,ρ) − (σh,ρh)‖H ≤ ‖(σ,ρ) − (σh,ρh) − (σ̄, ρ̄)‖H + ‖(σ̄, ρ̄)‖H , (4.5)

and hence, thanks to (4.4), it only remains to estimate ‖(σ,ρ) − (σh,ρh) − (σ̄, ρ̄)‖H. To this end,
we first observe from the second equation of (2.13) that (σ,ρ)− (σh,ρh)− (σ̄, ρ̄) belongs to V, the
kernel of operator B (cf. (2.10)). Hence, applying the ellipticity of A on V (cf. Lemma 2.1), we
obtain that

α ‖(σ,ρ)− (σh,ρh)− (σ̄, ρ̄)‖2H ≤ A
(
(σ,ρ)− (σh,ρh)− (σ̄, ρ̄), (σ,ρ)− (σh,ρh)− (σ̄, ρ̄)

)
≤ A

(
(σ,ρ)− (σh,ρh), (σ,ρ)− (σh,ρh)− (σ̄, ρ̄)

)
+ ‖A‖ ‖(σ̄, ρ̄)‖H ‖(σ,ρ)− (σh,ρh)− (σ̄, ρ̄)‖H ,

which, dividing by ‖(σ,ρ) − (σh,ρh) − (σ̄, ρ̄)‖H, taking supremum on V, and then recalling from
(2.11) (cf. Lemma 2.1) that V = V × {0}, gives

α ‖(σ,ρ)− (σh,ρh)− (σ̄, ρ̄)‖H ≤ sup
τ∈V
τ 6=0

A((σ,ρ)− (σh,ρh), (τ ,0))

‖τ‖div,Ω
+ ‖A‖ ‖(σ̄, ρ̄)‖H . (4.6)

Next, from the first equation of (2.7) we have

A((σ,ρ), (τ ,0)) = −B((τ ,0), (u,ϕ,γ)) = 0 ∀ τ ∈ V ,

and then, bearing in mind the definition of A (cf. (2.8)), we get

A((σ,ρ)− (σh,ρh), (τ ,0)) = −A((σh,ρh), (τ ,0)) = −a(σh, τ ) ∀ τ ∈ V ,

which, together with the fact that b(τ , (uh,ϕh,γh)) certainly vanishes for each τ ∈ V , yields

A((σ,ρ)− (σh,ρh), (τ ,0)) = −Sh(τ ) ∀ τ ∈ V . (4.7)

In this way, (4.3) follows directly from (4.4), (4.5), (4.6), and (4.7). Finally, it is quite clear from the
first equation of (3.5) that

0 = A((σh,ρh), (τ h,0)) + B((τ h,0), (uh,ϕh,γh))

= a(σh, τ h) + b(τ h, (uh,ϕh,γh)) = Sh(τ h) ∀ τ h ∈ Hσh ,

which completes the proof.
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We now aim to estimate

‖Sh|V ‖V ′ := sup
τ∈V
τ 6=0

Sh(τ )

‖τ‖div,Ω

in (4.3), for which, according to the null property of Sh provided by the previous theorem, we will
replace Sh(τ ) by Sh(τ−τ h) with a suitably chosen τ h ∈ Hσh depending each time on the given τ ∈ V .
To this end, we now let Ih : H1(Ω)→ Xh be the Clément interpolation operator (cf. [20]), where

Xh :=
{
vh ∈ C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th

}
. (4.8)

A vectorial version of Ih, say Ih : H1(Ω) → Xh := Xh ×Xh, which is defined componentwise by
Ih, is also required. The following lemma provides the local approximation properties of Ih. Analogue
estimates hold for the operator Ih.

Lemma 4.2. There exist c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there holds

‖v − Ih(v)‖0,T ≤ c1 hT ‖v‖1,∆(T ) ∀T ∈ Th

and

‖v − Ih(v)‖0,e ≤ c2 h
1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh(Ω) ∪ Eh(Γ) ,

where ∆(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅} and ∆(e) := ∪{T ′ ∈ Th : T ′ ∩ e 6= ∅}.

Proof. See [20].

The estimate for ‖Sh|V ‖V ′ is established as follows.

Lemma 4.3. Let ((σ,ρ), (u,ϕ,γ)) ∈ H×Q and ((σh,ρh), (uh,ϕh,γh)) ∈ Hh ×Qh be the unique
solutions of (2.7) and (3.5), respectively. Then, there exists C > 0, independent of h, such that

‖Sh|V ‖V ′ ≤ C

 ∑
T∈Th

θ̃2
T


1/2

, (4.9)

where
θ̃2
T := h2

T ‖curl
(
C−1σh + γh

)
‖20,T +

∑
e∈E(T )∩Eh(Ω)

he ‖[(C−1σh + γh) s]‖20,e

+
∑

e∈E(T )∩Eh(Γ)

he

∥∥∥∥(C−1σh + γh) s +
dϕh
ds

∥∥∥∥2

0,e

.
(4.10)

