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Abstract

Boolean networks have been used as models of gene regulation and other
biological networks. One key element in the dynamical behavior of the net-
works are the limit cycles, which are very sensitive to changes in the update
schedule used. In this paper we study two problems related to the infer-
ring of update schemes and limit cycles in Boolean networks: Limit Cycle
Existence problem and Feasible Limit Cycle problem. We explore in fami-
lies of Boolean networks with different types of local activation function and
structural properties of the interaction digraph to define the sharp delin-
eation of the algorithmic complexity for both problems. We show that they
are NP-Hard for different deterministic update schedules, even in AND-OR
Boolean networks or with symmetric interaction digraph. However, they are
polynomial problems in the case of verifying both conditions. As particular
example of this, we prove that in the case of AND-OR networks with sym-
metric interaction digraph, there exists a limit cycle in a network iterated
with a block-sequential update if and only if there exists a limit cycle with
parallel scheme. This last condition is equivalent to a topological property
on the network which can be verified in polynomial time.

Keywords: Boolean network, limit cycle, update schedule, NP-Hardness.

IPartially supported by Project FONDECYT 1131013
∗Corresponding author.
Email addresses: jaracena@ing-mat.udec.cl (Julio Aracena),
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1. Introduction

A Boolean network is a system of n interacting Boolean variables, which
evolve, in a discrete time, according to a predefined rule. They have appli-
cations in many areas, including circuit theory, computer science and social
systems (Green et al., 2007; Tocci and Widmer, 2001). In particular, from the
seminal works of Kauffman (1969, 1993) and Thomas (Thomas, 1973; Schae-
fer, 1978), they are extensively used as models of gene networks. Despite
their simplicity, they provide a useful model in which different phenomena
can be reproduced and studied, and indeed, many regulatory models pub-
lished in the biological literature fit within their framework (Huang, 1999;
Shmulevich et al., 2003; Fauré et al., 2006; Bornholdt, 2008).

Since Boolean networks have a finite number of states, the long-run dy-
namic trajectories always reach a periodic sequence of states, called attractor.
When the period is one, the attractor is said to be a fixed point, and when
the period is greater than one, it is called limit cycle. In the modeling of
genetic regulatory networks, the attractors are associated to distinct types
of cells defined by patterns of gene activity. In particular, the limit cycles
are often associated with mitotic cycles in cells. (Huang, 1999; Fauré et al.,
2006).

The update schedule in a Boolean network, that is the order in which
each node is updated, is of great importance in the dynamics of the network.
In general and probably due to the difficulty of really knowing the order (if
any) in which events take place in the cell, regulatory networks are usually
studied with synchronous schedule (parallel scheme). Other types of deter-
ministic update schedules, introduced by Robert (1986, 1995), and used in
the discrete modeling of genetic regulatory networks (see Ruz et al. (2014);
Goles et al. (2013); Meng and Feng (2014)) and other dynamical systems
are: the sequential update (nodes are updated one by one in a prescribed
order) and block-sequential updates (which are sequential over the sets of a
partition, but parallel inside of each set).

Many theoretical and analytic studies have been done about the limit cy-
cles of a Boolean network when different update schedules are used (Aracena
et al., 2013; Demongeot et al., 2008; Goles and Noual, 2012; Elena, 2009;
Macauley and Mortveit, 2009). Most of them show that the limit cycles are
very sensitive to changes in the update schedule of the network, in opposition

2



to the fixed points which do not depend on the scheme used. In particular, in
Goles and Salinas (2008) is proved that for networks without negative loops it
is not possible that the parallel and the sequential update share limit cycles.

One of the major problems in the understanding of the function of many
biological complex systems, such as genetic networks or molecular signaling
pathways, is the inferring of the network with an given update schedule from
observed data, as for example a limit cycle. In this sense, the reconstruc-
tion of a genetic regulatory network has been so far done considering mainly
synchronous update (see for example Shmulevich et al. (2002); Akutsu et al.
(1999)). However, as mentioned above, there are limit cycles, under se-
quential or block-sequential schedules, which cannot be yielded with parallel
update.

In this paper we study the Feasible Limit Cycle problem, which consists
in given a Boolean network and a closed sequence of global configurations of
the network, determining the existence of an deterministic update schedule
(parallel, sequential or block-sequential) such that the sequence of configu-
rations is a limit cycle of the network iterated with this scheme. A problem
directly related to FLC is the Limit Cycle Existence problem, i.e., which con-
sists in determining the existence of an update schedule, for a given Boolean
network, such that it yields a limit cycle. The specific problem of determin-
ing the existence of limit cycles of a Boolean network with parallel update is
known to be NP-Hard (Just, 2006). Here, we study this problem in the case
of other kinds of update schedules (sequential and block-sequential).

We explore in families of Boolean networks with different types of local
activation function and structural properties of the interaction digraph, to
define the sharp delineation of the algorithmic complexity for both prob-
lems. We show that they are NP-Hard for the different deterministic update
schedules, even in networks having either local activation function of type
conjunctive (AND) or disjunctive (OR), or with symmetric interaction di-
graph. However, they are polynomial problems in the case of verifying both
conditions. As particular example of this, we prove that in the case of AND-
OR networks with symmetric interaction digraph, there exists a limit cycle
in a network iterated with a block-sequential update if and only if there ex-
ists a limit cycle with parallel scheme. This last condition is equivalent to
a topological property on the network which can be verified in polynomial
time.

This paper is organized as follows. In Section 2, we introduce Boolean
networks with deterministic update schedule and the basic concepts related
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to them. In Section 3, we study the complexity of the Limit Cycle Existence
problem, and we prove that without restrictions on the interaction digraph,
this problem is NP-Hard even in the case of AND-OR networks for any
kind of update schedule (synchronous, sequential and block-sequential). In
Section 4 we study the complexity of the Feasible Limit Cycle problem. We
prove that for any interaction digraph, this problem is NP-Complete even in
the case of Disjunctive networks. In Section 5 we give certain families of the
networks in which each problem is polynomial, this classes are in AND-OR
networks and depend strongly on the topology of the interaction digraph of
the network. polynomial, this classes are in AND-OR networks and depend
strongly on the topology of the interaction digraph of the network.

2. Definitions and Notation

Let V be a set of n elements. We denote by
F = (fv)v∈V : {0, 1}n → {0, 1}n a function, where each component,
fv : {0, 1}n → {0, 1} is a Boolean function, and such that ∀x ∈ {0, 1}n,
∀v ∈ V : F (x)v = fv(x).

