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Abstract

This paper deals with the analysis of a new augmented mixed finite element method in terms of
vorticity, velocity and pressure, for the Brinkman problem with non-standard boundary conditions.
The approach is based on the introduction of Galerkin least-squares terms arising from the consti-
tutive equation relating the aforementioned unknowns, and from the incompressibility condition.
We show that the resulting augmented bilinear form is continuous and elliptic which, thanks to
the Lax-Milgram Theorem, and besides proving the well-posedness of the continuous formulation,
ensures the solvability and stability of the Galerkin scheme with any finite element subspace of
the continuous space. In particular, Raviart-Thomas elements of any order k ≥ 0 for the velocity
field, and piecewise continuous polynomials of degree k+ 1 for both the vorticity and the pressure,
can be utilized. A priori error estimates and the corresponding rates of convergence are also given
here. Next, we derive two reliable and efficient residual-based a posteriori error estimators for this
problem. The ellipticity of the bilinear form together with the local approximation properties of
the Clément interpolation operator are the main tools for showing the reliability. In turn, inverse
inequalities and the localization technique based on triangle-bubble and edge-bubble functions are
utilized to show the efficiency. Finally, several numerical results illustrating the good performance
of the method, confirming the properties of the estimators, and showing the behaviour of the
associated adaptive algorithms, are reported.
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†Departamento de Matemática, Facultad de Ciencias, Universidad del B́ıo-B́ıo, Casilla 5-C, Concepción, Chile, email:

vanaya@ubiobio.cl
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1 Introduction

We are interested in the numerical approximation of the velocity–vorticity–pressure formulation of the
linear Brinkman (or generalized Stokes) problem, typically encountered after time discretizations of
transient Stokes equations governing the motion of an incompressible fluid. Many numerical methods
have been introduced for the generalized Stokes problem in the last few years, most of them based
on mixed finite element formulations and making extensive use of diverse stabilization techniques. In
particular, a continuous penalty method has been proposed and analyzed in [11]. Also, a pressure
gradient stabilization method for the generalized Stokes problem has been introduced in [39]. In the
context of mixed finite elements, we cite [12], where a variational formulation that can be recast as
a twofold saddle point problem is introduced and analyzed. The approach in [12] is based on the
introduction of the flux and the tensor gradient of the velocity as further unknowns. The discrete
method is based on Raviart–Thomas spaces of order zero to approximate the flux and piecewise con-
stant functions to approximate the velocity and the pressure. In that contribution the authors prove
that the continuous and discrete formulations are well-posed, and derive the associated a priori error
analysis and a posteriori error estimates based on local problems. In [36], the pseudostress and the
trace-free velocity gradient are introduced as auxiliary unknowns and a pseudostress-velocity formu-
lation is considered, for which existence, uniqueness, and error estimates are derived. More recently,
dual-mixed methods based on the velocity-pseudostress and pseudostress have been introduced in [4]
and [27], respectively, for the generalized Stokes problem. In the former, the approach from [30] (see
also [31]) is adapted to propose an augmented mixed method in terms of velocity and pseudostress,
for which optimal error estimates are proved. On the other hand, in [27], a formulation based only on
the pseudostress is proposed for the Brinkman problem, thus simplifying and improving the analysis
from [4]. The results in [27] include a priori and a posteriori error analyses of the resulting Galerkin
scheme. A considerable amount of methods have been introduced for the numerical study of the Stokes
and Navier–Stokes equations formulated in terms of vorticity-velocity-pressure fields. We mention for
instance, formulations based on least-squares, stabilization techniques, mixed methods, spectral dis-
cretizations, hybridizable discontinuous Galerkin, that can be found in [1, 2, 7, 9, 19, 14, 17, 18, 40, 41],
and the references in these papers. However, up to our knowledge, the Brinkman problem has been
considered using mixed vorticity-velocity-pressure formulations only very recently [42], in where a dual
mixed formulation has been introduced and analyzed at the continuous and discrete levels using the
Babuška-Brezzi theory. In particular, optimal error estimates are proved in [42].

The so-called augmented mixed finite elements (also known as Galerkin least-squares methods [9,
10, 22]) can be regarded as a stabilization technique where some terms are added to the variational
formulation so that, either the resulting augmented variational formulations are defined by strongly
coercive bilinear forms (see, e.g. [24]), or they enable to bypass the kernel property, which is very
difficult to obtain in practice, or they allow the fulfillment of the inf-sup condition at the continuous
and discrete levels in mixed formulations (see [25]). This approach has been considered in e.g. [3, 4,
29, 20, 21, 26, 35] for Stokes, generalized Stokes (in velocity-pseudostress formulation), coupling of
quasi-Newtonian fluids and porous media, and Navier-Stokes equations, and in [5] for an augmented
mixed formulation applied to elliptic problems with mixed boundary conditions.

In this article, we propose a new class of stabilized finite element approximations of the Brinkman
equations, written in terms of the velocity, vorticity and pressure fields. One of the main goals of the
present approach is to build different families of finite elements to approximate the model problem
with the liberty of choosing any combination of the finite element subspaces of the continuous spaces,
and extend recent results given in [3], where a new stabilized finite element approximation for the
Stokes equations was analyzed using an extension of the Babuška-Brezzi theory (cf. [23, 28]). The
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proposed method also exhibits the advantage that the vorticity unknown (which is a sought quantity of
practical interest in several industrial applications) can be accessed directly, with the desired accuracy,
and without the need of postprocessing. This appears to be quite difficult in mixed methods written
only in terms of vector potential-vorticity (see e.g. [18, 33]).

The variational formulation is based on the introduction of suitable Galerkin least-squares terms
which let us analyze the problem by the classical Lax-Milgram theorem. Indeed, to ensure the existence
and uniqueness of solution, at continuous and discrete levels, we prove that the corresponding resulting
augmented bilinear form is continuous and elliptic. For the numerical approximation, we consider in
particular the family of finite elements RTk − Pk+1 − Pk+1, k ≥ 0, i.e., Raviart-Thomas elements
of order k for the velocity field, piecewise continuous polynomials of degree k + 1 for the (scalar)
vorticity and the pressure. We emphasize that the present approach extends for approximations of
the pressure lying in any subspace of H1(Ω), which differs from the mixed method in [42] where the
inf-sup condition needed for the stability of the corresponding Galerkin scheme only holds for certain
subspaces of L2(Ω). Numerical experiments with the family of finite elements considered in this paper
perform satisfactorily for a variety of boundary conditions. We also test the applicability of the present
framework using the family of finite elements: BDMk+1 − Pk+1 − Pk+1, k ≥ 0 i.e., classical Brezzi-
Douglas-Marini finite elements for the velocity field, and piecewise continuous polynomials of degree
k + 1 for the vorticity and the pressure. Certainly, as supported by the theory, one could employ any
triple of finite element subspaces of the corresponding continuous spaces.

Outline

We have organized the contents of this paper as follows. In the remainder of this section we introduce
some standard notation and needed functional spaces, describe the boundary value problem of interest,
and present the associate dual mixed variational formulation which will be modified to write our
method. In Section 2, we set the stabilized variational formulation, and then show that it is well-
posed using the classical Lax-Milgram theorem. In Section 3, we present the discrete method, provide
particular families of stable finite elements, and we obtain error estimates for the proposed methods.
Section 4 is devoted to the reliability and efficiency analysis of two a posteriori error estimators. Finally,
several numerical results assessing the performance of the methods, illustrating the convergence rates
predicted by the theory, confirming the properties of the a posteriori error estimators, and showing
the behaviour of the associated adaptive algorithms, are collected in Section 5.

Preliminaries

Let us assume that Ω ⊂ R2 is a bounded and simply connected Lipschitz domain. We denote by
n = (ni)1≤i≤2 the outward unit normal vector to the boundary Γ := ∂Ω, and by t = (ti)1≤i≤2 the
unit tangent vector to ∂Ω oriented such that t1 = −n2, t2 = n1. Moreover, we assume that ∂Ω is
polygonal and admits a disjoint partition ∂Ω = Γ∪Σ. For the sake of simplicity, we also assume that
both Γ and Σ have positive measure.

For s ≥ 0, the symbol ‖·‖s,Ω stands for the norm of the Hilbertian Sobolev spaces Hs(Ω) or

Hs(Ω) = [Hs(Ω)]2, with the convention H0(Ω) := L2(Ω) and H0(Ω) = L2(Ω). We also define the
Hilbert space

H(div; Ω) :=
{
v ∈ L2(Ω) : div v ∈ L2(Ω)

}
,

whose norm is given by ‖v‖2div,Ω := ‖v‖20,Ω + ‖div v‖20,Ω. Hereafter, we use the following notation for
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any vector field v = (vi)i=1,2 and any scalar field η:

div v := ∂1v1 + ∂2v2, rotv := ∂1v2 − ∂2v1, ∇η :=

(
∂1η
∂2η

)
, curl η :=

(
∂2η
−∂1η

)
.

In addition, we will denote with c and C, with or without subscripts, tildes, or hats, a generic constant
independent of the mesh parameter h, which may take different values in different occurrences.

The model problem

The Brinkman (or generalized Stokes) problem [4, 11, 27], formulated in terms of the velocity u,
vorticity ω and pressure p of an incompressible viscous fluid (see also [42]) reads: Given a force
density f , vector fields a and b, and scalar fields p0 and ω0, we seek a vector field u, a scalar field ω
and a scalar field p such that

σu+ ν curlω +∇p = f in Ω,
ω − rotu = 0 in Ω,

divu = 0 in Ω,
u · t = a · t on Σ,

p = p0 on Σ,
u · n = b · n on Γ,

ω = ω0 on Γ,

(1.1)

where u · t and u ·n stand for the normal and tangential components of the velocity, respectively. In
the model, ν > 0 is the kinematic viscosity of the fluid and σ > 0 is a parameter proportional to the
inverse of the time-step. In addition, we assume that a boundary compatibility condition holds, i.e.,
there exists a velocity field w ∈ L2(Ω)2 satisfying divw = 0 a.e. in Ω, w ·t = a·t on Σ, and w ·n = b·n
on Γ. For a detailed study on different types of standard and non-standard boundary conditions for
incompressible flows we refer to [8, 37]. We observe that the boundary conditions considered here are
relevant, for instance, in the context of geophysical fluids and shallow water models [38].

For the sake of simplicity, throughout the rest of the paper we assume homogeneous boundary
conditions for the pressure, normal velocity, and vorticity, i.e., p0 = 0 on Σ, b = 0 on Γ, and ω0 = 0
on Γ.

