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Abstract

In this paper we develop the a priori analysis of a mixed finite element method for the
coupling of fluid flow with porous media flow. Flows are governed by the Navier-Stokes
and Darcy equations, respectively, and the corresponding transmission conditions are given
by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. We
consider the standard mixed formulation in the Navier-Stokes domain and the dual-mixed
one in the Darcy region, which yields the introduction of the trace of the porous medium
pressure as a suitable Lagrange multiplier. The finite element subspaces defining the discrete
formulation employ Bernardi-Raugel and Raviart-Thomas elements for the velocities, piece-
wise constants for the pressures, and continuous piecewise linear elements for the Lagrange
multiplier. We show stability, convergence, and a priori error estimates for the associated
Galerkin scheme. Finally, several numerical results illustrating the good performance of the
method and confirming the theoretical rates of convergence are reported.

Keywords: mixed finite element, Navier-Stokes equation, Darcy equation

Mathematics Subject Classifications (1991): 65N15, 65N30, 76D05, 76S05

1 Introduction

The devising of suitable numerical methods for the coupling of fluid flow with porous media flow
has become a very active research area during the last decades, mostly due to the relevance of
this physical process for a variety of phenomena in medicine (filtration process of blood through
vessel walls), geoscience (flow of a river and its riverbed) and industry (oil extraction process),
to name a few.

One of the most studied models for this type of phenomena is the Stokes-Darcy coupled
system, which consists in a set of equations where the Stokes model (for the free fluid flow)
is coupled with the Darcy model (for the fluid flow in the porous medium) through a set of
interface conditions, namely, continuity of the normal velocities (mass conservation), balance of
normal forces, and the Beavers-Joseph-Saffman law. So far, several numerical methods have been
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developed to approximate the solution of the Stokes-Darcy coupled problem (see for instance
[9, 10, 12, 13, 14, 16, 19, 20, 21, 25, 29, 30, 32, 33, 34, 4]), most of them based on appropriate
combinations of stable elements for both media. In this direction, the first theoretical results go
back to [32] and [14]. In [14] the authors introduce an iterative subdomain method employing
the standard velocity-pressure formulation for the Stokes equation and the primal one in the
Darcy domain, whereas in [32] the authors apply the velocity-pressure formulation in the free
fluid domain and the dual-mixed velocity-pressure formulation in the porous medium, yielding
the introduction of the trace of the porous medium pressure on the interface as an additional
unknown. Next, in [19] and [21] new mixed finite element discretizations of the variational
formulation from [32] have been introduced and analyzed. The stability of a specific Galerkin
method, employing the Bernardi-Raugel and Raviart-Thomas elements for the free fluid and the
fluid in the porous medium, respectively, is the main result in [19]. The results from [19] are
improved in [21] where it is shown that the use of any pair of stable Stokes and Darcy elements
implies the well-posedness of the Stokes-Darcy Galerkin scheme. In particular, this includes
Hood-Taylor, Bernardi-Raugel, and MINI element for the Stokes region, and Raviart-Thomas
of any order for the Darcy domain. The analysis in [21] hinges on the fact that the linear
operator defining the continuous variational formulation is given by a compact perturbation of
an invertible linear mapping.

The purpose of the present work is to contribute to the development of new numerical meth-
ods for the coupling of fluid flow with porous media flow by extending the approach in [19] to
the Navier-Stokes/Darcy coupled problem. Up to the authors’ knowledge, the first works in
developing numerical methods for the Navier-Stokes/Darcy coupled problem are [24] and [3].
In [24] the authors introduce and analyze a DG discretization for the nonlinear coupled prob-
lem considering the usual nonsymmetric interior penalty Galerkin (NIPG), symmetric interior
penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG) bilinear forms for
the discretization of the Laplacian in both media and the upwind Lesaint-Raviart discretization
of the convective term in the free fluid domain. In [3] the authors extend the approach in [14]
(see also [12]) and introduce an iterative subdomain method employing the velocity-pressure
formulation for the Navier-Stokes equation and the primal one for the Darcy equation. They
approximate the coupled nonlinear problem using conformal finite elements in both media and
study the convergence properties Newton-like iterative methods for solving this problem. We
point out that, differently from [32] and [19], the approach adopted in [24] and [3] avoids the
introduction of Lagrange multipliers to impose the continuity of the normal velocity of the fluid
through the interface. Indeed, this condition is imposed weakly using the primal formulation of
the Darcy problem for the sole pressure unknown.

According to the above discussion, in this paper we extend the analysis developed in [19] and
study a conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem.
We consider the standard velocity-pressure formulation for the Navier-Stokes equation and the
dual-mixed formulation for the Darcy equation, which yields the velocity and the pressure of
the fluid in both media as the main unknowns of the coupled system. Since one of the interface
conditions becomes essential, we proceed similarly to [32] and [19] and incorporate the trace
of the porous medium pressure as an additional unknown. To analyze the continuous problem
we linearize the coupled system by considering the Oseen linearization in the free fluid domain
and apply the classical Babuška-Brezzi theory and Banach’s fixed point theorem to establish
the well-posedness of the nonlinear coupled problem. Using similar arguments we prove the
well-posedness of the discrete problem for a specific choice of discrete spaces, namely, Bernardi-
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Raugel elements for the velocity in the free fluid region, Raviart-Thomas elements of lowest order
for the filtration velocity in the porous media, piecewise constants with null mean value for the
pressures, and continuous piecewise linear elements for the Lagrange multiplier on the interface.
It is important to remark that the interpolation properties of the Raviart-Thomas and Bernardi-
Raugel operators, mainly those holding on the edges of the triangulations (see Eqs. (3.11), (4.2),
and (4.7) in [19]), play a key role in the proof of one of the required discrete inf-sup conditions.
We point out here that, nevertheless, this approach can not be extended to arbitrary finite
element subspaces as in [21] since the operator defining the continuous variational formulation
is nonlinear, and then, the classical result on projection methods for Fredholm operators of index
zero is not applicable.

The rest of this paper is organized as follows. In Section 2 we introduce the continuous
coupled problem, its weak formulation, the corresponding variational system and we prove its
well-posedness. In Section 3 we define the Galerkin scheme, we prove its well-posedness and
derive the corresponding Cea’s estimate and rate of convergence. Finally, several numerical
examples illustrating the performance of the method and confirming the theoretical order of
convergence are reported in Section 4.

