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Abstract

Optimal design of photovoltaic devices with a periodically corrugated metallic backreflector re-

quires a rapid and reliable way to simulate the optical characteristics for wide ranges of wavelength

and angle of incidence. Two independent numerical techniques are needed for confidence in nu-

merical results. We compared the rigorous coupled-wave approach (RCWA) and the finite element

method (FEM), the former being fast and flexible, but the latter having predictable convergence

even for discontinuous constitutive properties. Depending on the shape of the corrugation and the

constitutive properties of the metal and dielectric materials making up the device, both methods

can exhibit slow convergence rates for p-polarized light. The chosen model problem in this paper

is of this type. As rapid spatial variations of the fields are the underlying cause, suitable selective

refinement of the FEM mesh can overcome this slow convergence. Therefore, it would be desir-

able to have a self-adaptive scheme for choosing the mesh in the FEM. This will slow down the

algorithm, but will give a reliable way to check the RCWA results.
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I. INTRODUCTION

Optimal design of a photovoltaic (PV) solar cell requires the maximal entry of the inso-

lation flux into the device followed by efficient absorption in the absorber layers. To achieve

this goal using any optimization algorithm, the frequency-domain Maxwell equations must

be repeatedly solved for wide ranges of optical frequencies and angles of incidence. The

piecewise homogeneity of a PV device in the thickness direction does not offer serious road-

blocks in design, because efficient methods for calculating the spatial profile of the electric

field in a multilayered structure have been available for several decades [1–5]. However,

nonhomogeneity that is wholly transverse to the thickness direction is far more complicated

to handle, even when that nonhomogeneity is periodic.

Periodic nonhomogeneity of the metallic backreflector in a thin-film solar cell has at-

tracted interest for over three decades, in order to enhance light trapping and enhance the

generation of electron-hole pairs [6–12]. Optimization of the shape and the size of the unit

cell of the metallic backreflector [13] is therefore very desirable. A similar configuration for

planar optical concentrators may be optimized [14] in order to increase the cost-effectiveness

of PV solar modules.

Solution of the frequency-domain Maxwell equations to optimize a PV device that is

piecewise homogeneous in the thickness direction and has a periodically corrugated metal-

lic backreflector can only be accomplished using numerical techniques, because applicable

analytical techniques do not exist. The rigorous coupled-wave approach (RCWA) [15, 16],

the finite element method (FEM) [17], the finite-difference time-domain (FDTD) method

[18], and the method of moments [19] are well-known numerical techniques for this purpose.

A coupling of evolutionary computation and genetic programming [20] with any one of

these numerical techniques delivers an optimization tool for improving optical performance

[13, 14]. However, as the underlying optical technique is purely numerical, the veracity of

numerical results obtained by using it must be affirmed by comparison with results obtained

using an independent numerical technique.

As we had earlier devised an optimization tool using the RCWA [13, 14], we decided

to compare the RCWA and the FEM for a thin-film PV device that is piecewise homoge-

neous in the thickness direction and has a periodically corrugated metallic backreflector.

In the RCWA, the relative permittivity everywhere is represented as a Fourier series, the

2



electromagnetic field phasors everywhere are represented in terms of Floquet harmonics in

accordance with the Floquet–Bloch theorem, and a marching procedure is implemented

[21, 22]. This method is fast. Also, it can readily accommodate changes in the shape of the

unit cell and the spatial variation of the relative permittivity, since it does not require con-

tinuous space to be replaced by a mesh. However, the RCWA can be adversely affected by

ill-conditioned matrices and the Gibbs phenomenon [21]. In contrast, the FEM is based on

a mesh that must be generated afresh to adapt to changes in the unit cell. Moreover, special

treatment is needed to handle the half spaces of incidence (and reflection) and transmis-

sion. Nevertheless, in general, the FEM has predictable convergence even for discontinuous

constitutive properties [23].

In order to compare the RCWA and the FEM, we chose the representative boundary-

value problem illustrated in Fig. 1. An isotropic dielectric multilayer backed by a periodically

corrugated metallic backreflector is illuminated by an obliquely incident plane wave. Some

or all of the layers may be absorber layers.

The plan of the paper is as follows: Theoretical preliminaries for both numerical tech-

niques are presented in Sec. II, and numerical results are discussed in Sec. III. In Sec. IV we

draw some conclusions. An exp(−iωt) dependence on time t is implicit, with ω denoting the

angular frequency and i =
√
−1. The free-space wavenumber, the free-space wavelength,

and the intrinsic impedance of free space are denoted by k0 = ω
√
ε0µ0, λ0 = 2π/k0, and

η0 =
√
µ0/ε0, respectively, with µ0 being the permeability and ε0 the permittivity of free

space. Vectors are in boldface, and the Cartesian unit vectors are identified as ûx, ûy, and

ûz.