2 The augmented vorticity-velocity-pressure formulation

2.1 Variational formulations and preliminary results

In this section, we set the dual-mixed variational formulation of problem (1.1), and then propose a
corresponding augmented approach. To this end, we first introduce the spaces

HΓ(div; Ω) := {v ∈ H(div; Ω) : v · n = 0 on Γ} and H1
Γ(Ω) := {η ∈ H1(Ω) : η = 0 on Γ} ,

which are endowed with the natural norms, and denote by 〈·, ·〉Σ the duality pairing between H−1/2(Σ)
and H1/2(Σ) with respect to the L2(Σ)-inner product. Then, by testing system (1.1) with adequate
functions and imposing the boundary conditions, we obtain the following dual-mixed variational for-
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mulation: Find (u, ω, p) ∈ HΓ(div; Ω)×H1
Γ(Ω)× L2(Ω) such that

σ

∫
Ω
u · v + ν

∫
Ω

curlω · v −
∫

Ω
p div v =

∫
Ω
f · v ∀v ∈ HΓ(div; Ω) ,

ν

∫
Ω

curl η · u− ν
∫

Ω
ωη = −ν〈a · t, η〉Σ ∀η ∈ H1

Γ(Ω) ,

−
∫

Ω
q divu = 0 ∀q ∈ L2(Ω) .

(2.1)

Note that this variational problem can be rewritten as a twofold saddle point problem (cf. [23, 28]):
Find (u, ω, p) ∈ HΓ(div; Ω)×H1

Γ(Ω)× L2(Ω) such that

a(u,v) + b1(v, ω) + b2(p,v) = G(v) ∀v ∈ HΓ(div; Ω),

b1(u, η)− d(ω, η) = F (η) ∀η ∈ H1
Γ(Ω),

b2(q,u) = 0 ∀q ∈ L2(Ω) ,

(2.2)

where the bilinear forms a : HΓ(div; Ω) × HΓ(div; Ω) → R, b1 : HΓ(div; Ω) × H1
Γ(Ω) → R, b2 :

L2(Ω) ×HΓ(div; Ω) → R, d : H1
Γ(Ω) × H1

Γ(Ω) → R, and the linear functionals G : HΓ(div; Ω) → R,
and F : H1

Γ(Ω)→ R are defined by

a(u,v) := σ

∫
Ω
u · v, b1(v, η) := ν

∫
Ω

curl η · v,

d(ω, η) := ν

∫
Ω
ωη, b2(q,v) := −

∫
Ω
q div v,

and

G(v) :=

∫
Ω
f · v , F (η) := −ν〈a · t, η〉Σ,

for all u,v ∈ HΓ(div; Ω), ω, η ∈ H1
Γ(Ω), and q ∈ L2(Ω).

The well-posedness of (2.2) has been recently proved in [42]. In turn, the converse of the derivation
of (2.2) is provided next. More precisely, the following theorem establishes that the unique solution
of (2.2) solves the original boundary value problem (1.1).

Theorem 2.1. Let (u, ω, p) ∈ H be the unique solution of (2.2). Then divu = 0 in Ω, ω = rotu in
Ω, u · t = a · t on Σ, σu+ ν curlω +∇p = f in Ω (which yields p ∈ H1(Ω)), and p = 0 on Σ.

Proof. It follows by integrating backwardly in (2.2) and employing suitable test functions. Further
details are omitted.

Now, since p actually lives in the space H1(Ω), we suggest to enrich the above system (2.1) with
residuals arising from the first and the third equations of system (1.1). This approach permits us to
analyze the problem directly under the classical Lax-Milgram theorem. More precisely, we add to the
system (2.1) the following Galerkin least-squares terms:

κ1

∫
Ω

(σu+ ν curlω +∇p− f) · curl η = 0 ∀η ∈ H1
Γ(Ω) ,

κ2

∫
Ω

(σu+ ν curlω +∇p− f) · ∇q = 0 ∀q ∈ H1
Σ(Ω) ,

κ3

∫
Ω

divu div v = 0 ∀v ∈ HΓ(div; Ω) ,

(2.3)
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where κ1, κ2 and κ3 are positive stabilization parameters to be specified later, and

H1
Σ(Ω) := {q ∈ H1(Ω) : q = 0 on Σ} ,

Using an integration by parts, the fact that div curl is the null operator, and the boundary condi-
tions, we may rewrite the first two equations of (2.3) equivalently as follows:

κ1σ

∫
Ω
u · curl η + κ1ν

∫
Ω

curlω · curl η = κ1

∫
Ω
f · curl η ∀η ∈ H1

Γ(Ω),

κ2σ

∫
Ω
u · ∇q + κ2

∫
Ω
∇p · ∇q = κ2

∫
Ω
f · ∇q ∀q ∈ H1

Σ(Ω).

In this way, we propose the following augmented variational formulation: Find ~u := (u, ω, p) ∈ H
such that

A(~u, ~v) = G(~v) ∀~v := (v, η, q) ∈ H , (2.4)

where the space H := HΓ(div; Ω)×H1
Γ(Ω)×H1

Σ(Ω) is endowed with the corresponding product norm,
and the bilinear form A : H×H→ R and the linear functional G : H→ R are defined by

A(~u, ~v) := σ

∫
Ω
u · v + ν

∫
Ω

curlω · v −
∫

Ω
pdiv v − ν

∫
Ω

curl η · u+ ν

∫
Ω
ωη

+

∫
Ω
q divu+ κ1σ

∫
Ω
u · curl η + κ1ν

∫
Ω

curlω · curl η + κ2σ

∫
Ω
u · ∇q

+ κ2

∫
Ω
∇p · ∇q + κ3

∫
Ω

divu div v ,

(2.5)

and

G(~v) :=

∫
Ω
f · v + ν〈a · t, η〉Σ + κ1

∫
Ω
f · curl η + κ2

∫
Ω
f · ∇q , (2.6)

for all ~u := (u, ω, p), ~v := (v, η, q) ∈ H.

2.2 Unique solvability of the augmented formulation

Next, we will prove that our augmented variational formulation (2.4) satisfies the hypotheses of the
Lax-Milgram theorem, i.e., the idea is to choose κ1, κ2 and κ3 so that the bilinear form A becomes
strongly coercive on H, which yields the unique solvability and continuous dependence on the data of
this variational formulation. First, we observe that the bilinear form A, and the linear functional G
are bounded. More precisely, there exist C1, C2 > 0 such that

|A(~w, ~v)| ≤ C1‖~w‖H ‖~v‖H ∀ ~w, v ∈ H ,

|G(~v)| ≤ C2

{
‖a · t‖−1/2,Σ + ‖f‖0,Ω

}
‖~v‖H ∀~v ∈ H .

(2.7)

The following lemma shows that the bilinear form A is H−elliptic.

Lemma 2.2. Assume that κ1 ∈ (0, νσ ), κ2 ∈ (0, 1
σ ), and κ3 > 0. Then, there exists α > 0 such that

A(~v, ~v) ≥ α ‖~v‖2H ∀~v ∈ H .
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Proof. According to the definition of A in (2.5) and applying the Cauchy-Schwarz inequality, we obtain

A(~v, ~v) = σ‖v‖20,Ω + ν‖η‖20,Ω + κ1σ

∫
Ω

curl η · v + κ1ν|η|21,Ω + κ2σ

∫
Ω
v · ∇q + κ2|q|21,Ω + κ3‖ div v‖20,Ω

≥ σ‖v‖20,Ω + ν‖η‖20,Ω − κ1σ|η|1,Ω‖v‖0,Ω + κ1ν|η|21,Ω − κ2σ‖v‖0,Ω|q|1,Ω + κ2|q|21,Ω + κ3‖div v‖20,Ω

Next, employing the inequality ab ≤ a2 + 1
4 b

2, we find that

κ1σ|η|1,Ω‖v‖0,Ω ≤ κ2
1σ|η|21,Ω +

σ

4
‖v‖20,Ω and κ2σ‖v‖0,Ω|q|1,Ω ≤ κ2

2σ|q|21,Ω +
σ

4
‖v‖20,Ω ,

which, together with the previous inequality, yields

A(~v, ~v) ≥ σ

2
‖v‖20,Ω + ν‖η‖20,Ω − κ2

1σ|η|21,Ω + κ1ν|η|21,Ω − κ2
2σ|q|21,Ω + κ2|q|21,Ω + κ3‖ div v‖20,Ω

≥ min
{σ

2
, κ3

}
‖v‖2div,Ω + ν‖η‖20,Ω + κ1(ν − κ1σ)|η|21,Ω + κ2(1− κ2σ|q|21,Ω .

Finally, the proof is completed by straightforward applications of the Poincaré inequality.

We are now in a position to state the main result of this section which yields the solvability of the
continuous formulation (2.4).

Theorem 2.3. Assume the same hypotheses of Lemma 2.2. Then, formulation (2.4) admits a unique
solution ~u := (u, ω, p) ∈ H. Moreover, there exists C > 0 such that

‖~u‖H ≤ C
{
‖a · t‖−1/2,Σ + ‖f‖0,Ω

}
.

Proof. The bilinear form A and the linear functional G are continuous (see (2.7)). Hence, the proof is
a simple consequence of Lemma 2.2 and the well-known Lax-Milgram theorem.

It is important to remark at this point that the unique solution of (2.2) is certainly solution of (2.4),
and hence, since the latter is also uniquely solvable, it is clear that the solutions of both problems
coincide. This means, in particular, that Theorem 2.1 is obviously valid for the solution ~u := (u, ω, p)
of (2.4) as well. This fact is employed later on in Section 4 to prove the efficiency of the a posteriori
error estimators derived previously in that section.

3 The augmented finite element scheme

In this section, we construct a finite element scheme associated to (2.4), define explicit finite element
subspaces yielding the unique solvability of the discrete schemes, derive the a priori error estimates,
and provide the rate of convergence of the methods. Let Th be a regular family of triangulations of
the polygonal region Ω̄ by triangles T of diameter hT with mesh size h := max{hT : T ∈ Th}, and
such that there holds Ω̄ = ∪{T : T ∈ Th}. In addition, given an integer k ≥ 0 and a subset S of R2,
we denote by Pk(S) the space of polynomials in two variables defined in S of total degree at most k
and we write Pk(S) = [Pk(S)]2. By RTk(T ) we will denote the local Raviart-Thomas space of order
k defined as usual

RTk(T ) := Pk(T )⊕ Pk(T )x,
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with x being a generic vector of R2. In addition, we let RTk(Ω) be the global Raviart-Thomas space
of order k, that is

RTk(Ω) :=
{
vh ∈ H(div; Ω) : vh|T ∈ RTk(T ) ∀T ∈ Th

}
. (3.1)

Now, given finite element subspaces Hu
h ⊂ HΓ(div; Ω), Hω

h ⊂ H1
Γ(Ω) and Hp

h ⊂ H1
Σ(Ω), the Galerkin

scheme associated with the continuous variational formulation (2.4) reads as follows: Find ~uh :=
(uh, ωh, ph) ∈ Hh such that

A(~uh, ~vh) = G(~vh) ∀~vh := (vh, ηh, qh) ∈ Hh , (3.2)

where the space Hh := Hu
h × Hω

h × Hp
h, and κ1, κ2 and κ3 are the same parameters employed in the

continuous formulation (2.4).

