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Abstract

The aim of this paper is to develop a virtual element method for the two-dimensional Steklov
eigenvalue problem. We propose a discretization by means of the virtual elements presented in [L.
Beirão da Veiga et al., Math. Models Methods Appl. Sci., 23 (2013), pp. 199–214]. Under standard
assumptions on the computational domain, we establish that the resulting scheme provides a correct
approximation of the spectrum and prove optimal order error estimates for the eigenfunctions and
a double order for the eigenvalues. We also prove higher order error estimates for the computation
of the eigensolutions on the boundary, which in some Steklov problems (computing sloshing modes,
for instance) provides the quantity of main interest (the free surface of the liquid). Finally, we
report some numerical tests supporting the theoretical results.
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1. Introduction

Very recently, a new evolution of the Mimetic Finite Difference Method was proposed in [7]
under the name of Virtual Element Method (VEM). This approach takes the steps from the main
ideas of modern mimetic schemes but follows from a Galerkin discretization of the problem and
therefore can be fully interpreted as a generalization of the finite element method. Thus, VEM
couples the flexibility of mimetic methods with the theoretical and applicative background of
finite elements. Since VEM is very recent, the current published literature is still very limited
[7, 8, 9, 10, 14].

The present paper deals with the solution of an eigenvalue problems by means of VEM. In
particular, we have chosen the Steklov eigenvalue problem, which involves the Laplace operator
but is characterized by the presence of the eigenvalue in the boundary condition. The reason of
this choice is that the analysis turns out simpler, since the right-hand side involves only boundary
terms whose approximation by virtual elements can be seen as a classical interpolation.

The numerical approximation of eigenvalue problems is object of great interest from both, the
practical and theoretical points of view. We refer to [11] and the references therein for the state
of the art in this subject area. In particular, the Steklov eigenvalue problem appears in many
applications. For instance, we mention the study of the vibration modes of a structure in contact
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with an incompressible fluid (see [5]) and the analysis of the stability of mechanical oscillators
immersed in a viscous media (see [26]). One of its main applications arises from the dynamics of
liquids in moving containers, i.e., sloshing problems (see [6, 15, 16, 17, 20, 30]).

Among the existing techniques to solve this problem, various finite element methods have
been introduced and analyzed. For instance, conforming finite element discretization have been
considered in [1, 12], while [27, 25] deal with nonconforming finite elements. Other numerical
treatment for the Steklov eigenvalue problem, including a posteriori error analysis can be found
in [2, 3, 19, 21, 28] and the references cited therein. Traditionally, finite element methods rely
on triangular (simplicial) or quadrilateral meshes. However, in complex simulations, it can be
convenient to use more general polygonal meshes.

The aim of this paper is to introduce and analyze a virtual element method which applies
to general polygonal (even non-convex) meshes for the solution of the two-dimensional Steklov
eigenvalue problem. We begin with a variational formulation of the spectral problem. We propose
a discretization based on the approach introduced in [7] for the Laplace equation. By using the
abstract spectral approximation theory (see [4]), under rather mild assumptions on the polygonal
meshes, we establish that the resulting scheme provides a correct approximation of the spectrum
and prove optimal order error estimates for the eigenfunctions and a double order for the eigen-
values.

The outline of this article is as follows: We introduce in Section 2 the variational formulation
of the Steklov eigenvalue problem, define a solution operator and establish its spectral charac-
terization. In Section 3, we introduce the virtual element discrete formulation and describe the
spectrum of a discrete solution operator. In Section 4, we prove that the numerical scheme provides
a correct spectral approximation and establish optimal order error estimates for the eigenvalues
and eigenfunctions. We also prove an improved error estimate for the eigenfunctions on the free
boundary, which allows computing a quantity of typical interest in sloshing problems. Finally, in
Section 5, we report a couple of numerical tests that allow us to assess the convergence properties
of the method, to confirm that it is not polluted with spurious modes and to check whether the
experimental rates of convergence agree with the theoretical ones.

Throughout the article we will use standard notations for Sobolev spaces, norms and seminorms.
Moreover, we will denote by C a generic constant independent of the mesh parameter h, which
may take different values in different occurrences.

2. The spectral problem

Let Ω ⊂ R
2 be a bounded domain with polygonal boundary ∂Ω. Let Γ0 and Γ1 be disjoint

open subsets of ∂Ω such that ∂Ω = Γ̄0∪ Γ̄1 and |Γ0| 6= 0. We denote by n the outward unit normal
vector to ∂Ω and by ∂n the normal derivative.

We consider the following eigenvalue problem:

Find (λ,w) ∈ R×H1(Ω), w 6= 0, such that





∆w = 0 in Ω,

∂nw =

{
λw on Γ0,

0 on Γ1.

By testing the first equation above with v ∈ H1(Ω) and integrating by parts, we arrive at the
following equivalent weak formulation:
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Problem 1. Find (λ,w) ∈ R×H1(Ω), w 6= 0, such that
∫

Ω

∇w · ∇v = λ

∫

Γ0

wv ∀v ∈ H1(Ω).

Since the bilinear form on the left-hand side is not H1(Ω)-elliptic, it is convenient to use a shift
argument to rewrite this eigenvalue problem in the following form:

Problem 2. Find (λ,w) ∈ R×H1(Ω), w 6= 0, such that

â(w, v) = (λ+ 1) b(w, v) ∀v ∈ H1(Ω),

where

â(w, v) := a(w, v) + b(w, v), w, v ∈ H1(Ω),

a(w, v) :=

∫

Ω

∇w · ∇v, w, v ∈ H1(Ω),

b(w, v) :=

∫

Γ0

wv, w, v ∈ H1(Ω)

are bounded bilinear symmetric forms.