II. THEORETICAL PRELIMINARIES

A. Boundary-value problem

The boundary-value problem is shown schematically in Fig. 1. In general, the relative

permittivity εr(x, z) = εr(x ± L, z) is a function of x ∈ (−∞,∞) with period L, and also

varies with z ∈ (−∞,∞). The half spaces z < 0 and z > Lt = Ld +Lg +Lm are occupied by

air; hence, εr(x, z) ≡ 1 in these regions. The region 0 < z < Ld is occupied by the isotropic

dielectric multilayer comprising N layers, numbered as shown in the figure. The thickness
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and the relative permittivity of the j-th layer are denoted by dj and εrj, j ∈ [1, N ], so that

Ld = d1 +d2 + ...+dN . The region Ld +Lg < z < Lt is occupied by a spatially homogeneous

metal with relative permittivity εm.

The region Ld < z < Ld +Lg contains a periodically corrugated metal/dielectric interface

of period L along the x axis. The relative permittivity εr(x, z) in the reference unit cell

0 < x < L of this region is given by

εr(x, z) = εr1 + (εm − εr1)U [z − g(x)] , x ∈ (0, L) , z ∈ (Ld, Ld + Lg) , (1)

where

U(ϕ) =

 1 , ϕ ≥ 0

0 , ϕ < 0
, (2)

is the unit step function. With ζ ∈ [0, 1], the function

g(x) =

 Ld , 2x/L ∈ (1− ζ, 1 + ζ)

Ld + Lg , 2x/L ∈ (0, 1− ζ) ∪ (1 + ζ, 2)
, (3)

describes the corrugation in the reference unit cell. Thus, the isotropic dielectric multilayer

is backed by a rectangular metallic grating of period L, depth Lg, and duty cycle ζ. The

grating is filled by the same material as the first layer, and it rests on a metallic layer of

thickness Lm.

The face z = 0 of the described structure is illuminated by an obliquely incident plane

wave whose electric field phasor is given by

Einc(r) = [asûy + ap (−ûx cos θ + ûz sin θ)] exp [ik0 (x sin θ + z cos θ)] , z ≤ 0 . (4)

Here, θ is the angle of incidence with respect to the z axis, as is the amplitude of the

s-polarized component, and ap is the amplitude of the p-polarized component.

As depolarization cannot occur in this problem [11, 24], the electric field phasors of the

reflected and the transmitted fields can be stated as

Eref (r) =
∑
n∈Z

(
asr

(n)
s ûy + apr

(n)
p p−n

)
exp

[
i
(
κ(n)x− α(n)z

)]
, z < 0 , (5)

and

Etr(r) =
∑
n∈Z

(
ast

(n)
s ûy + apt

(n)
p p+

n

)
exp

(
i
[
κ(n)x+ α(n) (z − Lt)

])
, z > Lt , (6)
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respectively, where Z ≡ {0,±1,±2, ...},

κ(n) = k0 sin θ + 2πn/L , (7)

α(n) =


+

√
k2

0 − (κ(n))
2
, k2

0 ≥ (κ(n))
2

+i

√
(κ(n))

2 − k2
0 , k2

0 < (κ(n))
2
, (8)

and

p±n = ∓α
(n)

k0

ûx +
κ(n)

k0

ûz . (9)

The index n = 0 labels specular components, whereas nonspecular components are indicated

by n 6= 0. The reflection coefficients of order n are denoted by r
(n)
s and r

(n)
p , and the

corresponding transmission coefficients by t
(n)
s and t

(n)
p .

For an s-polarized incident plane wave, the absorptance is defined as

As = 1−
∑
n∈Z

[(∣∣r(n)
s

∣∣2 +
∣∣t(n)

s

∣∣2)Re
(
α(n)

)
/α(0)

]
, (10)

and for a p-polarized incident plane wave it is given by

Ap = 1−
∑
n∈Z

[(∣∣r(n)
p

∣∣2 +
∣∣t(n)

p

∣∣2)Re
(
α(n)

)
/α(0)

]
. (11)

Both quantities are functions of λ0 and θ. Often we want to maximize the polarization-

averaged absorptance (As + Ap)/2 of a PV device.

