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Analysis of an augmented HDG method for a class of
quasi-Newtonian Stokes flows*
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Abstract

In this paper we introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for
numerically solving a class of nonlinear Stokes models arising in quasi-Newtonian fluids. Similarly as
in previous papers dealing with the application of mixed finite element methods to these nonlinear
models, we use the incompressibility condition to eliminate the pressure, and set the velocity
gradient as an auxiliary unknown. In addition, we enrich the HDG formulation with two suitable
augmented equations, which allows us to apply known results from nonlinear functional analysis,
namely a nonlinear version of Babuska-Brezzi theory and the classical Banach fixed-point theorem,
to prove that the discrete scheme is well-posed and derive the corresponding a priori error estimates.
Then we discuss some general aspects concerning the computational implementation of the method,
which show a significant reduction of the size of the linear systems involved in the Newton iterations.
Finally, we provide several numerical results illustrating the good performance of the proposed
scheme and confirming the optimal order of convergence provided by the HDG approximation.

Key words: nonlinear Stokes model, mixed finite element method, hybridized discontinuous Galerkin
method, augmented formulation

1 Introduction

The devising of suitable numerical methods for solving the linear and nonlinear Stokes and related
problems has become a very active research area during the last decade. In particular, a mixed finite
element method and a suitable augmented version of the latter for a nonlinear Stokes flow problem
involving a non-Newtonian fluid, are introduced and analized in [19]. In addition, the velocity-pressure-
stress formulation for incompressible flows has gained considerable attention in recent years due to
its natural applicability to non-Newtonian flows, where the corresponding constitutive equations are
nonlinear. In general, an interesting feature of the mixed methods is given by the fact that, besides
the original unknowns, they yield direct approximations of several other quantities of physical interest.
For instance, an accurate direct calculation of the stresses is very desirable for flow problems involving
interaction with solid structures.

On the other hand, the hybridizable discontinuous Galerkin (HDG) method, introduced in [10]
for diffusion problems, is one of the several high-order discretization schemes that benefit from the
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hybridization technique originally applied in [14] to the local discontinuous Galerkin (LDG) method
for time dependent convection-diffusion problems. The main advantages of HDG methods include
a substantial reduction of the globally coupled degrees of freedom, which was a criticism for the
discontinuous Galerkin (DG) methods for elliptic problems during the last decade, and the fact that
convergence is obtained even for a polynomial degree £ = 0. Additionally, the approximate flux
converges with order k+1 for k > 0, and an element-by-element computation of a new approximation
of the scalar variable is possible, which converges with order k£ + 2 for & > 1 (see e.g. [9, 12, 11]). In
the context of the linear Stokes equation, the hybridization for DG methods was initially introduced in
[5] and then analyzed in [28, 11]. Lately, an overview of the recent work by Cockburn and co-workers
on the devising of hybridizable discontinuous Galerkin (HDG) methods for the Stokes equations of
incompressible flow was provided in [13].

Now, the utilization of DG methods to numerically solve nonlinear boundary value problems has
been first considered in [3] and [22]. Indeed, the application of the local discontinuous Galerkin (LDG)
method to a class of nonlinear diffusion problems was developed in [3], whereas the extension of the
interior penalty hp DG method to quasilinear elliptic equations was studied in [22]. The results from
[3] were generalized in [4], where the a-priori and a-posteriori error analyses of the LDG method as
applied to certain type of nonlinear Stokes models (whose kinematic viscosities are nonlinear monotone
functions of the gradient of the velocity) were derived. The approach in [4] is based on the introduction
of the flux and the tensor gradient of the velocity as further unknowns. A suitable Lagrange multiplier
is also needed to ensure that the corresponding discrete variational formulation is well-posed. A two-
fold saddle point operator equation is obtained as the resulting LDG mixed formulation, which is then
reduced to a dual mixed formulation. A nonlinear version of the well known Babuska-Brezzi theory is
applied to prove that the discrete formulation is well-posed and derive the corresponding a priori error
analysis. In turn, the analysis from [22] was extended in [15], where the a priori and a posteriori error
analysis, with respect to a mesh-dependent energy norm, of a class of interior penalty hp DGFEM for
the numerical approximation of basically the same quasi-Newtonian fluid flow problems studied in [4],
were provided. Furthermore, an HDG approach was employed in [27] for the numerical solution of
steady and time-dependent nonlinear convection-diffusion equations. In fact, the approximate scalar
variable and corresponding flux are first expressed in [27] in terms of an approximate trace of the scalar
variable, and then the jump condition of the numerical fluxes are explicitly enforced across the element
boundaries. As a consequence, a global equation system solely in terms of the approximate trace of the
scalar variable is obtained at every Newton iteration. At the end, and similarly as in previous papers
on HDG, an element-by-element postprocessing scheme is applied to obtain new approximations of the
flux and the scalar variable, which converge with order k + 1 and k + 2, respectively, in the L?-norm.
Nevertheless, and up to our knowledge, there is still no contribution in the literature concerning HDG
for nonlinear Stokes systems.

According to the above discussion, we are interested in this paper in applying the HDG approach
to the class of quasi-Newtonian Stokes flows studied in [4, 17, 15] (see also [19, 23]). To this end,
we plan to employ the same velocity-pseudostress formulation from [19]. In what follows, given any
Hilbert space U, U := U™ and U := U™*" denote, respectively, the space of vector and square matrices
of order n, n € {2,3}, with entries in U. In order to define the boundary value problem of interest,
we now let 2 be a bounded and simply connected polygonal domain in R™ with boundary I'. As in
[19], our goal is to determine the velocity u, the pseudostress tensor o, and the pressure p of a steady
flow occupying the region €2, under the action of external forces. More precisely, given a volume force
fe L2(Q) and g € HY/2(I"), we seek a tensor field o, a vector field u, and a scalar field p such that

o = u(|Vu[)Vu—pl in Q, div(e) = —f in Q,

(1.1)
diviu) =0 in Q, u=g on I, /p:(),
Q



where p : RT — RT is the nonlinear kinematic velocity function of the fluids, div stands for the usual
divergence operator div acting along each row of tensor, Vu is the tensor gradient of u, |- | is the
euclidean norm of R™*™ and I is the identity matrix of R"*™. As required by the incompressibility
condition, we assume from now on that the datum g satisfies the compatibility condition fr g-v=0,
where v stands for the unit outward normal at I". The kind of nonlinear Stokes problem given by (1.1)
appears in the modeling of a large class of non-Newtonian fluids (see, e.g. [1, 25, 26, 30]). In particular,
the Ladyzhenskaya law, is given by p(t) := po 4+t 2Vt € RT, with o > 0, gy > 0, and 8 > 1, and
the Carreau law for viscoplastic flows (see, e.g. [26, 30]) reads u(t) := o+ p1 (1 +t2)P=2/2 vt € R,
with pg >0, pp >0, and 8 > 1.

The rest of the work is organized as follows. In Section 2 we introduce the augmented hybridizable
discontinuous Galerkin formulation involving the velocity, the pseudostress, the velocity gradient and
the trace of the velocity, as unknowns. In Section 3 we show the unique solvability of the augmented
HDG scheme by considering an equivalent formulation and then applying a nonlinear version of the
Babuska-Brezzi theory and the classical Banach fixed-point Theorem. The corresponding a priori error
estimates are derived in Section 4. Next, in Section 5 we discuss some general aspects concerning the
computational implementation of the HDG method. Finally, several numerical experiments validating
the good performance of the method and confirming the rates of convergence derived are reported in
Section 6. We end the present section with further notations to be used below. Given 7 := (7),
¢ = (Gij) € R™™, we write as usual

n

n

1

tr(r) = Zm, i Htr (r)I, and 7T:¢ := Z 735 Cij -
1=1 1,7=1

Also, in what follows we utilize the standard terminology for Sobolev spaces and norms, employ 0 to

denote a generic null vector, null tensor or null operator, and use C', with or without subscripts, bars,

tildes or hats, to denote generic constants independent of the discretization parameters, which may

take different values at different places.

2 The augmented HDG method

2.1 The hybridizable discontinuous Galerkin method

We begin by eliminating the pressure. Indeed, we know from [19, Section 2.1] that the pair given by
the first and third equations in (1.1) is equivalent to

1
o = u(|Vu))Vu—pl inQ and p = ——tr(o) in Q. (2.1)
n
In what follows we let 1;; : R™*™ — R be the mapping given by ;;(r) := pu(|r|)r;; for all r := (r;;) €

R™" for all i,j € {1,...,n}. Then, throughout this paper we assume that p is of class C' and that
there exist 49, &g > 0 such that for all r := (745), s := (s;5) € R™*", there holds

|wl](r)’ S ’70||I'||Rn><n, S Yo, v i?j? kvl € {1a .. .,TL}, (22)

0
%@Z)ﬁ(r)

and

n

0
> aTklwz‘j(r)SijSkl

,5,k,1=1

v

o[8[ Fmxn- (2.3)

It is easy to check that the Carreau law satisfies (2.2) and (2.3) for all o > 0, and for all g € [1,2].
In particular, with 8 = 2 we recover the usual linear Stokes model.



Observe that we can rewrite (2.1) as
1
o = Y(Vu)—pl inQ and p = —gtr (o) in Q,

where ¢ : R — R™ ™ is given by 1 (r) := (¢;;(r)) for all r := (r;;) € R"*". Hence, replacing p
by —1tr (o) in the first equation of (1.1), and introducing the gradient t := Vu in Q as an auxiliary
unknown, we arrive at the system

PYt)—ed =0 in Q, t—Vu=0 in Q,

—div(e) =f in Q, tr(t) =0 in Q, (2.4)

u=g on I, /tr(o-):O.
Q

We recall here that a well-posed continuous formulation of (2.4) has been proposed in [19, Section 2],
which reads: Find (t,0,u) € X7 x My x L?(Q2) such that

/¢(t)25—/ad:s = 0 Vse Xy,

Q Q

—/t:Td—/u-div(T) = —(tv,g)p VTEM, (2.5)
Q Q

/Q‘"div(”) _ /Qf~v Vv e L2(Q),

where X1 := {s € L?(Q) : tr(s) = 0} and My = {7 € H(div;Q) : [,tr(r)=0}. The purpose of
reminding here (2.5) will become clear in the a priori error analysis given below in Section 4.

Next, in order to introduce the HDG method for the system (2.4), we first need some preliminary
notations. Let Tj, be a shape-regular triangulation of 2 without the presence of hanging nodes, and
let &, be the set of faces F' of 7. Then, we set

T == U{dT : T € T},

and introduce the inner products:

(u,v)7, = Z/Tu-v Y u,v e L*(Tp),

TeT,

(o,7)7;, = Z/O’:T Vo, LT,
TeT, T

(u,v)gr, = Z/ u-v Yu,veL3dT,),
TeT;, 79T

(W, v)grr = Z Z /u-v Y u,v e L2(dTy),
F

TeT, FedT\I

with the induced norm

IVl = (v,v)i® ¥veL¥(Th).
In addition, we let Py(U) be the space of polynomials of total degree at most &k defined on the domain
U, and denote by Si and 8,? the set of interior and boundary faces, respectively, of &,.