Proof. Given τ ∈ V (cf. (2.11)) we clearly have div τ = 0 in Ω, and hence there exists φ :=
(φ1, φ2) ∈ H1(Ω) such that

∫
Ω φ1 =

∫
Ω φ2 = 0 and τ = curlφ. Note that the conditions satisfied

by the components of φ guarantee that ‖φ‖1,Ω and |φ|1,Ω are equivalent. Then, we let φh ∈ Xh be
the Clément interpolant of φ, that is φh := Ih(φ), and define τ h := curlφh so that τ − τ h =
curl(φ − φh). In turn, it is easy to see that τ h belongs to Hσh , and therefore the null property
satisfied by Sh (cf. Lemma 4.1) implies that

Sh(τ ) = Sh(τ − τ h) = a(σh, τ − τ h) + b(τ − τ h, (uh,ϕh,γh)) ,
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which, in virtue of the definitions of a and b (cf. (2.5), (2.6)), gives

Sh(τ ) =

∫
Ω

(
C−1σh + γh) : curl(φ− φh) +

〈
curl(φ− φh)ν,ϕh

〉
Γ
. (4.11)

Next, since

curl(φ− φh)ν = − d

ds
(φ− φh) and

dϕh
ds
∈ L2(Γ) ,

we find, integrating by parts on Γ, that

〈curl(φ− φh)ν,ϕh〉Γ = −
〈
d

ds
(φ− φh),ϕh

〉
Γ

=

∫
Γ

dϕh
ds
· (φ− φh) . (4.12)

On the other hand, integrating by parts on each T ∈ Th, we obtain that∫
Ω

{
C−1 σh + γh

}
: curl(φ− φh) =

∑
T∈Th

∫
T

{
C−1 σh + γh

}
: curl(φ− φh)

=
∑
T∈Th

{
−
∫
T

curl
(
C−1 σh + γh

)
· (φ− φh) +

∫
∂T

(
C−1 σh + γh

)
s · (φ− φh)

}
= −

∑
T∈Th

∫
T

curl
(
C−1 σh + γh

)
· (φ− φh) +

∑
e∈Eh(Ω)

∫
e

[(
C−1 σh + γh

)
s
]
· (φ− φh)

+
∑

e∈Eh(Γ)

∫
e

(
C−1 σh + γh

)
s · (φ− φh) ,

which, together with (4.12), yields

Sh(τ ) = −
∑
T∈Th

∫
T

curl
(
C−1 σh + γh

)
· (φ− φh) +

∑
e∈Eh(Ω)

∫
e

[(
C−1 σh + γh

)
s
]
· (φ− φh)

+
∑

e∈Eh(Γ)

∫
e

{(
C−1 σh + γh

)
s +

dϕh
ds

}
· (φ− φh) .

(4.13)

Then, applying Cauchy-Schwarz inequality and the approximation properties of the Clément interpo-
lation operator Ih (cf. Lemma 4.2), and then using that the number of elements of ∆(T ) is bounded
independently of T ∈ Th, it follows that∣∣∣∣∣∣

∑
T∈Th

∫
T

curl
(
C−1 σh + γh

)
· (φ− φh)

∣∣∣∣∣∣ ≤ c1

∑
T∈Th

hT
∥∥curl

(
C−1 σh + γh

)∥∥
0,T
‖φ‖1,∆(T )

≤ C

∑
T∈Th

h2
T

∥∥curl
(
C−1 σh + γh

)∥∥2

0,T


1/2

‖φ‖1,Ω .

(4.14)

Proceeding analogously, and now employing that the number of elements of ∆(e) is bounded indepen-
dently of e ∈ Eh(Ω) ∪ Eh(Γ), we find that∣∣∣∣∣∣

∑
e∈Eh(Ω)

∫
e

[(
C−1 σh + γh

)
s
]
· (φ− φh)

∣∣∣∣∣∣ ≤ C
 ∑
e∈Eh(Ω)

he
∥∥[(C−1 σh + γh

)
s
]∥∥2

0,e


1/2

‖φ‖1,Ω , (4.15)
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and ∣∣∣∣∣∣
∑

e∈Eh(Γ)

∫
e

{(
C−1 σh + γh

)
s +

dϕh
ds

}
· (φ− φh)

∣∣∣∣∣∣
≤ C

 ∑
e∈Eh(Γ)

he

∥∥∥∥(C−1 σh + γh
)
s +

dϕh
ds

∥∥∥∥2

0,e


1/2

‖φ‖1,Ω .

(4.16)

Finally, (4.13), (4.14), (4.15), and (4.16), together with the fact that

‖φ‖1,Ω ≤ c |φ|1,Ω = ‖curlφ‖0,Ω = ‖τ‖0,Ω = ‖τ‖div,Ω ,

imply (4.9) and complete the proof.