B. Rigorous coupled-wave approach

The RCWA requires the expansion of the relative permittivity εr in the region 0 < z < Lt

as a Fourier series with respect to x, viz.,

εr(x, z) =
∑
n∈Z

ε(n)(z) exp(i2πnx/L) , z ∈ (0, Lt) . (12)

For the problem depicted in Fig. 1, ε(n)(z) is a known piecewise constant function. The field

phasors are written in the same region in terms of Floquet harmonics as

E(r) =
∑
n∈Z

[
E(n)

x (z)ûx + E(n)
y (z)ûy + E(n)

z (z)ûz

]
exp(iκ(n)x)

H(r) =
∑
n∈Z

[
H(n)

x (z)ûx +H(n)
y (z)ûy +H(n)

z (z)ûz

]
exp(iκ(n)x)

 , z ∈ (0, Lt) , (13)
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with unknown scalar functions E
(n)
x,y,z(z) and H

(n)
x,y,z(z).

Expansions (12) and (13) are substituted in the frequency-domain Maxwell curl equations

∇× E = iωµ0H

∇×H = −iωε0εr(x, z)E

 , z ∈ (0, Lt) , (14)

and the set Z is replaced by the set {0,±1,±2, ...,±Nt}, where Nt > 0 is a finite integer. The

result is a finite set of algebraic equations that are compactly describable in matrix notation

[25, Sec. 2.3.4]. A numerically stable algorithm [15, 16, 22] can then be used to find the

reflection coefficients
{
r

(n)
s

}Nt

n=−Nt

and
{
r

(n)
p

}Nt

n=−Nt

as well as the transmission coefficients{
t
(n)
s

}Nt

n=−Nt

and
{
t
(n)
p

}Nt

n=−Nt

.

C. Finite element method

After decoupling the s- and p-polarization states and noticing that the fields do not

depend on y, Eqs. (14) reduce to the Helmholtz equation

∇ · [B(x, z)∇u(x, z)] + k2
0ξ(x, z)u(x, z) = 0 , z ∈ (0, Lt) , (15)

where, depending on the polarization state,

u(x, z) =

 Ey(x, z)

−η0Hy(x, z)
, B(x, z) =

 1

1/εr(x, z)
, ξ(x, z) =

 εr(x, z)

1
, (16)

polarization state =

 s

p
. (17)

Equations (4)–(6) lead to the expansions

u−(x, z) =aq

{
exp [ik0 (x sin θ + z cos θ)] +

∑
n∈Z

r(n)
q exp

[
i
(
κ(n)x− α(n)z

)]}
, z < 0 , (18)

and

u+(x, z) = aq
∑
n∈Z

t(n)
q exp

{
i
[
κ(n)x+ α(n)(z − Lt)

]}
, z > Lt , (19)

where q ∈ {p, s}.

The functions u, u+ and u− must be matched using suitable transmission conditions

across the interfaces z = 0 and z = Lt. In particular, depending on the polarization state,
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either Ey or Hy must satisfy the standard electromagnetic boundary conditions at these

interfaces; hence,

∂u−

∂z

∣∣∣∣
z=0

= B(x, 0)
∂u

∂z

∣∣∣∣
z=0

∂u+

∂z

∣∣∣∣
z=Lt

= B(x, Lt)
∂u+

∂z

∣∣∣∣
z=Lt

u−|z=0 = u|z=0

u+|z=Lt = u|z=Lt


, x ∈ (0, L) . (20)

To accomplish this, we define two families of solutions as follows. The functions u
(m)
n (x, z),

n ∈ Z are solutions of the system of equations

∇ · [B(x, z)∇u(m)
n (x, z)] + k2

0ξ(x, z)u
(m)
n (x, z) = 0 , z ∈ (0, Lt), x ∈ (0, L),

B(x, 0)
∂u

(m)
n

∂z

∣∣∣∣
z=0

= − exp (iκ(n)x), x ∈ (0, L),

B(x, Lt)
∂u

(m)
n

∂z

∣∣∣∣
z=Lt

= 0, x ∈ (0, L),

(21)

subject to the quasiperiodicity conditions

u(m)
n

∣∣∣∣
x=L

= exp(ik0L sin θ)u(m)
n

∣∣∣∣
x=0

∂u
(m)
n

∂x

∣∣∣∣
x=L

= exp(ik0L sin θ)
∂u

(m)
n

∂x

∣∣∣∣
x=0

 , z ∈ (0, Lt) . (22)

Likewise, the functions u
(p)
n (x, z), n ∈ Z are the solutions of the system of equations

∇ · [B(x, z)∇u(p)
n (x, z)] + k2

0ξ(x, z)u
(p)
n (x, z) = 0 , z ∈ (0, Lt)