Given x = (xv)v∈V ∈ {0, 1}
n and u ∈ V , we define x̄u ∈ {0, 1}n as:

∀v ∈ V : x̄uv =

{
xv if v 6= u

¬xu if v = u

Where ∀a ∈ {0, 1} : ¬a = 1⇐⇒ a = 0.
We also define x̄ ∈ {0, 1}n as: ∀v ∈ V, x̄v = ¬xv.
A Boolean network N = (F, s) is defined by a finite set V of n elements; n

state variables xv ∈ {0, 1}, v ∈ V ; a function F = (fv)v∈V called global acti-
vation function, where its component functions fv are called local activation
functions, and an update schedule defined by a function s : V → {1, . . . , n}
such that s(V ) = {1, . . . ,m} for some m ≤ n. A block of an update schedule
s is a set Bi = {v ∈ V : s(v) = i}, 1 ≤ i ≤ m. An update schedule s is also
denoted by s = {v ∈ B1}{v ∈ B2} · · · {v ∈ Bm}. A synchronous or parallel
update is given by an update schedule s such that ∀v ∈ V , s(v) = 1. A
sequential update corresponds to a bijective function. Other kinds of update
schedules can be considered as block-sequential updates. Block-sequential
update schedules were introduced in Robert (1986).
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The update of value states of the Boolean network with an update func-
tion s is given by:

xk+1
v = fv(x

lu
u : u ∈ V )

where lu = k if s(v) ≤ s(u) and lu = k + 1 if s(v) > s(u).
This is equivalent to applying a function F s : {0, 1}n → {0, 1}n in a

parallel way, with F s(x) = (f sv (x))v∈V defined by:

f sv (x) = fv(g
s
v,u(x) : u ∈ V ),

where the function gsv,u is defined by gsv,u(x) = xu if s(v) ≤ s(u) and
gsv,u(x) = f su(x) if s(v) > s(u). Thus, the function F s corresponds to the
dynamical behavior of the network N = (F, s). We note that F s was called
Serial-Parallel operator in Robert (1986), and in the particular case of se-
quential updates it was called Gauss-Seidel operator.

We say that two Boolean networks N1 = (F1, s1) and N2 = (F2, s2) have
the same dynamical behavior if F s1

1 = F s2
2 .

Since {0, 1}n is a finite set, we have two limit behaviors for the iteration
of a network:

• Fixed Point. We define a fixed point as x ∈ {0, 1}n such that F s(x) = x.

• Limit Cycle. We define a cycle of length p > 1 as the sequence
[xk]pk=0 = [x0, . . . , xp−1, x0] such that xk ∈ {0, 1}n, xk are pairwise dis-
tinct and F s(xk) = xk+1, for all k = 0, . . . , p− 1 and xp ≡ x0. We note
that any cyclic permutation of a sequence represents the same limit
cycle. The set of limit cycles of N is denoted by LC(N).

Fixed points and limit cycles are called attractors of the network.
We say that a node is frozen for a limit cycle if its state is constant on it.
Given a digraph G, the node set of G is referred to as V (G), and its arc set

as A(G). Given a node v ∈ V (G), the set of incoming nodes to v is denoted
by N−G (v) = {u ∈ V (G) : (u, v) ∈ A(G)}. Analogously, the set of outgoing
nodes from v is denoted by N+

G (v) = {u ∈ V (G) : (v, u) ∈ A(G)}. An arc
(v, v) ∈ A(G) is called loop of G. Given U ⊆ V (G), G [U ] is the digraph
obtained from G by removing all nodes in V (G) \U and all arcs incoming to
or outgoing from these nodes. G [U ] is called the subdigraph generated by U .

The digraph associated to a function F = (fv)v∈V , called interaction
digraph, is the directed graph GF = (V,A), where (u, v) ∈ A if and only if fv
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f1(x) = x1 ∧ x4

f2(x) = x1 ∨ x4

f3(x) = x2

f4(x) = x3
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3 4

⊕

	

	

	

⊕ ⊕

s(i) = i, ∀i ∈ {1, . . . , n}
a) b)

Figure 1: a) Digraph associated to a Boolean network. b) Update Digraph associated to
a Boolean network and an update schedule.

depends on xu, i.e., if there exists x ∈ {0, 1}n such that fv(x) 6= fv(x̄
u). Note

that if fv is constant, then N−
GF

(v) = ∅. See an example of an interaction
digraph in Figure 1a.

Given G = (V,A) a digraph with node set V of n elements and
s : V → {1, . . . , n} an update schedule, we denote by Gs = (G, labs) the la-
beled digraph, called update digraph, where the function labs : A→ {	,⊕}
is defined by:

labs(u, v) =

{
⊕ if s(u) ≥ s(v)

	 if s(u) < s(v)

The update digraph associated to a Boolean network N = (F, s) is defined
by GF

s = (GF , labs) (see an example of update digraph Gs in Figure 1b). Note
that the label on a loop will always be ⊕. It was proven in Aracena et al.
(2009) that if two different update schedules induce same update digraph,
then they yield the same dynamical behavior.

Given a finite set U of k elements, we say that a Boolean function
f : {0, 1}k → {0, 1} is monotonic on input v ∈ U if for every x ∈ {0, 1}k
such that xv = 0, we have that f(x) ≤ f(x̄v). A loop (v, v) ∈ A

(
GF
)

is monotonic if fv is monotonic on input v. In particular, a mono-
tonic function f is said to be an AND function, denoted f (x) =

∧
v∈U

xv,

if and only if f (x) = 1⇐⇒ ∀v ∈ U : xv = 1. We say that a monotonic
function f is an OR function, denoted f (x) =

∨
v∈U

xv, if and only if

f (x) = 1⇐⇒ ∃v ∈ U : xv = 1.
In this way, we say that a function F : {0, 1}n → {0, 1}n is monotonic if

each local activation function is monotonic. We say that F is an AND-OR
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function if each local activation function is either an AND or an OR function.
In this case, we define VAND (F ) ⊆ V

(
GF
) (
VOR (F ) ⊆ V

(
GF
))

as the nodes
that have an AND (OR) local activation function. In particular, we say that
F is an OR function if each local activation function is an OR function.

An AND-OR function F can be completely described by its interaction
digraph, labeling AND and OR nodes differently (in the figures of this paper,
white nodes represent OR nodes, and dark gray nodes represent AND nodes).
That is, given G = (V,A) a digraph and {VAND, VOR} a partition of V , we

define F : {0, 1}|V | → {0, 1}|V | as follows:

∀v ∈ V : fv (x) =


∧

u∈N−G (v)

xu if v ∈ VAND∨
u∈N−G (v)

xu if v ∈ VOR

Note that if N−G (v) = ∅, then

fv (x) =

{
1 if v ∈ VAND

0 if v ∈ VOR

In this paper we are interested in the existence of update schedules which
yields a given limit cycle. More precisely we define the following problem:

Feasible Limit Cycle Problem (FLC): Given a set V of
n elements and F = (fv)v∈V : {0, 1}n → {0, 1}n and a sequence
C =

[
xk
]p
k=0

such that xk ∈ {0, 1}n, xk are pairwise distinct
and xp ≡ x0. Does there exist an update schedule s such that
C ∈ LC (F, s)?