Besides Lemmas 4.1 and 4.3, and in order to complete the upper bound for ‖(σ,ρ)− (σh,ρh)‖H
in terms of local quantities, we need to estimate the boundary term ‖g−σh ν‖−1/2,Γ. In fact, we first
observe that taking (vh,ηh) = (0,0) in (3.5), we arrive at

〈σh ν − g,ψh〉Γ = 0 ∀ψh ∈ Q
ϕ
h ,

which says that each component of (σh ν − g) is L2(Γ)-orthogonal to the continuous piecewise linear
functions on the double partition Γ2h of Γ. Consequently, applying [17, Theorem 2] and recalling that
Γh and Γ2h are of bounded variation, we obtain

‖g − σh ν‖2−1/2,Γ ≤ c
∑

e∈Eh(Γ)

he ‖g − σh ν‖20,e . (4.17)

In this way, the a posteriori error estimate for ‖(σ,ρ)− (σh,ρh)‖H follows straightforwardly from
Lemmas 4.1 and 4.3, and (4.17). More precisely, we have the following result.

Lemma 4.4. Let ((σ,ρ), (u,ϕ,γ)) ∈ H×Q and ((σh,ρh), (uh,ϕh,γh)) ∈ Hh ×Qh be the unique
solutions of (2.7) and (3.5), respectively. Then, there exists a constant C > 0 independent of h, such
that

‖(σ,ρ)− (σh,ρh)‖H ≤ C

∑
T∈Th

θ̂ 2
T


1/2

, (4.18)

where

θ̂ 2
T := θ̃2

T + ‖f + divσh‖20,T + ‖σh − σt
h‖20,T + ‖ρh‖20,T +

∑
e∈E(T )∩Eh(Γ)

he ‖g − σh ν‖20,e (4.19)

for each T ∈ Th, with θ̃2
T defined by (4.10).

We proceed next to obtain the corresponding upper bound for ‖(u,ϕ,γ) − (uh,ϕh,γh)‖. For
this purpose, we need some additional preliminary results concerning the Helmholtz decomposition of
H(div; Ω) and the approximation properties of the Raviart-Thomas interpolation operator. We begin
with the following lemma.

Lemma 4.5. For each τ ∈ H(div; Ω) there exist ζ ∈ H1(Ω) and φ := (φ1, φ2)t ∈ H1(Ω), with∫
Ω φ1 =

∫
Ω φ2 = 0, such that τ = ζ + curlφ in Ω and

‖ζ‖1,Ω + ‖φ‖1,Ω ≤ C ‖τ‖div,Ω , (4.20)

where C is a positive constant independent of τ .
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Proof. It is an adaptation of the analysis from [26, Section 3.2.2]. See also [21, Lemma 3.4] for full
details.

On the other hand, we also need to introduce the space of pure Raviart-Thomas tensors of order
0, that is

RTh :=
{
τ h ∈ H(div; Ω) : ct τ h|T ∈ RT0(T ) ∀T ∈ Th , ∀ c ∈ R2

}
,

which is clearly contained in Hσh (cf. (3.1)). Then, we let Πh : H1(Ω) → RTh be the usual Raviart-
Thomas interpolation operator, which is characterized by the identity∫

e
Πh(ζ)ν =

∫
e
ζ ν ∀ e ∈ Th , ∀ ζ ∈ H1(Ω) . (4.21)

It is easy to show, using (4.21), that

div(Πh(ζ)) = Ph(div ζ) ∀ ζ ∈ H1(Ω) , (4.22)

where Ph is the L2(Ω)-orthogonal projector onto Qu
h (cf. (3.2)). In addition, it is well known (see, e.g.

[15], [25, Lemmas 3.16 and 3.18], and [38]) that Πh satisfies the following approximation properties

‖ζ −Πh(ζ)‖0,T ≤ C hT ‖ζ‖1,T ∀T ∈ Th , ∀ ζ ∈ H1(Ω) , (4.23)

and
‖(ζ −Πh(ζ))ν‖0,e ≤ C h1/2

e ‖ζ‖1,Te ∀ e ∈ Th, ∀ ζ ∈ H1(Ω) , (4.24)

where Te in (4.24) is a triangle of Th containing e on its boundary.

We are now in a position to establish the remaining a posteriori error estimate.

Lemma 4.6. Let ((σ,ρ), (u,ϕ,γ)) ∈ H×Q and ((σh,ρh), (uh,ϕh,γh)) ∈ Hh ×Qh be the unique
solutions of (2.7) and (3.5), respectively. Then, there exists a constant C > 0, independent of h, such
that

‖(u,ϕ,γ)− (uh,ϕh,γh)‖Q ≤ C

∑
T∈Th

θ2
T


1/2

, (4.25)

where θ2
T is the complete a posteriori error indicator defined by (4.1).