Since the bilinear form A is bounded and strongly coercive on the whole space H (see Theorem 2.3),
the well-posedness of (3.2) is guaranteed with any arbitrary choice of the subspace Hh. In particular,
we define the following finite element subspaces for k ≥ 0:

Hu
h := HΓ(div; Ω) ∩RTk(Ω) = {vh ∈ HΓ(div; Ω) : vh|T ∈ RTk(T ) ∀T ∈ Th}, (3.3)

H̃u
h := {vh ∈ HΓ(div; Ω) : vh|T ∈ Pk+1(T ) ∀T ∈ Th}, (3.4)

Hω
h :=

{
ηh ∈ H1

Γ(Ω) : ηh|T ∈ Pk+1(T ) ∀T ∈ Th
}
, (3.5)

Hp
h := {qh ∈ H1

Σ(Ω) : qh|T ∈ Pk+1(T ) ∀T ∈ Th} , (3.6)

Notice that H̃u
h is the component of the Brezzi-Douglas-Marini finite element space approximating u.

According to the above, we may consider the following families of finite elements: Hh := Hu
h×Hω

h×Hp
h

or Hh := H̃u
h ×Hω

h ×Hp
h.

In general, we have the following main result which establishes the unique solvability, and some
convergence properties of the discrete problem (3.2).

Theorem 3.1. Assume that κ1 ∈ (0, νσ ), κ2 ∈ (0, 1
σ ), and κ3 > 0, and let Hh be any finite element

subspace of H. Then, the discrete formulation (3.2) admits a unique solution ~uh ∈ Hh. Moreover,
there exist Ĉ, C̃ > 0 such that

‖~uh‖H ≤ Ĉ
{
‖a · t‖−1/2,Σ + ‖f‖0,Ω

}
,

and
‖~u− ~uh‖H ≤ C̃ inf

~vh∈Hh

‖~u − ~vh‖H . (3.7)

Proof. It follows straightforward from Lemma 2.2, Lax-Milgram theorem, and the Céa estimate.

As usual, the estimate (3.7) and the approximation properties of the subspaces considered are the
key ingredients to obtain the corresponding rate of convergence of the finite element scheme (3.2). In
fact, let us consider the family Hh := Hu

h × Hω
h × Hp

h, with Hu
h ,H

ω
h and Hp

h, given in (3.3), (3.5) and
(3.6), respectively. Hence, we have the following (cf. [10, 15, 25]):

(APu
h ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1] and for each v ∈

Hs(Ω) ∩HΓ(div; Ω) with div v ∈ Hs(Ω), there holds

inf
vh∈Hu

h

‖v − vh‖div,Ω ≤ C hs
{
‖v‖s,Ω + ‖div v‖s,Ω

}
.
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(APωh) there exists C > 0, independent of h, such that for each s ∈ (0, k+1] and for each η ∈ Hs+1(Ω)
there holds

inf
ηh∈Hω

h

‖η − ηh‖1,Ω ≤ C hs ‖η‖s+1,Ω .

(APph) there exists C > 0, independent of h, such that for each s ∈ (0, k+1] and for each q ∈ Hs+1(Ω)
there holds

inf
qh∈Hp

h

‖q − qh‖1,Ω ≤ C hs ‖q‖s+1,Ω .

The following theorem provides the rate of convergence of our finite element scheme (3.2).

Theorem 3.2. Let k be a non-negative integer and let Hu
h ,H

ω
h and Hp

h be given by (3.3), (3.5) and
(3.6). Let ~u := (u, ω, p) ∈ H and ~uh := (uh, ωh, ph) ∈ Hh := Hu

h ×Hω
h×Hp

h be the unique solutions to
the continuous and discrete problems (2.4) and (3.2), respectively. Assume that u ∈ Hs(Ω), divu ∈
Hs(Ω), ω ∈ H1+s(Ω), and p ∈ H1+s(Ω), for some s ∈ (0, k + 1]. Then, there exists Ĉ > 0 independent
of h such that

‖~u − ~uh‖H ≤ Ĉ hs
{
‖u‖s,Ω + ‖ divu‖s,Ω + ‖ω‖1+s,Ω + ‖p‖1+s,Ω

}
.

Proof. The proof follows from (3.7) and the approximation properties given by (APu
h ), (APωh), and

(APph).

We remark here that if we consider the family Hh := H̃u
h ×Hω

h ×Hp
h, with H̃u

h ,H
ω
h and Hp

h, given in
(3.4), (3.5) and (3.6), respectively, to solve the problem (3.2), then the analogue of Theorem 3.2 does
hold as well.

On the other hand, concerning the practical choice of the stabilization parameters κi, i ∈ {1, 2, 3},
particularly for sake of the computational implementation of the augmented mixed finite element
method, we first observe that the optimal values of κ1 and κ2, namely those yielding the largest
ellipticity constant α (cf. Lemma 2.2), are given by the midpoints of the corresponding feasible
intervals, that is κ1 = ν

2σ and κ2 = 1
2σ . In addition, as suggested by the first term in the last

inequality of the proof of Lemma 2.2, a suitable choice for κ3 would be given by any value ≥ σ
2 . The

selections described here are employed below in Section 5.

4 A posteriori error analysis

Here we propose two alternative a posteriori error estimators and analyze their reliability and efficiency.
We begin by introducing several notations. We let Eh be the set of all edges of the triangulation Th,
and given T ∈ Th, we let E(T ) be the set of its edges. Then we write Eh = Eh(Ω) ∪ Eh(Γ) ∪ Eh(Σ),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(Γ) := {e ∈ Eh : e ⊆ Γ}, and analogously for Eh(Σ). In
what follows, he stands for the length of a given edge e. Also, for each edge e ∈ Eh we fix a unit
normal vector ne := (n1, n2)t, and let te := (−n2, n1)t be the corresponding fixed unit tangential
vector along e. However, when no confusion arises, we simple write n and t instead of ne and te,
respectively. Now, let v ∈ L2(Ω) such that v|T ∈ C(T ) on each T ∈ Th. Then, given T ∈ Th and
e ∈ E(T ) ∩ Eh(Ω), we denote by [v · t] and [v ·n] the tangential and normal jumps of v across e, that
is [v · t] := (v|T − v|T ′)|e · t and [v · n] := (v|T − v|T ′)|e · n, where T and T ′ are the triangles of Th
having e as a common edge.
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4.1 The main results

As in the previous sections, we consider Hh = Hu
h × Hω

h × Hp
h, where, given an integer k ≥ 0,

the component subspaces are defined by (3.3), (3.5), and (3.6), respectively. Next, letting ~uh :=
(uh, ωh, ph) ∈ Hh be the unique solution of (3.2), we set the residuals

r(uh, ωh) := f − σuh − ν curlωh , r(uh, ph) := f − σuh − ∇ph ,

and
r(uh, ωh, ph) := f − σuh − ν curlωh − ∇ph ,

and define for each T ∈ Th the a posteriori error indicators

θ2
T := ‖r(uh, ωh, ph)‖20, T + ‖divuh‖20,T + h2

T ‖ rotuh − ωh ‖20,T + h2
T ‖ rot

{
r(uh, ωh)

}
‖20,T

+
∑

e∈E(T )∩Eh(Σ)

he ‖a · t − uh · t ‖20, e +
∑

e∈E(T )∩Eh(Ω)

he ‖ [uh · t] ‖20,e

+
∑

e∈E(T )∩Eh(Ω)

he ‖[r(uh, ωh) · t] ‖20,e +
∑

e∈E(T )∩Eh(Σ)

he ‖r(uh, ωh) · t ‖20,e ,

(4.1)
and

ϑ2
T := θ2

T + h2
T ‖div

{
r(uh, ph)

}
‖20,T +

∑
e∈E(T )∩Eh(Ω)

he ‖[r(uh, ph) · n] ‖20,e

+
∑

e∈E(T )∩Eh(Γ)

he ‖r(uh, ph) · n ‖20,e ,
(4.2)

so that the global a posteriori error estimators are given, respectively, by

θ :=

 ∑
T ∈Th

θ2
T


1/2

and ϑ :=

 ∑
T ∈Th

ϑ2
T


1/2

. (4.3)

The following theorems constitute the main results of this section.

Theorem 4.1. Assume that f is piecewise polynomial, and let ~u := (u, ω, p) ∈ H and ~uh :=
(uh, ωh, ph) ∈ Hh be the unique solutions of (2.4) and (3.2), respectively. Then, there exist constants
Crel > 0 and Ceff > 0, independent of h, such that

Ceff θ ≤ ‖ ~u − ~uh ‖H ≤ Crel θ . (4.4)

Theorem 4.2. Assume that f is piecewise polynomial, and let ~u := (u, ω, p) ∈ H and ~uh :=
(uh, ωh, ph) ∈ Hh be the unique solutions of (2.4) and (3.2), respectively. Then, there exist constants
crel > 0 and ceff > 0, independent of h, such that

ceff ϑ ≤ ‖ ~u − ~uh ‖H ≤ crel ϑ . (4.5)

We remark that when f is not piecewise polynomial, then high order terms arising from suitable
polynomial approximations of this function will appear in (4.4) and (4.5). The upper and lower bounds
in these inequalities are known as the reliability and efficiency estimates, respectively, and they are
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derived below in Sections 4.2 and 4.3. For this purpose, we will employ the Clément interpolation
operator Ih, which maps H1(Ω) onto Xh (cf. [16]), where

Xh :=
{
ϕh ∈ C(Ω̄) : ϕh|T ∈ P1(T ) ∀T ∈ Th

}
.

In addition, the local approximation properties of Ih are summarized as follows.