On the other hand, let v+ and v~ be the outward unit normal vectors on the boundaries of two
neighboring elements 7+ and T, respectively. We use (7%, v*) to denote the traces of (7,v) on



F := 0Tt N 9T~ from the interior of TF, where 7 and v are second-order tensorial and vectorial
functions, respectively. Then, we define the means {-} and jumps [-] for F' € &/, as follows

1 1
{} = 3 (rt+77), {v} = 3 (vt+v7),
[r] = vtvt+7v7, [v] == vieovt+v v,

where ® denotes the usual dyadic or tensor product. Next, given k > 1, the finite dimensional
discontinuous subspaces are given by

Sy = {s€L*Q) : slpeP(T) YTET},

S {TGM(Q) . Tlr €PWT) YT €T, and /tr(f)zo},
Vi, = {veL*Q) : vlr ePy1(T) VT €Ty}, )

M, = {pel?&) : plrePy(F) VFe&}.

In this way, proceeding as in [11], the HDG formulation of (2.4) reduces to: Find (tp, o, up, Ap) €
Sy X Xy X Vi, x My, such that

(P(tn),sn)T, — (sh, o), = 0 Vs, €S, (2.6a)

(tn, )75 + (Wn, Aiv(Th))7, — (Thv, Un)pr, = 0 V75 € Ty, (2.6b)
(@h, VVR) T, —(@ul,Vi)oy, = (Eva)7 VYV va € Va, (2.6¢)

(O, mn)orar = 0V py € My, (2.6d)

where, letting IIr be the L2(I') projection onto the space of piecewise polynomials of degree < k on
E9. we define the numerical fluxes Uy, and o, as

~ Iir(g) on &7, _— ~

= b = — - 2
uy, { A on &l and opU opv — S(up —uy) on 9T, (2.6¢)
where S is a stabilization operator to be defined below. Note that the condition u;, = IIr(g) on 5,‘?
is usually imposed in the equivalent way (Up, pp)r = (8 p)r V pp, € P(Er), which is employed to
perform the solvability analysis of (2.6). In this sense, note first that problem (2.6) can be reformulated
as

(% (tn) sn)7 — (sn, o) = O,
(b, T0)75, + (W, div(TR)) 75, — (T, A)prar = (Thv,8)p
— (v, div(en))7, + (S(un = An), Vi)opar + (Sun, va)p = (£,vi)7, + (Sg, vi)p,

<UhV,Mh>aTh\r — (S(u, — )\h)»uh>aTh\r = 0,

for all (sp, Th, Vi, by,) € Sp X Xp X Vi x M}, where (2.6¢) has been rewritten using that

v = X [ = 5 {- anws [ o).

= —(Vh,diV(O'h))Th + <0'hI/,Vh>a7-h.



We complete the definition of the HDG method by describing the stabilization tensor S. In [11],
general conditions for S were proposed, where in particular ST does not necessarily match S~ for each
F e E}iL. Here, we consider the special case in which ST = S~ in each F € Eﬁ, that is, S has only one
value on each F' € &,. More precisely, given F' € &, the tensor S satisfies the following conditions:

S|F is constant, and S| is symmetric and positive definite.

Observe that S™1 is well defined and symmetric and positive definite as well on each F € &,. In (3.5)
below, we select a particular choice for tensor S in order to establish the well-posedness of (2.9).

2.2 The augmented HDG formulation

In order to establish the unique solvability of the nonlinear problem (2.9), we now enrich the HDG
formulation with two augmented equations arising from the constitutive and equilibrium equations,
that is

k(o —p(ty), ™) = 0 V71,e%y, (2.7)
and
ko(div(oy),div(Th)), = —ko(f,div(Th))y, YV Th € Xp, (2.8)

where k1, ko > 0 are parameters to be determined later on. In this way, our problem becomes: Find
(th,ah,uh,)\h) € Sy, x Xy x Vi, x My, such that

(% (tn),s0)7 — (s, 05) 7 = 0, (2.9a)

(b, 7075, + (W, Aiv(TR)) 75, — (T, M) prar = (Tavs8)r (2.9b)
—(vp,div(ey))7, + (S(uy — An), VR)arar (Sup,vi)p = (£,vi)7, + (S8, vi)pr»  (2.9¢)
(onv, ) grinr — (S — M), p)ornr = 0, (2.9d)

ri(oh —(tn), Th)7 = 0, (2.9¢)

ko(div(ey),div(Ty)), = —ko(f div(Ty))T, | (2.9f)

for all (sp, Th, Vi, by,) € Sp X X X Vi, x Mp,. Hence, in what follows we proceed as in [3, 4] and
derive an equivalent formulation to (2.9) (see (2.11) below), for which we prove its unique solvability.
In addition, the a priori error estimates for (2.9) will also be based on the analysis of (2.11). We
emphasize, however, that the introduction of this equivalent formulation is just for theoretical purposes
and by no means for the explicit computation of the solution of (2.9), which is solved directly as we
explain below in Section 5.

First, we consider equation (2.9d) and note that

0 = (o mn)omr — (Sun Bp)opar + (SAn, Bi)orr
= Z Z /ahl/-uh—z Z /Suh~,uh+z Z /S)\h-uh
TeT, Fear\r” TeT, Fear\r /¥ TeT;, Fear\r”
= Z/[[Uh]]'ﬂh_QZ/<S{{uh}}'ﬂh_s>‘h'ﬂh)
Fe&l F Fegf F

_ / (Ion] — 25Qun} +28X:) -, ¥ oy € M,
g’L

h



Hence, using that [o,] — 2S{us} + 2SA, € M}, we find that
[on] —2S{u,} +2SN, = 0 oné&j,

which yields
1 .
A = {un}— 58_1[[0';1]] on 5}3 (2.10)

Observe that (2.10) coincides with the expression for uj given in [11]. We now replace Aj, from (2.10)
in (2.9b) and (2.9c). For this purpose, we first observe that

— (T AR g = — D Y, TV A = —/g_[[Th]]'Ah,
h

TeT, FEOT\T

= ;/gis_lﬂahﬂ'u"'hﬂ - /gi{uh}}'ﬂ”ﬂv

and

*<S/\h,Vh>aTh\r = *<SVh»}\h>aTh\r = *Z Z Svi, - A,
TET, FEOT\T

= —QLiS{Vh}‘)\h = /gi{{vh}‘[[o'h]] - Q/gisﬁuh}}‘{{vh}

In this way, the foregoing equations together with (2.9a), (2.9b), (2.9¢), (2.9¢) and (2.9f) lead to the
problem: Find ((t;, o), up) € Hp x V3, such that
[An(bn, on), (Sh, Th)] + [Br(sh, Th),un] = [Fn, (Sh,Th)] V (sh,Tr) € Hp,

(2.11)
[Bn(th,on),vi] — [Sp(un),ve] = [Gn,ve] + [Ch(un),vh] V v € Vi,

where Hj, := Sp, XXy, and the operators Ay, : Hy, — H;, By : H, = V), S : Vi, = V] and Cp, : Vi, = V),
and the functionals F;, : Hy, — R and Gy, : Vj, — R, are defined by

1 _
[An(tn,on), (sh.Th)] == (W(tn),81)7 — (Sh. o) T, + (tn, TH) 7T, + 3 /51 S~ on] - [7h]
h

+ k1o — Y (t), Th) 7 + Ka(div(ey), div(Ts))7,, (2.12)
Bh(sh, Th), vh] = (vp,div(Th))T, — /g v}t - [l (2.13)

h
[Sh(uh),vh] = <Suh,Vh>a7—h, (2.14)

Coanvi) = -2 [ Sf{undfval

&,
[Fhs (Sh,Th)] = (Tav,g)p — ka(f,div(Th)) 7,
[ghvvh] = _(f7 Vh)'Th - <Sg7 Vh)l"a

where [, -] stands in each case for the duality pairing induced by the corresponding operators and

functionals. Note, for purposes that will become clear below, that one of the unknowns terms, namely
[Ch(up,), vi], has been placed on the right-hand side of the second equation in (2.11).



3 Solvability analysis

In this section, we establish the unique solvability of the nonlinear problem (2.11). To this end, and
following [3, 4], we let h € L>°(&},) be the function related to the local meshsizes, that is

( ) min{th, hTQ} ifx e int(BTl N 8T2),
h(z) =
hp if x € int(0T NT),

and assume that the meshsize is bounded, that is, that there exists a constant hg > 0 such that

h = h < ho. 3.1
:IFHE%ZZ{T}_ 0 (3.1)

The main idea of our analysis consist of redefining (2.11) as a fixed point problem.

3.1 Preliminaries

The analysis below requires the following preliminary results.

Lemma 3.1 (Discrete trace’s inequality). There exists Cyy > 0, depending only on the shape regularity
of the mesh, such that for each T € T, and F € 9T there holds

23 < Cu{hz'lalds + hrlzlis} vzeH (D). (3.2)

Proof. The proof uses a trace theorem and a scaling argument (see [8] for details). O

Lemma 3.2. There exists co > 0, independent of h, such that for all z € H'(Q) there holds

0!zl < collz]vo (3-3)

Proof. Given z € H!(2), we have
1 _ 1
W22y, = [ wa? =5 [ (Pl P) < 5 [ wieP < 0 helalon,
&l &l TeT, /T TET,

where C' depends on the regularity of 7. Next, using (3.2) and (3.1), we deduce from the foregoing
inequalities that

22202 < CCu Y hr {nplllelir + hrlalir} < CCL(l+8) Y iR < dllzla,
TETh TeTh

with ¢q := (CCt:(1 + ho))Y/?, which completes the proof. O
Lemma 3.3. There exists a constant ¢c; > 0, independent of h, such that

d . _
Imnl3e < e {ImiiBe + laivir)l, + I8 [rall2s b ¥ 7h € S

Proof. We follow similarly as in the proof of [2, Proposition 3.1, Chapter IV]. Indeed, given 7, € ¥,
we know from [20, Corollary 2.4 in Chapter I that there is a unique z € H}(2) such that div(z) =
tr (75,) and

lzll10 < Cftr(Th)

0,0 (3.4)



Now, utilizing that z € H} (), we have that

o (ra) |20 = /Q tr () div(z) = /Q o {tr (V) T}

= n/Th:(Vz—(Vz)d) = n/Th:Vz—n/T%:Vz,
Q Q Q

=n {/Z‘diV(Th)+/ T;ﬂ/-Z}n/T%:Vz,
T oT Q

TeT,
= —n(z,div(Ty))7, + n/ Imn] -z — n/ 7. Va.
Q

24

Next, applying Cauchy-Schwarz inequality, and then (3.3) and (3.4), we find that

lte(ra) I3e < nllzlloalldiviry)llz +nla™2[7alllog I 2llog +nllmhloglzle

< nlzloelldiv(rs)lz, +neolln*[74] Lo +nlmhlloolz

0.} k2 1O

. B 1/2
< Clalla {II7I3o + Idivira)|F, + I /2[ru]I2, }
. _ 1/2
< Cller(mn) oo {ImaBa + Idivera) I3, + 8™ 2[radIB s |

which gives
d . _
lr ) Be < C{ITilEa + laivirn)l3, + 1572 rallZ,, |-
This inequality and the fact that ||'rh||g’9 = HT?LH%Q + L(jtr (74) ||g79, complete the proof. O

We now realize, thanks to the previous lemma, that for convenience of further analysis, we need to
establish a particular choice of the stabilization tensor S. For this purpose, we let 7 > 0 be a constant
and set the tensor S as follows

S|lp := 7hl VFe&, (3.5)
which certainly yields
S7lp = (th)7I VFe&,. (3.6)
In addition, we consider the following definition of a norm onto Xj
lralld, = Irdl3a + ldivirn)l3, + 16D IrallZe V70 S
which, according to Lemma 3.3, satisfies
IThlloe < cllTills, YV 7Th € X, (3.7)

where ¢o > 0 depends on ¢; and 7, but is independent of h. Note that the above suggests the following
norm on Hj := S, x Xy,

) 5 11/2
Isn Tl = {lsnlda + Iralls, } ¥ (su,7a) € Ha
On the other hand, we define the nonlinear operator A : S, — S} by

[A(th),sn] == (Y(tn),sn)7 Y th,sn € Sh.