B(x, 0)
∂u

(p)
n

∂z

∣∣∣∣
z=0

= 0

B(x, Lt)
∂u

(p)
n

∂z

∣∣∣∣
z=Lt

= exp (iκ(n)x),


, x ∈ (0, L) , (23)

and also satisfy the quasiperiodicity conditions

u(p)
n

∣∣∣∣
x=L

= exp(ik0L sin θ)u(p)
n

∣∣∣∣
x=0

∂u
(p)
n

∂x

∣∣∣∣
x=L

= exp(ik0L sin θ)
∂u

(p)
n

∂x

∣∣∣∣
x=0

 , z ∈ (0, Lt) . (24)
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Then, by virtue of the principle of superposition, the solution of Eq. (15) can be decomposed

using these two sets of fields

u(x, z) =
∑
n∈Z

γ(m)
n u(m)

n (x, z) +
∑
n∈Z

γ(p)
n u(p)

n (x, z) , x ∈ (0, L), z ∈ (0, Lt) , (25)

where the coefficients γ
(m)
n and γ

(p)
n , n ∈ Z, have to be determined.

To implement the method, the index set Z in Eqs. (18), (19), and (25) is truncated to the

set −Mt ≤ n ≤Mt where Mt > 0 is a finite integer. Equations (21)–(24) are approximated

using the FEM in the rectangular region {(x, z) | x ∈ (0, L), z ∈ (0, Lt)}; hence, this region

is covered by a mesh of Ne triangular elements [17]. Every function on the right side of

Eq. (25) is represented as a standard continuous piecewise cubic finite-element function

satisfying the relevant quasiperiodicity conditions exactly. The FEM yields approximate

values of the functions u
(p)
n (x, z) or u

(m)
n (x, z), −Mt ≤ n ≤Mt at the interpolation points.

Use of the finite-element solutions in the truncated version of Eq. (25) followed by the use

of the result in Eqs. (20) gives a system of algebraic equations for the expansion coefficients.

For example, at z = Lt the approximate continuity of the normal derivative, per Eq. (20)2,

requires that

iα(n)aqt
(n)
q = −γ(p)

n , −Mt ≤ n ≤Mt , (26)

while the approximate continuity of the function values, per Eq. (20)4, requires that

Laqt
(n)
q =

∫ L

0

(∑
n∈Z

γ(m)
n u(m)

n (x, Lt) +
∑
n∈Z

γ(p)
n u(p)

n (x, Lt)

)
exp(−iκ(n)x) dx ,

−Mt ≤ n ≤Mt . (27)

Similar equations hold at z = 0. Then we can solve these truncated equations and de-

termine the coefficients
{
γ

(p)
n , γ

(m)
n

}Mt

n=−Mt

,
{
r

(n)
s

}Mt

n=−Mt

,
{
r

(n)
p

}Mt

n=−Mt

,
{
t
(n)
s

}Mt

n=−Mt

, and{
t
(n)
p

}Mt

n=−Mt

.

III. NUMERICAL RESULTS AND DISCUSSION

If L� λ0, the metallic backreflector appears to be quite flat and all nonspecular modes

are evanescent as |z| → ∞. If, however, L is only somewhat smaller than λ0, then the

coupling of the solar flux to the dielectric layers in the PV device is enhanced [10]. Since the

solar flux at sea level is mostly confined to λ0 ∈ [400, 1100] nm with the high magnitudes in
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a 225-nm-broad plateau centered about λ0 = 560 nm, we fixed L = 400 nm for all numerical

results presented here. Furthermore, based on experience with RCWA [11, 13, 14, 24] that

convergence with respect to Nt is harder to achieve at shorter wavelengths, we also fixed

λ0 = 450 nm for all numerical results presented here.

The isotropic dielectric multilayer was taken to comprise N = 9 layers of silicon oxyni-

trides of different compositions. While the layer thickness dj = 100 nm was fixed for all

j ∈ [1, N ], the relative permittivities at λ0 = 450 nm are as follows [26]: εr1 = 3.6876,

εr2 = 3.1656, εr3 = 3.0413, εr4 = 2.9045, εr5 = 2.7124, εr6 = 2.5691, εr7 = 2.4297,

εr8 = 2.32101, and εr9 = 2.1886. The metal was taken to be evaporated silver with a

relative permittivity εm = −5.8828 + i0.6650 at λ0 = 450 nm [24]. We fixed the thickness

Lm = 40 nm to exceed the skin depth of silver, in order to ensure very small transmittance

into the half space z > Lt. Furthermore, we fixed ζ = 0.5 and Lg ∈ {0, 25} nm [13].

Computational codes for both the RCWA and the FEM were written in Matlabr and

implemented on the LINUX machine Dell PowerEdge R620 configured with 15K SAS Drives

and 320 GB of RAM. Version 2013a of Matlab uses 64 bits to represent any number. When

implementing the RCWA algorithm [22], the region 0 < z < Ld was divided into nine equally

thick slices, the region Ld < z < Ld +Lg into a single slice, and the region Ld +Lg < z < Lt

into a single slice. Had the corrugations not been rectangular, the region Ld < z < Ld + Lg

would have been divided into as many slices as needed to ensure the stability of the technique.