Lemma 4.3. There exist c1, c2 > 0, independent of h, such that for all ϕ ∈ H1(Ω) there holds

‖ϕ− Ih(ϕ)‖0,T ≤ c1 hT ‖ϕ‖1,∆(T ) ∀T ∈ Th

and

‖ϕ− Ih(ϕ)‖0,e ≤ c2 h
1/2
e ‖ϕ‖1,∆(e) ∀ e ∈ Eh(Ω) ∪ Eh(Γ) ,

where ∆(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅} and ∆(e) := ∪{T ′ ∈ Th : T ′ ∩ e 6= ∅}.

Proof. See [16].

4.2 Reliability of the a posteriori error estimators

We first deduce from the H-ellipticity of A (cf. Lemma (2.2)) that there holds the global inf-sup
condition

α ‖~w ‖H ≤ sup
~v∈H
~v 6= 0

A (~w, ~v)

‖~v‖H
∀ ~w := (w, χ, r) ∈ H . (4.6)

Hence, we have the following preliminary estimate for the error.

Lemma 4.4. Let ~u := (u, ω, p) ∈ H and ~uh := (uh, ωh, ph) ∈ Hh be the unique solutions of (2.4)
and (3.2), respectively. Then, there exists a constant c > 0, independent of h, such that

‖~u − ~uh‖H ≤ C ‖E ‖H′ ,

where
E(~v) := E1(v) + E2(η) + E3(q) ∀~v := (v, η, q ) ∈ H ,

and E1 : HΓ (div; Ω) → R, E2 : H1
Γ(Ω) → R, and E3 : H1

Σ(Ω) → R are the linear and bounded
functionals defined by

E1(v) :=

∫
Ω

r(uh, ωh) · v +

∫
Ω
ph div v − k3

∫
Ω

divuh div v ∀v ∈ HΓ(div; Ω) , (4.7)

E2(η) := ν 〈a ·t, η〉Σ − ν
∫

Ω
ωh η + ν

∫
Ω
uh ·curl η + k1

∫
Ω

r(uh, ωh) ·curl η ∀ η ∈ H1
Γ(Ω) , (4.8)

and

E3(q) := k2

∫
Ω

r(uh, ph) · ∇ q −
∫

Ω
q divuh ∀ q ∈ H1

Σ(Ω) . (4.9)

In addition, there holds
E(~vh) = 0 ∀~vh := (vh, ηh, qh) ∈ Hh . (4.10)
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Proof. Applying (4.6) to the error ~w := ~u − ~uh, and then employing (2.4) and the definitions of A
and G (cf. (2.5) and (2.6)), we arrive at

α ‖~u − ~uh‖H ≤ sup
~v∈H
~v 6= 0

G(~v)−A(~uh, ~v)

‖~v‖H
:= ‖G − A(~uh, ·)‖H′ ,

where, bearing in mind (4.7), (4.8), and (4.9), there holds

G(~v) − A(~uh, ~v) = E1(v) + E2(η) + E3(q) ∀~v := (v, η, q) ∈ H .

Moreover, it is straightforward from (3.2) that G(~vh) − A(~uh, ~vh) = 0 ∀~vh := (vh, ηh, qh) ∈ Hh,
which, denoting E := G − A(~uh, ·), gives (4.10) and ends the proof.

In order to complete the derivation of the a posteriori error estimates, we need to obtain a suitable
upper bound for ‖E‖H′ . This is done independently for θ and ϑ in the subsequent sections.

4.2.1 Reliability of θ

We use once the Clément interpolation operator Ih. More precisely, given ~v := (v, η, q) ∈ H, we let

~vh := (0, Ih(η), 0) ∈ Hh ,

so that, using (4.10), we find that

E(~v) = E1(v) + E2(η − Ih(η)) + E3(q) . (4.11)

Note here that the fact that Ih preserves Dirichlet boundary conditions (cf. [16]) ensures that Ih(η)
also vanishes on Γ.

Furthermore, it is easy to see that

E2(η − Ih(η)) = E21(η − Ih(η)) + E22(η − Ih(η)) , (4.12)

where

E21(η − Ih(η)) := ν 〈a · t, η − ηh〉Σ − ν
∫

Ω
ωh(η − ηh) + ν

∫
Ω
uh · curl(η − ηh) (4.13)

and

E22(η − Ih(η)) := k1

∫
Ω

r(uh, ωh) · curl(η − ηh) . (4.14)

Consequently, in order to estimate |E(~v)| in terms of residual terms and ‖~v‖H, thus deriving a
suitable bound for ‖E‖H′ , we now proceed to get upper bounds for each one of the above components.

Lemma 4.5. There exists C > 0, independent of h, such that

|E1(v)| + |E3(q)| ≤ C

∑
T∈Th

θ̃2
T


1/2

‖~v‖H ∀~v := (v, η, q) ∈ H ,

where
θ̃2
T :=

∥∥r(uh, ωh, ph)
∥∥2

0,T
+
∥∥divuh

∥∥2

0,T
∀T ∈ Th .
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Proof. Let ~v := (v, η, q) ∈ H. Integrating by parts in Ω and using that ph = 0 on Σ and that
v · n = 0 on Γ, we get ∫

Ω
ph div v = −

∫
Ω
∇ ph · v ,

which, according to (4.7), yields

E1(v) =

∫
Ω

r(uh, ωh, ph) · v − k3

∫
Ω

divuh div v . (4.15)

In turn, integrating by parts again in Ω and using now that ∇q · t = 0 on Σ (since q vanishes there),
ωh = 0 on Γ, and certainly rot∇q = 0, we find that∫

Ω
curlωh · ∇q = 0 ,

which implies, together with (4.9), that

E3(q) := k2

∫
Ω

r(uh, ωh, ph) · ∇q −
∫

Ω
q divuh . (4.16)

Hence, the proof follows from straightforward applications of the Cauchy-Schwarz inequality in (4.15)
and (4.16).

Lemma 4.6. There exists C > 0, independent of h, such that

|E21(η − Ih(η))| ≤ C

∑
T∈Th

θ̂2
T


1/2

‖~v‖H ∀~v := (v, η, q) ∈ H ,

where

θ̂2
T := h2

T ‖ rotuh − ωh‖20,T +
∑

e∈E(T )∩Eh(Ω)

he ‖[uh · t]‖20,e +
∑

e∈E(T )∩Eh(Σ)

he ‖a · t− uh · t‖20,e .

Proof. We begin by looking at the third term defining E21 (cf. (4.13)). In fact, integrating by parts
in each T ∈ Th, we obtain∫

Ω
uh · curl(η − Ih(η)) =

∑
T∈Th

{∫
T

rotuh (η − Ih(η)) −
∫
∂T
uh · t (η − Ih(η))

}
,

which, using that η = Ih(η) = 0 on Γ, yields∫
Ω
uh · curl(η − Ih(η)) =

∑
T∈Th

∫
T

rotuh (η − Ih(η)) −
∑

e∈Eh(Ω)

∫
e
[uh · t] (η − Ih(η))

−
∑

e∈Eh(Σ)

∫
e
uh · t (η − Ih(η)) .

It follows from (4.13) and the foregoing equality that

E21(η − Ih(η)) = ν
∑
T∈Th

∫
T

{
rotuh − ωh

}
(η − Ih(η)) − ν

∑
e∈Eh(Ω)

∫
e
[uh · t] (η − Ih(η))

+ ν
∑

e∈Eh(Σ)

∫
e

{
a · t− uh · t

}
(η − Ih(η)) ,
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and hence the proof is completed by applying Cauchy-Schwarz inequality, the approximation properties
of the Clément interpolant Ih (cf. Lemma 4.3), and the fact that the number of triangles of ∆(T ) and
∆(e) are bounded independently of T ∈ Th and e ∈ Eh, respectively.

Lemma 4.7. There exists C > 0, independent of h, such that

|E22(η − Ih(η))| ≤ C

∑
T∈Th

θ
2
T


1/2

‖~v‖H ∀~v := (v, η, q) ∈ H ,

where

θ
2
T := h2

T

∥∥ rot
{
r(uh, ωh)

}∥∥2

0,T
+

∑
e∈E(T )∩Eh(Ω)

he
∥∥[r(uh, ωh) · t

]∥∥2

0,e
+

∑
e∈E(T )∩Eh(Σ)

he
∥∥r(uh, ωh) · t

∥∥2

0,e
.

Proof. It follows from (4.14), integrating by parts in each T ∈ Th, that

E22(η − Ih(η)) = k1

∑
T∈Th

{∫
T

(η − Ih(η)) rot
{
r(uh, ωh)

}
−
∫
∂T

(η − Ih(η)) r(uh, ωh) · t

}
,

which, using that η = Ih(η) = 0 on Γ, yields

E22(η − Ih(η)) = k1

∑
T∈Th

∫
T

(η − Ih(η)) rot
{
r(uh, ωh)

}
− k1

∑
e∈Eh(Ω)

∫
e
(η − Ih(η))

[
r(uh, ωh) · t

]
− k1

∑
e∈Eh(Σ)

∫
e
(η − Ih(η)) r(uh, ωh) · t .

In this way, proceeding as in the previous proof, that is applying Cauchy-Schwarz inequality, the
approximation properties of Ih, and the uniform boundedness of the number of triangles of ∆(T ) and
∆(e), the proof is concluded.

We end this section by remarking that the reliability estimate for θ (cf. upper estimate in (4.4),
Theorem 4.1) follows from identities (4.11), (4.12), (4.13), and (4.14), together with Lemmata 4.4,
4.5, 4.6, and 4.7.

4.2.2 Reliability of ϑ

In what follows we bound ‖E‖H′ (cf. Lemma 4.4) by using twice the Clément interpolant Ih. More
precisely, given ~v := (v, η, q) ∈ H, we now let

~vh := (0, Ih(η), Ih(q)) ∈ Hh ,

so that, using (4.10), we find that

E(~v) = E1(v) + E2(η − Ih(η)) + E3(q − Ih(q)) , (4.17)

where E1(v) and E2(η − Ih(η)) are given by (4.7) and (4.12) - (4.14), respectively, and

E3(q − Ih(q)) := k2

∫
Ω

r(uh, ph) · ∇ (q − Ih(q)) −
∫

Ω
(q − Ih(q)) divuh . (4.18)
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Note here that the fact that Ih preserves Dirichlet boundary conditions (cf. [16]) ensures now that
Ih(η) and Ih(q) also vanish on Γ and Σ, respectively.