Then, we have the following result.



Lemma 3.4. Let vy and oy be the constants from (2.2) and (2.3), respectively. Then, for all ty, s, € Sy,
there hold

[A(tn) — Alsn)lls; < olltn — snllog (3.8)

and
[A(tn) = Alsn), th —sn] > aolltn —snllgo- (3.9)
Proof. See [19, Lemma 2.1] or [4, Section 3]. O

We are now ready to establish that the nonlinear operator A;, defining the problem (2.11) is also
Lipschitz-continuous and strongly monotone. In particular, the second property will depend on a
suitable choice of the parameter k1.

Lemma 3.5. Let Aj, be the nonlinear operator defined by (2.12). Then, there exists a constant
CrLc > 0, independent of h and T, such that

[AR(th, on) = An(sh Ti)lla; < Cre |(6hs o) = (hTh)llm, Y (hoon), (S, Th) € Hp,.
Proof. Given (tp, o), (sy, ) and (rp, py) € Hp, we obtain from the definition of A and (3.6) that

[An(th, on) — An(sh, Th), (th, p)] = [A(ts) — A(sy), 1] — k1[A(tr) — Alsp), ph]

= (on =)+ (= sl 5 3 [ (V2 = Tl (1) ]
Fegl F

+ w1((on — 1) o) 7, + Ka(div(os — 74),div(py)) 7, (3.10)
from which, applying Cauchy-Schwarz inequality and (3.8), it follows that
[A(th, o) = A(sn, Th), (ths )] < [A(R) = Alsn) s [enlloe + millAt) — Alsn)lls; [1PRll0s
+ [Ienlloq (an = 7a) oo + Itn = sulloo 65 llo0
+ %H(Th)_m[[(ffh —7)llog; 1R *Lonlllog + w1ll(on = 1) os Io7llo0

+ ralldiv(ey — 74)l7, [|div(ps)]7, .

< lltn — sillo lItnlloe + v0k1lts — sullog [P0,

+ leallog on —11) og + Itn —sullog 05 llo.e
1 _ _
+ 1) 2o =) logg 170) 7 2Lonlllogg + mull(on =)o [P llon

+ relldiv(en — 74) 7 [1div(e,)| 7

In this way, setting
Crc = 3max{l,70,K1,%k1, K2},

we conclude that

[A(tn,on) — A(Sh, Th), (ths pp)] < Crc (tn, on) = Sk Tr)ll, (TR, PR) || 1),

which ends the proof. O
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Lemma 3.6. Let Ay, be the nonlinear operator defined by (2.12), and assume that the parameter kq
lies in (O, 2’% , where ag and o are the positive constants from (2.2) and (2.3). Then, there exists a

constant C’SE/I > 0, independent of h and T, such that
[An(th, on) = An(sn Th)s (bns o0) = (s, 74)] = Cowmt [[(th, o) = (sn, 7a)l[71,.»

for all (tn, o), (S, Th) € Hp,.

Proof. Given (t,, o) and (sp, Th) € Hp, we take (ry, py,) = (tn,0n) — (Sp, Tr) in (3.10), to obtain
[An(th,on) — Ap(sn, T1), (th,on) — (sp, Th)] = [A(ty) — A(sp), tn — si)
— r1[A(tn) — Alsn), (o — 74) ] + %H(Th)_m[[dh —Tullg e
+ rall(on = 7) 30 + m2lldivien — T4)lI5,
which, according to (3.8) and (3.9), implies that
[An(tn, on) = An(sh: Th), (bn, on) = (Sn, 7h)]

1,
0.0 l(en = 7r) o0 + 5l (mh) Plon—Tull g

> ag [th —sullga — 0k [[th —sn

+ w1 [[(on = Tr) 30 + w2 lldiv(en — 7)1,

Itr —snlde | 0 l(on—7a) 30
ao [[tn = sullg o = Y0m1 { 55 T 5 ’

v

1 -~ .
+ §||(Th) V2[e), — Th]]“?),g}il + 1 |[(on — )50 + K2 Idiv(es, — 75)|7

Yok1 00
(20— 2558 It = sull w1 (122} o — 7l

. 1 _
+ #2 [divien = ma)[I7, + Sl "2 [on — g ¥ 8> 0.

2

It follows that the constants multiplying the norms above become positive if § € (0, '70) and k1 €

(0, 2‘;‘—35) In particular, for § = 7% we require k1 € (0, %), whence we find that
0
[An(tn, o) = Apn(sh, Th), (tn, on) — (Sh, T)]

2
> (Oéo - 70;1) ltn —sn

. 1 _
+ o ldiv(en = )3, + 5 1(h) 2 [en — Tl

2
0,0

K1
3,9 + ?H(Uh —7p)

> Csm||(tn, on) — (Sh,"'h)Hl%Iha

2
with Cqy := min {ao — %’;1 ) 5y K2, %}, thus completing the proof of the lemma. O

Our next goal is to show the discrete inf-sup condition for the linear operator Bj. More precisely,
we have the following result.
Lemma 3.7. There exists a constant Cine > 0, independent of h and T, such that

Br(Sh, Th)s Vi
sup M > Clinr ||VhH07Q Y vy € V.

(sh,Th)EH ||(sh7Th)||Hh B

(sh,Th)

11



Proof. We begin by recalling from (2.13) that By does not depend on sy, and hence it suffices to
show the existence of Ciy > 0 such that

N /th-div(rh)—/gi{vh}}-[[rh]]

ThES HThHZh
Thr#0

> Cint [Vellog V vy € Vi

To this end we let RTx_1(€2) be the global Raviart-Thomas space of degree k — 1, which is clearly
contained in Sy, and note that

/Q vi - div(ry) - /g il /Q Vi - div(ry)

sup > sup
ThES ||’7'h||2h T, €RTL_1 (2)\{0} ||Th||2h
Th70 fQ tr(7p)=0

In this way, and observing that |7y, is equivalent to ||T4llaiv.oc V Thn € RT;—1(Q2) such that
fQ tr (75,) = 0, with constants independent of h and 7, the rest of the proof follows from classical
results from mixed finite element methods (see, e.g. [16, Section 4.2 and Lemma 2.6]). O

The following three lemmas establish the positive semidefiniteness of S;, and some discrete trace,
inverse, and boundedness inequalities to be employed later on.

Lemma 3.8. The operator Sy, : Vj, = V)., defined by (2.14) is positive semidefinite, that is,

[Sh(Vh), V] = 0 V vy € V.

Proof. It is clear from (2.14) that

[Sn(va)vil = > > /Svh‘Vh Vvp € Vi,
TeT;, Fear ' T

which, thanks to the fact that S is a positive definite tensor on &}, completes the proof. O

Lemma 3.9 (Discrete trace’s inequality + inverse’s inequality). There exists Ciny > 0, depending
only on k and the shape reqularity of the mesh, such that

IVIlbor < Cuvhi'IVIGr VVveEPLT), VTeT, (3.11)
and

ITl8or < Cuvhz'llTlir ¥ 7 €Pu(T), YT €T (3.12)

Proof. The proof uses the discrete trace inequality from Lemma 3.1 and an inverse inequality. See
also [3, Lemma 3.2]. ]

Lemma 3.10. There exist constants 61, 62, 63 > 0, independent of h and T, such that

) 82 v log < Cullvalon ¥ vi € Vi

i) th/thHo@? < 62\\%“0,9 YV vy € V.

iii) ||h'/%r v

062 < CsllTnllon YV 7a € T

12



Proof. Given v, € V3, we use (3.11) to deduce that

1 1 1
1/2 2 _ 1 + -2 2 ( +12 72) < * 2
ey = g [ oavievil® < 5 [ a(MPevE) < 53 [ sl

h 3 TET,,
< G Y hrlvilger < CiCiy Y IViligr = CiCinvlvalda,
TeTh TeTh

which shows i) with Ci = (C1Ciny)'/? > 0. Next, using that h = hy on £2, and applying again (3.11),
we find that

I 2ilie = [ il < Y brlvalior < Culviliio
h TETh

which proves i) with Cy = (Ciny)'/?. Finally, the proof of 4ii) follows from (3.12). O
Using Lemma 3.10, the definition of tensor S given in (3.5), and the Cauchy-Schwarz inequality,
it is easy to check that the operators By, Sy and Cp, and the functionals F; and Gy, are all bounded

with respect to the corresponding norms. More precisely, the corresponding bounds are established in
the following lemma.

Lemma 3.11. Let s, € Sy, Th € X and up, vy, € Vi,. Then there hold

Br(sn, ), vall < (1+7C1) (s, m0) |, [Vallog

[Sp(wn), vill < 7C1 lupllog [vallog
Ch(un), vill < 27C% [unlloq [Ivallog (3.13)
P i)l < (2 + 2Cs) Bl g) s 7)1,

Grvill < (1+7hC2) B(Eg) [Valloo

where
B(f,g) == [floa + [/ %glqes.

Proof. The proof uses Lemma 3.10 and the definitions of each operator and functional. We omit
further details and refer to [3, Lemma 4.4]. O
We end this section, by recalling from [18] the following abstract theorem.
Theorem 3.1. Let X, M be Hilbert spaces and assume that
i) the operator A: X — X' is Lipschitz continuous and strongly monotonic, that is, there exist v,

a > 0 such that
[A(s1) — A(s2)llxr < v ls1 —s2flx Vsi,s2€X

and
[A(s1) — A(s2),81 —s2] > a[s1 — SQH% V s1,89 € X;

i1) the linear operator S is positive semidefinite on M, that is

[S(T), 7] > 0 VTeM;

13



iii) the linear operator B satisfies an inf-sup condition on X x M, that is, there exists > 0 such

that 3
wup [B®).7]

——= > Blrllm VTEM.
222 Tellx

Then, given F € X' and G € M', there exists a unique solution (t,0) € X x M of

[A(t),s] + [B*(o),s] = [F,s] VseX,
B(t), 7] — [S(o), 7] = [G,7] VTeEM.

In addition, the following estimates hold
by < C{IlFlx + 161 + A0},

lolle < Co{IFlle + 16w + IA©)]x

where

1 2
C; = —+ @CQ and Coy = 7 (1 + M .
a « af3? a

Proof. See [18, Lemma 2.1], where it is easy to show the last estimates from expressions (2.8) and
(2.9) in [18]. ]

3.2 Main result

In order to prove existence and uniqueness of solution of (2.11), we now introduce the nonlinear
mapping T}, : Hp, x V, — Hjp x Vj, that, given ((rp, pp,), Wn) € Hp X Vy, defines T ((rp, pp,), Wh) 1=
((ty,on),up) € Hyp x Vj, as the unique solution of the problem

[Ah(thao'h>7(sh77'h>] + [Bh(sh,Th),uh] = [fh,(sh,Th)] V(Sh,Th)EHh,
[Bh(th,ah),vh] — [Sh(uh),vh] = [Qh,vh] + [Ch(wh),vh} Vv, eV,

Note that actually Tp((rp, pp,), W) depends only on the third component wy € V. In addition,
bearing in mind Lemmas 3.5, 3.6, 3.7 and 3.8, it follows from Theorem 3.1 that T, is well-defined and
there holds

I(bn, o), < CaC B(fg) + 2CiCar [whllo: (3.14)
and
lurlloe < GCoC B(f,g) + 2C2Cyr |whllo.a, (3.15)
where
6 = 1+I€2—|—7‘hoé\2—i—C}/Qag(l—i-T)l/Q,
. 1 SN
G = oo (1 F(1+ Tcl)c,,) ,
—~ C*? 1+ 7'61
Cy, = LC 1
’ CsmC2; ( * Cem )7
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and the constants 6’1, 62, and 63 are those from Lemma 3.10. Observe here that the identity
Ap(0,0) = (0,0) and Lemma 3.11 have been employed to establish the estimates (3.14) and (3.15).
Also, we remark that the relevance of the introduction of T, has to do with the fact that any even-
tual solution of (2.11) becomes a fixed point of T} and conversely. Moreover, the following lemma
establishes that T} is indeed a contraction mapping and hence, thanks to the Banach Fixed-Point
Theorem, it has a unique fixed point in Hy, x V},.