Previously, we study a well known problem in discrete dynamical systems
synchronously updated, which consists of determining the existence of a limit
cycle. This problem has been proven to be NP-Hard in different families of
Boolean networks(cite). In this paper we extend these results in the case of
deterministic update schedules different from parallel schedule.

Limit Cycle Existence Problem (LCE): Given a set V of n
elements and F = (fv)v∈V : {0, 1}n → {0, 1}n. Does there exists an
update schedule s such that LC(F, s) 6= ∅?
MON LCE, AND-OR LCE and OR LCE problems are the corre-

sponding LCE problems when F is a monotonic, an AND-OR and an OR
function, respectively. MON FLC, AND-OR FLC and OR FLC prob-
lems are defined analogously.
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3. Limit cycle existence problem

In this section we study the complexity of deciding when there exists an
update schedule that generates limit cycles when a given Boolean function
is updated under it. A specific and directly related problem is to determine
the existence of a limit cyle in a given Boolean network with synchronous
schedule. This problem was proved to be NP-Hard even for AND-OR func-
tions (Just, 2006). Here, we are interested in determing for a given Boolean
network the existence of a deterministic update schedule that yields a limit
cycle.

First, we prove that the general case of this problem is NP-Hard.

Theorem 1. LCE is NP-Hard

Proof. We show that SAT ≤p LCE.
Given a normal conjunctive formula (ncf) φ in variables

w1, . . . , wn, we consider F = (fv)v∈V : {0, 1}n+3 → {0, 1}n+3, where
V = {v1, . . . , vn, vφ, z1, z2}, as follows (see Figure 2):

∀i ∈ {1, . . . , n} , fvi(x) = xvi
fvφ(x) = φ (xvi : i ∈ {1, . . . , n})
fz1(x) = xvφ ∧ xz2
fz2(x) = xvφ ∧ xz1

vφ

v1

v2

vn

...

z1

z2

Figure 2: Connection digraph of the transformation defined in Theorem 1.

Then, we have:
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(=⇒) Let w be such that φ(w) = 1. Then, if we con-
sider the update schedule s = {v1, . . . , vn, vφ} {z1, z2}, it is clear that
C = [(w, 1, 0, 1), (w, 1, 1, 0), (w, 1, 0, 1)] ∈ LC(F, s).
(⇐=) Let us suppose that ∀w : φ(w) = 0. Then, for every update schedule
s, we have that:

• ∀x ∈ {0, 1}n+3, ∀i ∈ {1, . . . , n} : f svi(x) = xvi .

• ∀x ∈ {0, 1}n+3 : f svφ(x) = 0. Therefore,

• ∀x ∈ {0, 1}n+3 : f szi(F
s(x)) = 0, i ∈ {1, 2}.

Thus, LC(F, s) = ∅, for every update schedule s. 2

Now we prove that the LCE problem restricted to AND-OR functions is
also NP-Hard.

Theorem 2. AND-OR LCE is NP-Hard.

Proof. We show that SAT ≤p AND-OR LCE.
Given a ncf φ in variables w1, . . . , wn with clauses C1, . . . , Cm and let us

define F = (fv)v∈V : {0, 1}4n+m+5 → {0, 1}4n+m+5 according to the following
table:

v ∈ V Type N−
GF

(v)
vi, i ∈ {1, . . . , n} AND {vi}
v̄i, i ∈ {1, . . . , n} AND {v̄i}
oi, i ∈ {1, . . . , n} OR {vi, v̄i}
ai, i ∈ {1, . . . , n} AND {vi, v̄i}
A AND {o1, · · · , on}
O OR {a1, · · · , an}
vCj , j ∈ {1, . . . ,m} OR {vi : wi ∈ Cj} ∪ {v̄i : ¬wi ∈ Cj}
vφ AND {vC1 , · · · , vCm}
z1 AND {z2, vφ, A}
z2 OR {z3, O}
z3 OR {z1}

Table 1: Definition of F in the transformation defined in Theorem 2.

See GF in Figure 3. Here, ∀i ∈ {1, . . . , n}, nodes vi represent literals wi
and nodes v̄i represent literals ¬wi.

Now, we note that:
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vφ

vC1 vC2
. . . vCm

v1 v̄1 vn v̄n

a1 o1

. . .

an on A O

z1 z2

z3

Figure 3: Connection digraph of the transformation defined in Theorem 2.

1. For any update schedule s, ∀x0 ∈ {0, 1}4n+m+5 :

• ∀k ≥ 1, ∀i ∈ {1, . . . , n} , ∀v ∈ {vi, v̄i} : xk+1
v = f sv (xk) = x0

v

• ∀k ≥ 2, ∀i ∈ {1, . . . , n} , ∀v ∈ {oi, ai} : xk+1
v = f sv (xk) = x0

v

• ∀k ≥ 2, ∀j ∈ {1, . . . ,m} : xk+1
vCj

= f svCj
(xk) = x1

vCj

• ∀k ≥ 2, ∀v ∈ {A,O, vφ, z1, z2, z3} : xk+1
v = f sv (xk) = x2

v

2. fA(x) = 1 ∧ fO(x) = 0 ⇐⇒ ∀i ∈ {1, . . . , n} : xv̄i = ¬xvi

(=⇒) If ∃ŵ : φ(ŵ) = 1, and we consider the update schedule s and the limit
cycle C = [x0, x1, x0] as described in the following table:

v ∈ V vi v̄i oi ai Cj A O vφ z1 z2 z3

s (v) 1 1 1 1 1 1 1 1 2 3 2

x0
v ŵvi ¬ŵvi 1 0 1 1 0 1 1 0 0
x1
v ŵvi ¬ŵvi 1 0 1 1 0 1 0 1 1

Clearly, C ∈ LC(F, s).
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(⇐=) Let s be an update schedule such that C =
[
xk
]p
k=0
∈ LC(F, s).

For the first note above, only nodes z1, z2 or z3 can cycle. For these
nodes to cycle, it is necessary that:

fvφ(x0) = 1

fA(x0) = 1

fO(x0) = 0

From the first equation, we have that φ
(
x0
vi
, x0

v̄i
: i ∈ {1, . . . , n}

)
= 1.

