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Abstract

In this paper we study a class of perturbed constrained nonconvex varia-

tional problems. Its (optimal) value function is proved to be convex and then

several related properties are obtained. Existence, strong duality results and nec-

essary/sufficient optimality conditions are established. Moreover, it is shown that

local minima are global. Such results are given in terms of the Hamiltonian func-

tion. Finally various examples are exhibited showing the wide applicability of our

main results.
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1 Introduction and formulation of the problem

We consider, given a ∈ Rm, the following class of minimization problems (P (a)):

inf
{∫ 1

0
f0(t, z(t))dt : z ∈ K(a)

}
, (1.1)

where

K(a)
.
=
{
z ∈ L1([0, 1],Rn) : z ∈ Z,

∫ 1

0
g0(t, z(t))dt ∈ −W + a

}
. (1.2)
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de Concepción, Casilla 160-C, Concepción, Chile. E-mail: fflores@ing-mat.udec.cl
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2 On the convexity of the value function for nonconvex variational problems

Here, W ⊆ Rm is nonempty, closed and convex; Z is the set of functions z ∈
L1([0, 1],Rn) satisfying z(t) ∈ Z(t) for a. e. t ∈ [0, 1], with Z : [0, 1] ⇒ Rn a measurable

set-valued mapping with nonempty and closed values; f0 : [0, 1] × Rn → R ∪ {+∞},
g0 : [0, 1]× Rn → Rm and f0(t, ·) is lower semicontinuous and g0(t, ·) is continuous for

a.e. t ∈ [0, 1]; f0 is a Borel function and g0(·, z) is measurable (with respect to Lebesgue

measure) for all z ∈ Rn such that g0(·, z(·)) ∈ L1([0, 1],Rm) for all z ∈ Z. We consider

the functions f : L1([0, 1],Rn)→ R ∪ {+∞} and g : L1([0, 1],Rn)→ Rm defined by

f(z)
.
=

∫ 1

0
f0(t, z(t))dt, g(z)

.
=

∫ 1

0
g0(t, z(t))dt.

Furthermore, we impose the following assumptions on f0:

• there exists z0 ∈ Z such that∫ 1

0
f0(t, z0(t))dt < +∞; (1.3)

• there exist α ∈ Rn and β ∈ L1([0, 1],R) satisfying

f0(t, z) ≥ 〈α, z〉+ β(t), for a.e. t ∈ [0, 1], all z ∈ Rn. (1.4)

Under the latter assumption, f(z) > −∞ for all z ∈ L1([0, 1],Rn).

Problems like (1.1) subsume an important class of variational problems, namely

inf
{∫ 1

0
f0(t, ẋ(t))dt : x ∈W 1,1([0, 1],Rn) : x(0) = a, x(1) = b

}
, (1.5)

where W 1,1([0, 1],Rn) denotes the space of absolutely continuous functions from [0, 1]

to Rn, and a, b are given vectors in Rn.

Several models in Mathematical economics can be written in the form of (1.1), see [1]

for instance. The classical existence result due to Tonelli requires the convexity and

superlinear growth assumptions on f0(t, ·), which imply the weak lower semicontinuity

of the integral functional and the weak compactness of its sublevel sets. Our goal is to

avoid such assumptions by analyzing carefully the value function associated with (1.1)

depending on a, which allows us to consider integrands with slow growth.

The particular case g0(t, z) = z and W = {0} was considered in [5], and under

convexity of f0(t, ·) in [7].

One of the main goals of the present paper is, after a carefully analysis of the value

function, to provide a necessary and sufficient optimality condition of zero-order for a

feasible solution to problem (P (0)) to be optimal (Corollary 3.7), along with sufficient

and/or necessary conditions for the same problem via the Hamiltonian.

The structure of the paper is as follows. Next section deals with some basic nota-

tions, definitions and preliminaries; in particular, a variant of the Liapunov convexity
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theorem (Theorem 2.1), suitable for our purpose, is recalled. Section 3 describes the

most important properties of the value function (including convexity) to be used in

subsequent sections. In Section 4, we establish necessary optimality conditions via the

subdifferential of the optimal value function. Some of the results of the preceding sec-

tion are applied in Section 5 to prove that local minimality implies global for the

problem (1.1). In connection to assumption (5.1), Section 6 provides several equiva-

lent conditions implying the previous assumption. Finally Section 7 establishes some

formulas for computing the value function via the Hamiltonian, and some existence

results as well.

2 Basic notations and preliminaries

Given two vectors a, b in Rn, 〈a, b〉 denotes for its inner or scalar product. A set P ⊆ Rn

is said to be a cone if tP ⊆ P , for all t ≥ 0. For a given A ⊆ Rn: A, co(A), int A, bd A,

stand for the closure of A, the convex hull of A (the smallest convex set containing A,

topological interior of A, boundary of A, respectively. Furthermore cone(A) denotes

the smallest cone containing A, that is,

cone(A) =
⋃
t≥0

tA,

whereas cone(A) denotes the smallest closed cone containing A: obviously cone(A) =

cone(A).

Moreover, x ∈ A is said to be a relative interior point of A if cone(A − x) is vector

space (see for instance [2]). The set of relative interior points of A is denoted by ri A.

It is well-known that, in case A is convex, x ∈ ri A if and only if x is an interior point

with respect to the affine hull of A, or equivalently if NA(x) is a vector space, where

NA(x)
.
= {ξ ∈ Rn : 〈ξ, a − x〉 ≤ 0, ∀ a ∈ A}, is the (outward) normal cone to A at

x ∈ A.

The positive polar of the convex cone P ⊆ Rn is defined by:

P ∗
.
= {y∗ ∈ Rn : 〈y∗, x〉 ≥ 0, ∀x ∈ P}.

We now recall an extension of the Lyapunov theorem proved in [11]. This plays an

important role in the existence theory for optimal control problems without convexity

assumptions, see for instance [5] and references therein.

Given a set K ⊆ L1([0, 1],Rk), define the set

I(K)
.
=
{∫ 1

0
φ(t)dt : φ ∈ K

}
.
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K is said to be decomposable if, for every measurable set B ⊆ [0, 1] and all u, v ∈ K:

u · χB + v · χ[0,1]\B ∈ K,

where χB is the characteristic function of the set B, i.e. χB(x) = 1 if x ∈ B, and

χB(x) = 0 elsewhere.

The next theorem is taken from [11] and provides a simple existence result for problem

(1.1) as a consequence of Corollary 3.3, as Remark 3.4 shows.

Theorem 2.1. ([11, Theorem 4]) If K ⊆ L1([0, 1],Rk) is decomposable, then I(K) is

convex and I(K) = I(co K). If, in addition, K is (strong) closed and the closure of

I(K) contains neither a line nor an extremal halfline, then I(K) is closed.

In what follows, we recall some main facts about envelopes of functions. Given

h : Rn → R ∪ {±∞}, h, co h stand for the greatest lower semicontinuous function not

larger than h and for the greatest convex and lower semicontinuous function not larger

than h, respectively. To be coherent with our previous notation we need the following

definition of epigraph of a function

epi h
.
= {(t, x) ∈ R× Rn : h(x) ≤ t}.