2 The continuous problem

2.1 Statement of the model problem

For simplicity of exposition we set the problem in R2. However, our study can be extended to
the 3D case with few modifications that we will point out in the paper.

In order to describe the geometry, we let ΩS and ΩD be two bounded and simply connected
polygonal domains in R2 such that ∂ΩS ∩ ∂ΩD = Σ 6= ∅ and ΩS ∩ ΩD = ∅. Then, let
ΓS := ∂ΩS\Σ̄, ΓD := ∂ΩD\Σ̄, and denote by n the unit normal vector on the boundaries,
which is chosen pointing outward from ΩS ∪Σ∪ΩD and ΩS (and hence inward to ΩD when seen
on Σ). On Σ we also consider a unit tangent vector t (see Figure 2.1).

ΓS

ΩS

Σ

ΩD

t

ΓD

n

n

n

Figure 2.1: Domains for the 2D Navier-Stokes/Darcy model

The free/porous-medium flow problem can be modelled by coupling the Navier-Stokes and
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the Darcy equations. More precisely, in the free fluid domain ΩS, the motion of the fluid can be
described by the incompressible Navier-Stokes equations:

σS = − pS I + 2µ e(uS) in ΩS ,
−div σS + ρ(uS · ∇)uS = fS in ΩS ,

div uS = 0 in ΩS ,
(2.1)

where µ > 0 is the dynamic viscosity of the fluid, ρ is its density, uS is the fluid velocity, pS the
pressure, σS is the Cauchy stress tensor, I is the 2 × 2 identity matrix, fS is a given external
force, div is the usual divergence operator div acting row-wise on each tensor, and e is the
strain tensor:

e(uS) :=
1

2

(
∇uS + (∇uS)t

)
,

where the superscript t denotes transposition.
In the porous medium ΩD we consider the following Darcy model:

K−1uD = −∇ pD + fD in ΩD ,
div uD = 0 in ΩD ,

(2.2)

where uD is the Darcy velocity (specific discharge), pD is the pressure, and K ∈ L∞(ΩD) is a
symmetric and uniformly positive definite tensor in ΩD representing the intrinsic permeability
κ of the porous medium divided by the dynamic viscosity µ of the fluid. Throughout the paper
we assume that there exists C > 0 such that

ξ ·K(x) ξ ≥ C ‖ξ‖2,

for almost all x ∈ ΩD, and for all ξ ∈ R2. Finally, fD is a given external force that accounts for
gravity, i.e. fD = ρg where ρ is the density of the fluid and g is the gravity acceleration.

The transmission conditions that couple the Navier-Stokes and the Darcy models through
the interface Σ are given by

uS · n = uD · n on Σ ,

σS n +
αdµ√
t · κ · t

(uS · t) t = − pD n on Σ ,
(2.3)

where αd is a dimensionless constant which depends only on the geometrical characteristics of
the porous medium.

The first condition in (2.3) is a consequence of the incompressibility of the fluid and of the
conservation of mass across Σ. The second transmission condition on Σ can be decomposed, at
least formally, into its normal and tangential components as follows:

(σS n) · n = − pD and (σS n) · t = − αdµ√
t · κ · t

(uS · t) on Σ . (2.4)

The first equation in (2.4) corresponds to the balance of normal forces [13, 24, 32], whereas the
second one is known as the Beavers-Joseph-Saffman law, which establishes that the slip velocity
along Σ is proportional to the shear stress along Σ (assuming also, based on experimental
evidence, that uD · t is negligible). We refer to [5, 28, 37] for further details on this interface
condition.
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To complete the definition of the Navier-Stokes/Darcy problem, suitable boundary conditions
must be imposed. For simplicity in our analysis we consider

uS = 0 on ΓS and uD · n = 0 on ΓD. (2.5)

Other possible choices are discussed e.g. in [12].

2.2 The variational formulation

Let us first introduce some notation. Given ? ∈ {S,D}, we denote

(u, v)? :=

∫
Ω?

u v, (u,v)? :=

∫
Ω?

u · v, (σ, τ )? :=

∫
Ω?

σ : τ ,

where, given two arbitrary tensors σ and τ , σ : τ = tr(σtτ ) =
∑2

i,j=1 σijτij .
We use the standard terminology for Sobolev spaces. In addition, if O is a domain and

r ∈ R, we define Hr(O) := [Hr(O)]2. For r = 0 we write L2(O) and L2(Γ) instead of H0(O)
and H0(Γ), respectively, where Γ is a closed Lipschitz curve. The corresponding norms are
denoted by ‖ · ‖r,O (for Hr(O) and Hr(O)) and ‖ · ‖r,Γ (for Hr(Γ)). Also, the Hilbert space

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

with norm ‖ · ‖div ,O, is standard in the realm of mixed problems (see, e.g. [8]).
On the other hand, the symbol for the L2(Γ) inner product

〈ξ, λ〉Γ :=

∫
Γ
ξ λ ∀ ξ, λ ∈ L2(Γ),

will also be employed for their respective extension as the duality product H−1/2(Γ)×H1/2(Γ).
In addition, given two Hilbert spaces H1 and H2, the product space H1 ×H2 will be endowed
with the norm ‖ · ‖H1×H2 = ‖ · ‖H1 + ‖ · ‖H2 . Hereafter, given a non-negative integer k and a
subset S of R2, Pk(S) stands for the space of polynomials defined on S of degree ≤ k. Finally,
we employ 0 as a generic null vector, and use C and c, with or without subscripts, bars, tildes or
hats, to denote generic positive constants independent of the discretization parameters, which
may take different values at different places.

The unknowns in the variational formulation of the Navier-Stokes/Darcy problem and the
corresponding spaces will be:

uS ∈ H1
ΓS

(ΩS), pS ∈ L2(ΩS) , uD ∈ HΓD
(div; ΩD), pD ∈ L2(ΩD) ,

where
H1

ΓS
(ΩS) :=

{
v ∈ H1(ΩS) : v = 0 on ΓS

}
,

HΓD
(div; ΩD) := {v ∈ H(div ; ΩD) : v · n = 0 on ΓD} .