Second and third equations imply that ∀i ∈ {1, . . . , n} : xv̄i = ¬xvi .
Therefore, φ(x0

i : i ∈ {1, . . . , n}) = 1. 2

Corollary 3. AND-OR LCE is NP-Hard in the following cases:

i.- Restricted to the parallel update schedule.

ii.- Restricted to sequential update schedules.

iii.- Restricted to limit cycles of length 2.

iv.- Restricted to maximum in-degree equal to 2.

Proof. i.- In this case we remove the vertex z3 and we add an arc from
z1 to z2.

ii.- It is easy to find a sequential udpate schedule equivalent to the update
schedule in the proof of Theorem 2.

iii.- In the proof of Theorem 2 we restrict to limit cycles of length 2.

iv.- To see this, we just need to add intermediary nodes before every node
that has in-degree greater than two as is exemplified in Figure 4. We
note that the nodes that fulfill this condition are z1, A,O, vφ and the
clause nodes. To simplify the transformation for clause nodes, we could
consider 3-SAT instead of SAT. This transformation is enough because
the only nodes that cycle are z1, z2 and z3. 2
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1 2 3 4 . . . n

Z

1 2 3 4 . . . l

Z

Z12 Z34 . . .

Z1234 . . .

...
. . .

Z1...l−1

Figure 4: Example for odd l of the transformation mentioned in the proof of Corollary 3
to deal with nodes with in-degree in greater than two in Theorem 2.

4. Feasible limit cycle problem

In this section we study the complexity of determine the existence of
an update schedule such that a given sequence of state vectors is a limit
cycle for a given global activation function. We note that this problem gain
importance when we consider several kind of update schedules because if it
is restricted to the parallel update schedule is trivially polynomial.

Not-All-Equal Satisfiability (NAESAT) is a special case of the general
satisfiability problem (SAT), which is defined as follows:

Not-All-Equal Satisfiability (NAESAT) Given φ a cnf in
variables w1, . . . , wn. Does there exist w such that φ(w) = 1 and
there is no clause in φ all literals of which are set to 1?
NAESAT is known to be NP-Complete Schaefer (1978).
Observe that NAESAT is equivalent to: given a cnf φ, does there exists

w such that φ(w) = φ(w̄) = 1?
First, we prove that feasible limit cycle problem is NP-Complete.

Theorem 4. FLC is NP-Complete.

Proof. It is clear that FLC is NP. To prove NP-Hardness we show that
NAESAT ≤p FLC.
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Given a 3-ncf φ in variables w1, . . . , wn, we consider V = {v1, . . . , vn, vφ},
x0 = (~0, 1), x1 = (~1, 1) and C = [x0, x1, x0], where ~0 = (0, . . . , 0),
~1 = (1, . . . , 1) ∈ {0, 1}n and F = (fv)v∈V : {0, 1}n+1 → {0, 1}n+1 as follows:

∀i ∈ {1, . . . , n} : fvi(x) = ¬xvi
fvφ(x) = φ(xvi : i ∈ {1, . . . , n})

See GF in Figure 5.

vφ

v1

v2

vn

...

Figure 5: Interaction digraph of the transformation defined in Theorem 4.

(=⇒) If there exists w such that φ(w) = φ(w̄) = 1, then by defining
s = {vi : wi = 1}{vφ}{vi : wi = 0}, it is clear that C ∈ LC(F, s).
(⇐=) Let us suppose that there exists an update schedule s such that
C ∈ LC(F, s). Then we define w ∈ {0, 1}n such that wi = 1 ⇐⇒ s(vi) <
s(vφ). It is easy to check that φ (w) = φ (w̄) = 1. 2

Next, we show that the ideas of the previous proof can be extended to
the Monotonic case.

Theorem 5. MON FLC is NP-Complete.

Proof. As in the general case, this problem is NP. To prove NP-Hardness,
we show that SAT ≤p MON FLC. Given a ncf φ in variables w1, . . . , wn,
we build F = (fv)v∈V : {0, 1}2n+3 → {0, 1}2n+3, C = [x0, x1, x2 ≡ x0] where
x0, x1 ∈ {0, 1}2n+3 and V = {v1 . . . , vn, v̄1, . . . , v̄n, z1, z2, z3}, as follows:

∀i ∈ {1, . . . , n} fvi(x) = xv̄i ∧ (xz1 ∨ xz3)
∀i ∈ {1, . . . , n} fv̄i(x) = xvi

fz1(x) =
n∧
i=1

xvi

fz2(x) = xz1 ∧ φ̂ (xvi , xv̄i : i ∈ {1 . . . , n})
fz3(x) = xz2
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where nodes vi represent literals wi; nodes v̄i represent literals ¬wi and φ̂ is
the monotonic version of φ, in variables xv1 , . . . , xvn , xv̄1 , . . . , xv̄n , that comes
from φ replacing literals wi by xvi and ¬wi by xv̄i (see Figure 6). Finally, we
define x1 = x0 and:

x0
u =

{
1 if u ∈ {v1, . . . , vn}
0 if u ∈ {v̄1, . . . , v̄n, z1, z2, z3}

z1

v1 vn

z3

v̄1 v̄n

z2

. . .

. . .

Figure 6: Interaction digraph of the transformation defined in Theorem 5.

The definition of F is similar than in Theorem 4, but monotonically. In
order to achieve the monotony property, we add the v̄i nodes that allow us
to use φ̂ instead of φ, and the role of vφ back there, that is to allow cycling,
is monotonically done here by nodes z1, z2 and z3.
(=⇒) Let w be such that φ(w) = 1, then if we consider the update schedule:

s = {z1}{vi, v̄i : wi = 0}{z2}{vi, v̄i : wi = 1}{z3}

From Table 2, it is clear that ∀k ∈ {0, 1} : F s(xk) = xk+1 and x2 ≡ x0. There-
fore, C ∈ LC(F, s).
(⇐=) Let s be an update schedule such that ∀k ∈ {0, 1} : F s(xk) = xk+1

and let xs be the global state just before node z1 get updated. Since
1 = x1

z2
= f sz1(x

0) = fz1(x
s), we have that φ̂(xsvi , x

s
v̄i

: i ∈ {1, . . . , n}) = 1. On
another hand, we note that ∀i ∈ {1, . . . , n}:

14



v ∈ V vi : wi = 1 vi : wi = 0 v̄i : wi = 1 v̄i : wi = 0 z1 z2 z3

s(v) 4 2 4 2 1 3 5
x0
v 1 1 0 0 0 0 0

x1
v = F s(x0)v 0 0 1 1 1 1 1

x0
v = F s(x1)v 1 1 0 0 0 0 0

Table 2: Transition table of the states defined in Theorem 5.