Denotes also

epi0 h
.
= {(t, x) ∈ R× Rn : h(x) < t}.

In case h is convex, we have ([14, Lemma 7.3])

ri(epi h) = {(t, x) ∈ R× Rn : x ∈ ri(dom h), h(x) < t}. (2.1)

It is known that

epi h = epi h; co(epi h) = epi co h.

Moreover, if co h(x) > −∞ for all x ∈ Rn then co h(x) = h∗∗(x) for all x ∈ Rn, where

h∗∗
.
= (h∗)∗ is the bipolar or biconjugate of h, that is, the conjugate of h∗. There are

examples showing the assumption co h(x) > −∞ for all x ∈ Rn is necessary to get the

previous equality. In general we have h∗∗ ≤ co h ≤ h.

For any nonempty set W ⊆ Rm, and a, b ∈ Rm, we write a ≤W b (or equivalently,

b ≥W a) if b− a ∈W .

The indicator function ιS of the set S is defined by ιS(x) = 0 if x ∈ S and +∞
otherwise.

The space of absolutely continuous functions from [0, 1] into Rk is denoted by

W 1,1([0, 1],Rk), and it is equipped with the norm

‖x‖1,1 = ‖x(0)‖+

∫ 1

0
‖ẋ(t)‖dt.
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It is well-known that W 1,1([0, 1],Rk) is a Banach space. Set W 1,1
k

.
= W 1,1([0, 1],Rk)

and L1 .
= L1([0, 1],Rn). As usual, the norm on the product space W 1,1

k ×L
1 is the sum

of the norms of W 1,1
k and L1, and it will be denoted by ‖ · ‖.

Set R+
.
= [0,+∞[, R++

.
= ]0,+∞[, R−− = −R++.

3 The convexity of the optimal value function and related

properties

We associate with problem (1.1) the optimal value function ψ : Rm → R ∪ {±∞}
defined as follows

ψ(a) =

inf
{∫ 1

0
f0(t, z(t))dt : g(z) ∈ −W + a, z ∈ Z

}
if K(a) 6= ∅;

+∞ otherwise.

Consider the Lagrangian dual of problem (P (0)) (a = 0 in (1.1)) and defined by

vD
.
= sup

λ∈W ∗
inf
z∈Z

L(λ, z). (3.1)

Here L(λ, z) = f(z) + 〈λ, g(z)〉, λ ∈W ∗, z ∈ L1([0, 1],Rn).

We consider a classic result (see e.g., [13, Theorem 7]), although proved under

convexity conditions, which relates the optimal value vD of (3.1) with the biconjugate

of the value function ψ.

In what follows we use the convention +∞− (+∞) = +∞.

Theorem 3.1. Assume that f, g and W are as described above, with W being in

addition a cone, and K(0) 6= ∅. Then vD = ψ∗∗(0).

Proof. Define F : Z × Rm −→ R ∪ {±∞}:

F (z, a) =

f(z), if g(z) ∈ −W + a;

+∞, otherwise.

Then the Lagrangian function can be written as

L(λ, z) = inf
a∈Rm

{F (z, a) + 〈λ, a〉 } =


f(z) + 〈λ, g(z)〉, if λ ∈W ∗,

−∞ if λ 6∈W ∗, f(z) < +∞;

+∞, if λ 6∈W ∗, f(z) = +∞,

(3.2)

and the value function as,

ψ(a) = inf
z∈Z

F (z, a).
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Therefore

inf
z∈Z

L(λ, z) = inf
a∈Rm

{ inf
z∈Z

F (z, a) + 〈λ, a〉 } = − sup
a∈Rm

{〈−λ, a〉 − ψ(a)} = −ψ∗(−λ).

Then,

sup
λ∈W ∗

inf
z∈Z

L(λ, z) = sup
λ∈Rm

inf
z∈Z

L(λ, z) = sup
λ∈Rm

[−ψ∗(−λ)] = ψ∗∗(0).

Set C0
.
= dom f ∩ Z = {z ∈ Z : f(z) < +∞} and

K0
.
=
{

(u, v) ∈ L1([0, 1],R1+m) : ∃ z ∈ Z, u(t) ≥ f0(t, z(t)),

v(t) ≥W g0(t, z(t)), for a.e. t ∈ [0, 1]
}
. (3.3)

We get the following result which is important by itself.

Theorem 3.2. Let F (z)
.
= (f(z), g(z)) with f, g being as above and W ⊆ Rm being

any nonempty closed and convex set. The following assertions hold.

(a) The set K0 is decomposable, I(K0) is convex and I(K0) = F (C0) + (R+ ×W ) ⊆
epi ψ.

(b) (r, a) ∈ epi ψ ⇐⇒ (r +
1

k
, a) ∈ F (C0) + (R+ ×W ), ∀ k ∈ N.

Consequently, the function ψ : Rm → R ∪ {±∞} is convex, and

I(K0) ⊆ epi ψ ⊆ I(K0). (3.4)

(c) We have

(r, a) ∈ ri(epi ψ)⇐⇒ a ∈ ri(dom ψ) and ∃ k0 ∈ N, (r− 1

k
, a) ∈ epi ψ, ∀ k ≥ k0.

As a consequence, if A ⊆ ri (dom ψ) then,

(ri epi ψ) ∩ (R×A) = epi0 ψ ∩ (R×A). (3.5)

epi ψ ∩ (R×A) = epi ψ ∩ (R×A). (3.6)

Proof. (a): We observe first that K0 is a decomposable set. Indeed, let (ui, vi) ∈ K0,

i = 1, 2 and B ⊆ [0, 1] a measurable set. Then, for some zi ∈ L1, i = 1, 2, we have

ui(t) ≥ f0(t, zi(t)), vi(t) ≥W g0(t, zi(t)), zi(t) ∈ Z(t), for a.e. t ∈ [0, 1].

Clearly zi ∈ C0 for i = 1, 2. Setting z̃
.
= z1 · χB + z2 · χ[0,1]\B ∈ L1, we have for a.e.

t ∈ [0, 1]: z̃(t) ∈ Z(t) and

u1(t)·χB(t)+u2(t)·χ[0,1]\B(t) ≥ f0(t, z̃(t)), v1(t)·χB(t)+v2(t)·χ[0,1]\B(t) ≥W g0(t, z̃(t)),
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i.e. (u1, v1) · χB + (u2, v2) · χ[0,1]\B ∈ K0, proving the decomposability of K0. Thus the

convexity of I(K0) follows from Theorem 2.1.

To prove the equality I(K0) = F (C0) + (R+ ×W ), first notice that I(K0) ⊆ F (C0) +

(R+ ×W ) is straightforward by the convexity and closedness of W . For the reverse

inclusion it is enough to observe that if (u, v) ∈ F (C0) + (R+ ×W ), then, for some

z ∈ C0 and (h, p) ∈ (R+ ×W ),

(u, v) =
(∫ 1

0
[f0(t, z(t)) + h]dt,

∫ 1

0
[g0(t, z(t)) + p]dt

)
∈ I(K0),

proving the equality in (a). This also shows that F (C0) + (R+ ×W ) ⊆ epi ψ.