In addition, we need to define a further unknown on the coupling boundary:

λ := pD ∈ H1/2(Σ) . (2.6)

Note that, in principle, the space for pD does not allow enough regularity for the trace λ to exist.
However, the solution of (2.2) has the pressure in H1(ΩD).
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Next, for the derivation of the weak formulation of (2.1)-(2.3), (2.5) we write Ω := ΩS∪Σ∪
ΩD, we define the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
,

and we group the unknowns and spaces as follows:

u := (uS,uD) ∈ H := H1
ΓS

(ΩS)×HΓD
(div; ΩD) ,

(p, λ) ∈ Q := L2
0(Ω)×H1/2(Σ) ,

where p := pSχΩS
+ pDχΩD

, with χΩ? being the characteristic function:

χΩ? :=

{
1 in Ω?,

0 in Ω\Ω?,

for ? ∈ {D,S}.
Hence, we proceed as in [32] to find the mixed variational formulation: Find (u, (p, λ)) ∈

H×Q such that

a(u; u,v) + b(v, (p, λ)) = f(v) ∀v := (vS,vD) ∈ H ,

b(u, (q, ξ)) = 0 ∀ (q, ξ) ∈ Q ,
(2.7)

where a : H× (H×H)→ R and b : H×Q→ R are the forms defined by

a(w; u,v) := AS(uS,vS) +OS(wS; uS,vS) +AD(uD,vD),

b(v, (q, ξ)) := − (q,div vS)S − (q div vD)D + 〈vS · n− vD · n, ξ〉Σ ,

with
AS(uS,vS) := 2µ (e(uS), e(vS))S +

αdµ√
t · κ · t

〈uS · t,vS · t〉Σ,

OS(wS; uS,vS) := ρ ((wS · ∇)uS,vS)S,

AD(uD,vD) := (K−1uD,vD)D,

and f(v) is the linear functional f : H→ R defined as

f(v) = (fS,vS)S + (fD,vD)D ∀v := (vS,vD) ∈ H.

Let us observe that the forms AS, AD, OS and b are continuous: there exist positive constants
CS, CD, CO and Cb, such that

|AS(uS,vS)| ≤ CS‖uS‖1,ΩS
‖vS‖1,ΩS

,

|OS(wS; uS,vS)| ≤ COρ‖wS‖1,ΩS
‖uS‖1,ΩS

‖vS‖1,ΩS
,

|AD(uD,vD)| ≤ CD‖uD‖div ,ΩD
‖vD‖div ,ΩD

,

|b(v, (q, ξ))| ≤ Cb‖v‖H‖(q, ξ)‖Q.

(2.8)
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In addition, the continuity of the functional f is straightforward:

|f(v)| ≤ (‖fS‖0,ΩS
+ ‖fD‖0,ΩD

)‖v‖H. (2.9)

We end this section by observing that owing to the well known Korn and Poincaré inequalities
(see, e.g. [15]) and the fact that K−1 is symmetric and positive definite, we easily obtain that
there exist constants αS, αD > 0, depending only on ΩS and the tensor K, respectively, such
that

AS(vS,vS) ≥ 2µαS ‖vS‖21,ΩS
and AD(vD,vD) ≥ αD‖vD‖20,ΩD

, (2.10)

for all v := (vS,vD) ∈ H.

2.3 The Oseen-Darcy coupled problem

In this section we study the well-posedness of the linearized version of problem (2.7): Given
w := (wS,wD) ∈ H, with div wS = 0 in ΩS, find (u, (p, λ)) ∈ H×Q such that

a(w; u,v) + b(v, (p, λ)) = f(v) ∀v := (vS,vD) ∈ H ,

b(u, (q, ξ)) = 0 ∀ (q, ξ) ∈ Q ,
(2.11)

which corresponds to the variational formulation of the Oseen-Darcy coupled problem. Having
studied the well-posedness of problem (2.11), in what follows we will be able to reformulate (2.7)
as an equivalent fixed-point problem, and as a result, to apply the Classical Banach’s fixed point
theorem to prove the solvability of (2.7).

In the forthcoming analysis we will make use of the classical Babuška-Brezzi theory [7]. To
do this, we first introduce some merely technical results and further notations.

2.3.1 Preliminaries

Given vD ∈ HΓD
(div; ΩD), the boundary condition vD · n = 0 on ΓD means

〈vD · n, E0,D(ζ)〉∂ΩD
= 0 ∀ ζ ∈ H

1/2
00 (ΓD), (2.12)

where 〈·, ·〉∂ΩD
stands for the usual duality pairing between H−1/2(∂ΩD) and H1/2(∂ΩD) with

respect to the L2(∂ΩD)-inner product, E0,D : H1/2(ΓD) → L2(∂ΩD) is the extension operator
defined by

E0,D(ζ) :=

{
ζ on ΓD

0 on Σ
∀ ζ ∈ H1/2(ΓD) ,

and
H

1/2
00 (ΓD) =

{
ζ ∈ H1/2(ΓD) : E0,D(ζ) ∈ H1/2(∂ΩD)

}
,

endowed with the norm ‖ζ‖1/2,00,ΓD
:= ‖E0,D(ζ)‖1/2,∂ΩD

.
As a consequence, it is not difficult to prove (see e.g. Section 2 in [16]) that the restriction

of vD · n to Σ can be identified with an element of H−1/2(Σ), namely

〈vD · n, ξ〉Σ := 〈vD · n, ED(ξ)〉∂ΩD
∀ ξ ∈ H1/2(Σ) , (2.13)

where ED : H1/2(Σ) → H1/2(∂ΩD) is any bounded extension operator. In particular, given
ξ ∈ H1/2(Σ), one could define ED(ξ) := z|∂ΩD

, where z ∈ H1(ΩD) is the unique solution of
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the boundary value problem: ∆z = 0 in ΩD , z = ξ on Σ , ∇z · n = 0 on ΓD. In
addition, one can show (see [16, Lemma 2.2]) that for all ψ ∈ H1/2(∂ΩD), there exist unique

elements ψΣ ∈ H1/2(Σ) and ψΓD
∈ H

1/2
00 (ΓD) such that

ψ = ED(ψΣ) + E0,D(ψΓD
) , (2.14)

and
C1

(
‖ψΣ‖1/2,Σ + ‖ψΓD

‖1/2,00,ΓD

)
≤ ‖ψ‖1/2,∂ΩD

≤ C2

(
‖ψΣ‖1/2,Σ + ‖ψΓD

‖1/2,00,ΓD

)
.