Next, we define the solution operator associated with Problem 2:

T : H1(Ω) −→ H1(Ω),

f 7−→ Tf := u,

where u ∈ H1(Ω) is the solution of the corresponding source problem:

â(u, v) = b(f, v) ∀v ∈ H1(Ω). (2.1)

The following lemma allows us to establish the well-posedness of this source problem.

Lemma 2.1. There exists a constant α > 0, depending on Ω, such that

â(v, v) ≥ α ‖v‖21,Ω ∀v ∈ H1(Ω).

Proof. The result follows immediately from the generalized Poincaré inequality.

We deduce from Lemma 2.1 that the linear operator T is well defined and bounded. Notice
that (λ,w) ∈ R × H1(Ω) solves Problem 2 (and hence Problem 1) if and only if Tw = µw with
µ 6= 0 and w 6= 0, in which case µ := 1

1+λ . Moreover, it is easy to check that T is self-adjoint with

respect to the inner product â(·, ·) in H1(Ω). Indeed, given f, g ∈ H1(Ω),

â(Tf, g) = b(f, g) = b(g, f) = â(Tg, f) = â(f, Tg).

The following is an additional regularity result for the solution of problem (2.1) and conse-
quently, for the eigenfunctions of T .

Lemma 2.2. There exists rΩ > 1
2 such that the following results hold:

i) for all f ∈ H1(Ω) and for all r ∈ [ 12 , rΩ), the solution u of problem (2.1) satisfies u ∈
H1+r1(Ω) with r1 := min {r, 1} and there exists C > 0 such that

‖u‖1+r1,Ω
≤ C ‖f‖1,Ω ;
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ii) if w is an eigenfunction of Problem 1 with eigenvalue λ, for all r ∈ [ 12 , rΩ), w ∈ H1+r(Ω)
and there exists C > 0 (depending on λ) such that

‖w‖1+r,Ω ≤ C ‖w‖1,Ω .

Proof. The proof of (i) follows from the classical regularity result for the Laplace equation with
Neumann boundary conditions (cf. [23]). The proof of (ii) follows from the same arguments and
the fact that w is the solution of problem (2.1) with f = λw, combined with a bootstrap trick.

The constant rΩ > 1
2 is the Sobolev exponent for the Laplace problem with Neumann boundary

conditions. If Ω is convex, then rΩ > 1, whereas, otherwise, rΩ := π
ω with ω being the largest

reentrant angle of Ω (see [23])). Hence, because of the compact inclusion H1+r(Ω) →֒ H1(Ω), T is
a compact operator. Therefore, we have the following spectral characterization result.

Theorem 2.1. The spectrum of T decomposes as follows: sp(T ) = {0, 1} ∪ {µk}k∈N
, where:

i) µ = 1 is an eigenvalue of T and its associated eigenspace is the space of constant functions
in Ω;

ii) µ = 0 is an infinite-multiplicity eigenvalue of T with associated eigenspace is H1
Γ0
(Ω) :={

q ∈ H1(Ω) : q = 0 on Γ0

}
;

iii) {µk}k∈N
⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T which converge to 0 and

their corresponding eigenspaces lie in H1+r(Ω).

Proof. Properties (i) and (ii) are easy to check. Properties (iii) follows from the classical spectral
characterization of compact operators and Lemma 2.2(ii).

3. The discrete problem

In this section, first we recall the mesh construction and the assumptions considered in [7] for
the virtual element method. Then, we will introduce a virtual element discretization of Problems 1
and 2 and provide a spectral characterization of the resulting discrete eigenvalue problems.

Let {Th}h be a sequence of decompositions of Ω into polygons K. Let hK denote the diameter
of the element K and h the maximum of the diameters of all the elements of the mesh, i.e.,
h := maxK∈Ω hK .

For the analysis, we will make as in [7] the following assumptions.

• A0.1. Every mesh Th consists of a finite number of simple polygons (i.e. open simply
connected sets with non self intersecting polygonal boundaries).

• A0.2. There exists γ > 0 such that, for all meshes Th, each polygon K ∈ Th is star-shaped
with respect to a ball of radius greater than or equal to γhK .

• A0.3. There exists γ̂ > 0 such that, for all meshes Th, for each polygon K ∈ Th, the distance
between any two of its vertices is greater than or equal to γ̂hK .

We consider now a simple polygon K and, for k ∈ N, we define

Bk(∂K) :=
{
v ∈ C0(∂K) : v|e ∈ Pk(e) for all edges e ⊂ ∂K

}
.

We then consider the finite-dimensional space defined as follows:

V K
k :=

{
v ∈ H1(K) : v|∂K ∈ Bk(∂K) and ∆v|K ∈ Pk−2(K)

}
,
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where, for k = 1, we have used the convention that P−1(K) := {0}. We choose in this space the
degrees of freedom introduced in [7, Section 4.1]. Finally, for every decomposition Th of Ω into
simple polygons K and for a fixed k ∈ N, we define

Vh :=
{
v ∈ H1(Ω) : v|K ∈ V K

k

}
.

In what follows, we will also use the broken H1-seminorm

|v|21,h :=
∑

K∈Th

‖∇v‖20,K ,

which is well defined for every v ∈ L2(Ω) such that v|K ∈ H1(K) for all polygon K ∈ Th.

In order to construct the discrete scheme, we need some preliminary definitions. First, we split
the bilinear form â(·, ·) as follows:

â(u, v) =
∑

K∈Th

aK(u, v) + b(u, v), u, v ∈ H1(Ω),

where

aK(u, v) :=

∫

K

∇u · ∇v, u, v ∈ H1(Ω).

To compute the local matrix aK for u, v ∈ Vh, we must have into account that due to the implicit
space definition, we would not know how to compute the bilinear form exactly. Nevertheless, the
final output will be a local matrix on each element K whose associated bilinear form is exact
whenever one of the two entries is a polynomial of degree k. This will allow us to retain the
optimal approximation properties of the space Vh.