Proof. We begin by applying the continuous inf-sup condition for B (cf. Lemma 2.2), which yields

β ‖(u,ϕ,γ)− (uh,ϕh,γh)‖Q ≤ sup
(τ ,χ)∈H
(τ ,χ)6=0

B((τ ,χ), (u,ϕ,γ)− (uh,ϕh,γh))

‖(τ ,χ)‖H
. (4.26)

Next, using from the first equation of (2.7) that B((τ ,χ), (u,ϕ,γ)) = −A((σ,ρ), (τ ,χ)), and then
substracting and adding (σh,ρh) in the first component, we find that for each (τ ,χ) ∈ H there holds

B((τ ,χ), (u,ϕ,γ)− (uh,ϕh,γh)) = −A((σ,ρ)− (σh,ρh), (τ ,χ))

−A((σh,ρh), (τ ,χ)) − B((τ ,χ), (uh,ϕh,γh)) .
(4.27)

Then, noting that
∫

Ω(uh + ρh) · χ = 0, which follows from the first equation of (3.5) when taking
χh = χ and τ h = 0, and bearing in mind the functional Sh : H(div; Ω)→ R defined in the statement
of Lemma 4.1, we obtain that for each (τ ,χ) ∈ H there holds

−A((σh,ρh), (τ ,χ)) − B((τ ,χ), (uh,ϕh,γh)) = −a(σh, τ ) − b(τ , (uh,ϕh,γh)) =: −Sh(τ ) ,
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whence (4.27) becomes

B((τ ,χ), (u,ϕ,γ)− (uh,ϕh,γh)) = −A((σ,ρ)− (σh,ρh), (τ ,χ)) − Sh(τ ) ∀ (τ ,χ) ∈ H .

Thus, replacing the above expression back into (4.26) and using the boundedness of A (with constant
‖A‖), we easily deduce that

β ‖(u,ϕ,γ)− (uh,ϕh,γh)‖Q ≤ ‖A‖ ‖(σ,ρ)− (σh,ρh)‖H + ‖Sh‖H(div; Ω)′ (4.28)

It remains to bound ‖Sh‖H(div; Ω)′ on the right hand side of (4.28), for which we appeal to the Helmholtz

decompositions from Lemma 4.5. In other words, given τ ∈ H(div; Ω), we let ζ ∈ H1(Ω), φ ∈ H1(Ω),
and C a positive constant independent of τ , such that τ = ζ + curlφ in Ω and

‖ζ‖1,Ω + ‖φ‖1,Ω ≤ C ‖τ‖div,Ω . (4.29)

Then, we introduce

φh := Ih(φ) ∈ Xh and τ h := Πh(ζ) + curl(φh) ∈ RTh ⊆ Hσh ,

which yields

τ − τ h = ζ − Πh(ζ) + curl
(
φ− φh

)
.

It follows using (4.22) that

div
(
τ − τ h

)
=
(
I− Ph

)
(div ζ) =

(
I− Ph

)
(div τ ) ,

which is L2(Ω)-orthogonal to Qu
h , and hence, taking into account from Lemma 4.1 the null property

satisfied by Sh, we can write that

Sh(τ ) = Sh(τ − τ h) = Sh
(
ζ − Πh(ζ)

)
+ Sh

(
curl

(
φ− φh

))
, (4.30)

where, recalling that Sh(τ ) = a(σh, τ ) + b(τ , (uh,ϕh,γh)), we have

Sh
(
ζ − Πh(ζ)

)
=

∫
Ω

(
C−1σh + γh

)
:
(
ζ − Πh(ζ)

)
+ 〈
(
ζ − Πh(ζ)

)
ν,ϕh〉Γ ,

and

Sh
(
curl

(
φ− φh

))
=

∫
Ω

(
C−1σh + γh

)
: curl

(
φ− φh

)
+ 〈curl

(
φ− φh

)
ν,ϕh〉Γ .

The estimate for the latter term proceeds exactly as in the proof of Lemma 4.3, which gives, using
now (4.29), that ∣∣Sh(curl

(
φ− φh

))∣∣ ≤ C

∑
T∈Th

θ̃2
T


1/2

‖τ‖div,Ω , (4.31)

with θ̃2
T defined by (4.10). In turn, for the former term we first notice that the fact that ζ belongs to

H1(Ω) guarantees that
(
ζ − Πh(ζ)

)
ν ∈ L2(Γ), and then, utilizing additionally the characterization

(4.21), we get

Sh
(
ζ − Πh(ζ)

)
=

∫
Ω

(
C−1σh + γh

)
:
(
ζ − Πh(ζ)

)
+

∑
e∈Eh(Γ)

∫
e

(
ζ − Πh(ζ)

)
ν ·
(
ϕh + uh

)
. (4.32)
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In this way, employing the Cauchy-Schwarz inequality, the approximation properties (4.23) and (4.24),
and the estimate (4.29), we deduce from (4.32) that

∣∣Sh(ζ − Πh(ζ)
)∣∣ ≤ C

∑
T∈Th

h2
T ‖C−1σh + γh‖20,T +

∑
e∈Eh(Γ)

he ‖ϕh + uh‖20,e


1/2

‖τ‖div,Ω . (4.33)

Finally, it follows from (4.30), (4.31), and (4.33) that

‖Sh‖H(div; Ω)′ ≤ C

∑
T∈Th

(
θ̃2
T + h2

T ‖C−1σh + γh‖20,T
)

+
∑

e∈Eh(Γ)

he ‖ϕh + uh‖20,e


1/2

,

which, together with (4.28) and the estimate for ‖(σ,ρ) − (σh,ρh)‖H given by Lemma 4.4, yields
(4.25) and completes the proof.