(2.15)

Finally we observe that, since H1/2(∂ΩS) is continuously embedded into L4(∂ΩS) and the
trace operator is continuous, the following inequality holds:

‖vS‖4,Σ = ‖vS‖4,∂ΩS
≤ Csob‖vS‖1/2,∂ΩS

≤ CsobCtrace‖vS‖1,ΩS
, (2.16)

for all vS ∈ H1
ΓS

(ΩS).

2.3.2 Well-posedness of the Oseen-Darcy problem

We begin by proving the continuous inf-sup condition for b. For its proof we proceed as in [19,
Lemma 2.1] and in [22, Lemma 3.3].

Lemma 2.1 There exists β > 0 such that

sup
v∈H
v 6=0

b(v, (q, ξ))

‖v‖H
≥ β ‖(q, ξ)‖Q ∀ (q, ξ) ∈ Q . (2.17)

Proof. Let (q, ξ) ∈ Q. Since q ∈ L2
0(Ω), it is well known (see, e.g. Corollary 2.4 in Chapter

I of [23]) that there exists z ∈ H1
0(Ω) such that div z = − q in Ω and ‖z‖1,Ω ≤ c ‖q‖0,Ω.

Setting v̂ = (v̂S, v̂D) with v̂? = z|Ω? for ? ∈ {S,D}, we find that v̂S · n = v̂D · n on Σ and
‖v̂‖H ≤ c ‖q‖0,Ω, and hence

sup
v∈H
v 6=0

b(v, (q, ξ))

‖v‖H
≥ |b(v̂, (q, ξ)) |

‖v̂‖H
=
‖q‖20,Ω
‖v̂‖H

≥ c1 ‖q‖0,Ω . (2.18)

On the other hand, given φ ∈ H−1/2(Σ), we define η ∈ H−1/2(∂ΩD) as

〈η, µ〉∂ΩD
:= 〈φ, µΣ〉Σ ∀µ ∈ H1/2(∂ΩD) , (2.19)

where µΣ is given by the decomposition (2.14). It is not difficult to see that

〈η,E0,D(ρ)〉∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) , (2.20)

〈η,ED(ξ)〉∂ΩD
= 〈φ, ξ〉Σ , (2.21)

and
‖η‖−1/2,∂ΩD

≤ C ‖φ‖−1/2,Σ . (2.22)
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We set ṽD := ∇z in ΩD, with z ∈ H1(ΩD) being the unique solution of the boundary value
problem:

−∆ z = − 1

|ΩD|
〈η, 1〉∂ΩD

in ΩD , ∇z · n = η on ∂ΩD ,

∫
ΩD

z = 0 .

Observe that div ṽD = 1
|ΩD| 〈η, 1〉∂ΩD

∈ P0(ΩD), ṽD · n = η on ∂ΩD, and ‖ṽD‖div ,ΩD
≤

C ‖η‖−1/2,∂ΩD
≤ C ‖φ‖−1/2,Σ. In addition, owing to (2.13), (2.20) and (2.21), we find that

〈ṽD · n, ξ〉Σ = 〈ṽD · n, ED(ξ)〉∂ΩD
= 〈η,ED(ξ)〉∂ΩD

= 〈φ, ξ〉Σ ,

and
〈ṽD · n, E0,D(ρ)〉∂ΩD

= 〈η,E0,D(ρ)〉∂ΩD
= 0 ∀ρ ∈ H1/2

00 (ΓD).

The latter means that ṽD ∈ HΓD
(div; ΩD). In this way, defining ṽ := (0, ṽD) ∈ H, we obtain

sup
v∈H
v 6=0

b(v, (q, ξ))

‖v‖H
≥ |b(ṽ, (q, ξ)) |

‖ṽ‖H
=
| 〈φ, ξ〉Σ + 1

|ΩD| 〈η, 1〉∂ΩD

∫
ΩD

q |
‖ṽD‖div ,ΩD

≥ c2
| 〈φ, ξ〉Σ |
‖φ‖−1/2,Σ

− c3 ‖q‖0,Ω ,

and using that φ ∈ H−1/2(Γ2) is arbitrary, we get

sup
v∈H
v 6=0

b(v, (q, ξ))

‖v‖H
≥ c2 ‖ξ‖1/2,Σ − c3 ‖q‖0,Ω . (2.23)

Finally, after a simple computation we deduce that (2.18) and (2.23) imply (2.17) with β de-
pending on c1, c2, and c3. �

Now, let us consider the subspace

V := {v ∈ H : b(v, (q, ξ)) = 0 ∀ (q, ξ) ∈ Q }, (2.24)

which corresponds to the kernel of the bilinear form b. According to the definition of b, we
observe that v = (vS,vD) ∈ V, if and only if,

(q,div vS)S + (q,div vD)D = 0 ∀ q ∈ L2
0(Ω)

and
〈vS · n− vD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) .