Lemma 3.12. Assume that the parameter T lies in (O, %), where

20?2 cLC> ( C’Lc)
0 = | =—L ( 1+ > 0.
(CSM> Cint Cint

Then, T}, is a contraction.

Proof. Given ((tn,on),un), ((th, o), n), ((th, py), Wr), and ((Tn, pp), W) in Hj, x Vj such that

Th((ch pn).wr) = ((bn,on),un)  and  Th((Th, py)s Wa) = ((th,0n), un),
we know from the definition of T}, that
[(An(tn, o) — Ap(th, n), (shTh)] + [Bu(sn, Th),up — 1] = 0, (3.16a)
Bo(th — Tnson — 1), va] — [Snun —Tn)val = [Ch(wh—n),val,  (3.16b)

for all ((sp,Th),vn) € Hp X V. Next, taking (s, 7h) = (tp, —fEh,O'h — o) and vy = up, — Uy, we
obtain from (3.16) that

[An(th, on) — Ap(tn, on), (tn, on) — (th, 1))
+ [Sh(uh — ﬁh), up — ﬁh] = —[Ch(Wh — ﬁ/h), up — ﬁh] (3.17)

Then, using the strong monotonicity of Ay, the fact that Sy is positive semidefinite, and the bound-
edness of Cp, (cf. (3.13)), we deduce from (3.17) that

27612
Csm

(tn, o) — (b on)lF, < [wh — Wallo,e [[un — apllo0- (3.18)
On the other hand, employing the inf-sup condition for By (cf. Lemma 3.7), (3.16a), and the Lipschitz-

continuity of A, (cf. Lemma 3.6), we find that

N 1 Bp(sp, Th), up — up,
||uh_uh||0,ﬂ < sup |[ ( ) )7 ”7
Cint (sh,Th)EH ”(Sha Th)HHh
(8h>Th)
_ 1 | — [An(tn, on) — An(th, o1), (sh, T1)]|
= Sup 9
Cinf (sh,Th)EH ||(Sh7Th)HHh
(sh,Th)#0
CLc ~
< o MGnon) = (. an)lim,,
inf

which, together with (3.18), implies that

IN

[(th, on) — (b, 50|,

2rCE) (A oy — )
Csm Cinf o oa
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and

~ 276’12 Cre\? -
[up = uplloe < oor | \ Oy [Wn — W0
m

In this way, we conclude that

ITw(Cens ) Wh) = Tr((Eh, on)s Wil mxvi - < LA((0h, pr)s Wh) = ((Fhs Pn)s Wi |y xvi,

with L := 760. Finally, since Cj,¢, CrLc, and Csyg, are independent of 7 > 0, we can choose 7 € (0, %),
which insures that T, is a contraction and completes the proof. ]

Now we are ready to establish the main result of this section.

Theorem 3.2. Assume that

O<T<min1,} Com — .
0" 2\ (1+Csm)0+Cy

Then, there exists a unique ((tp, o), un) € Hp, x Vi, solution of (2.11). Moreover, there holds
||(tha O'h)HEh < Ca B(fa g) and HuhHO,Q < Cb B(fa g)a

where o R .
Co = Co (C+2C3Cyr) and Cp := 2C,C.

Proof. The unique solvability of (2.11) follows straightforwardly from its equivalence with the fixed-
point equation for T}, the corresponding Banach Theorem, and the fact that T}, becomes a contraction
when 7 < % (cf. Lemma 3.12). Then, denoting by ((ty,op),uy) € Hp X V3 the unique solution of
(2.11), we have from (3.14) and (3.15) that

(tn,on)lm, < CaCB(f,g) + 2C7Cat [unflo (3.19)
and
lunloe < CCB(fg) + 2C7Cyr [lunfoe. (3:20)
It remain to handle the second term on the right-hand side of (3.20). For this purpose, we now note
that
on 2 147Gy
2C}Cyr = 20— 1+ T
' ' CsmCy Csm

202 (cLC) (CLC> 1+7C)
= 1+ T
Csm | \ Cint ) \ Cint Csm

1+7C, 9+(97’)61
1 — T\l
9<+ o ) <9+ o )

which, using the assumption on 7, gives

26%(%7’ < <9+9+C1)7‘ = <(1+CSM)9+01>T <
CSM CSM

IN

1
2
In this way, replacing the foregoing inequality back into (3.20), we deduce that
lunloe < 26,CB(fg) = O, B(f.g),
which, together with (3.19), yields
It on)lm, < (CuC+207CuChr) B(Eg) = Ca B(fg).
thus completing the proof of the theorem. O
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4 A-priori error analysis

We now aim to derive the a priori error estimates for the augmented HDG scheme (2.11). We
begin by remarking that the eventual extension to the present nonlinear case of the projection-based
error analysis developed in [11] (see also [13]) does not seem straightforward, precisely because of the
nonlinearity, and hence in what follows we adopt a more classical approach. Next, since u € L?(Q) and
Vu =t L) (cf. (2.4)), we observe that actually u € H'(2), which guarantees that the jump [u]
vanish on any interior face of 7;, and there holds {u} = u. In addition, since o = 1(Vu) —pl € L?(2)
and div(e) = —f in Q, with f € L2(Q2), we conclude that o € H(div;(2), whence [o] = 0 on each
F € &:. Then, it is easy to check that (t,o,u) satisfies the equations of (2.11), and then we obtain
the error equations

[Ah(t,O') —Ah(th,dh),(sh,Th)] + [Bh(sh,Th),u—uh] = 0V (Sh,Th) € Hy, (4.1&)
[Br((t,0) = (th,or)), vi] — [Sp(w —ap), va] = [Ch(u —ap), va] = 0 Vv, €V (4.1Db)
The following result establishes the Céa estimate for (2.5) and (2.11).

Lemma 4.1. Assume that

11
0 < 7 < ming -, = Com ,\,l,
02\ (1+Csm)0+C1)
with 8 > 0 defined in Lemma 3.12 and
CLC> <CLC) 61 +2622
9 = 2(1+ > 0.
( Csm /) \ Cint Cint
Let ((t,0),u) € L2(Q) x H(div; Q) x L%(Q) and ((tn, o), uy) € Hy, x Vi, be the unique solutions of
(2.5) and (2.11), respectively. Then, there hold the Céa error estimates

It6.0)~ (nomln, < 2(1+ g2) (14 520) int 1) - Grmidln,
-G {o (- 80) 0 (B) it -t @2
and
fa-wlon < 2(1+ ¢0) (G0) (1+150) | int 1o Gl
+ 2{1+ <1+g;(;> ”ng”}virelfvh lu—vallo.. (4.3)

Proof. We proceed as in [31, Proposition 4.1]. In fact, we first set Hj = ﬁh &) ﬁf;, with f[h being
the kernel of By,. Hence, given (sp, 71,) € Hp, we let (vp, py) € th be the unique solution of

[Bu(rh, pr),vi] = [Bu((t,0) = (sh,Tr)) — Sn(u—up) = Ch(u—up),vi] V vy €V,
which there exists thanks to the discrete inf-sup condition and the continuity of Bj. Then, there holds

B rp, , 'V
Cuut e o), < sup [onEn:Pu): Ve

VhEVRL thHQQ
v #0
. [Br((t,0) — (sh, Th)) — Sp(a —up) — Cp(u — up), vi
VhEVRL thHO,Q
v, #0

IN

1Bull (¢, 0) = (sn, 7n)l[ 1, + { [Sall + [ICall } lu = unllog
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that is

B Sull +|IC
ol < 2160 - snril, + { I .

Also, note by construction of (ry, p;,) € ﬁ}f and (4.1b) that there holds
[Br((sh, Th) + (th, pp) — (tn,ok)),vi] = 0 V vy € V. (4.5)
Next, applying the strong monotonicity of Ay, and (4.1a), we get

Csm [[(sh: 1) + (xh, o) — (s o)l
< [An((sh, Th) + (th, 1)) — Awltn, on), (Shs Th) + (thy pr) — (tr, o1)]
= [Ah((sh,Th) (th, pp)) — An(t, @), (sh, Tn) + (v, pp) — (th, on)]
+ [An(t,0) — An(th, on), (Shs Th) + (Ths p) — (thy oh)]
= [An((sh,Tr) + (tn, pp)) — An(t, o), (Sh, Th) + (Ths i) — (b, on)]
— [Bn((shs Tr) + (rh, pp) — (ths0on)), u — up).

In turn, it follows from (4.5) that we can replace uy, by vj, € V}, in the foregoing expression involving
B}, and hence we obtain

Csm [[(sh, 71) + (th, o) — (b o),
< [An((sn, Tn) + (ths pp)) — An(t, o), (Shs Th) + (T, pr) — (th, o1)]
— [Bu((sh, Th) + (th; pp) — (bh,00)), 0 — vy
< Cre [[(shs7n) + (T, pn) — (6, 0)| 1, [[(sh +1h, Th + pp) — (bns o) m,
+ Bull [|(sh, Th) + (v, p1) — (bn; o0 lm, 0= Vallogs

which yields

Crc 1Bl

[(shy ) + (tny pp) = (bnyon)llm, < =—(t,0) = (sh,Th) = (Th, PRI, + = ll0 = Valloa-
Csm Csm

Thus, by triangle inequality we deduce that

[(t,0) = tn,on)llm, < [[(t,0) = (h, ) = (xn, Pu) |, + (Shy Th) + (ths p) — (b, o0) | 1,

C B
< (1+LC)||<t,a>—(sh,m—(rh,ph)ngh T+ BB~ valoa
CSM CSM
C CLc B
< (1+LC)||<t,a>—<sh,m>||Hh T (1+) Ven o)l + B 5o,
Csm Csm Csm

which, together with (4.4) and the fact that (sp, 71) € Hp, and vy, € Vj, are arbitrary, imply

It 0) — (b o), < (1+CLC> (1+”Bh”)( inf [[(t.0) — (s 70l

Csm Cinf Sh,Th)EH),
||Bh|| . < CLC) (||Sh||+||ch||>
u=Valloo + {1+ — o0 4.6
CSM vaVh I nllog Cant Coe lu—uplon (4.6)

On the other hand, using the inf-sup condition for By, (4.1a), and the Lipschitz-continuity of A, we
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find that for each v; € V}, there holds

Bhn(sh, Th), vih — up
Cont Ivh—tnllog < sup [Ch(EmTh) ]
(Sh,"'h)iﬁ)h, H(ShaTh)HHh