We end this section by remarking that the reliability of θ, that is the upper bound in (4.2), is a
straightforward consequence of Lemmas 4.4 and 4.6.

4.2 Efficiency of the a posteriori error estimators

The goal of this section is to show the efficiency of our a posteriori error estimator θ. In other words,
we provide upper bounds depending on the actual errors for the nine terms defining the local indicator
θ2
T (cf. (4.1)). We begin with the first three ones appearing there. In fact, since divσ = −f in Ω, we

easily see that
‖f + divσh‖20,T = ‖div(σ − σh)‖20,T ≤ ‖σ − σh‖2div,T . (4.34)

Next, adding and substracting σ, and using that σ = σt in Ω, we obtain

‖σh − σt
h‖20,T ≤ 4 ‖σ − σh‖20,T . (4.35)

Finally, since actually ρ = 0 (cf. Theorem 2.1), it is clear that

‖ρh‖20,T = ‖ρ− ρh‖20,T . (4.36)

In what follows we give the corresponding upper bounds for the remaining terms in (4.1). Since
most of these estimates are already available in the literature or can be easily derived from related
ones (see, e.g. [16], [18], [21], [26], and [29]), we either refer to the corresponding proofs or sketch
them. The main techniques involved include the localization technique based on triangle-bubble and
edge-bubble functions, together with extension operators, discrete trace and inverse inequalities. For
a better understanding of them, we now introduce further notations and preliminary results. Given
T ∈ Th and e ∈ E(T ), we let ψT and ψe be the usual triangle-bubble and edge-bubble functions,
respectively (see [41, eqs. (1.5) and (1.6)]), which satisfy:

ii) ψT ∈ P3(T ), ψT = 0 on ∂T , supp(ψT ) ⊆ T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), ψe = 0 on ∂T \ e, supp(ψe) ⊆ we := ∪{T ′ ∈ Th : e ∈ E(T ′)}, and 0 ≤ ψe ≤ 1 in
we.

We also know from [40] that, given k ∈ N∪{0}, there exists an extension operator L : C(e)→ C(T )
that satisfies L(p) ∈ Pk(T ) and L(p)|e = p for all p ∈ Pk(e). Additional properties of ψT , ψe and L
are collected in the following lemma.
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Lemma 4.7. Given k ∈ N∪{0}, there exist positive constants c1, c2 and c3, depending only on k and
the shape regularity of the triangulations (minimun angle condition), such that for each T ∈ Th and
e ∈ E(T ), there hold

‖q‖20,T ≤ c1‖ψ1/2
T q‖20,T ∀q ∈ Pk(T ) (4.37)

‖p‖20,e ≤ c2‖ψ1/2
e p‖20,e ∀p ∈ Pk(e) (4.38)

and

‖ψ1/2
e L(p)‖20,T ≤ c3 he‖p‖20,e ∀p ∈ Pk(e) (4.39)

Proof. See [40, Lemma 1.3].

The following inverse and discrete trace inequalities are also employed.

Lemma 4.8. Let k, l, m ∈ N∪ {0} such that l ≤ m. Then there exists c > 0, depending only on k, l,
m and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−mT |q|l,T ∀ q ∈ Pk(T ) . (4.40)

Proof. See [19, Theorem 3.2.6].

Lemma 4.9. There exists C > 0, depending only on the shape regularity of the triangulations, such
that for each T ∈ Th and e ∈ E(T ), there holds

‖v‖20,e ≤ C
{
h−1
e ‖v‖20,T + he |v|21,T

}
∀ v ∈ H1(T ) . (4.41)

Proof. See [1, Theorem 3.10] or [3, eq. (2.4)].

The upper bounds for the terms involving only the tensor C−1σh + γh, whose proofs make use of
the techniques and results described above, are given next.

Lemma 4.10. There exists C > 0, independent of h and λ, such that for each T ∈ Th there holds

h2
T ‖curl (C−1σh + γh)‖20,T ≤ C

{
‖σ − σh‖20,T + ‖γ − γh‖20,T

}
.

Proof. See [18, Lemma 6.3] or [11, Lemma 4.7].

Lemma 4.11. There exists C > 0, independent of h and λ, such that for each T ∈ Th there holds

h2
T ‖C−1σh + γh‖20,T ≤ C

{
‖u− uh‖20,T + h2

T ‖σ − σh‖20,T + h2
T ‖γ − γh‖20,T

}
.

Proof. See [18, Lemma 6.6].