The FEM was taken to comprise Ne triangular elements, the interpolation polynomials were

chosen to be cubic, and the mesh was configured so that each element contained just one

homogeneous material. The error associated with the replacement of Z in Eqs. (20) and (25)

by the set {0,±1,±2, ...,±Mt} decays exponentially when Mt is chosen large enough [27].

After some trial runs, we set Mt = 20 so that this truncation error is negligible compared

to the error of solving Eqs. (21) and (25) by FEM for the chosen boundary-value problem.

A. Planar backreflector

We began with the simple case of a planar back-reflector (i.e., Lg = 0) to test the basic

convergence rate of the FEM algorithm, since the RCWA provides the exact solution for
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this case. We computed the errors

eEq = 1
|aq |

(∫ L

x=0

∫ Lt

z=0

|Eq(x, z)− EFEM
q (x, y)|2 dz dx

)1/2

eAq = |Aq − AFEM
q |

 , q ∈ {p, s} , (28)

in the electric field and the absorptance. Here, Eq(x, z) is the exact electric field phasor and

EFEM
q (x, z) is its approximate value yielded by the FEM, when the incident plane wave is q

polarized; correspondingly, Aq is the exact absorptance and AFEM
q is its FEM approximation.

We used a special-purpose finite-element meshing function based on the TRIANGLE

library [28] to compute a sequence of successively finer meshes indexed by the integer `. For

both the electric field and the absorptance, the following rates of convergence were defined:

r
(`)
Eq = 2 log

[
e

(`)
Eq/e

(`+1)
Eq

]
/ log

[
N

(`+1)
e /N

(`)
e

]
r

(`)
Aq = 2 log

[
e

(`)
q /e

(`+1)
p

]
/ log

[
N

(`+1)
e /N

(`)
e

]
 , q ∈ {p, s} . (29)

Here, e
(`)
Eq and e

(`)
Aq are the respective values of eEq and eAq when Ne = N

(`)
e , N

(`+1)
e > N

(`)
e ,

and the (`+ 1)-th mesh follows the `-th mesh in the hierarchy of meshes.

When the metallic backreflector is planar, the theory of FEM shows that the errors eEp

and eEs should be proportional to (1/
√
Ne)

3 and (1/
√
Ne)

4, respectively, provided that the

mesh is regular and quasiuniform [23, 27]. This means that the respective theoretical rates

of convergence must converge to r
(∞)
Ep = 3 and r

(∞)
Es = 4 as the meshes are refined.

Table I displays the errors and the rates of convergence computed with respect to the

number of elements Ne, when θ = 0◦. The errors decay when the number of elements

increases, as expected. We observe that the rates of convergence for the electric field are

in excellent agreement with the theory for sufficiently large Ne, for both linear polarization

states. Moreover, the table shows that r
(`)
Ap → 4 and r

(`)
As → 4 as ` increases.

Once all the dielectric materials and the metal have been chosen, the rates of convergence

should not depend on the angle of incidence (although the errors may vary with the angle

of incidence due to resonances). These assertions can be justified through the results of

simulations presented in Sec. III B for θ = 30◦. The angle of incidence does affect the

truncation error of the series in Eq. (25); however, as explained earlier in Sec. III, this error

is negligible compared to the FEM error.
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B. Periodically corrugated backreflector

Let us now move on to the more complicated case of a periodically corrugated backreflec-

tor (i.e., Lg > 0). As the exact solution is not available in this case, we defined relative errors

in the following manner. Suppose that Θ is a discretization parameter such that Θ = Nt

for the RCWA and Θ =
√
Ne for the FEM. Then, for both RCWA and FEM as well as for

both linear polarization states of the incident light, the relative errors are given by

ẽEq =

(∫ L

x=0

∫ Lt

z=0

|E(Θ1)
q (x, z)− E(Θ2)

q (x, z)|2 dz dx
)1/2

(∫ L

x=0

∫ Lt

z=0

|E(Θ2)
q (x, z)|2 dz dx

)1/2

ẽAq =

∣∣∣∣A(Θ1)
q

A
(Θ2)
q

− 1

∣∣∣∣


, q ∈ {p, s} , (30)

where Θ1 and Θ2 > Θ1 are two consecutive values of the discretization parameter. The

sequence of relative errors of the same type is expected to converge as Θ increases. The

actual rates of convergence r̃Eq and r̃Aq were obtained, respectively, as the slope of the

least-squares linear fits of the log ẽEq-versus-log Θ and log ẽAq-versus-log Θ data.