With this end, for any K ∈ Th and for any sufficiently regular function ϕ, we define first

ϕ̄ :=
1

NK

NK∑

i=1

ϕ(Pi),

where Pi, 1 ≤ i ≤ NK , are the vertices of K. Now, we define the projector ΠK
k : V K

k −→ Pk(K) ⊆
V K
k for each v ∈ V K

k as the solution of

aK
(
ΠK

k v, q
)
= aK(v, q) ∀q ∈ Pk(K), (3.1a)

ΠK
k v = v. (3.1b)

On the other hand, let SK(·, ·) be any symmetric positive definite bilinear form to be chosen as to
satisfy

c0 a
K(v, v) ≤ SK(v, v) ≤ c1 a

K(v, v) ∀v ∈ V K
k with ΠK

k v = 0, (3.2)

for some positive constants c0 and c1 independent of K. Then, set

ah(uh, vh) :=
∑

K∈Th

aKh (uh, vh), uh, vh ∈ Vh,

where aKh (·, ·) is the bilinear form defined on V K
k × V K

k by

aKh (u, v) := aK
(
ΠK

k u,ΠK
k v

)
+ SK

(
u−ΠK

k u, v −ΠK
k v

)
, u, v ∈ V K

k . (3.3)

The following properties of the bilinear form aKh (·, ·) have been established in [7, Theorem 4.1].
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• k-Consistency :
aKh (p, vh) = aK(p, vh) ∀p ∈ Pk(K), ∀vh ∈ V K

k .

• Stability : There exist two positive constants α∗ and α∗, independent of K, such that:

α∗a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗aK(vh, vh) ∀vh ∈ V K

k . (3.4)

Now, we are in a position to write the virtual element discretization of Problem 1.

Problem 3. Find (λh, wh) ∈ R× Vh, wh 6= 0, such that

ah(wh, vh) = λhb(wh, vh) ∀vh ∈ Vh.

We use again a shift argument to rewrite this discrete eigenvalue problem in the following
convenient equivalent form.

Problem 4. Find (λh, wh) ∈ R× Vh, wh 6= 0, such that

âh(wh, vh) = (λh + 1) b(wh, vh) ∀vh ∈ Vh,

where
âh(wh, vh) := ah(wh, vh) + b(wh, vh), wh, vh ∈ Vh.

We observe that by virtue of (3.4) and the trace theorem, the bilinear form âh(·, ·) is bounded.
Moreover, as shown in the following lemma, it is also uniformly elliptic.

Lemma 3.1. There exists a constant β > 0, independent of h, such that

âh(vh, vh) ≥ β ‖vh‖
2
1,Ω ∀vh ∈ Vh.

Proof. Thanks to (3.4) and Lemma 2.1, it is easy to check that the above inequality holds with
β := αmin {α∗, 1}.

The discrete version of the operator T is then given by

Th : H1(Ω) −→ H1(Ω),

f 7−→ Thf := uh,

where uh ∈ Vh is the solution of the corresponding discrete source problem

âh(uh, vh) = b(f, vh) ∀vh ∈ Vh.

Because of Lemma 3.1, the linear operator Th is well defined and bounded uniformly with
respect to h. Once more, as in the continuous case, (λh, wh) ∈ R × Vh solves Problem 4 (and
hence Problem 3) if and only if Thwh = µhwh with µh 6= 0 and wh 6= 0, in which case µh := 1

1+λh
.

Moreover, Th|Vh
: Vh −→ Vh is self-adjoint with respect to âh(·, ·). Indeed, given f, g ∈ Vh,

âh(Thf, g) = b(f, g) = b(g, f) = âh(Thg, f) = âh(f, Thg).

As a consequence, we have the following spectral characterization.

Theorem 3.1. The spectrum of Th|Vh
consists of Mh := dim(Vh) eigenvalues, repeated according

to their respective multiplicities. It decomposes as follows: sp(Th|Vh
) = {0, 1} ∪ {µhk}

Nh

k=1, where:

i) the eigenspace associated with µh = 1 is the space of constant functions in Ω;
ii) the eigenspace associated with µh = 0 is Zh := Vh ∩H1

Γ0
(Ω) = {qh ∈ Vh : qh = 0 on Γ0};

iii) µhk ⊂ (0, 1), k = 1, . . . , Nh := Mh − dim(Zh) − 1, are non-defective eigenvalues repeated
according to their respective multiplicities.
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4. Spectral approximation

To prove that Th provides a correct spectral approximation of T , we will resort to the classical
theory for compact operators (see [4]), which is based on the convergence in norm of Th to T as
h → 0. With the aim of proving this, the first step is to establish the following result.

Lemma 4.1. There exists C > 0 such that, for all f ∈ H1(Ω), if u = Tf and uh = Thf , then

‖(T − Th) f‖1,Ω = ‖u− uh‖1,Ω ≤ C
(
‖u− uI‖1,Ω + |u− uπ|1,h

)
,

for all uI ∈ Vh and for all uπ ∈ L2(Ω) such that uπ|K ∈ Pk(K) ∀K ∈ Th.

Proof. Let f ∈ H1(Ω). For uI ∈ Vh, we set vh := uh−uI and thanks to Lemma 3.1, the definitions
(3.3) of aKh and those of T and Th, we have

β ‖vh‖
2
1,Ω ≤ âh(vh, vh) = âh(uh, vh)− âh(uI , vh)

= b(f, vh)−
∑

K∈Th

aKh (uI , vh)− b(uI , vh)

= b(f, vh)− b(uI , vh)−
∑

K∈Th

(
aKh (uI − uπ, vh) + aK(uπ − u, vh) + aK(u, vh)

)

= b(u− uI , vh)−
∑

K∈Th

(
aKh (uI − uπ, vh) + aK(uπ − u, vh)

)
.