Lemma 4.12. There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Ω) there holds

he ‖[(C−1σh + γh)s]‖20,e ≤ C
∑
T ⊆ωe

{
‖σ − σh‖20,T + ‖γ − γh‖20,T

}
,

where ωe := ∪
{
T ′ ∈ Th : e ∈ E(T ′)

}
.

Proof. See [18, Lemma 6.4].
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The upper bound for the term involving the tensor C−1σh + γh and the tangential derivative of
ϕh is given now.

Lemma 4.13. There exists C > 0, independent of h and λ, such that∑
e∈Eh(Γ)

he

∥∥∥∥(C−1 σh + γh) s +
dϕh
ds

∥∥∥∥2

0,e

≤ C

 ∑
e∈Eh(Γ)

{
‖σ − σh‖20,Te + ‖γ − γh‖20,Te

}
+ ‖ϕ−ϕh‖21/2,Γ

 ,

where, given e ∈ Eh(Γ), Te is the triangle of Th having e as an edge.

Proof. We refer to [26, Lemma 20] where this result was established and proved. The proof makes use
of the vector version of the extension operator L : C(e)→ C(T ), the fact that ∇u = C−1 σ + γ in Ω,
the boundedness of the tangential derivative d

ds : H1/2(Γ) → H−1/2(Γ), the inverse and the Cauchy-
Schwarz inequalities, and the bound for h2

Te
‖curl (C−1σh + γh)‖20,Te provided by Lemma 4.10.

While the estimate given by Lemma 4.13 is of non local character, it certainly suffices to conclude
the efficiency of θ. However, the following lemma establishes that, under an additional regularity
assumption on ϕ, a corresponding local estimate can also be obtained.

Lemma 4.14. Assume that ϕ|e ∈ H1(e) for each e ∈ Eh(Γ). Then there exists C > 0, independent
of h and λ, such that for each e ∈ Eh(Γ) there holds

he

∥∥∥∥(C−1 σh + γh) s +
dϕh
ds

∥∥∥∥2

0,e

≤ C

{
‖σ − σh‖20,Te + ‖γ − γh‖20,Te + he

∥∥∥∥ dds(ϕ−ϕh)

∥∥∥∥2

0,e

}
,

where Te is the triangle of Th having e as an edge.

Proof. See [26, Lemma 21].

We derive now the upper bound for the term concerning the Neumann boundary condition on Γ.
To this end, and for simplicity, we assume that g is piecewise polynomial on Γ. Otherwise, one would
proceed as in the proof of related results by adding and substracting a suitable projection of g onto a
polynomial space (see, e.g. [26, Lemma 23]).

Lemma 4.15. There exists C > 0, independent of h, such that for each e ∈ Eh(Γ) there holds

he ‖g − σh ν‖20,e ≤ C
{
‖σ − σh‖20,T + h2

T ‖div(σ − σh)‖20,T
}
, (4.42)

where T is the triangle of Th having e as an edge.

Proof. Given e ∈ Eh(Γ), we let T be the triangle of Th having e as an edge, define ve := g − σh ν
on e, and consider the vector version L of the extension operator L : C(e) → C(T ). Then, applying
(4.38), recalling that ψe = 0 on ∂T\e, extending ψe L(ve) by zero in Ω\T so that the resulting function
belongs to H1(Ω), and replacing the datum g by σ ν on Γ, we get

‖ve‖20,e ≤ c2

∫
e
ψe ve ·

(
g − σh ν

)
= c2〈(σ − σh)ν, ψe L(ve)〉Γ .

17



Hence, integrating by parts in Ω, and then employing the Cauchy-Schwarz inequality, the inverse
estimate (4.40), and the bound given by (4.39), we get

‖ve‖20,e ≤ c2

{∫
T
ψe L(ve) · div(σ − σh) +

∫
T

(σ − σh) : ∇
(
ψe L(ve)

)}
≤ C

{
‖div(σ − σh)‖0,T + h−1

T ‖σ − σh‖0,T
}
‖ψe L(ve)‖0,T

≤ C h1/2
e

{
‖div(σ − σh)‖0,T + h−1

T ‖σ − σh‖0,T
}
‖ve‖0,e ,

which, after minor manipulations and using that he ≤ hT , yields (4.42) and completes the proof.

The proof of efficiency of θ is completed with the following result.

Lemma 4.16. There exists C > 0, independent of h, such that for each e ∈ Eh(Γ) there holds

he ‖ϕh + uh‖20,e ≤ C
{
h2
T ‖σ − σh‖20,T + h2

T ‖γ − γh‖20,T + ‖u− uh‖20,T + he ‖ϕ−ϕh‖20,e
}
,

where T is the triangle of Th having e as an edge.