Then, noting that L2(Ω) = L2
0(Ω)⊕R, and taking ξ ∈ R in the latter equation, we deduce that

(q,div vS)S + (q,div vD)D = 0 ∀ q ∈ L2(Ω),

which implies
div vS = 0 in ΩS and div vD = 0 in ΩD. (2.25)

Next, we establish the ellipticity of a(w; ·, ·) on V for a suitable w ∈ H.
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Lemma 2.2 Let w := (wS,wD) ∈ H, such that div wS = 0 in ΩS and

‖wS‖1,ΩS
≤ 2µαS

ρC3
traceC

2
sob

. (2.26)

Then, there exists α > 0, such that

a(w; v,v) ≥ α ‖v‖2H ∀v ∈ V . (2.27)

Proof. Let v := (vS,vD) ∈ V and w ∈ H satisfying (2.26) and div wS = 0 in ΩS. Integrating
by parts, it is easy to see that

OS(wS; vS,vS) =
ρ

2

∫
Σ

(wS · n)|vS|2 ≥ −
ρ

2

∣∣∣∣∫
Σ

(wS · n)|vS|2
∣∣∣∣ . (2.28)

In turn, from (2.16), the continuity of the trace operator, and the Hölder inequality, we
obtain ∣∣∣∣∫

Σ
(wS · n)|vS|2

∣∣∣∣ ≤ ‖wS‖0,Σ‖vS‖2L4(Σ) ≤ C
3
traceC

2
sob‖wS‖1,ΩS

‖vS‖21,ΩS
. (2.29)

Therefore, combining (2.10), (2.28), (2.29), (2.26), and the fact that div vD = 0 in ΩD, we obtain

a(wS; v,v) ≥ µαS ‖vS‖21,ΩS
+ αD‖vD‖2div ,ΩD

, (2.30)

which yields the result setting α = 1
2 min(µαS, αD). �

We are now in position of establishing the well-posedness of (2.11).

Theorem 2.1 Let w := (wS,wD) ∈ H, such that div wS = 0 in ΩS and

‖wS‖1,ΩS
≤ 2µαS

ρC3
traceC

2
sob

,

and let fS ∈ L2(ΩS) and fD ∈ L2(ΩD). Then, there exists a unique (u, (λ, p)) ∈ H×Q solution
of (2.11). Moreover, there exists a constant C > 0, independent of the solution, such that

‖(u, (λ, p))‖H×Q ≤ C (‖fS‖0,ΩS
+ ‖fD‖0,ΩD

). (2.31)

Proof. From Lemmas 2.1 and 2.2, and from a direct application of the classical Babuška-Brezzi
theory, it follows that problem (2.11) is well posed and the estimate (2.31) holds. �

2.4 Analysis of the continuous Navier-Stokes/Darcy problem

In this section we analyze the well-posedness of problem (2.7). To that end, we now introduce
the reduced version of problem (2.7) on the kernel of V (see (2.24)), which consists in finding
u := (uS,uD) ∈ V such that

a(u; u,v) = f(v), ∀v := (vS,vD) ∈ V. (2.32)

The following equivalence property is standard (see [23]).

Lemma 2.3 If (u, (p, λ)) = ((uS,uD), (p, λ)) ∈ H × Q is a solution of (2.7), then u ∈ V is
also a solution of (2.32). Conversely, if u = (uS,uD) ∈ V is a solution of (2.32), then there
exists a unique (p, λ) ∈ Q, such that (u, (p, λ)) ∈ H×Q is a solution of (2.7).
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Remark 2.1 We recall that the existence of (p, λ) in Lemma 2.3 is guaranteed thanks to the
inf-sup condition (2.17).

In this way, thanks to Lemma 2.3, it suffices to prove that (2.32) is well posed. To this aim,
we introduce the set

X := {v := (vS,vD) ∈ V :
‖vS‖1,ΩS

+ ‖vD‖div ,ΩD
≤ α−1(‖fS‖0,ΩS

+ ‖fD‖0,ΩD
)
}
,

(2.33)

and the mapping
T : w := (wS,wD) ∈ X → u := (uS,uD) ∈ X,

as the solution of the linearized version of problem (2.32): Find u ∈ V such that

a(w; u,v) = f(v), ∀v := (vS,vD) ∈ V. (2.34)

Notice that (2.34) is nothing but the reduced version of the well posed problem (2.11), which
owing to the inf-sup condition (2.17), is equivalent to (2.34). According to this, we deduce that
T is well defined. Alternatively, owing to Lemma 2.2, it is clear that a is elliptic on X, which
readily implies that problem (2.34) is well posed as well, or equivalently, T is well defined. In
addition, assuming that

‖fS‖0,ΩS
+ ‖fD‖0,ΩD

≤ α 2µαS

ρC3
traceC

2
sob

, (2.35)

it is not difficult to see that T maps X into X. In fact, given w := (wS,wD) in X, from (2.35)
we obtain that ‖wS‖1,ΩS

≤ 2µαS

ρC3
traceC

2
sob

. Therefore, owing to Lemma 2.2 we easily obtain

‖T(w)‖2H = ‖u‖2H ≤ α−1a(w; u,u) = α−1f(u)

≤ α−1(‖fS‖0,ΩS
+ ‖fD‖0,ΩD

)‖u‖H,

which implies that T(w) is in X.

In the next lemma we prove that T has a unique fixed point. To do that, we make use
of Banach’s fixed point theorem in the following form: Let X be a Banach space, and let T a
mapping of X into itself. Assume that there exists 0 < r < 1, such that ‖T (u) − T (v)‖X ≤
r‖u − v‖X for all u, v ∈ X, that is, T is a contraction mapping. Then there exists a unique
u ∈ X such that T (u) = u.

Lemma 2.4 Let fS ∈ L2(ΩS) and fD ∈ L2(ΩD) such that

‖fS‖0,ΩS
+ ‖fD‖0,ΩD

< γ, (2.36)

with

γ :=
α

ρ
min

(
2µαS

C3
traceC

2
sob

,
α

CO

)
Then, T has a unique fixed point.

Proof. According to Banach’s fixed point theorem, it is suffices to prove that T is a contraction
mapping. To do that, we let w := (wS,wD), w̃ := (w̃S, w̃D) in X and u := T(w), ũ := T(w̃),
and notice that, owing to assumption (2.36), there holds ‖wS‖1,ΩS

≤ 2µαS

ρC3
traceC

2
sob

.
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Now, from the definition of T we observe that

a(w,u,v)− a(w̃, ũ,v) = 0 ∀v ∈ X,

which implies

AS(uS − ũS,vS) +AD(uD − ũD,vD)
+OS(wS; uS,vS)−OS(w̃S; ũS,vS) = 0 ∀v ∈ X.

(2.37)

In particular, for v = u− ũ, we utilize (2.30) and add and subtract suitable terms, to obtain

α‖u− ũ‖2H ≤ a(w,u− ũ,u− ũ) = −OS(wS − w̃S; ũS,uS − ũS),

which together with the continuity of OS implies

α‖u− ũ‖2H ≤ COρ‖wS − w̃S‖1,ΩS
‖ũS‖1,ΩS

‖uS − ũS‖1,ΩS
.