Therefore, from the trace theorem, (3.4) and the boundedness of aKh (·, ·) and aK(·, ·),

β ‖vh‖
2
1,Ω ≤ ‖u− uI‖0,Γ0

‖vh‖0,Γ0
+

∑

K∈Th

(
α∗ |uI − uπ|1,K |vh|1,K + |uπ − u|1,K |vh|1,K

)

≤ ‖u− uI‖1,Ω ‖vh‖1,Ω +
∑

K∈Th

(
α∗ |uI − u|1,K |vh|1,K + (α∗ + 1) |u− uπ|1,K |vh|1,K

)

≤ C
(
‖u− uI‖1,Ω + |u− uπ|1,h

)
‖vh‖1,Ω .

Hence, the proof follows from the triangular inequality.

The next step is to find appropriate terms uI and uπ that can be used in the above lemma to
prove the claimed convergence. For the latter we have the following proposition, which is derived
by interpolation between Sobolev spaces (see for instance [22, Theorem I.1.4]) from the analogous
result for integer values of s. In its turn, the result for integer values is stated in [7, Proposition 4.2]
and follows from the classical Scott-Dupont theory (see [13]).

Proposition 4.1. If the assumption A0.2 is satisfied, then there exists a constant C, depending
only on k and γ, such that for every s with 0 ≤ s ≤ k and for every v ∈ H1+s(K), there exists
vπ ∈ Pk(K) such that

‖v − vπ‖0,K + hK |v − vπ|1,K ≤ Ch1+s
K ‖v‖1+s,K .

For the term uI ∈ Vh in Lemma 4.1, we have the following result which is an extension of [7,
Proposition 4.3] to less regular functions.
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Proposition 4.2. If the assumptions A0.2 and A0.3 are satisfied, then, for each s with 0 ≤ s ≤ k,
there exists a constant C, depending only on k, γ and γ̂, such that for every v ∈ H1+s(Ω), there
exists vI ∈ Vh that satisfies

‖v − vI‖0,Ω + h |v − vI |1,Ω ≤ Ch1+s ‖v‖1+s,Ω .

Proof. Let v ∈ H1+s(Ω), 0 ≤ s ≤ k. Since we are assuming A0.2, let vπ ∈ L2(Ω) be defined on
each K ∈ Th so that vπ|K ∈ Pk(K) and the estimate of Proposition 4.1 holds true.

For each polygon K ∈ Th, consider the triangulation T K
h obtained by joining each vertex of K

with the midpoint of the ball with respect to which K is starred. Let T̂h :=
⋃

K∈Th
T K
h . Since we

are also assuming A0.3,
{
T̂h

}
h
is a shape-regular family of triangulations of Ω.

Let vc be the Clément interpolant of degree k of v over T̂h (cf. [18]). Then, vc ∈ H1(Ω) and
the following error estimate follows by interpolation between Sobolev spaces from the analogous
result for integer values of s (which in turn has been proved in [18]):

‖v − vc‖0,Ω + h |v − vc|1,Ω ≤ Ch1+s ‖v‖1+s,Ω . (4.1)

Now, for each K ∈ Th, we define vI |K ∈ H1(K) as the solution of the following problem:
{

−∆vI = −∆vπ in K,

vI = vc on ∂K.

Note that vI |K ∈ V K
k . Moreover, although vI is defined locally, since on the boundary of each

element it coincides with vc which belongs to H1(Ω), we have that also vI belongs to H1(Ω) and,
hence, vI ∈ Vh.

According to the above definition we have that
{

−∆(vπ − vI) = 0 in K,

vπ − vI = vπ − vc on ∂K,

and, hence, it is easy to check that

|vπ − vI |1,K = inf
{
|z|1,K , z ∈ H1(K) : z = vπ − vc on ∂K

}
≤ |vπ − vc|1,K .

Therefore,

|v − vI |1,K ≤ |v − vπ|1,K + |vπ − vI |1,K ≤ |v − vπ|1,K + |vπ − vc|1,K ≤ 2 |v − vπ|1,K + |v − vc|1,K ,

which together with Proposition 4.1 and (4.1) lead to

|v − vI |1,Ω ≤ Chs ‖v‖1+s,Ω . (4.2)

On the other hand, for all K ∈ Th, each triangle T ∈ T K
h has one edge on ∂K. Hence, since

vI = vc on ∂K, a scaling argument and the classical Poincaré inequality yield

‖vc − vI‖0,T ≤ ChK |vc − vI |1,T .

Thus, from the above inequality, (4.1) and (4.2), we have

‖v − vI‖0,Ω ≤ ‖v − vc‖0,Ω + ‖vc − vI‖0,Ω ≤ ‖v − vc‖0,Ω + Ch |vc − vI |1,Ω

≤ ‖v − vc‖0,Ω + Ch |v − vc|1,Ω + Ch |v − vI |1,Ω

≤ Ch1+s ‖v‖1+s,Ω ,

which together with (4.2) allow us to conclude the proof.
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The following result yields the convergence in norm of Th to T as h → 0.

Lemma 4.2. For all r ∈ [ 12 , rΩ), let r1 := min {r, 1} as defined in Lemma 2.2(i). Then, there
exists C > 0 such that

‖(T − Th) f‖1,Ω ≤ Chr1 ‖f‖1,Ω ∀f ∈ H1(Ω).

Proof. The result follows from Lemma 4.1, Propositions 4.1 and 4.2, and Lemma 2.2(i).