Similarly as in Section 4.2.1, in order to estimate |E(~v)| in terms of residual terms and ‖~v‖H, thus
deriving an alternative bound for ‖E‖H′ , we now proceed to get upper bounds for each one of the
components in (4.17). Actually, since the estimates for E1(v) and E2(η − Ih(η)) are already available
from Lemma 4.5, (4.12) and Lemmata 4.6 and 4.7, we just concentrate on the remaining third term.

Lemma 4.8. There exists C > 0, independent of h, such that

|E3(q − Ih(q))| ≤ C

∑
T∈Th

ϑ
2
T


1/2

‖~v‖H ∀~v := (v, η, q) ∈ H ,

where
ϑ

2
T := h2

T

∥∥div
{
r(uh, ph)

}∥∥2

0,T
+ h2

T ‖divuh‖20,T

+
∑

e∈E(T )∩Eh(Ω)

he
∥∥[r(uh, ph) · n

]∥∥2

0,e
+

∑
e∈E(T )∩Eh(Γ)

he
∥∥r(uh, ph) · n

∥∥2

0,e
.

Proof. It is very similar to the proof of Lemma 4.7. Indeed, it follows from (4.18), integrating by parts
in each T ∈ Th, that

E3(q − Ih(q)) = − k2

∑
T∈Th

{∫
T

(q − Ih(q)) div
{
r(uh, ph)

}
−
∫
∂T

(q − Ih(q)) r(uh, ph) · n

}

−
∫

Ω
(q − Ih(q)) divuh ,

which, using that q = Ih(q) = 0 on Σ, yields

E3(q − Ih(q)) = − k2

∑
T∈Th

∫
T

(q − Ih(q)) div
{
r(uh, ph)

}
−
∑
T∈Th

∫
T

(q − Ih(q)) divuh

+ κ2

∑
e∈Eh(Ω)

∫
e
(q − Ih(q))

[
r(uh, ph) · n

]
+ k2

∑
e∈Eh(Γ)

∫
e
(q − Ih(q)) r(uh, ph) · n .

In this way, proceeding as in previous proofs of this section, the required inequality is obtained by
applying Cauchy-Schwarz inequality, the approximation properties of Ih, and the uniform boundedness
of the number of triangles of ∆(T ) and ∆(e).

Hence, according to (4.17), the reliability of ϑ (cf. upper bound in (4.5)) is consequence of Lemma
4.8, and the estimate for E1(v) and E2(η − Ih(η)) provided by Lemmata 4.5, 4.6 and 4.7 in Section
4.2.1.

4.3 Efficiency of the a posteriori error estimators

In this section we show the efficiency of our a posteriori error estimators θ (cf. (4.1)) and ϑ (cf. (4.2)).
Equivalently, we provide upper bounds depending on the actual errors for the eight terms defining the
local indicator θ2

T and for the remaining three terms that complete the definition of ϑ. The easiest
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ones are the first two terms defining θ, for which, using from Theorem 2.1 that f = σu+ν curlω+∇p
and divu = 0 in Ω, we find that

‖r(uh, ωh, ph)‖20,T =
∥∥{σu + ν curlω + ∇p

}
− σuh − ν curlωh − ∇ph

∥∥2

0,T

≤ C
{
‖u− uh‖20,T + |ω − ωh|21,T + |p− ph|21,T

}
,

(4.19)

where C := σ2 + ν2 + 1, and

‖divuh‖20,T = ‖div (uh − u)‖20,T ≤ ‖u− uh‖2div,Ω . (4.20)

The derivation of the corresponding upper bounds for the remaining terms in (4.1) and (4.2) is
performed next. To this end, we proceed as in [13] and [27], and apply the localization technique
based on triangle-bubble and edge-bubble functions, together with extension operators and inverse
inequalities. Therefore, we now introduce further notations and preliminary results. Given T ∈ Th
and e ∈ E(T ), we let ψT and ψe be the usual triangle-bubble and edge-bubble functions, respectively
(see [44, eqs. (1.5) and (1.6)]), which satisfy:

ii) ψT ∈ P3(T ), ψT = 0 on ∂T , supp(ψT ) ⊆ T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), ψe = 0 on ∂T \ e, supp(ψe) ⊆ we := ∪{T ′ ∈ Th : e ∈ E(T ′)}, and 0 ≤ ψe ≤ 1 in
we.

We also know from [43] that, given k ∈ N∪{0}, there exists an extension operator L : C(e)→ C(T )
that satisfies L(p) ∈ Pk(T ) and L(p)|e = p for all p ∈ Pk(e). Additional properties of ψT , ψe and L
are collected in the following lemma.

Lemma 4.9. Given k ∈ N ∪ {0}, there exist positive constants c1, c2, and c3, depending only on k
and the shape regularity of the triangulations (minimum angle condition), such that for each T ∈ Th
and e ∈ E(T ), there hold

‖q‖20,T ≤ c1‖ψ1/2
T q‖20,T ∀q ∈ Pk(T ) (4.21)

‖p‖20,e ≤ c2‖ψ1/2
e p‖20,e ∀p ∈ Pk(e) (4.22)

and

‖ψ1/2
e L(p)‖20,T ≤ c3 he‖p‖20,e ∀p ∈ Pk(e) (4.23)

Proof. See [43, Lemma 4.1].

The following inverse inequality is also employed.

Lemma 4.10. Let k, l, m ∈ N ∪ {0} such that l ≤ m. Then there exists c > 0, depending only on k,
l, m and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−mT |q|l,T ∀ q ∈ Pk(T ) . (4.24)
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Proof. See [15, Theorem 3.2.6].

We continue our efficiency analysis with the estimate for the third term defining (4.1).

Lemma 4.11. There exists C > 0, independent of h, such that

h2
T ‖ rotuh − ωh ‖20,T ≤ C

{
‖u− uh‖20,T + h2

T ‖ω − ωh‖20,T
}

∀T ∈ Th . (4.25)

Proof. It is similar to the proof of [27, Lemma 20]. Given T ∈ Th we denote γT := rotuh − ωh in T .
Applying (4.21) to γT and then using from Theorem 2.1 that rotu = ω in Ω, we find that

‖γT ‖20,T ≤ c1 ‖ψ1/2
T γT ‖20,T = c1

∫
T
ψT γT

{
rotuh − ωh

}
= − c1

∫
T
ψT γT rot(u− uh) + c1

∫
T
ψT γT (ω − ωh) .

(4.26)

Next, integrating by parts in T and recalling that ψT vanishes on ∂T , we obtain∫
T
ψT γT rot(u− uh) =

∫
T

(u− uh) · curl(ψT γT ) ,

which replaced back into (4.26) leads to

‖γT ‖20,T ≤ − c1

∫
T

(u− uh) · curl(ψT γT ) + c1

∫
T
ψT γT (ω − ωh) . (4.27)

Hence, applying the Cauchy-Schwarz inequality and the inverse estimate (4.24), we easily deduce from
(4.27) that

‖γT ‖20,T ≤ C ‖ψT γT ‖0,T
{
h−1
T ‖u− uh‖0,T + ‖ω − ωh‖0,T

}
,

which yields

hT ‖γT ‖0,T ≤ C
{
‖u− uh‖0,T + hT ‖ω − ωh‖0,T

}
,

thus implying (4.25) and completing the proof.

We now aim to estimate the terms involving r(uh, ωh). The following lemma, whose proof makes
use of Lemmas 4.9 and 4.10, will be employed for this purpose.

Lemma 4.12. Let ρh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th, and let
ρ ∈ L2(Ω) be such that rot

{
ρ
}

= 0 in Ω. Then, there exist c, c̃ > 0, independent of h, such that

h2
T ‖ rot

{
ρh
}
‖20,T ≤ c ‖ρ− ρh‖20,T ∀T ∈ Th , (4.28)

and
he ‖[ρh · t]‖20,e ≤ c̃ ‖ρ− ρh‖20,we

∀ e ∈ Eh(Ω) . (4.29)

Proof. For the proof of (4.28) we refer to [6, Lemma 4.3], whereas (4.29) is a slight modification of
the proof of [6, Lemma 4.4]. We omit further details.

As a straightforward consequence of the foregoing lemma we have the following result.
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Lemma 4.13. There exist C1, C2 > 0, independent of h, such that

h2
T ‖ rot

{
r(uh, ωh)

}
‖20,T ≤ C1

{
‖u− uh‖20,T + |ω − ωh|21,T

}
∀T ∈ Th , (4.30)

and
he ‖[r(uh, ωh) · t] ‖20,e ≤ C2

{
‖u− uh‖20,we

+ |ω − ωh|21,we

}
∀ e ∈ Eh(Ω) . (4.31)

Proof. Since rot∇p = 0 in Ω and, according to Theorem 2.1, ∇p = f − σu− ν curlω in Ω, it suffices
to apply Lemma 4.12 to ρ = ∇p and ρh = r(uh, ωh), and then employ the triangle inequality.

The third term involving r(uh, ωh) is estimated next.

Lemma 4.14. There exists C > 0, independent of h, such that

he ‖r(uh, ωh) · t‖20,e ≤ C
{
‖u− uh‖20,Te + |ω − ωh|21,Te

}
∀ e ∈ Eh(Σ) , (4.32)

where Te is the triangle of Th having e as an edge.

Proof. It follows as in the proof of [27, Lemma 21] (see also [32, Lemma 5.17]). In fact, given e ∈ Eh(Σ)
we set γe := r(uh, ωh) · t on e. Since p = 0 on Σ (cf. Theorem 2.1), there holds ∇p · t = 0 on Σ, and
hence

r(uh, ωh) · t =
{
r(uh, ωh)−∇p

}
· t on e .

Then, applying (4.22) and the extension operator L : C(e)→ C(T ), we obtain that

‖γe‖20,e ≤ c2 ‖ψ1/2
e γe‖20,e = c2

∫
e
ψe γe

{
r(uh, ωh) · t

}
= c2

∫
∂Te

ψe L(γe)
{{

r(uh, ωh)−∇p
}
· t
}
.

(4.33)

Now, integrating by parts and using that rot
{
∇p
}

= 0 in Ω, we find that∫
∂Te

ψe L(γe)
{{

r(uh, ωh)−∇p
}
· t
}

= −
∫
Te

curl(ψe L(γe)) ·
{
r(uh, ωh)−∇p

}
+

∫
Te

ψe L(γe) rot
{
r(uh, ωh)

}
.