1) x0
vi

= 1, x1
vi

= 0, x0
v̄i

= 0, x1
v̄i

= 1 =⇒ s(v̄i) ≤ s(vi).

2) x1
vi

= 0, x0
vi

= 1, x1
v̄i

= 1, x0
v̄i

= 0 =⇒ s(vi) ≤ s(v̄i).

3) Since vi and v̄i are connected by a cycle of length 2, necessarily

(s(vi) ≥ s(z1) ∧ s(v̄i) ≥ s(z1)) Y (s(vi) < s(z1) ∧ s(v̄i) < s(z1))

Thus, 1) and 2) imply that ∀i ∈ {1, . . . , n} : s(vi) = s(v̄i) and then
∀i ∈ {1, . . . , n} , ∀k ∈ {0, 1} : xkv̄i = ¬xkvi . From this and 3), we have that
∀i ∈ {1, . . . , n} , ∀k ∈ {0, 1} : xsv̄i = ¬xsvi .

Therefore, φ(x̂) = 1, with x̂ =
(
xsvi
)n
i=1

. 2

To prove the OR case, we need a completely different approach, since
above ideas sufficient when we are restricted to OR functions. First we need
some previous results. In Lemma 6 we prove the SAT variation we are going
to use and Lemma 7 is a technical result.

We define:
SAT01: Given φ a ncf such that φ(~0) = φ(~1) = 1. Does there exists

x /∈
{
~0,~1
}

such that φ(x) = 1?

Lemma 6. SAT01 is NP-Complete.

Proof. It is clear that SAT01 is NP. To prove NP-Hardness, we show that
SAT ≤p SAT01.

Let φ be a ncf in variables x1 . . . , xn and clauses C1, . . . , Cn. We define φ̂
a ncf as follows:

φ̂ (x) =


m∧
j=1

n∧
i,k=1
i 6=k

(Cj ∨ ¬xi ∨ xk) if φ(~0) = φ(~1) = 0

x1 ∨ ¬x2 if φ(~0) = 1 ∨ φ(~1) = 1

15



Clearly, φ̂(~0) = φ̂(~1) = 1.
(=⇒) Let x ∈ {0, 1}n be such that φ(x) = 1. Hence,

• If x ∈
{
~0,~1
}

, then φ̂(x) = x1 ∨¬x2 and considering x̂ = (1, 0) we have

that φ̂(x̂) = 1.

• If x /∈
{
~0,~1
}

, then considering x̂ = x we have that φ̂(x̂) = 1.

(⇐=) Let x̂ be such that φ̂ (x̂) = 1 and let us suppose that ∀x : φ(x) = 0,
then there exist j ∈ {1, . . . ,m} such that Cj (x̂) = 0.

Thus, ∀i 6= k ∈ {1, . . . , n} : Cj (x̂) ∨ ¬x̂i ∨ x̂k = ¬x̂i ∨ x̂k = 1.
Now, if there exists k ∈ {1, . . . , n} such that x̂k = 0, then for each

i 6= k ∈ {1, . . . , n} we have that x̂i = 0 and therefore, x̂ = ~0. Otherwise,
x̂ = ~1.

Analogously, if there exists i ∈ {1, . . . , n} such that x̂i = 1, then for each
k 6= i ∈ {1, . . . , n} we have that x̂k = 1 and therefore, x̂ = ~1. Otherwise,
x̂ = ~0.

Thus, φ̂ is only satisfiable by ~0 and ~1. 2

Definition 1. Given F : {0, 1}n → {0, 1}n , x, y ∈ {0, 1}n, we define for
each q, r ∈ {0, 1}:

Vqr (x, y) := {v ∈ V
(
GF
)

: xv = q ∧ yv = r}

And the set of constant nodes:

Vc (x, y) = V00 (x, y) ∪ V11 (x, y)

When there is no confusion, we will ignore the argument (x, y) in the previous
definitions.

Lemma 7. Let F : {0, 1}n → {0, 1}n be an AND-OR function, x, y ∈ {0, 1}n
and s an update schedule. If F s(x) = y then, for each v ∈ V

(
GF
)

we have
that:

1.- If v ∈ VOR (F ) and

i.- v ∈ V10 ∪ V00, then ∀u ∈ N−
GF

(v) :

(u ∈ V01 ∧ s(u) ≥ s(v)) ∨ (u ∈ V10 ∧ s(u) < s(v)) ∨ u ∈ V00

16



ii.- v ∈ V01 ∪ V11, then ∃u ∈ N−
GF

(v) :

(u ∈ V01 ∧ s(u) < s(v)) ∨ (u ∈ V10 ∧ s(u) ≥ s(v)) ∨ u ∈ V11

2.- If v ∈ VAND (F ) and

i.- v ∈ V01 ∪ V11, then ∀u ∈ N−
GF

(v) :

(u ∈ V10 ∧ s(u) ≥ s(v)) ∨ (u ∈ V01 ∧ s(u) < s(v)) ∨ u ∈ V11

ii.- v ∈ V10 ∪ V00, then ∃u ∈ N−
GF

(v) :

(u ∈ V10 ∧ s(u) < s(v)) ∨ (u ∈ V01 ∧ s(u) ≥ s(v)) ∨ u ∈ V00

Proof. Let v ∈ V
(
GF
)
.

1.- If v ∈ VOR (F ),

i.- Let us suppose v ∈ V10 ∪ V00 and let u ∈ N−
GF

(v). Since f sv (x) = 0,
necessarily xu = 0 ∨ yu = 0. Now:

• If u ∈ V01, then xu = 0 ∧ yu = 1. Since f sv (x) = 0, it is necessary
that s(u) ≥ s(v).

• If u ∈ V10, then xu = 1 ∧ yu = 0. Since f sv (x) = 0, it is necessary
that s(u) < s(v).

• Otherwise, j must necessarily be in V00.

ii.- Straightforward from the definition of OR functions and analogous
argument as before.

2.- If v ∈ VAND (F ), the proof is straightforward from the definition of AND
functions and analogous argument as before. 2

Remark 1. We know from Aracena et al. (2009) that Boolean networks up-
dated under different updates schedules that generate the same update digraph
have the same dynamical behavior. Therefore, we focus on finding an update
digraph wich satisfies certain restrictions. In this way, according to the def-
inition of an update digraph and to the established in the previous lemma,
we have that for OR nodes (AND nodes), all incoming arcs of the nodes in
V00 ∪ V10 (V11 ∪ V01) have their labels uniquely defined. To satisfy the neces-
sary conditions such that F s(x) = y, at least one incoming arc to the nodes
in V11 ∪ V01 (V00 ∪ V10) must be chosen and labeled accordingly. It is in this
choice where the complexity of the problem arises.
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Now we prove that OR FLC is NP-Complete.