4.1. Error estimates

As a direct consequence of Lemma 4.2, standard results about spectral approximation (see
[24], for instance) show that isolated parts of sp(T ) are approximated by isolated parts of sp(Th).
More precisely, let µ ∈ (0, 1) be an isolated eigenvalue of T with multiplicity m and let E be its

associated eigenspace. Then, there exist m eigenvalues µ
(1)
h , . . . , µ

(m)
h of Th (repeated according to

their respective multiplicities) which converge to µ. Let Eh be the direct sum of their corresponding
associated eigenspaces.

We recall the definition of the gap δ̂ between two closed subspaces X and Y of H1(Ω):

δ̂(X ,Y) := max {δ(X ,Y), δ(Y,X )} , where δ(X ,Y) := sup
x∈X : ‖x‖1,Ω=1

(
inf
y∈Y

‖x− y‖1,Ω

)
.

The following error estimates for the approximation of eigenvalues and eigenfunctions hold true.

Theorem 4.1. There exists a strictly positive constant C such that

δ̂(E , Eh) ≤ Cγh,∣∣∣µ− µ
(i)
h

∣∣∣ ≤ Cγh, i = 1, . . . ,m,

where
γh := sup

f∈E: ‖f‖1,Ω=1

‖(T − Th)f‖1,Ω .

Proof. As a consequence of Lemma 4.2, Th converges in norm to T as h goes to zero. Then, the
proof follows as a direct consequence of Theorems 7.1 and 7.3 from [4].

The theorem above yields error estimates depending on γh. The next step is to show an optimal
order estimate for this term.

Theorem 4.2. For all r ∈ [ 12 , rΩ) there exists a positive constant C such that

‖(T − Th)f‖1,Ω ≤ Chmin{r,k} ‖f‖1,Ω ∀f ∈ E (4.3)

and, consequently,
γh ≤ Chmin{r,k}. (4.4)

Proof. The proof is identical to that of Lemma 4.2, but using now the additional regularity from
Lemma 2.2(ii).

The error estimate for the eigenvalue µ ∈ (0, 1) of T leads to an analogous estimate for the
approximation of the eigenvalue λ = 1

µ − 1 of Problem 1 by means of the discrete eigenvalues

λ
(i)
h := 1

µ
(i)
h

− 1, 1 ≤ i ≤ m, of Problem 3. However, the order of convergence in Theorem 4.1 is

not optimal for µ and, hence, not optimal for λ either. Our next goal is to improve this order.
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Theorem 4.3. For all r ∈ [ 12 , rΩ), there exists a strictly positive constant C such that

∣∣∣λ− λ
(i)
h

∣∣∣ ≤ Ch2min{r,k}.

Proof. Let wh be such that (λ
(i)
h , wh) is a solution of Problem 3 with ‖wh‖1,Ω = 1. According to

Theorem 4.1, there exists a solution (λ,w) of Problem 1 such that

‖w − wh‖1,Ω ≤ Cγh. (4.5)

From the symmetry of the bilinear forms and the facts that a(w, v) = λb(w, v) for all v ∈ H1(Ω)

(cf. Problem 1) and ah(wh, vh) = λ
(i)
h b(wh, vh) for all vh ∈ Vh (cf. Problem 3), we have

a(w − wh, w − wh)− λb(w − wh, w − wh) = a(wh, wh)− λb(wh, wh)

= [a(wh, wh)− ah(wh, wh)]−
(
λ− λ

(i)
h

)
b(wh, wh),

from which we obtain the following identity:
(
λ
(i)
h − λ

)
b(wh, wh) = a(w−wh, w−wh)−λb(w−wh, w−wh)+ [ah(wh, wh)− a(wh, wh)] . (4.6)

The next step is to bound each term on the right hand side above. The first and the second
ones are easily bounded from the continuity of a(·, ·) and b(·, ·), the trace theorem, (4.5) and (4.4):

|a(w − wh, w − wh)|+ λ |b(w − wh, w − wh)| ≤ Ch2min{r,k}. (4.7)

For the third term, we use (3.2) and (3.1a) to write:

|ah(wh, wh)− a(wh, wh)|

=

∣∣∣∣∣
∑

K∈Th

[
aK(ΠK

k wh,Π
K
k wh) + SK

(
wh −ΠK

k wh, wh −ΠK
k wh

)]
−

∑

K∈Th

aK(wh, wh)

∣∣∣∣∣

≤

∣∣∣∣∣
∑

K∈Th

[
aK

(
ΠK

k wh,Π
K
k wh

)
− aK(wh, wh)

]
∣∣∣∣∣+

∑

K∈Th

c1 a
K
(
wh −ΠK

k wh, wh −ΠK
k wh

)

=
∑

K∈Th

[
aK

(
wh −ΠK

k wh, wh −ΠK
k wh

)]
+

∑

K∈Th

c1 a
K(wh −ΠK

k wh, wh −ΠK
k wh)

=
∑

K∈Th

(1 + c1) a
K
(
wh −ΠK

k wh, wh −ΠK
k wh

)
.

Therefore, from the boundedness of aK(·, ·) and the stability of ΠK
k (see (3.1a)), we obtain

|ah(wh, wh)− a(wh, wh)| ≤ C
∑

K∈Th

∣∣wh −ΠK
k wh

∣∣2
1,K

≤ C
∑

K∈Th

(
|wh − w|1,K +

∣∣w −ΠK
k w

∣∣
1,K

+
∣∣ΠK

k (w − wh)
∣∣
1,K

)2

≤ C
∑

K∈Th

(
|wh − w|1,K +

∣∣w −ΠK
k w

∣∣
1,K

)2

.

Now, also from (3.1a) it is immediate to check that
∣∣w −ΠK

k w
∣∣
1,K

≤ |w − wπ|1,K ∀wπ ∈ Pk(K).
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Then, from the last two inequalities, Proposition 4.1, (4.5) and (4.4), we obtain

|ah(wh, wh)− a(wh, wh)| ≤ Ch2min{r,k}.