(4.34)

In turn, thanks to the fact that 0 ≤ ψe ≤ 1 and (4.23), we have that

‖ψe L(γe)‖0,Te ≤ ‖ψ1/2
e L(γe)‖0,Te ≤ c h1/2

e ‖γe‖0,e . (4.35)

Hence, applying the Cauchy-Schwarz inequality and the inverse estimate (4.24), and recalling from
Theorem 2.1 that ∇p = f − σu− ν curlω in Ω, we deduce from (4.33), (4.34), and (4.35) that

‖γe‖20,e ≤ C
{
h−1
Te

{
‖u− uh‖0,Te + |ω − ωh|1,Te

}
+ ‖ rot

{
r(uh, ωh)

}
‖0,Te

}
h1/2
e ‖γe‖0,e ,

which, using that he ≤ hTe , yields

he ‖γe‖20,e ≤ C
{
‖u− uh‖20,Te + |ω − ωh|21,Te + h2

Te ‖ rot
{
r(uh, ωh)

}
‖20,Te

}
.

This inequality and the upper bound for h2
Te
‖ rot

{
r(uh, ωh)

}
‖20,Te (cf. (4.30)) imply (4.32) and com-

plete the proof.
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We continue our efficiency analysis with the estimates involving uh · t, which are provided in the
following two lemmata.

Lemma 4.15. There exists C > 0, independent of h, such that

he ‖[uh · t]‖20,e ≤ C
∑
T⊆we

{
‖u− uh‖20,T + h2

T ‖ω − ωh‖20,T
}

∀ e ∈ Eh(Ω) . (4.36)

Proof. Given e ∈ Eh(Ω), we set γe := [uh · t] on e. Hence, applying (4.22), and then employing the
extension operator L : C(e)→ C(T ) together with the integration by parts formula on each T ⊆ we,
we obtain that

‖γe‖20,e ≤ c2 ‖ψ1/2
e γe‖20,e = c2

∫
e
ψe L(γe) [uh · t]

= c2

{∫
we

rotuh ψe L(γe) −
∫
we

uh · curl
{
ψe L(γe)

}}
,

(4.37)

where, after adding and substracting both ωh and ω, we can write∫
we

rotuh ψe L(γe) =

∫
we

{
rotuh − ωh

}
ψe L(γe) +

∫
we

(ωh − ω)ψe L(γe) +

∫
we

ω ψe L(γe) . (4.38)

In turn, recalling from Theorem 2.1 that ω = rotu in Ω, which ensures that u · t is continuous across
the edges of Eh(Ω), we can integrate by parts in we so that, using that ψe vanishes on ∂we, we find
that ∫

we

ω ψe L(γe) =

∫
we

rotuψe L(γe) =

∫
we

u · curl
{
ψe L(γe)

}
.

In this way, replacing the foregoing equality into (4.38), and then the resulting expression into (4.37),
we arrive at

‖γe‖20,e ≤ c2

{∫
we

{
rotuh − ωh

}
ψe L(γe) +

∫
we

(ωh − ω)ψe L(γe)

+

∫
we

(u− uh) · curl
{
ψe L(γe)

}}
.

(4.39)

Next, applying the Cauchy-Schwarz inequality, the inverse estimate (4.24), (4.23), and the fact that
he ≤ hT for each T ⊆ we, we deduce from (4.39) that

‖γe‖20,e ≤ C
∑
T⊆we

{
‖ rotuh − ωh‖0,T + ‖ω − ωh‖0,T + h−1

T ‖u− uh‖0,T
}
‖ψe L(γe)‖0,T

≤ C
∑
T⊆we

{
h1/2
e ‖ rotuh − ωh‖0,T + h1/2

e ‖ω − ωh‖0,T + h
−1/2
T ‖u− uh‖0,T

}
‖γe‖0,e ,

which yields, after some simplifications,

he ‖γe‖20,e ≤ C
∑
T⊆we

{
h2
T ‖ rotuh − ωh‖20,T + h2

T ‖ω − ωh‖20,T + ‖u− uh‖20,T
}
.

This inequality and the efficiency estimate for h2
T ‖ rotuh−ωh‖20,T (cf. Lemma 4.11) imply (4.36) and

complete the proof.

19



Lemma 4.16. There exists C > 0, independent of h, such that

he ‖a · t− uh · t‖20,e ≤ C
{
‖u− uh‖20,Te + h2

Te ‖ω − ωh‖
2
0,Te

}
∀ e ∈ Eh(Σ) , (4.40)

where Te is the triangle of Th having e as an edge.

Proof. Given e ∈ Eh(Σ), we let Te be the triangle of Th having e as an edge, and set γe := a · t−uh · t
on e. Then, applying (4.22), employing the extension operator L : C(e) → C(Te), and using that
u · t = a · t on Σ, we obtain

‖γe‖20,e ≤ c2 ‖ψ1/2
e γe‖20,e = c2

∫
e
ψe γe (a · t− uh · t) = c2

∫
∂Te

ψe L(γe) (u · t− uh · t) . (4.41)

Next, integrating by parts, employing from Theorem 2.1 that ω = rotu, and adding and substracting
ωh, we find that∫

∂Te

ψe L(γe) (u · t− uh · t) = −
∫
Te

curl
{
ψe L(γe)

}
(u− uh) +

∫
Te

ψe L(γe)
{

rotu− rotuh
}

= −
∫
Te

curl
{
ψe L(γe)

}
(u− uh) +

∫
Te

ψe L(γe)
{
ω − ωh

}
−
∫
Te

ψe L(γe)
{

rotuh − ωh
}
.

Thus, replacing the foregoing identity back into (4.41), and employing the Cauchy-Schwarz inequality,
the inverse estimate (4.24), and (4.23), we deduce that

‖γe‖20,e ≤ C
{
h−1
Te
‖u− uh‖0,Te + ‖ω − ωh‖0,Te + ‖ rotuh − ωh‖0,Te

}
h1/2
e ‖γe‖0,e ,

which, after minor manipulations, gives

he ‖γe‖20,e ≤ C
{
‖u− uh‖20,Te + h2

Te ‖ω − ωh‖
2
0,Te + h2

Te ‖ rotuh − ωh‖20,Te
}
. (4.42)

Finally, it is easy to see that (4.42) and the efficiency estimate for h2
T ‖ rotuh − ωh‖20,T (cf. Lemma

4.11) imply (4.40), which ends the proof.

Consequently, the efficiency of θ follows straightforwardly from the estimates (4.19) and (4.20),
Lemma 4.11, and Lemmata 4.13 throughout 4.16. Similarly, in order to complete the efficiency estimate
for ϑ, we just need to provide the corresponding upper bounds for the three remaining terms in (4.2).
To this end, we now state the following preliminary result, which is the analogue of Lemma 4.12 when
involving div and normal jump instead of rot and tangential jump, respectively.

Lemma 4.17. Let ρh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th, and let
ρ ∈ L2(Ω) be such that div

{
ρ
}

= 0 in Ω. Then, there exist c, c̃ > 0, independent of h, such that

h2
T ‖div

{
ρh
}
‖20,T ≤ c ‖ρ− ρh‖20,T ∀T ∈ Th , (4.43)

and
he ‖[ρh · n]‖20,e ≤ c̃ ‖ρ− ρh‖20,we

∀ e ∈ Eh(Ω) . (4.44)

Proof. It follows from slight modifications of the proofs of [6, Lemmata 4.5 and 4.6]. We omit further
details.
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The foregoing lemma allows us to establish the following efficiency estimates for ϑ.

Lemma 4.18. There exist C1, C2 > 0, independent of h, such that

h2
T ‖div

{
r(uh, ph)

}
‖20,T ≤ C1

{
‖u− uh‖20,T + |p− ph|21,T

}
∀T ∈ Th , (4.45)

and
he ‖[r(uh, ph) · n] ‖20,e ≤ C2

{
‖u− uh‖20,we

+ |p− ph|21,we

}
∀ e ∈ Eh(Ω) . (4.46)

Proof. Since div curlω = 0 in Ω and, according to Theorem 2.1, ν curlω = f − σu − ∇p in Ω,
it suffices to apply Lemma 4.17 to ρ = ν curlω and ρh = r(uh, ph), and then employ the triangle
inequality.

We conclude our efficiency analysis for ϑ with the following result.

Lemma 4.19. There exists C > 0, independent of h, such that

he ‖r(uh, ph) · n‖20,e ≤ C
{
‖u− uh‖20,Te + |p− ph|21,Te

}
∀ e ∈ Eh(Γ) , (4.47)

where Te is the triangle of Th having e as an edge.

Proof. It follows analogously to the proof of Lemma 4.14. In fact, given e ∈ Eh(Γ) we let Te be the
triangle of Th having e as an edge, and set γe := r(uh, ph) · n on e. Since ω = 0 on Γ (cf. Theorem
2.1), there holds curlω · n = ∇ω · t = 0 on Γ, and hence

r(uh, ph) · n =
{
r(uh, ph)− ν curlω

}
· n on e .

Then, applying (4.22) and the extension operator L : C(e)→ C(Te), we obtain that

‖γe‖20,e ≤ c2 ‖ψ1/2
e γe‖20,e = c2

∫
e
ψe γe

{
r(uh, ph) · n

}
= c2

∫
∂Te

ψe L(γe)
{{

r(uh, ph)− ν curlω
}
· n
}
.

(4.48)

Now, integrating by parts and using that div
{

curlω
}

= 0 in Ω, we find that∫
∂Te

ψe L(γe)
{{

r(uh, ph)− ν curlω
}
· n
}

=

∫
Te

∇(ψe L(γe)) ·
{
r(uh, ph)− ν curlω

}
+

∫
Te

ψe L(γe) div
{
r(uh, ph)

}
.

(4.49)

On the other hand, using that 0 ≤ ψe ≤ 1 and (4.23), we have that

‖ψe L(γe)‖0,Te ≤ ‖ψ1/2
e L(γe)‖0,Te ≤ c h1/2

e ‖γe‖0,e . (4.50)

Hence, applying the Cauchy-Schwarz inequality and the inverse estimate (4.24), and recalling from
Theorem 2.1 that ν curlω = f − σu−∇p in Ω, we deduce from (4.48), (4.49), and (4.50) that

‖γe‖20,e ≤ C
{
h−1
Te

{
‖u− uh‖0,Te + |p− ph|1,Te

}
+ ‖div

{
r(uh, ph)

}
‖0,Te

}
h1/2
e ‖γe‖0,e ,

which yields

he ‖γe‖20,e ≤ C
{
‖u− uh‖20,Te + |p− ph|21,Te + h2

Te ‖div
{
r(uh, ph)

}
‖20,Te

}
,

where we have also employed that he ≤ hTe . The foregoing inequality and the upper bound for
h2
Te
‖div

{
r(uh, ph)

}
‖20,Te (cf. Lemma 4.18) imply (4.47) and complete the proof.
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We end this section by remarking that the efficiency of ϑ follows from the corresponding estimate
of θ together with Lemmata 4.18 and 4.19.