(b): By taking into account the inclusion in (a), the “only if” part is easily obtained.

Let ψ(a) ≤ r < +∞. Then K(a) 6= ∅, and for all k ∈ N there exists zk ∈ C0 such that

f(zk) < r +
1

k
and g(zk) ≤W a. Thus

(r +
1

k
, a) = (f(zk), g(zk)) + (r +

1

k
− f(zk), a− g(zk)) ∈ F (C0) + (R+ ×W ),

which completes the proof of the equivalence.

The convexity of ψ follows from the (a) which asserts the convexity of I(K0) = F (C0)+

(R+ ×W ).

Combining (a) and the last equivalence, we get (3.4).

(c): Let (r, a) ∈ ri(epi ψ). By (2.1), a ∈ ri(dom ψ) and ψ(a) < r. For k0 ∈ N sufficiently

large, we have ψ(a) < r − 1

k
< r for all k ≥ k0. Thus, for such k ∈ N, one obtains

(r − 1

k
, a) ∈ ri(epi ψ) = ri I(K0) = ri I(K0).

Moreover, by convexity again, ri(epi ψ) = ri(epi ψ) = ri(epi ψ), proving one implica-

tion of the equivalence. The other is trivial.

One inclusion in (3.5) follows from the previous equivalence and the other is straight-

forward.

For (3.6) we need to check the inclusion “⊆”. Let take any (r, a) ∈ epi ψ with a ∈ A.

Then, we have two possibilities: ψ(a) < r or ψ(a) = r. In the first case, we get

(r, a) ∈ ri(epi ψ) and so (r, a) ∈ epi ψ. In the second case, since ψ(a) = r < r +
1

k
, we

obtain (r +
1

k
, a) ∈ ri(epi ψ). By (3.5), ψ(a) < r +

1

k
for all k ∈ N, and the conclusion

follows.

It is not difficult to check that

dom ψ = g(C0) +W. (3.7)

Thus, since F (C0) + (R+ × W ) is convex, we obtain immediately the convexity of

g(C0) + W , i. e., dom ψ is convex, which is also a consequence of the convexity of ψ.
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This along with other results, which follow from (3.6), are summarized in the following

corollary.

Corollary 3.3. Under the above assumptions, the following hold:

(a) ri(dom ψ) = ri(dom ψ), dom ψ = dom ψ and ψ(a) = ψ(a) ∀ a ∈ ri(dom ψ).

Consequently,

ri(epi ψ) = ri(epi ψ) = {(r, a) ∈ R× ri(dom ψ) : ψ(a) < r}. (3.8)

(b) For a ∈ ri(dom ψ) with ψ(a) ∈ R, one has

ψ(a) = min{r ∈ R : (r, a) ∈ I(K0)} = inf{r ∈ R : (r, a) ∈ I(K0)}.

= min{r ∈ R : (r, a) ∈ epi ψ}.

Proof. (a): Let a ∈ ri(dom ψ) and take any r ∈ R satisfying ψ(a) < r < +∞. Then

(r, a) ∈ ri(epi ψ), and by (3.5), ψ(a) < r, implying a ∈ dom ψ. This proves that

ri(dom ψ) ⊆ dom ψ, showing the desired result. This also proves that ψ(a) = ψ(a) for

all a ∈ ri(dom ψ).

Let us check the second equality. Since dom ψ ⊆ dom ψ, we obtain

dom ψ ⊆ dom ψ = ri(dom ψ) = ri(dom ψ) = dom ψ,

and the conclusion follows.

The last part is a consequence of (a) and (3.6).

(b): For a ∈ ri(dom ψ), one obtains,

ψ(a) = ψ(a) = min{r ∈ R : (r, a) ∈ epi ψ} = min{r ∈ R : (r, a) ∈ I(K0)}

≤ inf{r ∈ R : (r, a) ∈ epi ψ} ≤ inf{r ∈ R : (r, a) ∈ I(K0)}
.
= r0.

Assume that ψ(a) < r0. There exists rk ↓ ψ(a) such that (rk, a) ∈ epi ψ. By (a) of

the previous proposition, we get (rk +
1

k
, a) ∈ I(K0) for all k ∈ N. This means that

r0 ≤ rk +
1

k
, which implies r0 ≤ ψ(a), which is impossible, proving that ψ(a) = r0, and

the conclusion follows.

Remark 3.4. From (b) of Corollary 3.3, we obtain an existence result to problem

(P (a)) (see (1.1)), namely: if a ∈ ri(g(C0)+W ), ψ(a) > −∞, and I(K0) is closed, then

(P (a)) admits at least a solution.

Conditions implying the closedness of I(K0) are given in Theorem 2.1; whereas the

nonemptiness of H yields ψ(a) > −∞, as Theorem 7.1 shows.
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Theorems 3.1 and 3.2 lead to the following characterization of lower semicontinuity

of ψ at 0. Certainly, by Corollary 3.3, ψ is lsc in ri(dom ψ).

Proposition 3.5. Assume that µ
.
= ψ(0) < +∞ and that the assumptions of Theorem

3.2 hold. Then,

(a) if ψ(0) > −∞,

ψ(0) = ψ(0)⇐⇒ [I(K0)− µ(1, 0)] ∩ (−R++ × {0}) = ∅. (3.9)

⇐⇒ [cone(I(K0)− µ(1, 0))] ∩ (−R++ × {0}) = ∅.

(b) ψ(0) = −∞ if and only if

[I(K0)− ρ(1, 0)] ∩ −(R++ × {0}) 6= ∅, ∀ ρ ∈ R. (3.10)

Proof. (a): It follows by noticing that I(K0) = epi ψ.

(b): Simply consider the definition of ψ(0).

We now characterize the zero duality gap for our problem (P (0)) in term of the

lower semicontinuity of of ψ at 0. In particular, if 0 ∈ ri(g(C0) + W ) then there is no

duality gap.

Theorem 3.6. Assume that W is additionally a cone, and ψ(0) < +∞, then

(a) vD = ψ(0);

(b) the duality gap between (P (0)) and (3.1) is zero, i. e., µ = vD, if and only if

ψ(0) = ψ(0).

Proof. (a): In view of Theorem 3.1, we need to check that ψ∗∗(0) = ψ(0). If ψ(0) = −∞
then ψ∗∗(0) = −∞ since ψ∗∗ ≤ ψ. If ψ(0) ∈ R, due to the lower semicontinuity and

convexity of ψ, we conclude that ψ(= co ψ) never takes the value −∞, and therefore

(co ψ =)ψ = ψ∗∗.

(b): It follows from (a).

We will see next that the condition 0 ∈ ri(g(C0) +W ) not only implies zero duality

gap but also the existence of solution for the dual problem provided ψ(0) is finite. This

is due to the important result derived from the convexity of ψ (see Corollary 3.3): the

nonemptiness of ∂ψ(a) whenever a ∈ ri(dom ψ) = ri(g(C0) +W ).