(shsTh
— s [Br(sh, Th), v —u] + [Bp(sh, Th),u — up)]
(sh,Tr)EH H(Sh? Th)HHh

(sh,Th)#0
— sup [Bh(sn, Th), vi —a] — [An(t, o) — An(tn, on), (Sn, 7h)]

(sh,Th)EHR ||(Sh¢7-h)HHh
(sh,Th)#0

1Bull la = vhllog + Cre [|(t,0) = (tn, )|,

IN

which, together with an application of the triangle inequality, gives

1Ball') . CLc
- < (1 fflu— t,0) — (b, : 47
lu—uplloo < ( o )t lm=valoo + F M1t o) = (6w on)la, (4.7)

Next, by substituting (4.6) into (4.7), we arrive at

CLC> <CLC> ( HBhH) :
u—u < 14+ — — 1+— inf t,o) — (s, T
| wloa < ( Csm /) \ Cinf Cint /) (sn,mh)EHn I8 &) = (on, 72)

CLC) HBhH} :
+ 14+ (114+ =) —=——% inf |[[u—v
{ ( Csm /) Cint J vheVa ” hHQQ

CLC> (CLC) <||3h| + ||Ch||)
+ (1+ u-u
( Csm ) \ Cing Cinf | "

In turn, we know from Lemma 3.11 that ||Sp| < 7C and ICL]] < 27612, and hence, recalling that
T < %, we deduce that

CLC> <CLC> (||5hH + ”ChH) ( CLC) (CLC> Cy + 202 1
1+ < 1+ T < -,
( Csm Cint Cint - Csm Cint Cint 2

which allows to conclude from the previous inequality that

C C B .
la = wnlloc s2(u—”ﬁ(1@)0+””§ nf (60) — (sl

lo,0-

Csm /) \ Cint Cint / (sn,Tn)€Hn
CLC> ||Bh||} :
+ 251+ (14— inf |lu—v . 4.8
{ro (14 29) B it vl (4.5)
Finally, it is easy to see that (4.6) and (4.8) provide (4.2) and (4.3), thus finishing the proof. O

Next, in order to provide the rate of convergence of the discontinuous Galerkin scheme (2.11), we
need the approximation properties of the finite element subspaces involved. For this purpose, given
T € Th, we let P : L2(T) — Py(T) and Pi~' : L3(T) — Pj_1(T) be the L*(T) and L*(T) —
orthogonal projectors, respectively. It is well known (see, e.g. [7, 16]) that for each s € H!(T) and
v € H"Y(T) there holds

Is — Ph(s)lor < ChREmEA g, vreT, (4.9)
and

v —PE ' WV)llor < CREMEIMy, 0 VT eT. (4.10)
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On the other hand, let H?fl : HY(T) — P,(T) be the Raviart-Thomas interpolation operator (see
[2, 16, 29]), which satisfies the approximation property

Ir = (D lawe < CRF I iror 4 ldiv(n)le} YT T (4.11)

and for each 7 € HY(T) such that div(7) € HY(T), with £ > 1. Moreover, the interpolation operator
Hf}_l can also be defined as a bounded linear operator from the larger space H¢ (T) NH(div; T) into
Py (T) for all £ € (0,1] (see, e.g. [21, Theorem 3.16]). In this case there holds the following interpolation
error estimate (see [16, Lemma 3.19])

Ir = (lor < Chf{irler + ldiv(rllor} VT T,
which, together with (4.11), implies for ¢ > 0 that

I =W (Ol < AR H irlir + div(n)ler} VT e T

On the other hand, observe that, given Z := {T € L%(Q) : 7|r € HY(T) VT € T3}, we can define
IIy, : H(div; Q)N Z — Xy, by

Oy, (7)|r = W (r|r) + d1 VT €T,

with d := —ﬁ > ptr <H§_1(7|T)) € R. Then, it is easy to prove that
TeT,

I =Is, (D3, < D Il -5 (Dldvsy V7 eHdiviQ)N2Z,
T€ETH

and hence

Ir =1, (Mlls, < € 3 R irler + Jldivin)ller - (4.12)
TeTh

In this way, as a consequence of (4.9), (4.10), (4.12), and the usual interpolation estimates, we find
that Sy, Xp and Vj, satisfy the following approximation properties:

(AP%) For each ¢ > 0 and for each s € H(Q) there exists s;, € Sj, such that

in{l,k+1
Is = sulloe < € > RF™ME ),
TET

(APY) For each £ > 0 and for each T € HY(Q) with div(7) € HY(Q) there exists T, € ¥, such that

I =7uls, < € 30 B irer + Jldiv(m)ller -
TET

(AP}) For each ¢ > 0 and for each v € H(Q) there exists v;, € V}, such that

in{¢+1,k
v —villoe < €3 mp™ v,
TET,

The following theorem establishes the theoretical rates of convergence of the discrete scheme (2.11),
under suitable regularity assumptions on the exact solution.
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Theorem 4.1. Assume the same hypotheses of Lemma 4.1. In addition, suppose that there exists an
integer £ > 0 such that t|p € HYT), o|r € HYT), div(o|r) € HYT) and u|lr € HTYT), for all
T € Ty. Then, there exists C' > 0, independent of h and the polynomial approximation degree k, such
that

[t —trlloe + llo—oulls, + [lu—upnlon

min{¢,k .
< ¢ 3 " Jtler + loler + Idivi@)ller + laler ).
TeTn

Proof. It follows from the Céa estimate (cf. Lemma 4.1) and the approximation properties (AP}),
(AP?) and (APY). O

Note from the previous theorem and (3.7) that we can also conclude that

min{/¢,k .
lo=anloe < €3 WE S ftler +[olur + |divio)
TeT

leT + |U!e+1,T} : (4.13)

Furthermore, we know from (2.1) that p = —%tr (o), which suggests to define the following postpro-
cessed approximation of the pressure:

1
pp = ——tr(op) in Q,
n
and therefore
1 1
Ip—pnlloo = EHU(U_U}L) oo < EHU—Uhllo,ﬂ, (4.14)

which, thanks to (4.13), gives the a priori error estimate for the pressure.
Now, as in [11], we measure the errors of quantities defined on 97;, with the seminorm:
1/2

el == Y hrllelior
TeT,

and we let IIg, : L2(€,) — P(&) be the orthogonal projection onto the space of piecewise polynomials
of degree < k on &,. Next, we end this section with the a priori error estimate for the trace of the
velocity unknown, which is established next.

Theorem 4.2. Assume the same hypotheses of Theorem 4.1. Then, there exists C > 0, independent
of h and the polynomial approximation degree k, such that

~ min{/,k .
e, () =Gl < € 2 AP fltlr + ol + [divio) o + e}
TeT,

Proof. Since Ilg, (u) = Ir(g) = Uy, on &, we only need to compute the error for each F' € £. In
fact, we have

e, () = Tallz = D > hrlltle, (w) = Ml p

TeT, FedT\I

< CY > g () = Mllfr = 2C ) b, () = Muld py
TeT, FEdT\I' Fe&}
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with C' > 1 depending only on the shape regularity of the mesh. Then, according to (2.10), (3.6) and
the fact that {u} =u and [o] =0 on &/, we obtain that

2
Mgy~ @l < 20 3 n 1t (u) - g + (m) o]

Fegl 0.F
1 _
< 0 3 It @) - wbi e+ w2l - ol e )
Fe&l
< O g, (w) —wHE e + o —onl?, |- (4.15)

Next, it is easy to check that Ilg, (u)|p = PF(u)|p = for each F € &, where PF : L%(Q) — Py (Ty) is
the orthogonal projector, which satisfies

Iv—PEW)lloe < Y R v r Vv e HYT), YT eT (4.16)
TeT

Consequently, using the analogue of the part i) of Lemma 3.10 with P (7},) instead of V},, we deduce
from (4.15) that

e, (w) = nlln < C{IPE@W ~wiloo + llo = aulls, |

< C{lu-Piw

0o + lu—wloa + lo—auls, }.

which, together with (4.16) and Theorem 4.1, complete the proof. O

5 Implementation considerations

In this section we describe some general aspects on the computational implementation of the discrete
scheme proposed in Section 2. We remark that we refer to the original HDG system (2.9) since, as
explained before, the equivalent reduced scheme given by (2.11) was introduced just for sake of the
analysis. We begin by considering again problem (2.9) in a single element 7" € 7T, with Dirichlet’s
datum g = 0 (as is usual, the boundary condition can be imposed later), that is

/Tw(th)!Sh—/TSh:aﬁ = 0,
/T{th—mllﬁ(th)} 37(}ib+{Hl/ro'%ZT%+K2Adiv(gh).div(Th)}

+ / uy, - div(Ty) — TV - A\, = —/QQ/ f-div(ry),
T T T

/Vh'diV(O'h)Jr/ Suh~vh/ SAp vy = /f-Vh,
T or or T

—/ ahu-uh—i-/ Suh-uh—/ SAp-p, = 0,
or or or
for all (sp, Th, Vi, pp,) € Pi(T) x Pe(T) X Pr_1(T') x Py (9T).

Note that, because of the null mean value condition of the trace of o, that is [, tr (o) = 0, we
can not establish the value of |7 only with the information from 7' (as it is natural in discontin-
uous Galerkin schemes). For that reason, and in order to rewrite the above local contribution in an
equivalent form, we now define the local space

Sho(T) = {Tepk(:r) : /Ttr(T)ZO},
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for which there holds Py(T") = 35, 0(T) ® Po(T)I, where I € R™*" is the identity matrix. Next, given
o, Th € Sy, we consider the local decomposition

onlr = onlr + pulrl and Th|r = Thlr + Gulrl VT €Ty,

where o7, Thlr € Xn0(T), prlr, Culr € Po(T'), and rewrite the above local contribution as

/'lp(th)35h/TShif~7% = 0,
/T{th—mz[)(th)} :%2+{m1/Ta;1 Th—i-lig/ div(&s, dlv(Th)}

) -
+ / uy, - div(Ty) / TV - A, = —Hg/ f-div(7y),
T T T
—/ vV ~diV(5’h) —|—/ Suy, - vy, —/ SAp vy = /f-Vh,
T ar T
—/ EhV'Nh+/ Suh'Hh—/ S/\h'ﬂh—/ prby, v = 0,
oT or oT or

ChAn-v = 0,
or

for all (sp, Th, Vi, tty, Cp) € Pr(T) x X 0(T) X Pr_1(T) x Py(9T') x Po(T). In addition, it is easy to
see that the aforementioned condition on the trace of o}, becomes

> oulr|T| = 0.
=n

Then, applying the Newton-Raphson’s method to the global nonlinear system, we translate the local
contribution for the Newton’s linear system in the mth iteration into the form

DA, (t7) B 0, O 0 stm b’
-BT -DAy(t") H C  -E 0 S b3

0 -C" K '-F 0 (5uh = | by |,
o  -E" F'-D G || ap by
0 o o, G o spm b

where dt}" corresponds to the mth update for the t;, variable, that is t;l”H = t;'+40t}", and similarly for
the other variables. The discrete operators DA;(r), i € {1,2}, are the respective Gateaux derivatives,
given by

pawis = [ Y Lvgmnes = [ e g0+ [utes

,5,k,l=1
and
[DA;(r)t,s] = ri[DA{(r)t,sd],

for all r,t,s € L?(T), with |r| = ||r||gexn # 0. All the above discrete operators can be calculated
similarly as in [6]. It is important to note here that the local submatrix

DA (t}") B 0

_RBT _ DAQ(tZL) H C e R(nqu-i—(nqu—l)-i—ndu)><(n2dq+(n2dq—1)+ndu)
0 -c’ K
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with dg := dim P, (7") and d, := dim P,_(T), is invertible when p > 0 and |t}*| # 0. Then, as it
is usual in the HDG methods, we can obtain the values of 0t}*|7, do7}'|r and du}’|r as functions of
IAN |7 and ép)*|r (actually, they only depend on dA}'|7). In other words, we can reduce the stencil
of the global linear system on each iteration of the Newton’s method.