Proof. Adding and substracting ϕ = −u on Γ, and then employing the discrete trace inequality
(4.41) (cf. Lemma 4.9), we obtain for each e ∈ Eh(Γ)

he ‖ϕh + uh‖20,e ≤ 2he

{
‖ϕh −ϕ‖20,e + ‖u− uh‖20,e

}
≤ C

{
he ‖ϕh −ϕ‖20,e + ‖u− uh‖20,T + h2

T |u|21,T
}
,

(4.43)

where the last term uses that he ≤ hT and that uh is piecewise constant (cf. (3.2)). Then, using that
∇u = C−1σ + γ in Ω, adding and substracting C−1σh + γh, and employing the upper bound from
Lemma 4.11, we find that

h2
T |u|21,T = h2

T ‖C−1σ + γ‖20,T ≤ 2h2
T

{
‖σ − σh‖20,T + ‖γ − γh‖20,T + ‖C−1σh + γh‖20,T

}
≤ C

{
h2
T ‖σ − σh‖20,T + h2

T ‖γ − γh‖20,T + ‖u− uh‖20,T
}
.

(4.44)

Finally, (4.43) and (4.44) yield the required estimate and finish the proof.

5 Numerical results

In this section we present some numerical results confirming the reliability and efficiency of the a
posteriori error estimator θ analyzed in Section 4, and illustrating the performance of the associated
adaptive algorithm. We begin by introducing additional notations. The variable N stands for the
number of degrees of freedom defining the finite element subspaces Hh and Qh (equivalently, the
number of unknowns of (3.5)), and the individual and global errors are denoted by:

e(σ) := ‖σ − σh‖div,Ω , e(ρ) := ‖ρh‖0,Ω , e(u) := ‖u− uh‖0,Ω ,

e(ϕ) := ‖ϕ−ϕh‖1/2,Γ , e(γ) := ‖γ − γh‖0,Ω , and

e :=
{

[e(σ)]2 + [e(ρ)]2 + [e(u)]2 + [e(ϕ)]2 + [e(γ)]2
}1/2

,
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where ((σ,0), (u,ϕ,γ)) ∈ H×Q and ((σh,ρh), (uh,ϕh,γh)) ∈ Hh×Qh are the unique solutions of
(2.7) and (3.5), respectively. Also, we define the effectivity index

eff(θ) := e/θ .

In turn, we let r(σ), r(ρ), r(u), r(ϕ), r(γ), and r be the experimental rates of convergence given by

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(ρ) :=

log(e(ρ)/e′(ρ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(ϕ) :=
log(e(ϕ)/e′(ϕ))

log(h/h′)
, r(γ) :=

log(e(γ)/e′(γ))

log(h/h′)
, and r :=

log
(
e/e′

)
log(h/h′)

,

where h and h′ denote two consecutive meshsizes with errors e and e′, respectively. However,
when the adaptive algorithm is applied (see details below), the expression log(h/h′) is replaced by
− 1

2 log(N/N ′), where N and N ′ denote the corresponding degrees of freedom of each triangulation.

In what follows we describe the examples to be considered, which are basically the same ones
employed in [28]. In Example 1 we consider the Young modulus E = 1 and the Poisson ratio ν =
0.4999, which yields the Lamé parameters λ := E ν

(1+ν) (1−2 ν) = 1666.4444 and µ := E
2(1+ν) = 0.3333.

Then, we take the square domain Ω := ]− 1/2, 1/2[ 2 and choose f and g so that the exact solution u
is given by the first column of the fundamental solution at x0 := (1, 0)t, that is

u(x) :=

{
− (λ+ 3µ)

4πµ (λ+ 2µ)
log ‖x− x0‖ I +

(λ+ µ)

4πµ (λ+ 2µ)

(x− x0) (x− x0)t

‖x− x0‖2

} (
1
0

)
∀x ∈ Ω .

In particular, f = 0 and u is smooth in a neighborhood of Ω̄, whence [28, Theorem 4.2] yields an a
priori rate of convergence of O(h). This fact was confirmed by the numerical results provided in [28].

Next, in Example 2 we consider the same Lamé parameters from Example 1, take the L-shaped
domain Ω := ] − 1, 1[ 2 \ [0, 1]2, and choose f and g so that the exact solution u is given, in polar
coordinates, by

u(r, θ) = r5/3 sin((2θ − π)/3)

(
1
1

)
∀ (r, θ) ∈ Ω .

Note in this case that the partial derivatives of u, of order ≥ 2, are singular at the origin. Moreover,
because of the power of r, we find that f := −divσ belongs to H2/3(Ω), whence [28, Theorem
4.2] yields in this case an a priori rate of convergence of O(h2/3). This fact was also confirmed by
the numerical results provided in [28]. According to the preceding remarks, this example is utilized
to illustrate the behavior of the adaptive algorithm associated with θ, which applies the following
procedure from [41]:

1) Start with a coarse mesh Th.

2) Solve the discrete problem (3.5) for the actual mesh Th.

3) Compute the error indicators θT on each triangle T ∈ Th.

4) Evaluate stopping criterion and decide to finish or go to next step.

5) Use blue-green procedure to refine each T ′ ∈ Th whose local error indicator θT ′ satisfies

θT ′ ≥
1

2
max

{
θT : T ∈ Th

}
.
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6) Define resulting mesh as actual mesh Th, and go to step 2.