Thus, on combining the previous theorem and Corollary 3.3, we establish the follow-

ing result on strong duality for (P (0)) without any coercivity or convexity assumption.



10 On the convexity of the value function for nonconvex variational problems

Corollary 3.7. Assume that µ ∈ R, with W being additionally a cone, K(0) 6= ∅ and

0 ∈ ri(g(C0) +W ). Then, there exists λ0 ∈W ∗ such that

inf
z∈K(0)

∫ 1

0
f0(t, z(t))dt = inf

z∈Z

∫ 1

0
[f0(t, z(t)) + 〈λ0, g0(t, z(t))〉]dt. (3.11)

For such λ0, we have

inf
z∈K(0)

∫ 1

0
f0(t, z(t))dt = inf

〈λ0,g(z)〉≤0
z∈Z

∫ 1

0
f0(t, z(t))dt. (3.12)

Hence,

z̄ solves (P (0))⇐⇒


〈λ0,

∫ 1

0
g0(t, z̄(t))dt〉 = 0,∫ 1

0 f0(t, z̄(t))dt = inf
z∈Z

∫ 1
0 [f0(t, z(t)) + 〈λ0, g0(t, z(t))〉]dt.

Proof. By the previous theorem and Corollary 3.3, we get the zero duality gap. More-

over, since ψ(0) is finite and 0 ∈ ri(dom ψ) = ri(g(C0) +W ), a simple application of a

convex separation theorem, allows us to conclude that ∂ψ(0) 6= ∅. Let λ∗ ∈ ∂ψ(0).

Then, ψ(a) − ψ(0) ≥ 〈λ∗, a〉 for all a ∈ Rm. Since W is a convex cone, we get

K(0) ⊆ K(a) for all w ∈ W ; this along with the previous inequality imply that

〈λ∗, a〉 ≤ 0 for all a ∈ W , yielding −λ∗ ∈ W ∗. We need only to check that −λ∗ is a

solution to problem (3.1).

Let us take any z ∈ Z. For a =
∫ 1
0 g0(t, z(t))dt ∈ Rm, we obtain∫ 1

0
f0(t, z(t))dt− 〈λ∗,

∫ 1

0
g0(t, z(t))dt〉 ≥ ψ(a)− 〈λ∗, a〉 ≥ ψ(0), ∀ z ∈ Z,

which proves one inequality in (3.11) for λ0 = −λ∗, the other is trivial.

Equality (3.12) and the remaining equivalence are not difficult to check.

In case g0(t, z) = z and Z = L1([0, 1],Rn), we obtain g(L1([0, 1],Rm)) = Rm. Thus,

0 ∈ ri(g(C0) +W ) trivially holds whatever W is.

Related strong duality results were established in [3, 12].

Remark 3.8. Example 7.6 shows that the single condition a ∈ ri(dom ψ) does not

imply, in general, existence of solutions even when the optimal value is finite.

4 The subdifferential of the value function and necessary

optimality conditions

Our aim in this section is to exploit the convexity property of the value function ψ

in order to compute its subdifferential, we know that ∂ψ(a) is nonempty, convex and
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compact whenever a ∈ ri(dom ψ).

To that purpose, with the same assumptions on f0, g0, W and Z, let us consider

problem (P (0)), i. e., (1.1) with a = 0, and its associated Hamiltonian function H :

[0, 1]× Rm → R ∪ {±∞} defined by

H(t, p)
.
= sup

ξ∈Z(t)
{〈p, g0(t, ξ)〉 − f0(t, ξ)}. (4.1)

Obviously H(t, ·) is convex and lsc for all t ∈ [0, 1], and because of (1.3), we have for

all p ∈ Rm

H(t, p) ≥ 〈p, g0(t, z0(t))〉 − f0(t, z0(t)), a. e. t ∈ [0, 1]. (4.2)

Set

U .
=
{

(x, z) ∈W 1,1
m × L1 : ẋ(t) = g0(t, z(t)), z(t) ∈ Z(t), a. e. t ∈ [0, 1], x(0) = 0

}
.

The next theorem does not require that W be a cone as in Corollary 3.7.

Theorem 4.1. Let z̄ ∈ K(0). Then the following assertions are equivalent:

(a) p ∈ ∂ψ(0) and z̄ solves (P (0));

(b) p ∈ N(W,−
∫ 1
0 g0(t, z̄(t))dt) and

H(t, p) = 〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)), a. e. t ∈ [0, 1]. (4.3)

Proof. (a)⇒ (b): Let p ∈ ∂ψ(0), or equivalently

〈p, a〉 ≤ ψ(a)− ψ(0) ∀ a ∈ Rm. (4.4)

For any fixed w ∈ W , set a
.
=
∫ 1
0 g0(t, z̄(t))dt + w. Then, we have

∫ 1
0 g0(t, z̄(t))dt ∈

−W + a. Replacing a in (4.4) and taking into account that z̄ is a solution to (P (0)),

we get

〈p, w +

∫ 1

0
g0(t, z̄(t))dt〉 ≤ 0,

proving the first result in (b).

To establish (4.3), pick any z ∈ L1, with z(t) ∈ Z(t) a. e. t ∈ [0, 1]. Then∫ 1

0
g0(t, z(t))dt ∈ −W + a,

where a =
∫ 1
0 g0(t, z(t))dt−

∫ 1
0 g0(t, z̄(t))dt. Using (4.4), we obtain

〈p,
∫ 1

0
g0(t, z(t))dt−

∫ 1

0
g0(t, z̄(t))dt〉 ≤

∫ 1

0
f0(t, z(t))dt− ψ(0).



12 On the convexity of the value function for nonconvex variational problems

Thus, since z̄ is a solution of the problem (P (0)) we have ψ(0) =
∫ 1
0 f0(t, z̄(t))dt and

hence z̄ solves the problem

min
{∫ 1

0
f0(t, z(t))dt− 〈p,

∫ 1

0
g0(t, z(t))dt〉 : z ∈ Z

}
, (4.5)

or equivalently (x̄, z̄), where x̄(t) =
∫ t
0 g0(s, z̄(s))ds, is a solution of the following prob-

lem

min
(x,z)∈U

∫ 1

0
f0(t, z(t))dt− 〈p, x(1)〉.

The maximum principle (Theorem 6.1 in [8]) yields q ∈W 1,1
m such that

q̇(t) = 0 a. e. t ∈ [0, 1]; −q(1) ∈ ∂〈−p, ·〉(x̄(1)) = {−p}

and

H(t, p) = 〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)), a. e. t ∈ [0, 1],

proving (4.3).