Figure 2 displays the errors ẽEs and ẽEp as functions of Θ for both RCWA and FEM, when

θ = 0◦. Whereas log ẽEs is almost proportional to log Θ, log ẽEp has an undulatory character,

thereby making a prediction of the field intensities unreliable. Using the least-squares linear

fits shown in the figure, we found that r̃Es = 3.36 for the FEM sequence but r̃Es = 2.15

for the RCWA sequence; likewise, r̃Ep = 0.18 for the FEM sequence but r̃Ep = 0.14 for the

RCWA sequence. Thus, the FEM sequence converges faster than the RCWA sequence for

light of either linear polarization states. This difference in performance may be attributed

to the sharp changes in εr(x, z) in the region Ld < z < Ld +Lg, to which the FEM is better

adapted than the RCWA.

For related problems, Elschner and Schmidt [29] studied those properties of the solution

of Eq. (15) that govern the rate of convergence. Although their FEM algorithm differs in

detail from ours, their theory is relevant to any FEM algorithm. After considering the rapid

variation of the solution near the corners of dissimilar materials, they concluded that the

error ẽEp should decay with a rate r̃Ep = 0.06. So the extremely low value of r̃Ep that we

obtained for the FEM is in approximate agreement with their theory.

Similar conclusions can be drawn for the sequences of ẽAs and ẽAp presented in Fig. 3 for
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θ = 0◦, but the rates of convergence are higher. Thus, r̃As = 4.33 (FEM) and 3.25 (RCWA),

while r̃Ap = 0.62 (FEM) and 0.14 (RCWA).

To highlight the influence of the constitutive properties on the convergence rates of RCWA

or FEM, suppose that the metal is replaced by a dielectric material with relative permit-

tivity εm = 0.0187. For the p-polarization state, an application of Elschner and Schmidt’s

theory [29] predicts the FEM convergence rate of r̃Ep = 0.5 when θ = 0◦. This is due to an

improvement in the regularity of the solution u and should also be reflected in better conver-

gence for the RCWA. Computationally, we obtained r̃Ep = 0.87 (FEM) and 0.92 (RCWA).

As predicted, the convergence rate for the FEM increases in this case, although the rate is

actually faster than predicted. The convergence rate of the RCWA also increases. So the

relative permittivities of the materials in the device do affect the convergence of the FEM

and RCWA algorithms and, since these relative permittivities can be allowed to vary in an

optimization problem, the accuracy of the computational scheme may be difficult to assess.

The foregoing results suggest that selective mesh refinement in the FEM would be useful

for p-polarized incidence. In fact, we can manually refine the mesh near the corners of the

corrugations, since the electromagnetic field becomes singular at those corners [30]. In Fig.

4 we show an initial mesh and the first two refined meshes out of a sequence of nine meshes,

the last six being too fine to be visualized on the same scale as the first three in the sequence.

The values of r̃Ep and r̃Ap obtained using the last eight meshes in the sequence are plotted

in Fig. 5 versus Θ. Least-squares linear fitting of the data yields r̃Ep = 0.94 and r̃Ap = 2.26,

both improved from their respective values of 0.18 (Fig. 2) and 0.62 (Fig. 3) for the sequence

of uniformly refined meshes. Moreover, the decay in ẽEp versus Θ is not as oscillatory in

Fig. 5 as in 2 and hence the FEM predictions are more reliable. Finally, we obtain a more

accurate approximation with fewer elements. For example, ẽEp = 0.038 for the uniformly

refined mesh with Ne = 69360 triangular elements, but it is matched by ẽEp = 0.037 for the

selectively refined mesh (near the corners of the corrugation) with just Ne = 4850 triangular

elements.

While the manually refined FEM (MRFEM) described in the previous paragraph works on

a case-by-case basis, for optimal design we need an adaptive refinement procedure employing

feedback from an a-posteriori error estimator that indicates which elements need further

refinement in order to improve the solution. An a-posteriori error estimator identifies,

without knowledge of the correct solution, all those elements in which the error is larger
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than a given tolerance. Thus, those elements will be automatically refined in an self-adaptive

FEM (SAFEM). In our simulations exemplified by Figs. 4 and 5, the triangular elements near

the corners of the corrugation in the reference unit cell are refined, since we had observed

that the errors are large in those elements. However it could happen that the errors are large

also in other elements away from the corrugation. As our refinement might not be optimal,

we are continuing towards the development of SAFEM algorithms.

We also determined from the MRFEM simulations that the angle of incidence θ does not

have a significant effect on the rates of convergence. In Figs. 6 and 7, we show the sequences

of errors ẽEq and r̃Aq, respectively, for both the RCWA and the MRFEM, when θ = 30◦.