Theorem 8. OR FLC is NP-Complete.

Proof. We prove that SAT01 ≤p OR FLC.
Let φ be ncf in variables w1, . . . , wn with clauses C0, . . . , Cm−1 such that

φ(~0) = φ(~1) = 1.
We define an OR function F and a limit cycle C such that each variable wi

is represented by a node vi ∈ V (GF ) and whose value is defined according to
the relative order of schedule between node vi and a given node vφ. Besides,
each clause of φ is associated to a transitions in the limit cycle C.

More precisely, we define F = (fv)v∈V : {0, 1}3m+n+4 → {0, 1}3m+n+4 an
OR function by its interaction digraph defined in Table 3 (see an example in
Figure 7).

v ∈ V N−
GF (v)

vi, i ∈ {1, . . . , n} {z0} ∪
{
C1
j : wi ∈ Cj

}
∪
{
C2
j : ¬wi ∈ Cj

}
Ck
j , j ∈ {0, . . . ,m− 1} , k ∈ {1, 2}

{
Ck−1
j

}
C0
j , j ∈ {0, . . . ,m− 1}

{
C2
j−1 mod m

}
zk, k ∈ {0, 1, 2} {zk−1 mod 3}
vφ {v1, . . . , vn}

Table 3: Definition of GF defined in Theorem 8.

And, we define C = [x0,0, x1,0, x2,0, x0,1, . . . ] =
[
xk,j
]
k∈Z3,j∈Zm

of length 3m
as:

xk,jvi =

{
1 if k = 0 ∨ (k = 1 ∧ wi ∈ Cj) ∨ (k = 2 ∧ ¬wi ∈ Cj)
0 otherwise

xk,j
Ck
′
j′

=

{
1 if j = j′ ∧ k = k′

0 otherwise

xk,jzk′ =

{
1 if k = k′

0 otherwise

xk,jvφ = 1.

See an example in Table 4.
In this way, each clause Cj in φ is represented by the vectors x1,j and

x2,j such that: x1,j
vi

= 1 and x2,j
vi

= 0 if the literal wi is in Cj; x
1,j
vi

= 0 and
x2,j
vi

= 1 if ¬wi is in Cj, and x1,j
vi

= 0 and x2,j
vi

= 0 otherwise. Hence, for all
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φz0

z1

z2

v1 v2 v3 v4

C0
0 C0

1 C0
2

C1
0 C2

0 C1
1 C2

1 C1
2 C2

2

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕

⊕⊕

⊕

	 	 		

	 	

	
	

	

	

	

	
	

⊕

Figure 7: Example ofGF for φ (w) = (w1 ∨ w2 ∨ ¬w3 ∨ w4) ∧ (¬w2 ∨ w3 ∨ ¬w4) ∧ (¬w1 ∨ ¬w3)
according to the transformation defined in Theorem 8.

j ∈ {0, . . . ,m− 1}, x2,j
vφ

= 1 if and only if there exists i ∈ {1, . . . , n} such

that either x1,j
vi

= 1, x2,j
vi

= 0 and s(vi) ≥ s(vφ) or x1,j
vi

= 0, x2,j
vi

= 1 and
s(vi) < s(vφ). Therefore, we obtain an equivalence between the relative order
of nodes vi and vφ, and the value of the variable wi as follows:

s (vi) ≥ s (vφ) ⇐⇒ wi = 1 (1)

In this way, variable vφ remains frozen with value equal to one if and only
if all clauses are satisfiable.

Besides, we note that, by Lemma 7 applied to each transition in C, we
have that for every update schedule s such that C ∈ LC (F, s):

∀k ∈ {1, 2} , ∀j ∈ {0, . . . ,m− 1} : s
(
Ck−1

j

)
≥ s

(
Ck

j

)
(2)

∀j ∈ {0, . . . ,m− 1} : s
(
C2

j−1 mod m

)
≥ s

(
C0

j

)
(3)

∀k ∈ {0, 1, 2} : s (zk−1 mod 3) ≥ s (zk) (4)

∀i ∈ {1, . . . , n} : s (z0) < s (vi) (5)

∀i ∈ {1, . . . , n} , ∀k ∈ {1, 2} , ∀j ∈
{
t : Ck

t ∈ N−
GF (i)

}
: s

(
Ck

j

)
< s (vi) (6)

We note that conditions (2)–(6) define uniquely the labels of the arcs
involved as shown in Figure 7.

19



C0
0 C1

0 C2
0 C0

1 C1
1 C2

1 C0
2 C1

2 C2
2 z0 z1 z2 v1 v2 v3 v4 vφ

x0,0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
x1,0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1
x2,0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1

x0,1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1
x1,1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1
x2,1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1

x0,2 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1
x1,2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
x2,2 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1

x0,3 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1

Table 4: Example of C for φ (w) = (w1 ∨ w2 ∨ ¬w3 ∨ w4) ∧ (¬w2 ∨ w3 ∨ ¬w4) ∧ (¬w1 ∨ ¬w3)
according to the transformation defined in Theorem 8.

We show now the details of the proof:

(=⇒) Let w /∈
{
~0,~1
}

be such that φ(w) = 1, then we define the update

schedule s as
s = B1B2B3B4B5,

where

B1 =
{
Ck
j : j ∈ {0, . . . ,m− 1} , k ∈ {0, 1, 2}

}
,

B2 = {zk : k ∈ {0, 1, 2}} ,
B3 = {vi : wi = 0} ,
B4 = {vφ} ,
B5 = {vi : wi = 1} .

It is easy to see that s satisfies conditions (1)–(6) and for all v ∈
V \ {vφ},

xk,jv =

{
f sv (x2,j−1 mod m) if k = 0

f sv (xk−1,j) otherwise
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Also by condition (1) and by definition of F and C we have that:

f svφ
(
xk,j
)

=



∨
{i:s(vi)<(vφ)}

x0,j
vi
∨

∨
{i:s(vi)≥(vφ)}

x2,j−1 mod m
vi

if k = 0∨
{i:s(vi)<(vφ)}

x1,j
vi
∨

∨
{i:s(vi)≥(vφ)}

x0,j
vi

if k = 1∨
{i:s(vi)<(vφ)}

x2,j
vi
∨

∨
{i:s(vi)≥(vφ)}

x1,j
vi

if k = 2

Moreover,

w 6= ~1 =⇒
∨

{i:s(vi)<(vφ)}
x0,j
vi

= 1, and

w 6= ~0 =⇒
∨

{i:s(vi)≥(vφ)}
x0,j
vi

= 1, and

φ(w) = 1 =⇒
∨

{i:s(vi)<(vφ)}
x2,j
vi
∨

∨
{i:s(vi)≥(vφ)}

x1,j
vi

= 1.