(b)⇒ (a): From (4.3), we obtain for all z ∈ Z,

〈p, g0(t, z(t))〉 − f0(t, z(t)) ≤ 〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)), a. e. t ∈ [0, 1],

and hence

〈p,
∫ 1

0
g0(t, z(t))dt〉 −

∫ 1

0
f0(t, z(t))dt ≤ 〈p,

∫ 1

0
g0(t, z̄(t))dt〉 −

∫ 1

0
f0(t, z̄(t))dt. (4.6)

Now let z ∈ K(0). Then
∫ 1
0 g0(t, z(t))dt ∈ −W , and by the first part in (b),

〈p,−
∫ 1

0
g0(t, z(t))dt+

∫ 1

0
g0(t, z̄(t))dt〉 ≤ 0.

This along with (4.6) imply that for all z ∈ K(0),∫ 1

0
f0(t, z(t))dt ≥

∫ 1

0
f0(t, z̄(t))dt,

ensuring that z̄ is a solution to (P (0)).

We now prove p ∈ ∂ψ(0). Take any a ∈ Rm satisfying K(a) 6= ∅. Then for all z ∈ K(a),

we have z ∈ Z and
∫ 1
0 g0(t, z(t))dt − a ∈ −W . On the one hand, the first part of (b)

ensures that

〈p,−
∫ 1

0
g0(t, z(t))dt+ a+

∫ 1

0
g0(t, z̄(t))dt〉 ≤ 0.

It follows from (4.6) ∫ 1

0
f0(t, z(t))dt ≥

∫ 1

0
f0(t, z̄(t))dt+ 〈p, a〉
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and as ψ(0) =
∫ 1
0 f0(t, z̄(t))dt and z ∈ K(a) is arbitrary, we get

ψ(a)− ψ(0) ≥ 〈p, a〉,

or equivalently, p ∈ ∂ψ(0).

We recover Proposition 5.8 in [3].

Corollary 4.2. Assume that 0 ∈ ri(g(C0) + W ) and z̄ ∈ K(0). Then the following

assertions are equivalent:

(a) z̄ is a solution to (P (0));

(b) there exists p ∈ N(W,−
∫ 1
0 g0(t, z̄(t))dt) such that

H(t, p) = 〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)), a. e. t ∈ [0, 1]. (4.7)

The set of p satisfying (b) is ∂ψ(0).

Proof. It suffices to see that our assumption 0 ∈ ri(dom ψ) ensures the existence of

p ∈ ∂ψ(0) and then, we apply Theorem 4.1.

5 Local minima for the problem (1.1) are global

The aim of the section is to show that under the previous assumptions (except the

assumption (1.4)) together with the following constraint qualification

0 ∈ int[g(C0) +W ] (5.1)

ensures that each local minimum for (P (0)) is in fact global. Here, we recall that

C0 = {z ∈ Z : f(z) < +∞}.

Theorem 5.1. Let f0 and g0 satisfying the previous measurability, lower semiconti-

nuity and continuity assumptions and let W be closed and convex. Then, under the

qualification condition (5.1), each local minimum for (P (0)) is global.

Before giving the proof of this theorem, we establish a result concerning the neces-

sary optimality conditions of (P (0)). These necessary conditions are expressed in terms

of the limiting Fréchet (or Mordukhovich [10]) normal cone that we begin by recalling

here.

Let C be a closed subset of Rn containing some point c. The Fréchet normal cone to

C at c is the set

N̂(C; c)
.
=

{
ξ ∈ Rn : lim inf

x∈C→c

〈−ξ, x− c〉
‖x− c‖

≥ 0

}
.
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The normal cone to C at c is the set

N(C; c)
.
= lim sup

x∈C→c
N̂(C, x).

Lemma 5.2. If z̄ is a local solution for (P (0)), then there exist p ∈ Rm and λ ∈ {0, 1},
with (p, λ) 6= (0, 0), such that p ∈ N(W,−

∫ 1
0 g0(t, z̄(t))dt) and

〈p, g0(t, z̄(t))〉 − λf0(t, z̄(t)) = max
z∈Z(t)∩dom f(t,·)

[〈p, g0(t, z)〉 − λf0(t, z)], a. e. t ∈ [0, 1].

Proof. We define the functions ` : Rm × Rn × Rm × Rn → R ∪ {+∞} and L : [0, 1] ×
Rm × Rn × Rm × Rn → R ∪ {+∞} by

`(s1, s2, s3, s4) = ι{0}(s1) + ι{0}(s2) + ι−W (s3)

L(t, x, y, u, v) =

{
f0(t, v) if v ∈ Z(t), u = g0(t, v),

+∞ otherwise.

Let us note that, as L does not depend on (x, y), then for each element A
.
=

(x, y, u, v, r) ∈ epi L(t, ·) we have

(β, x∗, y∗, u∗, v∗) ∈ N(epi L(t, ·), A) ⇒ x∗ = 0, y∗ = 0. (5.2)

Put x̄(t) =
∫ t
0 g(τ, z̄(τ))dτ and ȳ(t) =

∫ t
0 z̄(τ)dτ . Since z̄ is a local solution of the

problem (P (0)), then (x̄, ȳ) is a local solution of the following Bolza problem{
min

(x,y)∈W 1,1
m ×W 1,1

n

∫ 1

0
L(t, x(t), y(t), ẋ(t), ẏ(t))dt+ `(x(0), y(0), x(1), y(1))

It is not difficult to show that all the assumptions of Theorem 4.1.1 in [4] are satisfied

and this theorem asserts the existence of an arc q = (p, p0) ∈W 1,1
m ×W 1,1

n and λ ∈ {0, 1}
such that

1. (q, λ) 6= 0;

2. −p(1) ∈ N(−W, x̄(1)), p0(1) = 0;

3. q̇(t) ∈ co{R : (−λ,R, q) ∈ N(epiL(t, ·), (f(t, z̄(t), x̄(t), ȳ(t), ˙̄x(t), ˙̄y(t))) a.e. t ∈
[0, 1] and hence, due to (5.2), q̇ = 0;

4. for almost every t ∈ [0, 1] and (u, v) ∈ domL(t, x̄(t), ȳ(t), ·, ·)

〈q(t), (u, v)− ( ˙̄x(t), ˙̄y(t))〉 ≤ λ[L(t, x̄(t), ȳ(t), (u, v))− L(t, x̄(t), ȳ(t), ˙̄x(t), ˙̄y(t))].

Assertions 2. and 3. assert that p0 = 0 and p(t) = p(1) for all t ∈ [0, 1] we will put

p(t) = p for all t ∈ [0, 1]) while assertion 4. implies the following

〈p, g0(t, z̄(t))〉 − λf0(t, z̄(t)) = max
z∈Z(t)∩dom f(t,·)

[〈p, g0(t, z)〉 − λf0(t, z)], a. e. t ∈ [0, 1],

and the proof of the lemma is finished because −p ∈ N(−W, x̄(1)) iff p ∈ N(W,−x̄(1)).
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Now, we proceed to prove our theorem.

Proof. We will show that the multiplier λ in Lemma 5.2 is equal to 1. Indeed, suppose

that λ = 0. Then, in particular

〈p, g0(t, z̄(t))〉 ≥ 〈p, g0(t, z(t))〉, ∀ z ∈ C0,

and hence, by integrating we get

〈p, g(z)− g(z̄)〉 ≤ 0, ∀ z ∈ C0.