The numerical results shown below were obtained using a MATLAB code. In Tables 5.1 and 5.2 we
display the convergence history of our mixed finite element scheme (3.5) as applied to Example 1 for a
finite sequence of quasi-uniform triangulations of Ω. While this example was already considered in [28,
Section 6], the novelty now is certainly the computation of the effectivity indexes. Indeed, we notice
from the last column of Table 5.2 that the effectivity indexes eff(θ) remain always in a neighborhood
of 0.15, which illustrates the reliability and efficiency of θ in the case of a regular solution. In turn, as
previously observed in [28, Section 6], it is clear from the experimental rates of convergence shown in
these tables that the O(h) predicted by [28, Theorem 4.2] when δ = 1 is attained in all the unknowns
of this example.

Next, in Tables 5.3 up to 5.6 we provide the convergence history of the quasi-uniform and adaptive
refinements, as applied to Example 2. We notice in the quasi-uniform case that r(σ) oscillates around
2/3, whence, being e(σ) the dominant component of the total error e, this oscillation is also reflected
in the global rate of convergence r. In addition, it is clear from these tables that the total errors of
the adaptive scheme decrease faster than those obtained by the quasi-uniform one, which is confirmed
by the global experimental rates of convergence provided in Table 5.6. This fact becomes also evident
from Figure 5.1, mainly from N ∼= 1E + 04 on, where we display e vs. N for both refinements.
Furthermore, it is quite straightforward from the values of r in Table 5.6 that the adaptive method is
able to recover the quasi-optimal rate of convergence O(h) for e. In turn, the reliability and efficiency
of θ is clearly confirmed by the effectivity indexes from Table 5.6 (most of them around 0.30) for this
example with a non-smooth solution. Intermediate meshes obtained with the adaptive refinement are
displayed in Figure 5.2. As expected, the method is able to recognize the origin as a singularity of
the solution of this example. Finally, in order to illustrate the accurateness of the proposed mixed
method and the adaptive scheme induced by θ, several components of the approximate (left) and exact
(right) solutions of Example 2 are displayed in Figures 5.3 up to 5.5. Note here that the values of ϕ
and ϕh on Γ are depicted along a straight line beginning at the point (−1,−1) and then continuing
counterclockwise.

h N e(σ) r(σ) e(u) r(u)

1/8 1044 3.364E−02 − 1.087E−02 −
1/12 2284 2.159E−02 1.094 7.206E−03 1.014
1/16 4004 1.595E−02 1.052 5.396E−03 1.005
1/24 8884 1.051E−02 1.029 3.594E−03 1.002
1/32 15684 7.845E−03 1.017 2.695E−03 1.001
1/48 35044 5.208E−03 1.010 1.796E−03 1.000
1/64 62084 3.899E−03 1.007 1.347E−03 1.000
1/96 139204 2.595E−03 1.004 8.980E−04 1.000
1/128 247044 1.944E−03 1.003 6.735E−04 1.000
1/192 554884 1.295E−03 1.002 4.490E−04 1.000
1/256 985604 9.711E−04 1.001 3.367E−04 1.000

Table 5.1: Convergence history for σ and u (Example 1)
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N e(ϕ) r(ϕ) e(γ) r(γ) e r eff(θ)

1044 3.642E−02 − 2.387E−02 − 5.609E−02 − 0.2271
2284 1.605E−02 2.021 1.234E−02 1.628 3.046E−02 1.506 0.1916
4004 9.025E−03 2.000 7.851E−03 1.570 2.066E−02 1.350 0.1765
8884 4.126E−03 1.930 4.220E−03 1.531 1.258E−02 1.223 0.1642
15684 2.404E−03 1.877 2.731E−03 1.513 9.058E−03 1.142 0.1592
35044 1.140E−03 1.841 1.482E−03 1.508 5.818E−03 1.092 0.1548
62084 6.765E−04 1.814 9.610E−04 1.506 4.289E−03 1.060 0.1529
139204 3.267E−04 1.795 5.220E−04 1.505 2.814E−03 1.040 0.1512
247044 1.957E−04 1.782 3.386E−04 1.505 2.095E−03 1.026 0.1504
554884 9.536E−05 1.773 1.840E−04 1.504 1.386E−03 1.018 0.1497
985604 5.737E−05 1.766 1.194E−04 1.503 1.036E−03 1.012 0.1494

Table 5.2: Convergence history for ϕ, γ, e, and effectivity index (Example 1)
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Modélisation Mathématique et Analyse Numérique, vol. 9, pp. 77-84, (1975).
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Figure 5.1: Example 2, total error e vs. N for the quasi-uniform and adaptive schemes

Figure 5.2: Example 2: adapted meshes for N ∈ {6636, 24695, 60717, 136714}
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Figure 5.3: Approximate and exact σ11 (N = 1453383, Example 2)

Figure 5.4: Approximate and exact u2 (N = 1453383, Example 2)
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