But, since ũ = (ũS, ũD) ∈ X, we easily get

α‖u− ũ‖2H ≤ COρ

α
‖wS − w̃S‖1,ΩS

‖uS − ũS‖1,ΩS
(‖fS‖0,ΩS

+ ‖fD‖0,ΩD
)

≤ COρ

α
‖w − w̃‖H‖u− ũ‖H(‖fS‖0,ΩS

+ ‖fD‖0,ΩD
),

that is

‖T(w)− T(w̃)‖H ≤
COρ

α2
(‖fS‖0,ΩS

+ ‖fD‖0,ΩD
)‖w − w̃‖H.

The latter estimate and assumption (2.36) imply that T is a contraction in X, which concludes
the proof. �

Now, we are in position of establishing the main result of this section, namely, the well-
posedness of problem (2.7).

Theorem 2.2 Let fS ∈ L2(ΩS) and fD ∈ L2(ΩD) and assume that (2.36) holds. Then, there
exists a unique (u, (p, λ)) ∈ H×Q, solution of (2.7). In addition, there exists a constant C > 0,
independent of the solution, such that

‖(u, (p, λ))‖H×Q ≤ C(‖fS‖0,ΩS
+ ‖fD‖0,ΩD

). (2.38)

Proof. Let u ∈ X be the unique fixed point of T. Then, according to the definition of T, we
easily obtain that u is the unique solution of (2.32). In turn, applying Lemma 2.3 we deduce
the existence of (p, λ) ∈ Q, such that (u, (p, λ)) ∈ H×Q is the unique solution of (2.7).

Next, owing to the inf-sup condition (2.17), the first equation of (2.7) and the continuity of
AS, AD and OS, we have

β ‖(p, λ)‖Q ≤ sup
v∈H
v 6=0

b(v, (p, λ))

‖v‖H
= sup

v∈H
v 6=0

f(v)− a(u; u,v)

‖v‖H

≤ ‖fS‖0,ΩS
+ ‖fD‖0,ΩD

+CS‖uS‖1,ΩS
+ COρ‖uS‖21,ΩS

+ CD‖uD‖div ,ΩD
.

Then, from the latter estimate, recalling that u ∈ X and using assumption (2.36), we obtain
the estimate (2.38), which concludes the proof. �
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3 The discrete problem

Let T S
h and T D

h be respective triangulations of the domains ΩS and ΩD formed by shape-regular
triangles of diameter hT and denote by hS and hD their corresponding mesh sizes. Assume that
they match on Σ so that Th := T S

h ∪ T D
h is a triangulation of Ω := ΩS ∪ Σ ∪ ΩD. Hereafter

h := max{hS, hD}.
For each T ∈ T D

h we consider the local Raviart–Thomas space of the lowest order [35]:

RT0(T ) := span {(1, 0), (0, 1), (x1, x2)} .

In addition, for each T ∈ T S
h we denote by BR(T ) the local Bernardi-Raugel space (see [6, 23]):

BR(T ) := [P1(T )]2 ⊕ span { η2 η3 n1, η1 η3 n2, η1 η2 n3 } ,

where {η1, η2, η3} are the baricentric coordinates of T , and {n1,n2,n3} are the unit outward
normals to the opposite sides of the corresponding vertices of T . Hence, we define the following
finite element subspaces:

Hh(ΩS) := {v ∈ H1(ΩS) : v|T ∈ BR(T ), ∀T ∈ T S
h },

Hh(ΩD) := {v ∈ H(div ; ΩD) : v|T ∈ RT0(T ), ∀T ∈ T D
h },

Lh(Ω) := {q ∈ L2(Ω) : q|T ∈ P0(T ), ∀T ∈ Th}.

The finite element subspaces for the velocities and pressure are, respectively,

Hh,ΓS
(ΩS) := Hh(ΩS) ∩H1

ΓS
(ΩS),

Hh,ΓD
(ΩD) := Hh(ΩD) ∩HΓD

(div ; ΩD),

Lh,0(Ω) := Lh(Ω) ∩ L2
0(Ω).

Next, to introduce the finite element subspace of H1/2(Σ), we denote by Σh the partition of Σ
inherited from T S

h (or T D
h ) and we assume, without loss of generality, that the number of edges

of Σh is even. Then, we let Σ2h be the partition of Σ arising by joining pairs of adjacent edges
of Σh. Note that since Σh is inherited from the interior triangulations, it is automatically of
bounded variation (i.e., the ratio of lengths of adjacent edges is bounded) and, therefore, so is
Σ2h. If the number of edges of Σh is odd, we simply reduce it to the even case by joining any
pair of two adjacent elements, and then construct Σ2h from this reduced partition. Then, we
define the following finite element subspace for λ ∈ H1/2(Σ)

Λh(Σ) = { ξh ∈ C(Σ) : ξh|e ∈ P1(e) ∀ e ∈ Σ2h } .

In this way, grouping the unknowns and spaces as follows:

uh := (uh,S,uh,D) ∈ Hh := Hh,ΓS
(ΩS)×Hh,ΓD

(ΩD),

(ph, λh) ∈ Qh := Lh,0(Ω)× Λh(Σ),

where ph := ph,SχΩS
+ph,DχΩD

, the Galerkin approximation of (2.7) reads: Find (uh, (ph, λh)) ∈
Hh ×Qh such that

ah(uh; uh,v) + b(v, (ph, λh)) = f(v) ∀v := (vS,vD) ∈ Hh ,

b(uh, (q, ξ)) = 0 ∀ (q, ξ) ∈ Qh .
(3.1)
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Here, ah : Hh × (Hh ×Hh)→ R is the discrete version of a defined by

ah(w; u,v) := AS(uS,vS) +OhS(wS; uS,vS) +AD(uD,vD),

where OhS is the well-known skew-symmetric convection form (see [38]):

OhS(wS; uS,vS) := ρ((wS · ∇)uS,vS)S +
ρ

2
(div wS uS,vS)S,

for all uS,vS,wS ∈ Hh(ΩS). Observe that integrating by parts, there holds

OhS(wS; vS,vS) =
ρ

2

∫
Σ

(wS · n)|vS|2 ∀ w,v ∈ H1
ΓS

(ΩS). (3.2)

Moreover, owing to standard Sobolev inequalities, it is easy to see that there exists C̃O, inde-
pendent of h, such that, for all wS, uS, vS ∈ H1

ΓS
(ΩS),

|OhS(wS; uS,vS)| ≤ C̃Oρ‖wS‖1,ΩS
‖uS‖1,ΩS

‖vS‖1,ΩS
. (3.3)

In what follows, we proceed similarly to the continuous case to prove that problem (3.1) is
well posed. We start by proving the solvability of the discrete version of (2.11).