On the other hand, p ∈ N(W,−
∫ 1
0 g(t, z̄(t))dt) = N(W,−g(z̄)), or equivalently

〈p, w + g(z̄)〉 ≤ 0 ∀ w ∈W.

Now adding the two last inequalities, we obtain that

〈p, g(z) + w〉 ≤ 0, ∀ z ∈ C0, ∀ w ∈W.

Using our constraint qualification (5.1), we conclude that p = 0 and this contradicts

(p, λ) 6= (0, 0). So λ = 1 and hence the last equality in Lemma 5.2 can be written as

〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)) = max
z∈Z(t)

[〈p, g0(t, z)〉 − f0(t, z)], a. e. t ∈ [0, 1].

We now apply Corollary 4.2 to conclude that z̄ is a (global) solution to (P (0)), and

the proof is completed.

Now, we can ask when the constraint qualification (5.1) is satisfied. In fact, it is

easy to see that the following implication holds true for some ρ > 0

K(a) 6= ∅ ∀ a ∈ B(0, ρ) ⇒ 0 ∈ int[g(C0) +W ]

provided Z ⊆ dom f .

Several characterization concerning the nonemptiness of K(a) around 0 will be

presented in the next section.

6 The behaviour of the set-valued mapping K

The main intention of this section is to give sufficient conditions ensuring the nonempti-

ness and the behaviour of the set-valued mapping K considered in the previous section.

We will consider the set-valued mapping K̃ : Rm ⇒W 1,1 × L1 defined by

K̃(a)
.
=
{

(x, u) ∈W 1,1 × L1 : ẋ(t) = g0(t, u(t)), u(t) ∈ Z(t), a. e. t ∈ [0, 1],

x(0) = 0, x(1) ∈ −W + a
}
.
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Theorem 6.1. Let z̄ ∈ K(ā) and put x̄(t) =
∫ t
0 g0(τ, z̄(τ))dτ , for all t ∈ [0, 1].

U .
=
{

(x, u) ∈W 1,1 × L1 : ẋ(t) = g0(t, u(t)), u(t) ∈ Z(t), a. e. t ∈ [0, 1], x(0) = 0
}
.

Suppose that g0(t, ·) is continuous for almost every t ∈ [0, 1] and W is a closed set in

Rm. Let us consider the following assertions:

i) There is no p ∈ Rm, with p 6= 0, satisfying

−p ∈ N(−W, x̄(1)− ā), 〈p, g0(t, z̄(t))〉 = max
z∈Z(t)

〈p, g0(t, z)〉, a. e. t ∈ [0, 1].

ii) There exist α > 0 and r > 0 such that

d((x, u), K̃(a)) ≤ αd(x(1),−W + a)

for all (x, u) ∈ B((x̄, z̄), r) ∩ U and a ∈ B(ā, r).

iii) There exist α > 0 and r > 0 such that

K̃(a) ∩B((x̄, z̄), r) ⊆ K̃(a′) + α‖a− a′‖B(0, 1).

for all a, a′ ∈ B(ā, r).

iv) There exists r > 0 such that

∀a ∈ B(ā, r), K(a) 6= ∅.

Then i)⇒ ii)⇒ iii)⇒ iv). If moreover W is convex, then iv)⇒ i).

Proof. The implications ii)⇒ iii)⇒ iv)⇒ i) are obvious. We establish only the impli-

cation i)⇒ ii) : Suppose that ii) does not hold. Then, there are sequences (yk, vk) ∈ U ,

with yk → x̄ and vk → z̄, and ak → ā such that for k large enough

d((yk, vk), K̃(ak)) > kd(yk(1),−W + ak). (6.1)

It follows that (yk, vk) /∈ K̃(ak). Let us consider the function fk : W 1,1 × L1 → R
defined by

fk(x, u) = d(x(1),−W + ak).

Put εk =
√
fk(yk, vk) > 0 and λk = min{kε2k, εk}. Then εk → 0 and λk → 0. Obviously,

fk(yk, vk) ≤ inf
(y,u)∈U

fk(y, u) + ε2k.

Our assumption on g0 ensures that U is closed in W 1,1 × L1. Now, applying Ekeland

variational principle one gets the existence of (xk, uk) ∈ U such that

‖(xk, uk)− (yk, vk)‖ ≤ λk, (6.2)
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fk(xk, uk) ≤ fk(x, u) + sk‖(x, u)− (xk, uk)‖, ∀(x, u) ∈ U . (6.3)

where sk =
ε2k
λk

. Using the inequality (6.3), we obtain that (xk, uk) is a solution to the

following optimal control problem of Mayer type min
(x,u)∈U

d(x(1)− ak,−W ) + sk‖x(0)− xk(0)‖

+sk
∫ 1
0 [‖g0(t, u(t))− g0(t, uk(t))‖+ ‖u(t)− uk(t)‖]dt

The maximum principle yields an arc pk ∈W 1,1([0, 1],Rn) such that

ṗk(t) = 0, a. e. t ∈ [0, 1]; − pk(1) ∈ ∂d(· − ak,−W )(xk(1))

and for a. e. t ∈ [0, 1]

〈pk(t), g0(t, uk(t))〉

= max
u∈Z(t)

〈pk(t), g0(t, u)〉 − sk[‖u− uk(t)‖+ ‖g0(t, u)− g0(t, uk(t))‖], (6.4)

where ∂d(·−ak,−W )(xk(1)) is the limiting subdifferential ([10]) of the distance function

to the set −W + ak. From (6.1) and (6.2) it follows that xk(1) /∈ −W + ak, and this

implies that ‖pk(1)‖ = 1 (see [9]). Since λk → 0, (6.2) together with vk → z̄ ensure

that uk → z̄ in L1([0, 1],Rn) and hence there exists a subsequence (uϕ(k)) of (uk) such

that

uϕ(k)(t)→ z̄(t), a. e. t ∈ [0, 1]

and extracting a subsequence, if necessary, we may also assume that pϕ(k)(1) → p,

with p 6= 0. Because of the closedness of the limiting subdifferential ([10]), −p ∈
∂d(·,−W )(

∫ 1
0 g0(t, z̄(t))dt − ā) ⊆ N(−W,

∫ 1
0 g0(t, z̄(t))dt − ā). Now, having in mind

that sϕ(k) = max( 1
ϕ(k) , εϕ(k)), we get sϕ(k) → 0. On the other hand, relation (6.4) and

the continuity of g0(t, ·) ensures that

〈p, g0(t, z̄(t))〉 = max
u∈Z(t)

〈p, g0(t, u)〉, a. e. t ∈ [0, 1],

and this contradicts i).