Finally, we let

Nigtal = (n?dy +n?d, + ndy + d,) x (# of element in T3,)
+ (nd;) x (# of faces in Tp,),

with d; := dim P(F), F' € 9T, be the total number of degrees of freedom including those for the
pressure. In other words, Niota is the total number of unknowns defining t,, oy, up, Ap and p,. On
the other hand, we let

Neomp = (nd;) x (# of faces in Tp,) + (# of element in Ty,)

be the number of degrees of freedom effectively employed in the computations, i.e, the total number
of unknowns defining Ay, and pp,.

6 Numerical results

In this section we present several numerical experiments illustrating the performance of the augmented
HDG method introduced in Section 2. We set 7 = 1072 for each one of the 4 examples to be reported,
which, as shown below, works fine in all the cases. An a priori verification of the hypotheses on 7
in Lemma 4.1 would certainly require the explicit knowledge of all the constants involved, which,

however, is rarely possible. On the other hand, we take the stabilization parameter k1 = %, which
0

obviously satisfies the assumption k1 € (O, %) in Lemma 3.6, and then, as suggested by the value
of the strong monotonicity constant Cgy at Othe end of its proof, we simply choose k2 = 5. The
corresponding nonlinear algebraic system arising from (2.9) is solved by the Newton method with a
tolerance of 1076 and taking as initial iteration the solution of the associated linear Stokes problem
(four iterations were required to achieve the given tolerance in each example). Now, according to the
definitions given in Section 5, we recall that iy is the total number of degrees of freedom, and
Necomp is the number of degrees of freedom involved in the implementation of the Newton’s method.
The numerical results presented below were obtained using a C™code, which was developed following
the same techniques from [6]. In turn, the linear systems are solved using the conjugate gradient

method with a relative tolerance of 10.

In Example 1 we follow [28, 11] and consider the linear Stokes problem given by the flow uncovered
by Kovaszany [24]. This means that 2 := (—0.5,1.5) x (0,2), © = 0.1, and the data f and g are chosen
so that the exact solution is given by

u(x) = (1 — exp(Az) cos(2mza), % exp(Azy) sin(27m:2)> ,
p(x) = %exp(2)\x1) — % {exp(?))\) - exp(—)\)} ,

for all x 1= (z1,72)" € Q, where A := £ — \/RT62 + 472 and Re := p~! = 10 is the Reynolds number.
It is easy to see in this linear case that ag = 79 = p. Concerning the triangulations employed in our
computations, we first consider seven meshes that are Cartesian refinements of a domain defined in
terms of squares, and then we split each square into four congruent triangles.
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In Example 2 we deal with the nonlinear version of Example 1. More precisely, we consider
instead of y = 0.1 the kinematic viscosity function p : R™ — R given by the Carreau law, that is
w(t) = po + p(1+t2)B=2/2 vt ¢ Rt with pg = p1 = 0.5 and 8 = 1.5. It is easy to check in
this case that the assumptions (2.2) and (2.3) are satisfied with

-2
Y = M0+N1{|ﬁ2|+1} and «y = po.

Then, we let again Q := (—0.5,1.5) x (0,2), and choose the data f and g so that the exact solution is
the same from Example 1. The set of triangulations utilized is also as in Example 1.

Next, in Example 3 we use the same nonlinearity p from Example 2, consider the L-shaped domain
Q:=(-1,1)2\ [0, 1]2, and choose the data f and g so that the exact solution is given by

u(x) = <r2/3 sin(#), /3 cos(@)),
p(x) = cos(x1)cos(zg) — sin?(1),

for all x := (z1,22)* € Q, where r := |x| = /2% + 23 and 0 := arctan (%) We remark that Vu is
singular at the origin, and hence lower rates of convergence are expected in our computations. The
meshes are generated analogously to the previous examples.

Finally, in Example 4 we consider the three dimensional domain  := (0,1)3, and assume the same
kinematic viscosity function p from Examples 2 and 3. In addition, the data f and g are chosen so
that the exact solution is given by

u(x) = (xl(sin(27rx3) —sin(27xe)), xo(sin(2wzy) — sin(27wz3)), x3(sin(2wxy) — sin(27rx1))) ,

1
p(x) = xixoxssin(2mry)sin(2mxe)sin(2rxs) + 3.3
s

for all x := (z1,x2,23)* € .

It is easy to check that u is divergence free and / p = 0 for each one of the aforedescribed examples.
Q

In Tables 6.1—6.4 we summarize the convergence history of the augmented HDG method (2.9) as
applied to Examples 1 and 2 for the polynomial degrees k € {1, 2,3, 4}. We observe there, looking at
the experimental rates of convergence, that the orders predicted for each k by Theorems 4.1 and 4.2,
and estimates (4.13) and (4.14), are attained in all the unknowns for these smooth examples. Actually,
the errors ||o — op||y, and ||lu — upljoo behave exactly as proved, whereas the remaining ones show
higher orders of convergence. In particular, ||Ilg, (1) — Up||;, presents a superconvergence phenomenon
with two additional powers of h. In addition, it is interesting to notice that these numerical results
provide the same rates of convergence obtained for the linear case in [11], and hence they might
constitute numerical evidences supporting the conjecture that the a priori error estimates derived in
the present paper are not sharp. We plan to address this issue in a separate work. Nevertheless, as
already mentioned at the beginning of Section 4, whether the projection-based error analysis developed
in [11] will work or not in this nonlinear case is still an open problem.

Furthermore, in Tables 6.5—6.6 we summarize the convergence history of the augmented HDG
method (2.9) as applied to Example 3 for the polynomial degrees k € {1, 2,3, 4}. In this case, and
because of the singularity at the origin of the exact solution, the theoretical orders of convergence
are far to be attained. In fact, similarly as obtained in [6], [[u — u|jo.o behaves as O(R™n{F:4/3})
whereas ||t — tp|lo.o = O(h%3). Also, |0 — opllon = Oh¥?), |, (u) — Gpll, = O(R™{EA/3}) " and
thanks to (4.14), ||p — pullo.a = O(h*?) as well. Moreover, the behaviour of ||o — a||s, in Table 6.5
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k h Niotal | Neomp It =t ‘073 I = UhHO;? e = UhHE(f
error  order | error order | error  order

0.2000 | 14080 2881 1.13e-0 —— | 2.96e-1 —— | 5.08e-0 ——
0.1333 | 31620 6421 0.17e-1  1.92 | 1.37e-1  1.90 | 3.48¢-0 0.93
0.1000 | 56160 11361 || 2.95e-1 195 | 7.81e-2 1.95 | 2.64e-0 0.96

1| 0.0800 | 87700 17701 | 1.90e-1 197 | 5.04e-2 197 | 2.12e-0 0.98
0.0667 | 126240 | 25441 | 1.32¢-1 1.98 | 3.51le-2 1.98 | 1.77e-0  0.99
0.0571 | 171780 | 34581 || 9.75e-2 1.98 | 2.59e-2 1.98 | 1.52e-0 0.99
0.0500 | 224320 | 45121 | 7.47e-2 1.99 | 1.98e-2 1.99 | 1.33e-0 0.99
0.2000 | 27720 4121 8.88¢-2 —— | 1.88e-2 —— | 5.86e-1 ——
0.1333 | 62280 9181 2.77e-2  2.88 | 5.86e-3 2.87 | 2.7le-1 1.90
0.1000 | 110640 | 16241 | 1.19e-2 2.92 | 2.53e-3 2.93 | 1.55e-1 1.9

2 1 0.0800 | 172800 | 25301 || 6.20e-3 2.94 | 1.31e-3 2.95 | 9.96e-2 1.97
0.0667 | 248760 | 36361 || 3.62e-3 2.95 | 7.62e-4 2.96 | 6.94e-2 1.98
0.0571 | 338520 | 49421 | 2.29e-3 2.96 | 4.82¢-4 2.97 | 5.11e-2 1.99
0.0500 | 442080 | 64481 | 1.54e-3 2.97 | 3.24e-4 2.98 | 3.92e-2 1.99
0.2000 | 45760 5361 | 5.59¢-3 —— | 1.18e-3 —— |4.98e2 ——
0.1333 | 102840 | 11941 | 1.15e-3 3.90 | 2.46e-4 3.87 | 1.5b4e-2 2.89
0.1000 | 182720 | 21121 || 3.69e-4 3.95 | 7.93e-5 3.93 | 6.62e-3 2.94

3 1 0.0800 | 285400 | 32901 || 1.52e-4 3.97 | 3.28e-5 3.96 | 3.41e-3 2.96
0.0667 | 410880 | 47281 || 7.38e-5 3.98 | 1.59e-5 3.97 | 1.98e-3  2.98
0.0571 | 559160 | 64261 | 3.99e-5 3.98 | 8.62¢-6 3.98 | 1.25e-3  2.98
0.0500 | 730240 | 83841 || 2.34e-5 3.99 | 5.06e-6 3.98 | 8.4le-4 2.99
0.2000 | 68200 6601 || 2.97e-4 —— | 6.42e-5 —— | 3.35e-3 ——
0.1333 | 153300 | 14701 | 4.06e-5 4.91 | 8.92e-6 4.87 | 6.94e-4 3.88
0.1000 | 272400 | 26001 | 9.79e-6 4.95 | 2.16e-6 4.93 | 2.23e-4 3.94

4 1 0.0800 | 425500 | 40501 || 3.23e-6 4.96 | 7.14e-7 4.96 | 9.22e-5  3.96
0.0667 | 612600 | 58201 || 1.31e-6 4.97 | 2.89e-7 4.97 | 4.47e-5 3.98
0.0571 | 833700 | 79101 | 6.11e-7 4.93 | 1.34e-7 4.96 | 2.42e-5 3.98
0.0500 | 1088800 | 103201 || 3.16e-7 4.93 | 6.93e-8 4.96 | 1.42e-5 3.98

Table 6.1: History of convergence for Example 1 (Part 1).

is explained by the fact that the a priori estimate for |[o — oy, depends on the regularity of div(e),
which can be shown to belong precisely to H~1/3(Q). A classical way of circumventing this drawback
is the incorporation of an adaptive scheme based on a posteriori error estimates. This issue will also

be addressed in a forthcoming paper.

On the other hand, in Tables 6.7—6.8 we present the convergence history of the augmented HDG
method (2.9) as applied to Example 4 for the polynomial degrees k € {1, 2}. The remarks in this case

are exactly the same given above for Examples 1 and 2.