The rates of convergence are (i) r̃Ep = 0.26, r̃Es = 2.78, r̃Ap = 0.75, and r̃As = 3.30 for the

RCWA and (ii) r̃Ep = 0.80, r̃Es = 3.84, r̃Ap = 1.12, and r̃As = 4.81 for the MRFEM. Clearly,

conclusions similar to those for normal incidence can be drawn.

C. Computational time

A comparison of computational times versus performance of the RCWA and the MRFEM

is now in order. As in Sec. III B, the backreflector is periodically corrugated. Furthermore,

all results are presented for only normal incidence, because the angle of incidence has no

influence on the computational time. For both the RCWA and MRFEM, the L2-norm of

the electric field was computed as

‖Eq‖ =

(∫ L

x=0

∫ Lt

z=0

|E(Θ)
q (x, y)|2 dz dx

)1/2

, q ∈ {p, s} (31)

for increasing values of Θ.

Figures 8 and 9 present data on ‖Eq‖ and Aq, respectively, in relation to Θ. The MR-

FEM calculations were made with both Mt = 1 and Mt = 20. Both figures also show the

computational time in seconds. We excluded pre-processing times to initialize all variables

for both the RCWA and MRFEM, implement Eq. (12) for the RCWA, and generate the

MRFEM mesh. Let us note that the time elapsed in constructing the MRFEM mesh is

negligible compared to the time spent in solving the equations involved.

The degrees of approximation of the electric field and the absorptance in MRFEM are

not significantly affected whether Mt = 1 or Mt = 20. Therefore, the truncation error of

the series in Eqs. (20) and (25) is indeed very small compared to the MRFEM error, as we
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mentioned at the beginning of Sec. III. Of course, taking Mt = 1 considerably reduces the

computational time since only three terms are used to approximate each series.

Figures 8 and 9 show that the RCWA and MRFEM provide similar results for the electric

field and the absorptance when the incident light is s polarized. The latter figure shows that

the converged values of the absorptance Ap computed with the two techniques differ by

less that 1%. However, in Fig. 8, the converged values of ‖Ep‖ computed with the two

techniques differ by about 15%. This discrepancy is not surprising because the singular

electric fields at and in the neighborhoods of metallic corners are difficult to capture with

numerical techniques [31, 32].

Let us now discuss the computational time taken by each technique. The RCWA algo-

rithm requires a partition of the interval (0, Lt) along the thickness direction into multiple

slices, the thickness of each slice being chosen to ensure the stability of the technique. The

computation of the absorptances As and Ap via Eqs. (10) and (11) consumes a minuscule

amount of time after the reflection and the transmission coefficients have been obtained.

But thinner slices (about 1 nm thick) are needed to accurately map the spatial variations of

the fields induced inside the PV device. That is why the computation of the absorptances

with the RCWA is much faster than the computation of the fields, as can be seen in Figs. 8

and 9. On the other hand, the fields and the absorptances are computed with same mesh

parameters in the MRFEM. Hence, the time to compute both is the same.

In Fig. 8 the computational time for the MRFEM withMt = 1 is comparable in magnitude

to that for the RCWA. Thus, both techniques require similar amounts of time to map out

the fields induced inside a PV device. For the s polarization state, the RCWA delivered

ẽEs = 1.14× 10−3 in 0.76 s with Θ = 5, whereas the MRFEM yielded ẽEs = 2.85× 10−4 in

0.66 s with Θ = 19. These are acceptable levels of error (< 1%). But for the p polarization

state, neither technique performed as well. Given the limitation imposed on the magnitude

of Θ by our computing system, the RCWA yielded ẽEp = 6.45× 10−2 in 45 s with Θ = 65,

whereas the MRFEM delivered ẽEp = 3.82 × 10−2 in 8.61 s with Θ = 53.7. One could say

that the MRFEM turned out to be faster and more accurate than the RCWA in this case.

In Fig. 9 the computational time for the MRFEM with Mt = 1 is larger by an order

of magnitude to that for the RCWA. For the p polarization state, the RCWA delivered

ẽAp = 8.05 × 10−3 in 0.62 s with Θ = 65, whereas the MRFEM yielded ẽAp = 6.58 × 10−3

in 0.76 s with Θ = 26.4. Thus, the RCWA is about 18% faster. But for the s polarization
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state, the RCWA is faster by almost two orders of magnitude: ẽAs = 7.06 × 10−4 in 0.01 s

with Θ = 5 whereas, in contrast, the MRFEM provided ẽAs = 2.00 × 10−4 in 0.67 s with

Θ = 19.