7 Computing the value function via the Hamiltonian and

existence of solutions

This section is devoted to provide conditions under which the value function ψ is

minorized by an affine linear function. As a consequence, we find a formula for ψ∗ and

so of ψ. To that end, let us define the function G : Rm → R ∪ {±∞} by

G(p) =

∫ 1

0
H(t, p)dt, (7.1)
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where, H is the Hamiltonian function defined as in (4.1). It follows that G is lsc and

convex. Using Theorem 2.2 in [6], we may rewrite the function G as follows :

G(p) = sup
z∈Z

∫ 1

0
[〈p, g0(t, z(t))〉 − f0(t, z(t))]dt. (7.2)

The next function will be useful in the sequel

G0(p) =

G(p) if p ∈ −W ∗,

+∞ if p 6∈ −W ∗.

Thus, G0 is lsc and convex. Set

H .
=
{
p ∈ −W ∗ : H(·, p) ∈ L1([0, 1],R)

}
. (7.3)

Then, by (4.2), H is convex and

p ∈ H ⇐⇒ p ∈ −W ∗ and p ∈ dom G⇐⇒ p ∈ dom G0.

The next result generalizes and extends Theorem 3.2 in [5], where the case W = {0}
and g0(t, z) = z is considered.

Theorem 7.1. Assume that W is additionally a cone and H 6= ∅. The following

statements hold.

(a) ψ(a) ≥ 〈p∗, a〉−G(p∗) > −∞, ∀ a ∈ Rm, ∀ p∗ ∈ H; consequently ψ = co ψ = ψ∗∗;

(b) Assume that (1.3) and (1.4) be satisfied. Then ψ∗(p) = G0(p), ∀ p ∈ Rm, and so

ψ∗∗ = ψ = G∗0, which gives vD = G∗0(0).

(c) ψ(a) = G∗0(a) for all a ∈ ri(g(C0) +W ).

Proof. (a): Let p∗ ∈ H. We have

G(p∗)
.
=

∫ 1

0
H(t, p∗)dt ≥

∫ 1

0
〈p∗, g0(t, z(t))〉dt−

∫ 1

0
f0(t, z(t))dt, ∀ z ∈ Z.

Take any a ∈ Rm such that K(a) 6= ∅. Then for z ∈ K(a) there exists p ∈ W such

that:∫ 1

0
f0(t, z(t))dt ≥

∫ 1

0
〈p∗, g0(t, z(t))〉dt−

∫ 1

0
H(t, p∗)dt ≥

∫ 1

0
〈p∗, a− p〉dt−G(p∗).

Since p∗ ∈ −W ∗ we have:

ψ(a) ≥
∫ 1

0
〈p∗, a〉dt−G(p∗) = 〈p∗, a〉 −G(p∗).
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(b): Let λ ∈ Rm. Then,

ψ∗(λ) = sup
a∈Rn
{〈λ, a〉 − ψ(a)} = sup

{a: K(a)6=∅}
sup

z∈K(a)
{〈λ, a〉 − f(z)}

= sup
z∈C0, p∈W

{〈λ, g(z)〉+ 〈λ, p〉 − f(z)} = sup
z∈C0

{〈λ, g(z)〉 − f(z)}+ sup
p∈W

〈λ, p〉

=


sup
z∈C0

{〈λ, g(z)〉 − f(z)} if λ ∈ −W ∗,

+∞ if λ 6∈ −W ∗.
(7.4)

By definition

H(t, λ) ≥ 〈λ, g0(t, z(t))〉 − f0(t, z(t)), for a.e. t ∈ [0, 1], ∀ z ∈ Z,

so that for all λ ∈ Rm,

G(λ) ≥
∫ 1

0
[〈λ, g0(t, z(t))〉 − f0(t, z(t))]dt = 〈λ, g(z)〉 − f(z), ∀ z ∈ Z.

Hence, G(λ) ≥ ψ∗(λ) for all λ ∈ −W ∗ because of (7.4). Suppose that G(λ) > ψ∗(λ)

for some λ ∈ −W ∗. Then there exists z ∈ Z such that∫ 1

0
〈λ, g0(t, z(t))〉dt−

∫ 1

0
f0(t, z(t))dt > ψ∗(λ).

But relation (1.4) together with the last inequality ensure that f(z) < ∞, and hence

z ∈ C0 and this contradiction completes the proof of the equality G(λ) = ψ∗(λ).

(c): It is a consequence of (b).

Next corollary, which is important by itself, provides another formula for the opti-

mal value ψ(0).

Corollary 7.2. Assume that W is additionally a cone, H 6= ∅, 0 ∈ ri(g(C0) + W ),

(1.3) and (1.4) be satisfied. Then there exists p∗ ∈ −W ∗ such that ψ(0) = −G(p∗).

Proof. By assumption, it is known that there exists p∗ ∈ ∂ψ(0) and ψ(0) = ψ(0) by

Corollary 3.3. Recall that by Theorem 3.2, the function ψ is convex and by (a) of

Theorem 7.1 if follows that it is proper. Applying Theorem 23.5 in [14], we get

p∗ ∈ ∂ψ(0) ⇔ ψ(0) + ψ∗(p∗) = 0.

Then

ψ(0) = −ψ∗(p∗). (7.5)

From Theorem 7.1 we also have that ψ∗(p) = G0(p), for all p ∈ Rm and ψ(0) = G∗0(0).

Then, taking into account (7.5), we get

ψ(0) = G∗0(0) = −G0(p
∗).

Moreover, from (7.5) it also follows that p∗ ∈ dom ψ∗ = dom G0 = H; therefore

p∗ ∈ −W ∗ and G0(p
∗) = G(p∗).
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The following existence theorem subsumes Corollary 3.1 in [5].

Theorem 7.3. Assume that W is in addition a cone, H 6= ∅, and (1.3) along with

(1.4) hold. If K0 is closed and the set epi G∗0 contains no lines or extremal half-lines,

then for every a ∈ Rm either ψ(a) = +∞ or (P (a)) admits a solution, and the duality

gap between (P (0)) and (3.1) is zero, i. e., vD = ψ(0).

Proof. By Theorem 2.1, I(K0) is closed since I(K0) = epi G∗0. Thus, I(K0) = F (C0) +

(R+ ×W ) is closed and convex. From (3.4) we obtain

epi ψ = F (C0) + (R+ ×W ).

which implies that (P (a)) admits a solution for every a ∈ Rm satisfying K(a) 6= ∅, and

ψ = ψ. Hence vD = ψ∗∗(0) = ψ(0) by Theorem 3.6(a).

Unfortunately we were unable to check that K0 is closed in this general setting.

However if W = {0} and g0(t, z) = z, K0 is closed as one can check it directly. This

case was considered in [5].

Next result follows a reasoning similar to that applied in Proposition 3.1 in [5].

Proposition 7.4. Assume that H is a nonempty open set, g(C0) + W = Rm, where

W is additionally a cone, K0 is closed and (1.3) and (1.4) be satisfied. Then (P (a))

admits a solution, for every a ∈ Rm.

Proof. We will show that the assumptions of Theorem 7.3 are fulfilled. To this aim,

it is enough to show that epi G∗0 contains no lines or extremal half-lines. First of

all observe that, since g(C0) + W = Rm, then K(a) 6= ∅, for every a ∈ Rm and

dom ψ = g(C0) + W = Rm. It follows that dom G∗0 = dom ψ = Rm, where the first

equality is due to Theorem 7.1(c). This implies that epi G∗0 cannot have any vertical

extremal half-line, i.e., of the form (t, γ̄), where γ̄ ∈ Rm, t ≥ t̄ ∈ R.