On the other hand, by virtue of Lemma 3.1 and the fact that λ
(i)
h → λ as h goes to zero, we know

that there exists C > 0 such that

b(wh, wh) =
âh(wh, wh)

λ
(i)
h + 1

≥
β ‖wh‖

2
1,Ω

λ
(i)
h + 1

≥
β

C
> 0.

By using this estimate to bound the left-hand side of (4.6) from below, together with the previous
one and (4.7) for an upper bound of the right-hand side, we conclude that

∣∣∣λ− λ
(i)
h

∣∣∣ ≤ Ch2min{r,k}

and we end the proof.

4.2. Error estimates for the eigenfunctions on Γ0.

Our next goal is to improve the error estimate for the trace of the eigenfunctions in the L2(Γ0)-
norm. With this end, we will resort to a duality technique. Given u ∈ H1(Ω) and uh ∈ Vh, let
v ∈ H1(Ω) be the solution of the following problem:





∆v = 0 in Ω,

∂nv + v =

{
u− uh on Γ0,

0 on Γ1.

By testing the first equation above with functions in H1(Ω) and integrating by parts, we obtain

â(v, z) :=

∫

Ω

∇v · ∇z +

∫

Γ0

vz =

∫

Γ0

(u− uh)z =: b(u− uh, z) ∀z ∈ H1(Ω). (4.8)

Therefore, v = T (u − uh), so that according to Lemma 2.2(i), for all r ∈ [ 12 , rΩ), v ∈ H1+r1(Ω)
(recall that r1 := min {r, 1}) and

‖v‖1+r1,Ω
≤ C ‖u− uh‖1,Ω . (4.9)

The improved error estimate will be a consequence of the following result.

Lemma 4.3. Let f ∈ E be an eigenfunction of the operator T . If u = Tf and uh = Thf , then,
for all r ∈ [ 12 , rΩ), there exists C > 0 such that

‖(T − Th)f‖0,Γ0
= ‖u− uh‖0,Γ0

≤ Chr1/2+min{r,k} ‖f‖1,Ω .

Proof. Let v be as defined above and vI ∈ Vh so that the estimate of Proposition 4.2 holds true.
Testing (4.8) with z = (u− uh) ∈ H1(Ω), we obtain

‖u− uh‖
2
0,Γ0

= â(u− uh, v) = â(u− uh, v − vI) + â(u− uh, vI). (4.10)

To bound the first term on the right-hand side above, we use the continuity of the bilinear form
â(·, ·), Proposition 4.2 and (4.9):

â(u− uh, v − vI) ≤ C ‖u− uh‖1,Ω ‖v − vI‖1,Ω

≤ Chr1 ‖u− uh‖1,Ω ‖v‖1+r1,Ω
≤ Chr1 ‖u− uh‖

2
1,Ω . (4.11)

11



For the second term, we use that â(u, vh) = b(f, vh) = âh(uh, vh) for all vh ∈ Vh to write

â(u− uh, vI) = âh(uh, vI)− â(uh, vI) =
∑

K∈Th

(
aKh (uh, vI)− aK(uh, vI)

)

=
∑

K∈Th

(
aK(ΠK

k uh,Π
K
k vI) + SK(uh −ΠK

k uh, vI −ΠK
k vI)− aK(uh, vI)

)

=
∑

K∈Th

(
aK(ΠK

k uh − uh, vI −ΠK
k vI) + SK(uh −ΠK

k uh, vI −ΠK
k vI)

)
, (4.12)

where we have used (3.1a) to derive the last equality.

Now, from the symmetry of SK(·, ·), inequality (3.2) and the definition of aK(·, ·), we have
that SK(vh, zh) ≤ c1 |vh|1,K |zh|1,K for all vh, zh ∈ V K

k such that ΠK
k vh = ΠK

k zh = 0. We use this
inequality to bound the second term on the right-hand side of (4.12):

∑

K∈Th

SK(uh −ΠK
k uh, vI −ΠK

k vI) ≤ c1
∑

K∈Th

∣∣uh −ΠK
k uh

∣∣
1,K

∣∣vI −ΠK
k vI

∣∣
1,K

. (4.13)

By virtue of (3.1a) it is easy to check that

∣∣uh −ΠK
k uh

∣∣
1,K

≤ |uh − u|1,K +
∣∣u−ΠK

k u
∣∣
1,K

+
∣∣ΠK

k (u− uh)
∣∣
1,K

≤ 2 |uh − u|1,K + |u− uπ|1,K ∀uπ ∈ Pk(K)

and, analogously,

∣∣vI −ΠK
k vI

∣∣
1,K

≤ 2 |vI − v|1,K + |v − vπ|1,K ∀vπ ∈ Pk(K).

Substituting these inequalities into (4.13) and using (4.3), Proposition 4.1 and Lemma 2.2(ii) (since
f ∈ E) for the former and Propositions 4.1 and 4.2 and (4.9) for the latter, we obtain

∑

K∈Th

SK(uh −ΠK
k uh, vI −ΠK

k vI) ≤ Chr1+min{r,k} ‖f‖1,Ω ‖u− uh‖1,Ω .

By repeating the same steps as above, we obtain a similar bound for the first term on the right
hand side of (4.12):

∑

K∈Th

aK(uh −ΠK
k uh, vh −ΠK

k vh) ≤ Chr1+min{r,k} ‖f‖1,Ω ‖u− uh‖1,Ω .

Hence,
â(u− uh, vI) ≤ Chr1+min{r,k} ‖f‖1,Ω ‖u− uh‖1,Ω .

The proof follows by substituting this inequality and (4.11) into (4.10) and using (4.3).