5 Numerical experiments

We now turn to the presentation of selected numerical examples confirming our theoretical findings.
The solutions of the unsymmetric linear systems involved in the discretization of the model problem
are computed with the multifrontal massively parallel sparse direct solver MUMPS. Given the solution
(u, ω, p) ∈ HΓ(div; Ω)× H1

Γ(Ω)× H1
Σ(Ω) of our continuous augmented formulation (2.4), we measure

the accuracy of the numerical scheme by the errors

e(u) := ‖u− uh‖div,Ω, e(ω) := ‖ω − ωh‖1,Ω, e(p) := ‖p− ph‖1,Ω ,

where (uh, ωh, ph) ∈ Hh is the solution of the augmented Galerkin scheme (3.2). In turn, the associated
observed convergence rates are computed as

r(·) :=
log(e(·)/ê(·))

log(h/ĥ)
,

where e and ê denote errors associated to two consecutive meshes of sizes h and ĥ. To this respect, in
what follows N denotes the number of degrees of freedom associated to a given triangulation. Bear
in mind that the above notations are also employed below in Section 5.2 for the case of a reference
solution (uref , ωref , pref) instead of (u, ω, p). Furthermore, concerning the stabilization coefficients, in
Examples 1 throughout 3 below we consider the optimal values described at the end of Section 3, that
is κ1 = ν

2σ , κ2 = 1
2σ , and κ3 = σ

2 , where σ and ν are the model parameters.

5.1 Example 1: Convergence tests against analytical solutions

We consider a square-shaped closed cavity Ω = (0, 1)2 where the boundary is split into Γ (bottom and
right lids of the square) and Σ (top and left sides of the square).

A sequence of uniformly refined meshes is employed to compute these errors and rates with respect
to the following exact solutions of (1.1)

u =

(
− sin(πx1) cos(πx2)
sin(πx2) cos(πx1)

)
, ω = −2π sin(πx2) sin(πx1), p = x2

1(1− x2
2),

satisfying the set of boundary data{
ω = 0, u · n = 0 on Γ,

p = 0, u · t = sin(πx1) cos(πx2)n2 + sin(πx2) cos(πx1)n1 on Σ.

We consider the model parameters σ = 0.1 and ν = 0.01. The error history and the effectivity
indexes for θ and ϑ are presented in Table 5.1 for two finite element families using RT0 − P1 − P1

(k = 0) and RT1 − P2 − P2 (k = 1) approximations for velocity, vorticity and pressure. The table
shows that the accuracy of the schemes approaches asymptotically an order O(hk+1) for the vorticity
and pressure in the H1(Ω)−norm and for the velocity in the H(div; Ω)−norm. In addition, the last
two columns of Table 5.1 show that eff(θ) and eff(ϑ) remain always bounded, which confirms the
reliability and efficiency of both a posteriori error estimators. Contour plots of the approximations
obtained on an intermediate mesh with 155652 cells and 77827 vertices with the lowest order family
(representing roughly half a million degrees of freedom) are reported in Figure 5.1.
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N h e(ω) r(ω) e(u) r(u) e(p) r(p) eff(θ) eff(ϑ)

RT0 − P1 − P1 finite elements
34 0.707107 8.663562 − 1.128531 − 0.566262 − 3.394480 2.348912

289 0.202031 3.042580 0.835291 0.165443 1.532650 0.134389 1.148111 2.916250 2.372894
1378 0.088388 1.361391 0.972808 0.069581 1.047711 0.057595 1.024953 2.773871 2.302962
4381 0.048766 0.754373 0.992713 0.038304 1.003762 0.031624 1.008094 2.741535 2.284435

10858 0.030743 0.476180 0.997276 0.024144 1.000363 0.019908 1.003083 2.730383 2.277252
22849 0.021107 0.327081 0.998753 0.016576 0.999982 0.013661 1.001377 2.725384 2.273743
42874 0.015371 0.238253 0.999348 0.012072 0.999939 0.009947 1.000691 2.722743 2.271742
73933 0.011687 0.181164 0.999625 0.009179 0.999947 0.007562 1.000380 2.721174 2.270497

119506 0.009183 0.142352 0.999768 0.007212 0.999959 0.005941 1.000236 2.720171 2.269654
183553 0.007404 0.114783 0.999849 0.005815 0.999969 0.004790 1.000146 2.719482 2.269063
270514 0.006095 0.094499 0.999897 0.004787 0.999977 0.003943 1.000109 2.718991 2.268634
385309 0.005105 0.079148 0.999928 0.004009 0.999982 0.003302 1.000070 2.719032 2.268943
533338 0.004338 0.067252 0.999947 0.003407 0.999986 0.002806 1.000051 2.719193 2.269012
720481 0.003731 0.057847 0.999966 0.002361 0.999991 0.002412 1.000030 2.719145 2.269160

RT1 − P2 − P2 finite elements
98 0.707107 2.753852 − 0.217709 − 0.097066 − 0.180569 0.167872

968 0.202031 0.266276 1.864870 0.014382 2.168913 0.006625 2.142810 0.496039 0.394618
4802 0.088388 0.052312 1.968457 0.002687 2.029184 0.001268 1.999322 0.496915 0.394605

15488 0.048766 0.016037 1.988121 8.8152e-4 2.004256 3.8728e-4 1.993636 0.503835 0.406301
38642 0.030743 0.006391 1.993864 3.2410e-4 1.999490 1.5439e-4 1.995983 0.497461 0.397375
81608 0.021107 0.003017 1.996242 1.5298e-4 1.998673 7.2847e-5 1.997344 0.491595 0.391526

153458 0.015371 0.001601 1.997451 8.1170e-5 1.998665 3.8658e-5 1.998127 0.501924 0.411273
264992 0.011687 9.2632e-4 1.998167 4.6939e-5 1.998834 2.2357e-5 1.998628 0.484082 0.384070
428738 0.009183 5.7205e-4 1.998650 2.8985e-5 1.999021 1.3805e-5 1.998921 0.509795 0.406397
658952 0.007404 3.7197e-4 1.998927 1.8846e-5 1.999152 8.9766e-6 1.999143 0.505238 0.405025
971618 0.006095 2.3062e-4 1.999289 9.1407e-6 1.999378 4.0412e-6 1.999587 0.504564 0.404027

1384448 0.005105 1.0793e-4 1.999712 4.8532e-6 1.999629 2.0237e-6 1.999764 0.504027 0.403340
1916882 0.004338 7.2521e-5 1.999934 2.4129e-6 1.999917 1.0168e-6 1.999902 0.503735 0.404102

Table 5.1: Example 1: Convergence tests against analytical solutions employing RT0 − P1 − P1 (top
rows) and RT1 − P2 − P2 (bottom rows) FE approximations of velocity-vorticity-pressure computed
on a sequence of uniformly refined triangulations of the unit square.

5.2 Example 2: Experimental convergence with respect to a reference solution

Our next test focuses on the mixed BDM1−P1−P1 approximations of problem (1.1) defined on the
nonconvex L-shaped domain Ω = (−1, 1)2 \ (0, 1)2. The forcing term is f = (x2, 0)t and the following
boundary conditions are applied on Γ = ∂Ω (see e.g. [2])

u · n =


x2

2 − 1 if x1 = −1, −1 ≤ x2 ≤ 1,

−8x2(1 + x2) if x1 = 1, −1 ≤ x2 ≤ 0,

0 elsewhere on Γ,

ω = ω0 = 0 on Γ.

The model parameters are σ = 10 and ν = 1. Even for a smooth imposed normal velocity on the
boundary, we expect the nonconvexity of the domain to yield high velocity gradients and degenerate
convergence to the exact solution. This is verified in Figure 5.2 where approximate velocity compo-
nents, vorticity and pressure are displayed for a mesh of 57898 elements and 28950 vertices, and from
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Figure 5.1: Example 1: Contour plots of the approximated velocity components (top), vorticity
(bottom left), and pressure (bottom right), computed with an augmented RT0 − P1 − P1 family for
the Brinkman problem on a structured mesh of 155652 elements and 77827 vertices.

Table 5.2, where experimental errors (computed with respect to a fine reference solution) are reported,
exhibiting suboptimal convergence rates.

5.3 Example 3: A posteriori error estimation and mesh adaptation

Our third example illustrates the properties of the error estimator introduced and analyzed in Section 4.
Again, the domain corresponds to the nonconvex L-shaped region Ω = (−1, 1)2 \ (0, 1)2, on which the
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Figure 5.2: Example 2: Contour plots of the approximated velocity components (top), vorticity
(bottom left), and pressure (bottom right), computed with an augmented BDM1 − P1 − P1 family
for the Brinkman problem on an unstructured triangulation of the L-shaped domain.

following exact solutions of (1.1) can be considered

u =

(
− sin(x1) cos(x2)
sin(x2) cos(x1)

)
, ω = −2 sin(x2) sin(x1), p =

1− x1

(x1 − xa)2 + (x2 − xb)2
,

with xa = xb = 0.05, and forcing terms are constructed according to these functions. Model parameters
are chosen as σ = 1 and ν = 0.01. The boundary Γ is the inner corner of the the domain (x1 = 0 and
x2 = 0) where we impose w = 0 and u ·n = 0, whereas Σ is formed by the remaining segments of ∂Ω
where we set p = 0 and u · t = sin(x2) cos(x1)t2 − sin(x1) cos(x2)t1. We analyze the accuracy of the
finite element approximation, first on a sequence of uniformly refined grids, and secondly on meshes
adaptively refined according to the global a posteriori error estimators (4.3). Mesh refinement was
implemented according to the well-known blue-green strategy (see details in e.g. [43, 20, 32]). For this
example we compute the individual convergence rates as

r(·) := −2 log(e(·)/ê(·))[log(N/N̂)]−1,
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N h e(ωref) r(ωref) e(uref) r(uref) e(pref) r(pref)

42 1.414210 0.247112 − 2.335145 − 7.055480 −
130 0.750000 0.169301 0.596228 1.806842 0.814551 4.956274 0.556796
746 0.298142 0.078222 0.836976 1.475021 0.631235 2.595472 0.701229

2858 0.166875 0.038948 1.201621 0.928274 0.798003 1.578463 0.856964
8346 0.094886 0.023732 0.877510 0.560912 0.892308 1.120087 0.607639

18698 0.067183 0.016746 1.009847 0.421598 0.827015 0.823019 0.892604
37306 0.053650 0.012341 1.357252 0.261197 1.728470 0.596361 1.032152
68186 0.036060 0.009533 0.649707 0.169605 1.086827 0.466019 0.620729

114682 0.026678 0.008064 0.555524 0.103668 1.633632 0.377620 0.697997
187418 0.022005 0.006808 0.879075 0.083456 1.348910 0.303283 1.138433
278130 0.018275 0.004156 0.754791 0.064739 1.081331 0.265899 0.846078

Table 5.2: Example 2: Experimental convergence test against a reference solution (uref , ωref , pref),
employing BDM1−P1−P1 FE approximations of velocity-vorticity-pressure computed on a sequence
of nonuniform refinements of the L-shaped domain.

where N and N̂ denote the corresponding degrees of freedom at each triangulation, and we also define
the total error, its convergence rate, and the effectivity index associated to a given global estimator
ζ ∈ {θ,ϑ} as

e :=
{

[e(ω)]2 + [e(u)]2 + [e(p)]2
}1/2

, r := −2 log(e/ê)[log(N/N̂)]−1, eff(ζ) := e ζ−1.