Finally, some components of the approximate and exact solutions for Examples 2, 3, and 4 are
displayed in Figures 6.1—6.8. They all correspond to those obtained with the fourth mesh and for
the polynomial degree k indicated in each case. Here we use the notations t, = (t45)ij=1,n, On =

(Oh,ij)ij=1,ns and Up = (Up;)i=1n-
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L Neotal | Neom la—uplloe | [[He, (0) = Unlln | llp = prllog
error  order | error order error  order
0.2000 | 14080 2881 4.75e-1 —— | 7.89e-2 —— 1.93e-1 ——
0.1333 | 31620 6421 3.17e-1  0.99 | 2.76e-2  2.59 | 8.95e-2 1.90
0.1000 | 56160 11361 | 2.38e-1 1.00 | 1.36e-2  2.47 | 5.12¢-2 1.95
0.0800 | 87700 17701 | 1.91e-1  1.00 | 8.00e-3  2.37 | 3.30e-2 1.97
0.0667 | 126240 | 25441 || 1.59e-1 1.00 | 5.27e-3  2.28 | 2.30e-2 1.98
0.0571 | 171780 | 34581 || 1.36e-1 1.00 | 3.74e-3  2.22 | 1.69e-2 1.98
0.0500 | 224320 | 45121 || 1.19e-1 1.00 | 2.80e-3  2.18 | 1.30e-2 1.99
0.2000 | 27720 4121 6.02e-2 —— | 5.88e-3 —— 1.17e-2 ——
0.1333 | 62280 9181 2.67e-2  2.00 | 1.26e-3  3.79 | 3.65e-3  2.87
0.1000 | 110640 | 16241 || 1.50e-2 2.00 | 4.16e-4 3.86 | 1.57e-3 2.93
0.0800 | 172800 | 25301 || 9.61e-3 2.00 | 1.75e-4  3.89 | 8.14e-4 2.95
0.0667 | 248760 | 36361 || 6.67e-3 2.00 | 8.55e-5  3.91 | 4.74e-4 2.97
0.0571 | 338520 | 49421 || 4.90e-3 2.00 | 4.67e-5 3.93 | 3.00e-4 2.98
0.0500 | 442080 | 64481 || 3.75e-3 2.00 | 2.76e-5 3.94 | 2.0le-4 2.98
0.2000 | 45760 5361 5.51e-3 —— | 2.3le4 —— 7.37e-4 ——
0.1333 | 102840 | 11941 || 1.62e-3 3.01 | 3.23e-5  4.85 | 1.54e-4 3.86
0.1000 | 182720 | 21121 || 6.83e-4 3.01 | 7.86e-6 4.91 | 4.97e-5 3.93
0.0800 | 285400 | 32901 || 3.49e-4 3.00 | 2.61le-6 4.94 | 2.05e-5 3.96
0.0667 | 410880 | 47281 || 2.02e-4 3.00 | 1.06e-6 4.96 | 9.97e-6 3.97
0.0571 | 559160 | 64261 || 1.27e-4 3.00 | 4.91e-7 497 | 5.40e-6 3.98
0.0500 | 730240 | 83841 || 8.52e-5 3.00 | 2.53e-7 497 | 3.17e-6 3.98
0.2000 | 68200 6601 3.96e-4 —— | 8.83e-6 —— 4.03e-b ——
0.1333 | 153300 | 14701 || 7.75e-5 4.02 | 8.24e-7 5.85 | 5.6le-6 4.86
0.1000 | 272400 | 26001 || 2.44e-5 4.01 | 1.51e-7 591 | 1.36e-6 4.93
0.0800 | 425500 | 40501 || 1.00e-5 4.01 | 4.01e-8 5.93 | 4.50e-7 4.95
0.0667 | 612600 | 58201 || 4.82e-6 4.00 | 1.36e-8  5.93 | 1.82e-7 4.97
0.0571 | 833700 | 79101 || 2.60e-6 4.00 | 5.42e-9 596 | 8.47e-8 4.97
0.0500 | 1088800 | 103201 || 1.52e-6  4.00 | 2.45e¢-9  5.96 | 4.36e-8 4.97

Table 6.2: History of convergence for Example 1 (Part 2).
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t —trilo,0 o —opllon o — 0oz,

h Niotar | Neomp e|1|rr0r ‘l)rder (!rror (‘lrder (l’rror ‘(Lréier
0.2000 14080 2881 5.46e-1 —— | 5.69¢e-1 —— | 1.04e+1 ——
0.1333 31620 6421 2.45e-1  1.97 | 2.57e-1 1.96 7.00e-0 0.98
0.1000 56160 11361 1.39e-1  1.98 | 1.45e-1 1.98 5.27e-0 0.99
0.0800 87700 17701 || 8.90e-2 1.99 | 9.33e-2 1.99 | 4.22¢e-0 0.99
0.0667 | 126240 25441 6.19¢-2  1.99 | 6.49e-2 1.99 3.52¢e-0 0.99
0.0571 | 171780 34581 4.56e-2 199 | 4.77e-2 1.99 3.02e-0 1.00
0.0500 | 224320 45121 3.49e-2 1.99 | 3.66e-2 1.99 2.64e-0 1.00
0.2000 27720 4121 4.68e-2 —— 3.96e-2 —— 1.31e-0 ——
0.1333 62280 9181 1.41e-2 2.97 | 1.19e-2 2.96 5.89%e-1 1.97
0.1000 | 110640 16241 5.96e-3 2.98 | 5.04e-3 2.98 3.29e-1 2.02
0.0800 | 172800 25301 3.08e-3  2.97 | 2.61e-3 2.95 2.14e-1 1.93
0.0667 | 248760 | 36361 1.79e-3  2.98 | 1.52e-3 2.98 1.49e-1 1.99
0.0571 | 338520 49421 1.13e-3  2.98 | 9.57e-4 2.99 1.09e-1 1.99
0.0500 | 442080 64481 7.57e-4  2.99 | 6.42e-4 2.99 8.38e-2 2.00
0.2000 45760 5361 3.52¢-3 —— | 3.19e-3 —— 1.47e-1 ——
0.1333 | 102840 11941 7.18e-4 3.92 | 6.84e-4 3.80 4.87e-2 2.72
0.1000 | 182720 21121 2.36e-4 3.87 | 2.26e-4  3.85 2.28e-2 2.64
0.0800 | 285400 32901 9.64e-5 4.01 | 9.26e-5 4.00 1.10e-2 3.28
0.0667 | 410880 | 47281 || 4.69e-5 3.95 | 4.50e-5 3.96 | 6.41e-3  2.96
0.0571 | 559160 64261 2.55e-5  3.96 | 2.44e-5 3.97 | 4.06e-3 2.97
0.0500 | 730240 83841 1.50e-5 3.95 | 1.44e-5 3.97 | 2.74e-3 2.95
0.2000 68200 6601 4.03e-4 —— | 5.40e-4 —— 3.70e-2 ——
0.1333 | 153300 14701 6.70e-5 4.42 | 8.21e-5 4.65 7.71e-3 3.87
0.1000 | 272400 26001 1.62e-5 4.95 | 1.89e-5 5.11 2.03e-3 4.64
0.0800 | 425500 40501 5.87e-6 4.54 | 7.10e-6 4.38 9.96e-4  3.19
0.0667 | 612600 58201 2.41e-6 4.88 | 2.91e-6 4.89 5.46e-4  3.30
0.0571 | 833700 79101 1.13e-6 4.91 | 1.37e-6 4.92 2.98e-4  3.92
0.0500 | 1088800 | 103201 || 5.81e-7 5.00 | 7.03e-7 4.98 1.72e-4  4.13

Table 6.3: History of convergence for Example 2 (Part 1).

28




L Neotal | Neom la—uplloe | [[He, (0) = Unlln | llp = prllog
error  order | error order error  order
0.2000 | 14080 2881 4.75e-1 —— | 5.28e-2 —— 3.25e-1 ——
0.1333 | 31620 6421 3.17e-1  0.99 | 2.21e-2 215 | 1.47e-1 1.96
0.1000 | 56160 11361 | 2.38e-1 1.00 | 1.21e-2  2.08 | 8.34e-2 1.98
0.0800 | 87700 17701 | 1.91e-1 1.00 | 7.66e-3  2.07 | 5.35e-2 1.99
0.0667 | 126240 | 25441 || 1.59e-1 1.00 | 5.28e-3 2.04 | 3.72¢-2 1.99
0.0571 | 171780 | 34581 || 1.36e-1 1.00 | 3.86e-3 2.03 | 2.74e-2 1.99
0.0500 | 224320 | 45121 || 1.19e-1 1.00 | 2.95e-3 2.02 | 2.10e-2 1.99
0.2000 | 27720 4121 5.91e-2 —— | 2.43e-3 —— 1.86e-2 ——
0.1333 | 62280 9181 2.62e-2  2.00 | 5.24e-4  3.78 | 5.58e-3  2.97
0.1000 | 110640 | 16241 || 1.47e-2 2.00 | 1.71le-4 3.90 | 2.37e-3  2.98
0.0800 | 172800 | 25301 || 9.44e-3 2.00 | 7.35e-5  3.77 | 1.22¢-3  2.96
0.0667 | 248760 | 36361 || 6.55e-3 2.00 | 3.61le-5 3.90 | 7.10e-4 2.98
0.0571 | 338520 | 49421 || 4.81e-3 2.00 | 1.97e-5  3.92 | 4.48e-4 2.99
0.0500 | 442080 | 64481 || 3.69e-3 2.00 | 1.17e-5  3.93 | 3.0le-4 2.99
0.2000 | 45760 5361 5.24e-3 —— | 1.27e4 —— 1.32¢-3 ——
0.1333 | 102840 | 11941 || 1.54e-3 3.01 | 2.0le-5 4.55 | 2.88e-4 3.76
0.1000 | 182720 | 21121 || 6.50e-4 3.01 | 5.88e-6 4.27 | 9.41e-5 3.89
0.0800 | 285400 | 32901 || 3.32e-4 3.00 | 1.74e-6 5.46 | 3.87e-5 3.98
0.0667 | 410880 | 47281 || 1.92e-4 3.00 | 7.18e-7 4.85 | 1.87e-5 3.98
0.0571 | 559160 | 64261 || 1.21e-4 3.00 | 3.39e-7 4.87 | 1.0le-5 4.00
0.0500 | 730240 | 83841 || 8.10e-5 3.00 | 1.78e-7 4.84 | 5.92e-6 4.01
0.2000 | 68200 6601 3.65e-4 —— | 2.0le-5 —— 2.02e-4 ——
0.1333 | 153300 | 14701 || 7.15e-5 4.02 | 1.99¢-6 5.70 | 3.02e-5 4.68
0.1000 | 272400 | 26001 || 2.25e-5 4.01 | 3.03e-7 6.55 | 6.88¢-6 5.14
0.0800 | 425500 | 40501 || 9.22e-6 4.01 | 1.10e-7  4.54 | 2.62e-6 4.34
0.0667 | 612600 | 58201 || 4.44e-6 4.01 | 3.80e-8 5.84 | 1.07e-6 4.88
0.0571 | 833700 | 79101 || 2.40e-6 4.00 | 1.53e-8 5.89 | 5.05e-7 4.90
0.0500 | 1088800 | 103201 || 1.40e-6 4.00 | 6.72¢-9  6.17 | 2.61e-7 4.95

Table 6.4: History of convergence for Example 2 (Part 2).