The next step is to define a solution operator on the space L2(Γ0):

T̃ : L2(Γ0) −→ L2(Γ0),

f̃ 7−→ T̃ f̃ := u|Γ0
,

where u ∈ H1(Ω) is the solution of the following problem:

â(u, v) =

∫

Γ0

f̃v ∀v ∈ H1(Ω). (4.14)
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It is easy to check that the operator T̃ is compact and self-adjoint. We also define the corresponding
discrete solution operator:

T̃h : L2(Γ0) −→ L2(Γ0),

f̃ 7−→ T̃hf̃ := uh|Γ0
,

where uh ∈ Vh is the solution of the discrete problem

âh(uh, vh) =

∫

Γ0

f̃vh ∀vh ∈ Vh. (4.15)

The spectra of T and T̃ coincide. In fact, it is immediate to check that if Tw = µw, with w 6= 0
and µ 6= 0, then w|Γ0

6= 0 and T̃ (w|Γ0
) = µw|Γ0

. Conversely, if T̃ w̃ = µw̃, with w̃ 6= 0 and µ 6= 0,
then there exists w ∈ H1(Ω), such that Tw = µw and w|Γ0

= w̃. The same arguments allow us to

show that the spectra of Th and T̃h also coincide and their respective eigenfunction are related in
the same way as those of T and T̃ .

To prove that the operators T̃h converge in norm to T̃ , we will use the following additional
regularity estimate analogous to that in Lemma 2.2 but that only involves ‖f‖0,Γ0

.

Lemma 4.4. For all s ∈ (0, 1
2 ), there exists C > 0 such that, for all f ∈ L2(Γ0), the solution u of

problem (4.14) satisfies u ∈ H1+s(Ω) and

‖u‖1+s,Ω ≤ C ‖f‖0,Γ0
.

Proof. The proof is a consequence of [29, Theorem 4]).

Now, we are able to conclude the convergence in norm of T̃h to T̃ .

Lemma 4.5. For all s ∈ (0, 1
2 ), there exists C > 0 such that

∥∥(T̃ − T̃h)f̃
∥∥
0,Γ0

≤ Chs
∥∥f̃

∥∥
0,Γ0

.

Proof. Given f̃ ∈ L2(Γ0), let u ∈ H1(Ω) and uh ∈ Vh be the solutions of problems (4.14) and

(4.15), respectively, so that T̃ f̃ = u|Γ0
and T̃hf̃ = uh|Γ0

. The arguments used in the proof of
Lemma 4.1 can be repeated in this case yielding

‖u− uh‖1,Ω ≤ C
(
‖u− uI‖1,Ω + |u− uπ|1,h

)
,

with uI and uπ as in that lemma. Thus, the result follows from Propositions 4.1 and 4.2, and
Lemma 4.4.

As a consequence of this lemma, a spectral convergence result analogous to Theorem 4.1 holds
for T̃h and T̃ . Moreover, we are in a position to establish the following estimate.

Theorem 4.4. Let wh be an eigenfunction of Th associated with the eigenvalue µ
(i)
h , 1 ≤ i ≤ m,

with ‖wh‖0,Γ0
= 1. Then, there exists an eigenfunction w of T associated with µ such that, for all

r ∈ [ 12 , rΩ), there exists C > 0 such that

‖w − wh‖0,Γ0
≤ Chr1/2+min{r,k}.
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Proof. Thanks to Lemma 4.5, Theorem 7.1 from [4] yields spectral convergence of T̃h to T̃ . In

particular, because of the relation between the eigenfunctions of T and Th with those of T̃ and T̃h,
respectively, we have that wh|Γ0

∈ Ẽh and there exists w ∈ E such that

‖w − wh‖0,Γ0
≤ C sup

f̃∈Ẽ: ‖f̃‖
0,Γ0

=1

∥∥(T̃ − T̃h)f̃
∥∥
0,Γ0

. (4.16)

On the other hand, because of Lemma 4.3, for all f̃ ∈ Ẽ , if f ∈ E is such that f̃ = f |Γ0
, then

∥∥(T̃ − T̃h)f̃
∥∥
0,Γ0

= ‖(T − Th)f‖0,Γ0
≤ Chr1/2+min{r,k} ‖f‖1,Ω .

Now, for f ∈ E , Tf = µf . Hence, ‖f‖1,Ω = 1
µ ‖Tf‖1,Ω ≤ C ‖f‖0,Γ0

(cf. Lemma 4.4). Thus,
substituting this expressions into the previous inequality, we have that

∥∥(T̃ − T̃h)f̃
∥∥
0,Γ0

≤ Chr1/2+min{r,k}
∥∥f̃

∥∥
0,Γ0

,

which together with (4.16) allow us to conclude the proof.

5. Numerical results

We report in this section a couple of tests which have allowed us to assess the theoretical
results proved above. With this aim, we have implemented in a MATLAB code a lowest-order
VEM (k = 1) on arbitrary polygonal meshes, by following the ideas proposed in [9].

To complete the choice of the VEM, we had to fix the bilinear forms SK(·, ·) satisfying (3.2) to
be used. To do this, we have proceeded as in [7]: for each polygon K with vertices P1, . . . , PNK

,
we have used

SK(u, v) :=

NK∑

r=1

u(Pr)v(Pr), u, v ∈ V K
1 .

As stated in [7, Section 4.6], under assumption AO.3, this choice of SK(·, ·) satisfies (3.2).

5.1. Test 1: Sloshing in a square domain.

In this test, we have taken Ω := (0, 1)2, with Γ0 and Γ1 as shown in Figure 1.

Γ0

Ω

Γ1

Figure 1: Sloshing in a square domain.