Hence ∀j ∈ {0, . . . ,m− 1} , ∀k ∈ {0, 1, 2} : f svφ
(
xk,j
)

= 1. Therefore,

C ∈ LC (F, s).

(⇐=) Let s be an update schedule such that C ∈ LC(F, s). Then, by defini-
tion of C, conditions (2)–(6) are satisfied and we define w by condition
(1). Clearly, φ(w) = 1.

Since φ(~0) = φ(~1) = 1, then following configurations do not appear in
C:

xk,j v1 · · · vn vφ
x0,j 1 ~1 1 1

x1,j 1 ~1 1 1

x2,j 0 ~0 0 1

x0,j+1 1 ~1 1 1

xk,j
′

v1 · · · vn vφ
x0,j′ 1 ~1 1 1

x1,j′ 0 ~0 0 1

x2,j′ 1 ~1 1 1

x0,j′+1 1 ~1 1 1

Thus, ∃i, j ∈ {1, . . . , n} : s (vi) ≥ s (vφ) ∧ s (vj) < s (vφ) and therefore

w /∈
{
~0,~1
}

. 2
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Remark 2. Note that the proof of the previous theorem can be modified to
prove that OR FLC is NP-Complete restricted to sequential update schedules.
We just need to add two extra nodes in the digraph: a node a to the cycle
with nodes Ck

j and a node b to the cycle with nodes zk. In this way, the limit

cycle C will be xk,jb = xk,jz0 and xk,ja = xk,j
C0

0
in the new nodes. From Lemma 7

we deduce conditions about the update schedule compatible with a sequential
update.

5. Polynomial cases

In this Section we show some classes of Boolean networks in which LCE
and FLC are polynomial. These classes share the property of having sym-
metric interaction digraph. However, this is condition is not sufficient as
shown in the result below:

Proposition 9. Symmetric-LCE and Symmetric-FLC are NP-Hard.

Proof. For Symmetric LCE the proof is similar to that of Theorem 1, with
the same limit cycle C, but changing the local activation functions by the
following:

∀i ∈ {1, . . . , n} , fvi(x) = xvi ∧ xvφ
fvφ(x) = φ (xvi : i ∈ {1, . . . , n}) ∧ (xz1 ∨ xz2)
fz1(x) = xvφ ∧ xz2
fz2(x) = xvφ ∧ xz1

In this case GF is symmetric as shown in Figure 8
For Symmetric FLC we keep the limit cycle of Theorem 4 but we change

the local activation functions by the following:

∀i ∈ {1, . . . , n} : fvi(x) = ¬xvi ∧ xvφ
fvφ(x) = φ(xvi : i ∈ {1, . . . , n})

In this way GF is symmetric, and the proof is similar to Theorem 4. 2
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vφ

v1

v2

vn

...

z1

z2

Figure 8: Connection digraph of the transformation defined in Proposition 9.

5.1. Limit cycle existence problem

We deal here with LCE problem. We will show that LCE is polynomial
in the case of symmetric AND-OR function. The LCE problem here will be
referred as SYMMETRIC AND-OR LCE.

First, OR networks were studied in Goles and Noual (2012), where, in
our wording, was shown the following result:

Proposition 10. Let F be an OR function with symmetric GF . Then, for
all s 6= sp LC(F, s) = ∅. Furthermore, LC(F, sp) 6= ∅ if and only if GF is
bipartite. In this case, all limit cycles are of length 2.

It is clear that the condition in the above proposition can be tested in
polynomial time and therefore SYMMETRIC OR LCE is polynomial. We
are now extending this result to AND-OR functions, but first we need some
previous definitions.

Definition 2. Given F an AND-OR function with symmetric GF .

• We denote each non trivial connected component of G [VOR(F )] by
GOR

1 , . . . , GOR
kOR

. We call them OR components of GF .

• We denote each non trivial connected component of G [VAND(F )] by
GAND

1 , . . . , GAND
kAND

. We call them AND components of GF .

• We define the alternated nodes as

VAO = V \

(
kOR⋃
i=1

V
(
GOR
i

)
∪

kAND⋃
i=1

V
(
GAND
i

))
and we denote by GAO

1 , . . . , GAO
kAO

, to the connected component of
G [VAO]. We call them alternated components of GF .
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• We call to the set
{
GOR

1 , . . . , GOR
kOR

, GAND
1 , . . . , GAND

kAND
, GAO

1 , . . . , GAO
kAO

}
,

an AOA (AND-OR ALTERNATED) decomposition of GF .

Remark 3. jaja

1. The set
{
V
(
GOR

1

)
, . . . , V

(
GOR
kOR

)
, V
(
GAND

1

)
, . . . , V

(
GAND
kAND

)
, V
(
GAO

1

)
, . . . , V

(
GAO
kAO

)}
is a partition of V (GF ).

2. Given i ∈ {1, . . . , kAO}, we note that ∀u ∈ V
(
GAO
i

)
:

u ∈ VOR =⇒ N−
GF

(u) ⊆ VAND

u ∈ VAND =⇒ N−
GF

(u) ⊆ VOR

Therefore, the non trivial alternate components of GF are bipartite.

Next Lemma shows that every non bipartite AND or OR component of
GF is frozen in any limit cycle.

Lemma 11. Given F an AND-OR function with symmetric GF , C ∈
LC(F, sp) and D an OR or an AND component of GF . If D is non bipartite,
then every node in V (D) is frozen in C.

Proof. Let C =
[
xk
]p
k=0
∈ LC(F, sp) and D be a non bipartite OR compo-

nent of GF (the AND case is analogous). Then, there exists cycle of vertices
C = v1 . . . v2N+1v1 in D (cycle of odd length).

Observe that if there exists a path of length l from a vertex u to a vertex
v and xtu = 1 then xt+lv = 1. Hence, for all vertex vi ∈ V (C), vki = 1 ⇒
vk+2N+1
i = 1. Besides, since GF is symmetric, for all v ∈ V (D), and for all
k ∈ {0, . . . , p− 1}, xkv = 1 ⇒ xk+2

v = 1. Therefore, if there exists v ∈ V (C)
and k ∈ {0, . . . , p− 1} such that xkv = 1, then for all v ∈ V (C) and for
all k ∈ {0, . . . , p− 1}, xkv = 1. Thus, every vertex in the cycle C is frozen.
Finally, since GF is strongly connected, the result holds. 2

Observe that, the neighbors vertices of V (D) are not involved in the
property of every node in V (D) is frozen in C, but in the value of the vertices
of V (D) in C.