29




t —thllo,0 o —opllon o — 0oz,

h Niotal Neomp e|1|rr0r L;der (!rror c‘lraer (l’rror ‘(Lréier
0.1667 15216 3121 8.56e-2 —— | 9.98e-2 —— 7.65e-0 ——
0.1111 34164 6949 6.60e-2 0.64 | 7.05e-2 0.86 8.62e-0 -0.30
0.0833 60672 12289 || 5.48¢-2 0.65 | 5.52¢-2 0.85 9.39¢-0 -0.30
0.0667 94740 19141 4.74e-2 0.65 | 4.57e-2 0.84 | 1.00e+1 -0.30
0.0556 | 136368 27505 || 4.21e-2 0.65 | 3.93e-2 0.83 | 1.06e+1 -0.30
0.0455 | 203632 41009 || 3.69e-2 0.65 | 3.34e-2 0.81 | 1.13e+1 -0.30
0.0400 | 262900 52901 3.39¢e-2  0.65 | 3.02¢e-2 0.80 | 1.17e+1 -0.30
0.1667 29952 4465 6.10e-2 —— | 5.33e-2 —— 6.84e-0 ——
0.1111 67284 9937 4.67e-2 0.66 | 3.92¢-2 0.76 7.72e-0  -0.30
0.0833 | 119520 17569 || 3.87e-2 0.66 | 3.16e-2 0.74 8.41e-0 -0.30
0.0667 | 186660 27361 3.34e-2  0.66 | 2.69e-2 0.73 8.99¢-0 -0.30
0.0556 | 268704 | 39313 || 2.96e-2 0.66 | 2.36e-2 0.72 | 9.50e-0 -0.30
0.0455 | 401280 58609 || 2.60e-2 0.66 | 2.04e-2 0.72 | 1.0le+1 -0.30
0.0400 | 518100 75601 || 2.39e-2 0.66 | 1.86e-2 0.72 | 1.05e+1 -0.30
0.1667 49440 5809 4.48e-2 —— | 3.65e-2 —— 5.99¢-0 ——
0.1111 | 111096 12925 3.43e-2  0.66 | 2.73e-2 0.72 6.76e-0 -0.30
0.0833 | 197376 22849 || 2.84e-2 0.66 | 2.22e-2 0.71 7.37e-0  -0.30
0.0667 | 308280 35581 2.45e-2  0.66 | 1.90e-2 0.71 7.89¢-0 -0.30
0.0556 | 443808 51121 || 2.17e-2 0.66 | 1.67e-2 0.71 8.33e-0  -0.30
0.0455 | 662816 76209 1.91e-2 0.66 | 1.45e-2 0.70 8.85e-0 -0.30
0.0400 | 855800 | 98301 1.75e-2  0.66 | 1.32¢-2 0.70 | 9.20e-0 -0.30
0.1667 | 73680 7153 3.40e-2 —— | 2.70e-2 —— 5.13e-0 ——
0.1111 | 165600 15913 || 2.60e-2 0.66 | 2.03e-2 0.71 5.79e-0  -0.30
0.0833 | 294240 28129 || 2.15e-2 0.66 | 1.66e-2 0.70 | 6.31e-0 -0.30
0.0667 | 459600 43801 1.86e-2 0.66 | 1.42e-2 0.70 6.75e-0  -0.30
0.0556 | 661680 62929 1.65e-2 0.66 | 1.25e-2 0.70 7.13e-0  -0.30
0.0455 | 988240 93809 1.45¢-2 0.66 | 1.08e-2 0.70 7.58e-0 -0.30
0.0400 | 1276000 | 121001 || 1.33e-2 0.66 | 9.89¢-3 0.70 7.88e-0  -0.30

Table 6.5: History of convergence for Example 3 (Part 1).
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L Neotal | Neom lu—wplloe | [He, () = nlln | llp—prllog
error  order | error order error  order
0.1667 | 15216 3121 6.75e-2 —— | 1.04e-2 —— 5.65e-2 ——
0.1111 | 34164 6949 4.51e-2 099 | 7.18-3 0.92 | 3.81e-2 0.97
0.0833 | 60672 12289 || 3.39e-2 1.00 | 5.44e-3  0.97 | 2.88¢-2 0.98
0.0667 | 94740 19141 || 2.71e-2 1.00 | 4.35e-3  1.00 | 2.32¢-2 0.97
0.0556 | 136368 | 27505 || 2.26e-2 1.00 | 3.61le-3 1.03 | 1.95e¢-2 0.96
0.0455 | 203632 | 41009 || 1.85e-2 1.00 | 2.92¢-3 1.05 | 1.61e-2 0.95
0.0400 | 262900 | 52901 || 1.63e-2 1.00 | 2.55e-3  1.07 | 1.43e-2 0.93
0.1667 | 29952 4465 2.51le-3 —— | 5.48e-3 —— 2.23e-2 ——
0.1111 | 67284 9937 1.36e-3 151 | 3.10e-3  1.41 | 1.57e-2 0.88
0.0833 | 119520 | 17569 || 8.84e-4 1.50 | 2.07e-3 1.40 | 1.23e-2 0.83
0.0667 | 186660 | 27361 || 6.35e-4 1.49 | 1.52¢-3 1.38 | 1.03e-2 0.80
0.0556 | 268704 | 39313 || 4.85e-4 1.47 | 1.19e-3  1.37 | 8.96e-3 0.78
0.0455 | 401280 | 58609 || 3.62e-4 1.46 | 9.03e-4 1.36 | 7.68e-3 0.77
0.0400 | 518100 | 75601 || 3.00e-4 1.45 | 7.60e-4 1.35 | 6.97e-3 0.76
0.1667 | 49440 5809 7.85e-4 —— | 2.36e-3 —— 1.30e-2 ——
0.1111 | 111096 | 12925 || 4.25e-4 1.52 | 1.29¢-3  1.50 | 9.57¢-3  0.76
0.0833 | 197376 | 22849 || 2.77e-4 1.48 | 8.45e-4 147 | 7.73e-3 0.74
0.0667 | 308280 | 35581 || 2.00e-4 1.46 | 6.12¢e-4 1.45 | 6.57e-3 0.73
0.0556 | 443808 | 51121 || 1.54e-4 1.44 | 4.7le-4 1.43 | 5.75e-3 0.73
0.0455 | 662816 | 76209 || 1.16e-4 1.42 | 3.55e-4 1.41 | 4.98e-3 0.72
0.0400 | 855800 | 98301 || 9.67e-5 1.41 | 2.97e-4 140 | 4.54e-3 0.72
0.1667 | 73680 7153 3.52e-4 —— | 1.29¢-3 —— 8.93e-3 ——
0.1111 | 165600 | 15913 || 1.89e-4 1.53 | 6.86e-4 1.56 | 6.66e-3 0.72
0.0833 | 294240 | 28129 || 1.23e-4 1.50 | 4.41e-4 1.53 | 5.42e-3 0.72
0.0667 | 459600 | 43801 || 8.86e-5 1.47 | 3.14e-4 1.52 | 4.62¢-3 0.71
0.0556 | 661680 | 62929 || 6.79¢-5 1.46 | 2.39e-4 1.50 | 4.06e-3 0.71
0.0455 | 988240 | 93809 || 5.09e-5 1.44 | 1.78e-4 148 | 3.52¢-3 0.71
0.0400 | 1276000 | 121001 || 4.24e-5 1.42 | 1.47e-4 147 | 3.22¢e-3 0.71

Table 6.6: History of convergence for Example 3 (Part 2).
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t —tullon o — ohllo0 o —Ohls
h Niotal Neomp e!ror Horder grror (|)’rder e|:|rror (!r(fer
0.3464 74100 15601 4.05e-1 —— | 4.00e-1 —— | 7.19e-0 ——
0.2474 | 202272 41749 2.09e-1 1.97 | 2.11e-1  1.90 | 5.18-0 0.98
0.1925 | 428652 87481 1.27e-1 198 | 1.30e-1 1.92 | 4.04e-0 0.98
0.1732 | 587400 119401 1.03e-1  2.01 | 1.06e-1 1.98 | 3.63e-0 1.01
0.1332 | 1287780 | 259585 || 6.11e-2 1.98 | 6.34e-2 1.95 | 2.81e-0 0.98
0.1083 | 2397696 | 480769 | 4.05e-2 1.99 | 4.20e-2 1.98 | 2.29¢-0 0.99
0.0962 | 3411720 | 682345 | 3.20e-2 2.00 | 3.32¢-2 1.99 | 2.03e-0 1.00
0.0912 | 4011432 | 801421 2.87e-2  1.99 | 2.99¢-2 1.98 | 1.92e-0 0.99
0.3464 | 181200 30451 4.14e-2 —— | 3.63e-2 —— 1.15e-0 ——
0.2474 | 495096 81439 1.58e-2 2.86 | 1.38e-2 2.87 | 6.15e-1 1.86
0.1925 | 1049760 | 170587 | 7.59e-3 2.93 | 6.64e-3 2.92 | 3.76e-1 1.96
0.1732 | 1438800 | 232801 5.74e-3 2.65 | 5.17e-3 2.38 | 3.26e-1 1.34
0.1332 | 3155568 | 505987 | 2.59e-3 3.03 | 2.29e-3 3.10 | 1.85e-1 2.16
0.1083 | 5876736 | 936961 1.40e-3 297 | 1.22¢e-3 3.01 | 1.21e-1 2.07
0.0962 | 8363088 | 1329697 || 1.00e-3 2.83 | 9.08¢-4 2.54 | 1.0le-1 1.51
0.0912 | 9833640 | 1561687 || 8.47e-4 3.09 | 7.57e-4 3.36 | 8.86e-2 2.40
Table 6.7: History of convergence for Example 4 (Part 1).
u — uyllon Mg, (w) — Ualln p —paulloo
h Niotal Neomp eHrror |(’)rder Herréi ) 0rde|z|r e‘1|rror |(|)rder
0.3464 74100 15601 2.63e-1 —— | 1.49e-1 —— 1.67e-1 ——
0.2474 | 202272 41749 1.89e-1  0.98 | 7.65e-2 1.99 9.02e-2 1.84
0.1925 | 428652 87481 1.47e-1  0.99 | 4.63e-2 1.99 5.63e-2 1.88
0.1732 | 587400 119401 1.33e-1  0.99 | 3.75e-2 2.01 4.58e-2 1.95
0.1332 | 1287780 | 259585 1.02e-1 1.00 | 2.22e-2 1.99 2.75e-2 1.94
0.1083 | 2397696 | 480769 | 8.31e-2 1.00 | 1.47e-2  2.00 1.83e-2  1.97
0.0962 | 3411720 | 682345 7.39e-2 1.00 | 1.16e-2 2.00 1.45e-2 1.98
0.0912 | 4011432 | 801421 7.00e-2  1.00 | 1.04e-2 2.00 1.30e-2  1.98
0.3464 | 181200 30451 3.96e-2 —— | 5.23e-3 —— 1.17e-2 ——
0.2474 | 495096 81439 2.04e-2  1.97 | 1.52e-3 3.67 | 4.11e-3 3.12
0.1925 | 1049760 | 170587 || 1.24e-2 1.99 | 5.81e-4  3.83 1.91e-3  3.04
0.1732 | 1438800 | 232801 1.00e-2  1.99 | 4.19e-4 3.10 1.45e-3 2.64
0.1332 | 3155568 | 505987 || 5.94e-3 1.99 | 1.43e-4 4.11 6.29e-4 3.18
0.1083 | 5876736 | 936961 3.92e-3  2.00 | 6.22e-5 4.00 3.31le-4  3.09
0.0962 | 8363088 | 1329697 || 3.10e-3 2.00 | 4.16e-5 3.40 2.42e-4  2.64
0.0912 | 9833640 | 1561687 || 2.78¢-3 2.00 | 3.28e-5 4.40 2.03e-4 3.31

Table 6.8: History of convergence for Example 4 (Part 2).
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Figure 6.1: Example 2, uj; for k = 2 (top-left), for k¥ = 3 (top-right), and its exact value (bottom).
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