This problem corresponds to the computation of the sloshing modes of a two-dimensional fluid
contained in Ω with a horizontal free surface Γ0. The analytical solutions of this problem are

λn = nπ tanh(nπ), wn(x, y) = cos(nπx) sinh(nπy), n ∈ N.
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We have used three different families of meshes (see Figure 2):

• T 1
h : triangular meshes, considering the middle point of each edge as a new degree of freedom;

• T 2
h : trapezoidal meshes which consist of partitions of the domain into N × N congruent

trapezoids, all similar to the trapezoid with vertexes (0, 0), ( 12 , 0), (
1
2 ,

2
3 ), and (0, 1

3 );

• T 3
h : meshes built from T 1

h with the edge midpoint moved randomly; note that these meshes
contain non-convex elements.

The refinement parameter N used to label each mesh is the number of elements on each edge.

0 0.2 0.4 0.6 0.8 1
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Test 1. Sample meshes: T 1

h
(left), T 2

h
(middle) and T 3

h
(right) for N = 4.

We report in Table 1 the lowest eigenvalues λhi computed with this method. The table also
includes the estimated orders of convergence, as well as more accurate values of the eigenvalues
extrapolated from the computed ones by means of a least-squares fitting. The exact eigenvalues
are also reported in the last column to allow for comparison.

Table 1: Test 1. Computed lowest eigenvalues λhi, 1 ≤ i ≤ 3, on different meshes.

Th λhi N = 16 N = 32 N = 64 N = 128 Order Extrap. λi

λh1 3.1330 3.1306 3.1301 3.1299 2.03 3.1299 3.1299
T 1
h λh2 6.3095 6.2894 6.2846 6.2835 2.07 6.2832 6.2831

λh3 9.5183 9.4459 9.4298 9.4260 2.09 9.4250 9.4248
λh1 3.1424 3.1331 3.1307 3.1301 1.98 3.1299 3.1299

T 2
h λh2 6.3765 6.3095 6.2900 6.2849 1.92 6.2825 6.2831

λh3 9.6929 9.5092 9.4475 9.4306 1.85 9.4205 9.4248
λh1 3.1331 3.1308 3.1301 3.1299 2.03 3.1299 3.1299

T 3
h λh2 6.3105 6.2896 6.2847 6.2835 2.05 6.2832 6.2831

λh3 9.5193 9.4470 9.4300 9.4261 2.06 9.4248 9.4248

It can be seen from Table 1 that the computed eigenvalues converge to the exact ones with an
optimal quadratic order as predicted by the theory.

We report in Table 2 the L2(Γ0)-errors of the eigenfunctions corresponding to the lowest eigen-
value for each family of meshes and different refinement levels. We also include in this table the
estimated orders of convergence.
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Table 2: Test 1. Errors ‖w − wh‖0,Γ0
of the vibration mode for the lowest eigenvalue λh1 on different meshes.

Th N = 8 N = 16 N = 32 N = 64 Order
T 1
h 0.003633 0.0008715 0.0002265 0.0000557 2.00

T 2
h 0.025074 0.0059387 0.0014453 0.0003558 2.05

T 3
h 0.004559 0.0009943 0.0002576 0.0000659 2.03

We observe from this table a clear quadratic order of convergence. Let us remark that this is
the optimal order attainable with the virtual elements used, which is actually larger than the order
O(h3/2) predicted by the theory.

Figure 3 shows the eigenfunctions on Γ0 corresponding to the three lowest eigenvalues. Let
us remark that, in the sloshing problem, this corresponds to the shape of the fluid free surface
(∂nw = λw) for each sloshing mode.
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Figure 3: Test1. Sloshing modes: uh1 (left), uh2 (middle) and uh3 (right) computed with N = 256.

5.2. Test 2: Circular Domain.

In this test, we have taken as domain the unit circle Ω :=
{
(x, y) ∈ R

2 : x2 + y2 < 1
}

with
Γ0 = ∂Ω and Γ1 = ∅.

It is easy to check that any homogeneous harmonic polynomial of degree n satisfies ∂nw = nw

on ∂Ω. Therefore, for all n ∈ N, λ = n is an eigenvalue of this problem and the corresponding
eigenspace is the set of homogeneous harmonic polynomials of degree n, whose dimension is 2.

We have used polygonal meshes constructed as those in T 3
h on the previous test (see Figure 4).

The refinement parameter N used to label each mesh is now the number of elements on the whole
boundary.
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Figure 4: Test 2. Sample mesh for N = 13

We report in Table 3 the four lowest eigenvalues λhi computed with this method. The table
also includes the estimated orders of convergence, as well as more accurate values of the eigenvalues
extrapolated from the computed ones by means of a least-squares fitting. The last column shows
the exact eigenvalues.

Table 3: Test 2. Computed lowest eigenvalues λhi, 1 ≤ i ≤ 4.

λhi N=26 N=51 N=76 N=101 Order Extrap. λi

λh1 1.000630 1.000131 1.000070 1.000040 1.98 1.000025 1
λh2 1.000663 1.000142 1.000074 1.000041 1.99 1.000022 1
λh3 2.007673 2.001942 2.000889 2.000498 1.97 2.000040 2
λh4 2.008321 2.002018 2.000907 2.000503 2.02 2.000053 2

Once more, a quadratic order of convergence can be clearly appreciated from Table 3.

Finally, Figure 5 shows a plot of the third eigenfunction on the whole domain.
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Figure 5: Test 2. Eigenfunction uh3 for N = 214.
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2014-22 Eduardo Lara, Rodolfo Rodŕıguez, Pablo Venegas: Spectral approximation
of the curl operator in multiply connected domains

2014-23 Gabriel N. Gatica, Filander A. Sequeira: Analysis of an augmented HDG
method for a class of quasi-Newtonian Stokes flows
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