3.1 The discrete Oseen-Darcy coupled problem

In this section we will apply the classical Babuška-Brezzi theory to prove the well-posedness of
the problem: Given wh := (wS,h,wD,h) ∈ Hh and f ∈ L2(ΩS), find (uh, (ph, λh)) ∈ Hh × Qh

such that

ah(wh; uh,v) + b(v, (ph, λh)) = f(v) ∀v := (vS,vD) ∈ Hh ,

b(uh, (q, ξ)) = 0 ∀ (q, ξ) ∈ Qh .
(3.4)

To do that, we first need to introduce some notations and previous results.

3.1.1 Preliminaries

Let ΠS : H1
ΓS

(ΩS) → Hh,ΓS
(ΩS) be the Bernardi-Raugel interpolation operator (see [6, 23]),

which is linear and bounded with respect to the H1(ΩS)-norm. We remark that, given v ∈
H1

ΓS
(ΩS), there holds ∫

e
ΠS(v) · n =

∫
e
v · n for each edge e of T S

h , (3.5)

and hence ∫
ΩS

q div ΠS(v) =

∫
ΩS

q div v ∀ q ∈ Lh(Ω) . (3.6)

Equivalently, if QS denotes the L2(ΩS)-orthogonal projection onto the restriction of Lh(Ω) to
ΩS, then the relation (3.6) can be written as

QS(div (ΠS(v))) = QS(div v) ∀v ∈ H1
ΓS

(ΩS) . (3.7)
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Now, let ΠD : H1(ΩD) → Hh(ΩD) be the Raviart-Thomas interpolation operator, which
owing to [1, Theorem 3.1], can also be defined from the larger space Hδ(ΩD) ∩ H(div ; ΩD)
onto Hh(ΩD) for all δ ∈ (0, 1). In addition, as established by [27, Theorem 3.16], for all
τ ∈ Hδ(ΩD) ∩H(div ; ΩD), there holds

‖τ −ΠD(τ )‖0,ΩD
≤ C hδ2

{
|τ |δ,ΩD

+ ‖div τ‖0,ΩD

}
. (3.8)

We also recall that, given τ ∈ Hδ(ΩD) ∩H(div ; ΩD), there holds∫
e

ΠD(τ ) · n =

∫
e
τ · n for each edge e of T D

h , (3.9)

and hence ∫
ΩD

q div (ΠD(τ )) =

∫
ΩD

q div τ ∀ q ∈ Lh(Ω) . (3.10)

Equivalently, if QD denotes the L2(ΩD)-orthogonal projection onto the restriction of Lh(Ω) to
ΩD, then the relation (3.10) can be written as

div (ΠD(τ )) = QD(div (τ )) ∀ τ ∈ Hδ(ΩD) ∩H(div ; ΩD) . (3.11)

Let us now observe that the set of discrete normal traces on Σ of Hh(ΩD) is given by

Φh(Σ) :=
{
φh : Σ → R : φh|e ∈ P0(e) ∀ edge e ∈ Σh

}
. (3.12)

In [34, Theorem A.1] it has been proved that there exists a discrete lifting

Lh : Φh(Σ)→ Hh,ΓD
(ΩD), (3.13)

such that, for all φh ∈ Φh(Σ),

‖Lh(φh)‖div ;ΩD
≤ c?‖φh‖−1/2,Σ and Lh(φh) · n = φh on Σ. (3.14)

In addition, in [20, Lemma 5.2] it has been proved that there exists β̂Σ > 0, independent of h,
such that the pair of subspaces (Φh(Σ),Λh(Σ)) satisfies the discrete inf-sup condition:

sup
φh ∈Φh(Σ)

φh 6=0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̂Σ ‖ξh‖1/2,Σ ∀ ξh ∈ Λh(Σ) . (3.15)

3.1.2 The discrete inf-sup condition

In what follows we prove that the bilinear form b satisfies the corresponding discrete inf-sup
condition. We start by establishing the following two previous lemmas.

Lemma 3.1 There exists C̃1 > 0, independent of h, such that

sup
v∈Hh
v 6=0

b(v, (qh, ξh))

‖v‖H
≥ C̃1 ‖ξh‖1/2,Σ − ‖qh‖0,Ω, (3.16)

∀ (qh, ξh) ∈ Qh.
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Proof. Let (qh, ξh) ∈ Qh. Given φh ∈ Φh(Σ), we define v̄h,D = Lh(φh), with Lh being the lifting
defined in (3.13). From (3.14), it follows that

‖v̄h,D‖div ;ΩD
≤ c?‖φh‖−1/2,Σ and v̄h,D · n = φh on Σ.

Hence, defining v̄h := (0, v̄h,D) ∈ Hh, we deduce that

sup
v∈Hh
v 6=0

b(v, (qh, ξh))

‖v‖H
≥ b(v̄h, (qh, ξh))

‖v̄h‖H
=

∣∣ 〈v̄h,D · n, ξh〉Σ − (div v̄h,D, qh)D

∣∣
‖v̄h,D‖div ;ΩD

≥
| 〈φh, ξh〉Σ |
‖v̄h‖div ;ΩD

− ‖qh‖0,ΩD

≥ 1

c?

| 〈φh, ξh〉Σ |
‖φh‖−1/2,Σ

− ‖qh‖0,Ω ,

which, noting that φh is arbitrary in Φh(Σ), yields

sup
v∈Hh
v 6=0

b(v, (qh, ξh))

‖v‖H
≥ 1

c?
sup

φh ∈Φh(Σ)

φh 6=0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

− ‖qh‖0,Ω .