Suppose that there exists a half-line s
.
= {(α + ηβ, ξ0 + ηz), η ≥ 0} contained in

bd(epi G∗0), ξ0, z ∈ Rm, z 6= 0, α, β ∈ R.

Let Γ(ξ)
.
= 〈q, ξ〉 − γ0, q ∈ Rm, γ0 ∈ R be a supporting hyperplane for epi G∗0

containing the half-line s. Then G∗0(ξ) ≥ Γ(ξ), for all ξ ∈ Rm, which implies G0(q) ≤
Γ∗(q) = γ0, yielding q ∈ H. Moreover,

G∗0(ξ0 + ηz) = Γ(ξ0 + ηz), ∀ η ≥ 0

because s is contained in the graph of Γ.

Let p ∈ H; by the previous relations and recalling that G0 is a lsc convex function,

we get

G0(p) = sup
ξ∈Rm

[〈p, ξ〉 −G∗0(ξ)] ≥ 〈p, ξ0 + ηz〉 −G∗0(ξ0 + ηz) = 〈p− q, ξ0 + ηz〉, ∀ η ≥ 0.
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Since G0(p) <∞, it follows that

〈p− q, z〉 ≤ 0, ∀ p ∈ H,

which is impossible because q ∈ H = int H and z 6= 0.

Therefore bd(epi G∗0) does not contain any half-line, and since epi G∗0 is a proper

closed convex set, this implies that it cannot contain any line too, which completes the

proof.

The assumption g(C0) +W = Rm is satisfied if g0(t, z) = z, C0 = L1, in which case

m = n. Observe also that in such situation K0 is closed.

Next three examples illustrates the validity of our Theorem 7.3 showing that some

of the assumptins are essential.

Example 7.5. Let us consider the problem

ψ(a)
.
= inf

{∫ 1

0
−[z(t)]2dt s. t.

∫ 1

0
z(t)dt = a, z ∈ Z

}
,

where Z(t)
.
= [ 1√

t
,+∞) for t ∈ (0, 1]. Here W = {0}. Since z(t) ≥ 1√

t
for a.e. t ∈ [0, 1],

then

a =

∫ 1

0
z(t)dt ≥

∫ 1

0

1√
t
dt = 2, ∀z ∈ Z.

Obviously a = 2 ∈ bd(dom ψ) and

ψ(2) =

∫ 1

0
−1

t
dt = −∞.

We actually have ψ(a) = −∞ for all a ≥ 2. Indeed, the function z(t)
.
= a

2
√
t
∈ K(a),

for all a ≥ 2, and

ψ(a) ≤
∫ 1

0
−a

2

4t
dt = −∞.

Note that

ψ(a) = ψ(a) =

+∞, if a < 2

−∞, if a ≥ 2,

is convex; whereas ψ∗∗ ≡ −∞, H = ∅ and G ≡ +∞.

Example 7.6. Consider the problem

ψ(a)
.
= inf

{∫ 1

0
e−[z1(t)z2(t)]

2
dt s. t.

∫ 1

0
[z2(t)− z1(t)]2dt ≤ a, z ∈ Z

}
,

where Z(t)
.
= (R+ × R+) for t ∈ [0, 1]. Here W = R+. Obviously K(a) = ∅ for a < 0.

Setting z̄1(t) = z̄2(t) = c for all t ∈ [0, 1], then for every a ≥ 0, and for every c ≥ 0,

z̄ ∈ K(a). Obviously a = 0 ∈ bd(dom ψ) and

0 ≤ ψ(a) ≤
∫ 1

0
e−c

4
dt = e−c

4
, ∀ c ≥ 0,



22 On the convexity of the value function for nonconvex variational problems

which implies

ψ(a) = 0, ∀ a ≥ 0.

Note that the infimum is never attained and

ψ(a) =

+∞, if a < 0,

0, if a ≥ 0

is convex with ψ = ψ. Here H = ]−∞, 0],

G(p) = G0(p) =

+∞, if p > 0,

0, if p ≤ 0.

Thus ψ = G∗0 as expected by Theorem 7.1. Moreover the assumptions of Theorem 2.1

(with K0 instead of K), or Theorem 7.3 are not fulfilled since an extremal halfline

belongs to I(K0) = epi ψ.

Example 7.7. Consider the problem

inf
{∫ 1

0
e−[z(t)]dt s.t.

∫ 1

0

z(t)

1 + z(t)
dt ≤ a, z ∈ Z

}
,

where Z(t)
.
= [0,+∞[ for t ∈ [0, 1]. Here W = R+. Obviously K(a) = ∅ for a < 0.

Let a ≥ 1. Setting z̄(t) = c ≥ 0, ∀ t ∈ [0, 1], then for every a ≥ 1, and for every

c ≥ 0, z̄ ∈ K(a).

Then,

0 ≤ ψ(a) ≤
∫ 1

0
e−cdt = e−c, ∀ c ≥ 0,

which implies ψ(a) = 0 for all a ≥ 1. Note that the infimum is never attained for a ≥ 1.

Let 0 ≤ a < 1. In such a case we have ψ(a) > 0. Indeed ψ(a) = 0 if and only if

there exists a sequence zk ∈ K(a) such that

lim
k→+∞

zk(t) = +∞, for a. e. t ∈ [0, 1]

but this would imply

lim
k→+∞

∫ 1

0

zk(t)

1 + zk(t)
dt = 1

which contradicts that zk ∈ K(a) with a < 1, for k sufficiently large. Therefore,

ψ(a) =


+∞, a < 0

ψ(a) > 0, 0 ≤ a < 1,

0, a ≥ 1

Since ri(dom ψ) = ]0,+∞[, then ψ(a) = ψ(a), for every a ∈ ]0,+∞[. Observe that

(a, ψ(a)) = (1, ψ(1)) is an extreme point of epi ψ with a = 1 belonging to ri(dom ψ)
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and such that the infimum value of (P (1)) is not attained.

We note that the assumptions of Theorem 2.1, or Theorem 7.3, are not fulfilled since

an extremal half-line belongs to I(K0) = epi ψ.

Remark 7.8. We notice that the set I(K0) is closed in the simplest case when K0

is an affine set, i.e., ∀x, y ∈ K0, ∀α ∈ R, αx + (1 − α)y ∈ K0. Then, recalling that

I : K0 → Rn+1 is linear, I(K) is an affine set in Rm+1 and therefore it is closed. Clearly

K0 is affine if f0(t, ·) and g0(t, ·) are linear, for a.e. t ∈ [0, 1] and C0 is an affine set in

L1([0, 1],Rn).

Theorem 7.1 and Theorem 7.3 extend Theorem 3.2 and Corollary 3.1 of [5], respec-

tively. A related existence result may be found in [1].
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