These quantities are displayed in Table 5.3, where we can observe that the total error converges
sub-optimally under quasi-uniform refinement, whereas convergence rates slightly above the optimal
and stable effectivity indexes are attained for both cases of adaptive mesh refinement. Approximate
solutions computed with an augmented RT0 − P1 − P1 family are depicted in Figure 5.3, and some
adapted meshes are presented in Figure 5.4, showing a qualitative equivalence between the two different
indicators in this particular example.

5.4 Example 4: Flow in a contracting channel with a porous obstacle

We finally analyze the patterns of the flow within a channel with a sudden contraction and in the
presence of a porous obstacle, as studied in e.g. [34]. For the boundary conditions we put Γ =
Γwall ∪ Γin ∪ Γout∂Ω and Σ = ∅ (see the sketch in Figure 5.5), and specify a normal Poiseuille velocity
inflow and outflow on Γin and Γout, respectively (along with compatible vorticity in each case) and
impose slip conditions elsewhere. That is,

u · n =


αinx1(x1 − 3/2) on Γin,

αoutx1(x1 − 3/5) on Γout,

0 on Γwall,

ω = ω0 =


αin(2x1 − 3/2) on Γin,

αout(2x1 − 3/5) on Γout,

0 on Γwall,

with αin = 2/75, αout = 5/12, ensuring that the flow rates at the inflow and outflow boundaries
coincide, and we take ν = 1.

We further assume that the coefficient σ (that represents the inverse permeability of the medium)
is possibly discontinuous

σ(x1, x2) =

{
σ0 + σ1 on the porous obstacle,

σ0 otherwise,
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N e(ω) r(ω) e(u) r(u) e(p) r(p) e r eff(θ) eff(ϑ)

Quasi-uniform refinement
89 92.10302 − 10.12382 − 289.6016 − 304.0633 − 1.049541 0.408742

709 252.2121 -0.96887 8.126014 0.211425 476.9278 -0.47983 539.5714 -0.55162 1.131525 0.416326
2601 42.98782 2.561512 4.570156 0.833185 428.0051 0.156683 430.1825 0.327997 1.005256 0.418037
7022 4.632165 4.476213 1.619454 2.084456 303.1442 0.693022 303.1837 0.702955 1.000183 0.418771

15617 1.218119 4.650495 1.025913 1.589383 238.2463 0.838741 238.2518 0.839119 1.000054 0.419946
30321 0.106278 5.804742 0.713606 0.863941 199.2018 0.425991 199.2025 0.426029 1.000029 0.414001
53534 0.047772 3.541487 0.466607 1.881665 161.2695 0.935575 161.2796 0.935585 1.000022 0.411894
88826 0.020123 3.345247 0.230782 2.724687 116.2435 1.266874 116.2435 0.866883 1.000015 0.416477

140517 0.014175 1.636090 0.173017 1.345333 99.00490 0.749465 99.00557 0.749462 1.000012 0.412909
206827 0.011403 1.612655 0.118302 2.816462 83.28521 1.286590 86.22232 0.856591 1.005052 0.419079

Adaptive refinement using θ
89 91.38271 − 10.27454 − 282.7271 − 285.6762 − 1.024215 −

188 71.50388 1.175420 9.124144 0.673578 250.2252 0.299417 270.4011 0.280289 1.041294 −
504 25.70819 4.443125 5.657072 0.987094 462.3110 -0.82570 463.0594 -0.81083 1.001823 −

1016 1.418674 8.264953 1.110110 4.645723 249.7937 1.756236 249.7999 1.760776 1.000051 −
2534 0.137455 5.108032 0.274131 3.060665 110.9823 1.775375 110.9811 1.775424 1.000010 −
9204 0.104376 0.426865 0.090156 1.724353 42.56176 1.486073 42.56193 1.486076 0.999961 −

43700 0.069303 0.525783 0.039856 1.048030 16.33914 1.229231 16.33932 1.229225 0.999866 −
280832 0.047708 0.401391 0.024232 0.534934 5.900880 1.094882 5.901128 1.094853 0.999493 −
828623 0.028216 0.730731 0.016523 1.588990 2.477021 1.404517 1.565234 1.164862 1.000005 −

Adaptive refinement using ϑ
89 91.38270 − 16.27453 − 281.7279 − 283.6763 − − 0.198789

188 84.36767 1.277472 12.40693 1.202951 269.7647 0.202557 269.9575 0.263561 − 0.417859
512 42.30257 1.668225 4.138492 1.963533 428.4066 -0.85802 432.5095 -0.87233 − 0.416173

1203 0.245006 12.06055 0.825899 3.773178 220.0954 1.559356 220.0964 1.357074 − 0.415403
3343 0.127734 1.274562 0.188241 2.893694 88.79212 1.776354 88.79233 1.776362 − 0.416205

11663 0.101293 0.371224 0.078261 1.404779 33.09974 1.579423 33.15476 1.579393 − 0.414196
58891 0.065322 0.541827 0.036403 0.945358 12.31275 1.221414 12.31292 1.221401 − 0.415953

411923 0.047788 0.321364 0.024208 0.419442 4.463042 1.043427 4.463361 1.143036 − 0.414526
954725 0.028276 0.712833 0.017525 0.662607 3.159851 1.070844 2.725254 1.261190 − 0.415151

Table 5.3: Example 3: Convergence tests against analytical solutions employing augmented RT0 −
P1 −P1 FE approximations of velocity-vorticity-pressure, computed on a sequence of quasi-uniformly
refined triangulations (top rows), adaptively refined according to the estimator θ (middle rows), and
adaptively refined according to ϑ (bottom rows), defined as in (4.3).

where σ0 = 0.001 and σ1 ∈ {0.001, 0.1, 10, 1000}, and focus first on the case where the permeabilities
inside and outside the obstacle differ by six orders of magnitude. There we expect velocity patterns
avoiding the obstacle, and vanishing of the vorticity due to a Darcy regime with constant permeability
inside the obstacle. These phenomena can be indeed observed from Figure 5.6, where we plot contours
of velocity components, vorticity and pressure obtained with a BDM1−P1−P1 approximation. The
unstructured mesh consists of 125670 triangles and 62696 nodes.

Next, using the same finite element family and the same mesh, we perform a qualitative comparison
of the flow patterns depending on the value of the inverse permeability σ1. The three panels in
Figure 5.7 indicate that if the difference between the permeability inside and outside the obstacle is
small, the flow (velocity and vorticity) in the porous part is practically identical to the one in rest of
the domain. However as σ1 increases, the zeroth order term in the Brinkman problem is dominant and
the flow gradually avoids the porous obstacle. In all cases, the stabilization parameters were chosen as
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Figure 5.3: Example 3: Contour plots of the approximated velocity components (top), vorticity
(bottom left), and pressure (bottom right), computed with an augmented RT0 − P1 − P1 family for
the Brinkman problem on an unstructured triangulation of the L-shaped domain.

κ1 = 0.5νσ0σ
−2
1 , κ2 = 0.5σ0σ

−2
1 , κ3 = 0.5σ0. Actually, even though our analysis for the continuous and

discrete augmented formulations was carried out for a constant σ, it can be straightforwardly adapted
to cover Example 4, where a discontinuous coefficient accompanying the zeroth order velocity term is
employed (here interpreted as the inverse permeability of the porous medium). In this case (and in the
light of the proof of Lemma 2.2), it suffices to require σ = σ(x) ∈ L∞(Ω) with 0 < σmin ≤ σ(x) ≤ σmax

for x ∈ R2, and so the stabilization parameters need to satisfy 0 < κ1 <
νσmin
σ2
max

, 0 < κ2 <
σmin
σ2
max

and

κ3 > 0. However, similarly to the discussion at the end of Section 3, the optimal values are given by
the midpoints of the intervals for κ1 and κ2, and κ3 ≥ 0.5σmin.

References

[1] M. Amara, E. Chacón Vera, and D. Trujillo, Vorticity–velocity–pressure formulation for

28



Figure 5.4: Example 3: Successively refined meshes according to the indicators θ and ϑ (top and
bottom panels, respectively).

Stokes problem. Math. Comp., 73(248) (2004) 1673–1697.

[2] K. Amoura, C. Bernardi, and N. Chorfi, Spectral element discretization of the vorticity,
velocity and pressure formulation of the Stokes problem. ESAIM M2AN, 40(5) (2006) 897–921.

[3] V. Anaya, D. Mora, and R. Ruiz-Baier, An augmented mixed finite element method for the
vorticity-velocity-pressure formulation of the Stokes equations. Comput. Methods Appl. Mech.
Engrg., 267 (2013) 261–274.
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gas: Mathematical analysis and numerical solution of axisymmetric eddy-current prob-
lems with Preisach hysteresis model

2014-02 Carolina Dominguez, Gabriel N. Gatica, Salim Meddahi: A posteriori er-
ror analysis of a fully-mixed finite element method for a two-dimensional fluid-solid
interaction problem

2014-03 Raimund Bürger, Gerardo Chowell, Pep Mulet, Luis M. Villada: Mod-
elling the spatial-temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile

2014-04 Carolina Dominguez, Gabriel N. Gatica, Antonio Marquez: A residual-
based a posteriori error estimator for the plane linear elasticity problem with pure
traction boundary conditions

2014-05 Ana Alonso-Rodriguez, Jessika Camaño, Rodolfo Rodŕıguez, Alberto
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