IV. CONCLUSION

With the aim of determining the veracity of the results provided by numerical techniques

to simulate the optical characteristic of photovoltaic devices with periodically corrugated

metallic backreflector, we compared the performances of the rigorous coupled-wave approach

and the finite element method. Whereas the RCWA is fast and flexible, the FEM has

predictable convergence even for discontinuous constitutive properties. We found that the

rates of convergence of the RCWA and FEM can be quite different for p-polarized light, but

are generally the same for s-polarized light.

Due to the rapid spatial variations of electromagnetic fields in regions containing metallic

edges and corners, both the RCWA and the FEM are slowly convergent for the p polarization

state. Therefore, care needs to be exercised when using any numerical technique for this

polarization state, and in particular a uniform mesh will not deliver a robust result. The

mesh needs to be refined near the corners of the corrugation in the reference unit cell, ideally

using a self-adaptive strategy.

Both the RCWA and the MRFEM deliver very similar values of the absorptances. The

RCWA is somewhat faster than the MRFEM for the p-polarization state, and much faster

for the s-polarization state. For the computation of the fields induced inside the PV device,

the MRFEM is faster and more accurate than the RCWA. We hope that our investigations

will assist in formulating robust and reliable procedures for the design of optimal PV devices.
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Table 1. Errors and rates of convergence for the FEM when the metallic backreflector

is planar and θ = 0◦.
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List of Figures

Fig. 1. Schematic of the boundary-value problem solved using the RCWA and FEM.

The specular and the non-specular components of the reflected and the transmitted fields

are indicated on the diagram.

Fig. 2. Sequences of (top) ẽEs and (bottom) ẽEp versus Θ calculated with the RCWA

(data points identified by +) and FEM (data points identified by ◦) when θ = 0◦. Errors

cannot be defined for the initial value of Θ. The dashed lines guide the reader’s eyes. The

solid lines are least-squares linear fits.

Fig. 3. Same as Fig. 2, except that (top) ẽAs and (bottom) ẽAp are displayed versus Θ.

Fig. 4. (a) The initial FEM mesh and (b,c) the first two selectively refined meshes out

of a sequence of nine meshes, the last six being too fine to be visualized on the same scale

as the first three in the sequence. Increasing refinement occurs at the two corners of the

corrugation in the reference unit cell.

Fig. 5. Sequences of ẽEp (data points identified by +) and ẽAp (data points identified

by ◦) versus Θ calculated with the MRFEM when θ = 0◦, for a sequence of nine meshes

wherein the last eight are increasingly refined near the two corners of the corrugation in the

reference unit cell. Errors cannot be defined for the initial mesh. The dashed lines guide

the reader’s eyes. The solid lines are least-squares line fits.

Fig. 6. Sequences of (top) ẽEs and (bottom) ẽEp versus Θ calculated with the RCWA

(data points identified by +) and MRFEM (data points identified by ◦) when θ = 30◦. The

dashed lines guide the reader’s eyes. The solid lines are least-squares linear fits.

Fig. 7. Same as Fig. 6, except that (top) ẽAs and (bottom) ẽAp are displayed.

Fig. 8. Sequences of (top) ‖Es‖ and (bottom) ‖Ep‖ versus Θ calculated with the RCWA

(data points identified by +), the MRFEM with Mt = 1 (data points identified by ◦), and

the MRFEM with Mt = 20 (datapoints identified by ∗), when θ = 0◦. The numbers stated

near the data points are the computational times in seconds. The dashed lines guide the

reader’s eyes.

Fig. 9. Same as Fig. 8, except that (top) As and (bottom) Ap are displayed.
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TABLE I. Errors and rates of convergence for the FEM when the metallic backreflector is planar

and θ = 0◦.

` Ne eEp rEp eEs rEs eAp rAp eAs rAs

1 342 3.46× 10−2 − 5.72× 10−3 − 9.70× 10−6 − 4.30× 10−5 −

2 1880 1.63× 10−3 3.58 8.57× 10−5 4.93 3.64× 10−6 1.15 2.99× 10−6 3.13

3 7520 2.05× 10−4 2.99 5.29× 10−6 4.02 1.97× 10−7 4.21 1.91× 10−7 3.97

4 30080 2.57× 10−5 3.00 3.30× 10−7 4.01 1.16× 10−8 4.08 1.21× 10−8 3.98

5 120320 3.22× 10−6 3.00 2.06× 10−8 4.00 7.07× 10−10 4.04 7.58× 10−10 3.99
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ẽ
A
p

10
1

10
2

10
−8

10
−6

10
−4

10
−2

Θ

ẽ
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FIG. 9. Same as Fig. 8, except that (top) As and (bottom) Ap are displayed.
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