Next Theorem give a polynomial testable characterization of when a sym-
metric AND-OR function can generate limit cycles.
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Proposition 12. Given F an AND-OR function with symmetric GF . Then,
LC(F, sp) 6= ∅ if and only if there exists a bipartite element in the AOA
decomposition of GF .

Proof. (=⇒) Let C ∈ LC(F, sp). We have two cases:

1.- There exists an OR or an AND bipartite component of GF , and therefore
the result holds.

2.- All OR and AND components of GF are non bipartite. By Lemma 11,
all of them are frozen in C. Thus, there exists an alternated component
of GF .

If every alternated component of GF is trivial, then each one of them has
only frozen incoming neighbors, and therefore are also frozen. Then, there
exists a non trivial alternated component of GF which, by Remark 3, is
bipartite.

(⇐=) Let D be a bipartite element in the AOA decomposition of GF .

1.- Let us suppose that D is an alternated connected component of GF . We
note that

∀v ∈ VOR ∩ V (D) :N−
GF

(v) ⊆
kAND⋃
i=1

V
(
GAND
i

)
∀v ∈ VAND ∩ V (D) :N−

GF
(v) ⊆

kOR⋃
i=1

V
(
GOR
i

)
If we consider C = [x0, x1, x0], defined according to the following table:

v ∈ V
(
GF
)

VOR ∩ V (D) VAND ∩ V (D) V
(
GF
)
\ V (D)

x0
v 1 0 0

x1
v 0 1 0

Table 5: Limit cycle from Proposition 12 if an alternated component of GF is considered.
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it is clear that C ∈ LC(F, sp).

2.- Let us suppose that D is an OR component of GF .

Let us denote by D1 and D2 the two sets of the bi-partition of D, and by
VT the set that contains the nodes of all the trivial alternated components
of GF . We define the following sets:

V 1
T =

{
v ∈ VT : N−

GF
(v) ⊆ V (D1)

}
⊆ VAND

V 2
T =

{
v ∈ VT : N−

GF
(v) ⊆ V (D2)

}
Now, we define C = [x0, x1, x0] according to the following table:

v ∈ V
(
GF
)

V (D1) ∪ V 1
T V (D2) ∪ V 2

T V
(
GF
)
\
(
V (D) ∪ V 1

T ∪ V 2
T

)
x0
v 1 0 0

x1
v 0 1 0

Table 6: Limit cycle from Proposition 12 if a bipartite OR component of GF is considered.

It is clear that C ∈ LC(F, sp).

3.- If D is an AND component of GF , then the proof is analogous that in
the OR case.

Proposition 13. Given F an AND-OR function with symmetric GF . If
LC(F, sp) = ∅, then for every update schedule s 6= sp, LC(F, s) = ∅.

Proof. We prove that if LC(F, sp) = ∅, then for each update schedule
s 6= sp, LC(F, s) = ∅.

Let s 6= sp be an update schedule. We note that, since GF is symmetric,
then s 6= sp if an only if there exists (u, v) ∈ A

(
GF
)

such that s(u) < s(v).

Let C =
[
xk
]p
k=0
∈ LC(F, s). Since LC(F, sp) = ∅, then all elements in the

AOA decomposition of GF are not bipartite, by Proposition 12. Therefore,
by Lemma 11, every OR and AND component updated in parallel is frozen in
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C. Besides, by the equivalence proved above, there are only trivial alternated
components of GF .

Now, let u, v ∈ VOR (the AND case is analogous) such that (u, v) ∈
A
(
GF
)

and s(u) < s(v). If there exists k ∈ {0, . . . , p− 1} such that xku = 1,
we have that:

xku = 1 =⇒ xkv = 1 =⇒ xk+1
u = 1 =⇒ xk+1

v = 1 · · · =⇒ xk−1
u = 1 =⇒ xk−1

v = 1

Thus, u and v are frozen in C at value 1 as well as every node in the same
connected component. Otherwise, u is frozen in C at value 0 as well as every
node in the same connected component. In either case, all the OR component
is frozen in C.

Finally, all alternated nodes have only frozen neighbors, so they are also
frozen. Therefore, every node is frozen in C, which is a contradiction. 2

Theorem 14. Given F an AND-OR function with symmetric GF . Then,
LC(F, s) 6= ∅ if and only if there exists a bipartite element in the AOA
decomposition of GF .

Proof. Straightforward from Proposition 12 and Proposition 13. 2

The difference between Proposition 10 and Proposition 12 is that, in the
OR case, the only schedule than can cycle is the parallel one and only when
the interaction digraph is bipartite, and in the AND-OR case, there are others
non parallel update schedules that can cycle when there exist the bipartite
element in the AOA decomposition of the interaction digraph (for instance,
keeping the nodes in the bipartite element in the same block and all the
other nodes sequentially), but if such bipartite element does not exist, then
no update schedule can cycle.

Corollary 15. SYMMETRIC AND-OR LCE is polynomial.

Proof. In Theorem 14 we characterized the existence of solution of this
problem and such characterization is testable in polynomial time. 2

5.2. Feasible limit cycle problem

Given the result of the previous section, we prove that SYMMETRIC OR
FLC is also polynomial.

Proposition 16. SYMMETRIC OR FLC is polynomial.
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Proof. Let F be an OR function with symmetric GF and a sequence of
different state vectors C =

[
xk
]p
k=0

, xk ∈ {0, 1}n , xp = x0. According to
Proposition 10, to determine the solution to the problem is necessary and
sufficient to check p = 2, F (x0) = x1 and F (x1) = x0, which can be done in
polynomial time. 2

6. Conclusions

We have studied the algorithmic complexity of two problems about the
existence of a deterministic update schedule (parallel, sequential and block-
sequential) for a given Boolean network which yields any limit cycle (Exis-
tence Limit Cycle problem) or a particular limit cycle (Feasible Limit Cycle
problem). We proved that both problems are NP-Hard even in AND-OR net-
works or in networks having a symmetric interaction digraph. However, they
are both polynomial problems in OR networks with a symmetric interaction
digraph. This because in such networks the existence of a limit cycle depends
on a structural property of the interaction digraph which can be verified in
polynomial time and the length of the limit cycle is at most two. The case
of AND-OR networks with symmetric digraph remains an open problem.
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Demongeot, J., Elena, A., Sené, S., 2008. Robustness in regulatory networks:
a multi-disciplinary approach. Acta Biotheoretica 56 (1-2), 27–49.

28



Elena, A., 2009. Robustesse des réseaux d’automates booléens à seuil aux
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