This inequality and (3.15) imply the result and complete the proof. �

Lemma 3.2 There exist positive constants C̃2 and C̃3, independent of h, such that for all
(qh, ξh) ∈ Qh, there holds

sup
v∈Hh
v 6=0

b(v, (qh, ξh))

‖v‖H
≥ C̃2 ‖qh‖0,Ω − C̃3 h

1/2
D ‖ξh‖1/2,Σ . (3.17)

Proof. Let (qh, ξh) ∈ Qh. Since qh ∈ L2
0(Ω) there exists z ∈ H1

0(Ω) such that

div z = −q in Ω and ‖z‖1,Ω ≤ c ‖q‖0,Ω . (3.18)

Let z? := z|Ω? for ? ∈ {S,D}. From (3.5), (3.9), and the fact that zS = zD on Σ, it follows that∫
Σ

(ΠS(zS)−ΠD(zD)) · n = 0 . (3.19)

Let us now define χh ∈ L2(∂ΩD) ⊆ H−1/2(∂ΩD) as

χh :=

 (ΠS(zS)−ΠD(zD)) · n on Σ,

0 on ΓD,

which clearly satisfies

〈χh, ED(ξh)〉∂ΩD
= 〈(ΠS(zS)−ΠD(zD)) · n, ξh〉Σ ,

〈χh, ψ〉∂ΩD
= 〈(ΠS(zS)−ΠD(zD)) · n, ψΣ〉Σ ∀ψ ∈ H1/2(∂ΩD),

16



with ψΣ being the element in H1/2(Σ) satisfying (2.14), and

‖χh‖−1/2,∂ΩD
≤ C ‖(ΠS(zS)−ΠD(zD)) · n‖−1/2,Σ . (3.20)

In addition, from (3.19), and the definition of χh, it is not difficult to see that

〈χh, 1〉∂ΩD
= 〈ΠS(zS)−ΠD(zD), 1〉Σ = 0 .

In this way, we let ϕ ∈ H1(ΩD) be the unique weak solution of the problem:

−∆ϕ = 0 in ΩD ,
∂ϕ

∂n
= χh on ∂ΩD ,

∫
ΩD

ϕ = 0 , (3.21)

and define
wh,S := ΠS(zS) and wh,D := ΠD(zD) + ΠD(∇ϕ) . (3.22)

Recalling that z ∈ H1
0(Ω), we observe that zD ∈ H1

ΓD
(ΩD), and then∫

e
wh,D · n =

∫
e
( ΠD(zD) + ΠD(∇ϕ)) · n =

∫
e
(zD · n + χh) = 0

for all edge e on ΓD, which implies that wh,D ∈ Hh,ΓD
(ΩD). Then, we proceed analogously

to the proof of [19, Lemma 4.2], set wh := (wh,S,wh,D) ∈ Hh, and use the properties of the
interpolation operators in Section 3.1.1, to find that

‖wh‖H ≤ C ‖qh‖0,Ω , (3.23)∫
ΩS

qh div wh,S +

∫
ΩD

qh div wh,D = −‖qh‖20,Ω , (3.24)

and
| 〈wh,S · n−wh,D · n, ξh〉Σ | ≤ C h

1/2
D ‖ξh‖1/2,Σ ‖qh‖0,Ω , (3.25)

from which

sup
v∈Hh
v 6=0

b(v, (q, ξ))

‖v‖H
≥ |b(wh, (qh, ξh))|

‖wh‖H
≥ C̃2 ‖qh‖0,Ω − C̃3 h

1/2
D ‖ξh‖1/2,Σ,

which completes the proof. �
Now, we are in position of establishing the discrete inf-sup condition of b.

Lemma 3.3 Assume that

hD ≤

(
C̃1C̃2

2C̃3

)2

, (3.26)

where C̃1, C̃2, C̃3, are the constants in Lemmas 3.1 and 3.2. Then there exists β̃ > 0 , indepen-
dent of h, such that

sup
v∈Hh
v 6=0

b(v, (qh, ξh))

‖v‖H
≥ β̃ ‖(qh, ξh)‖Q . (3.27)
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Proof. Setting

S := sup
v∈Hh
v 6=0

b(v, (qh, ξh))

‖v‖H
,

from Lemmas 3.1 and 3.2, we obtain

C̃2

2
S ≥ C̃2C̃1

2
‖ξh‖1/2,Σ −

C̃2

2
‖qh‖0,Ω

and
S ≥ C̃2 ‖qh‖0,Ω − C̃3 h

1/2
D ‖ξh‖1/2,Σ,

which combined yield(
1 +

C̃2

2

)
S ≥ C̃2

2
‖qh‖0,Ω +

(
C̃2C̃1

2
− C̃3 h

1/2
D

)
‖ξh‖1/2,Σ.

Together to (3.26), this implies the result. �

Remark 3.1 Observe that the existence of a stable lifting Lh satisfying (3.14) and the inf-sup
condition (3.15) play an important role in the proof of the discrete inf-sup condition (3.16). In
particular, as established in Section 3.1.1, the existence of a stable lifting Lh, satisfying (3.14),
has been proved in [34, Theorem A.1] for the 2D case, where the only restriction on the grid is
shape regularity (previously in [20], a similar result was proved under a quasi-uniformity condi-
tion on the mesh near the interface Σ). However, the 3D analogue of [34, Theorem A.1], being
an open problem, cannot be employed, and in order to prove the 3D version of the inf-sup con-
dition (3.15) we need to define the discrete subspace Λh on a suitable independent triangulation
of Σ. Indeed, defining an independent triangulation Σh̃ of the interface Σ formed by triangles

of diameter h̃K , setting h̃Σ := max{h̃K : K ∈ Σh̃}, and defining the set of normal traces of
Hh(ΩD) as in (3.12) (considering triangles instead of edges), with hΣ := max{hK : K ∈ Σh},
it can be proved (see e.g. the second part of the proof of [18, Lemma 7.5]) that there exists
C0 ∈ (0, 1) such that, for each pair (hΣ, h̃Σ) verifying hΣ ≤ C0h̃Σ, the 3D version of (3.15) is
satisfied. Furthermore, in order to construct the stable discrete lifting of the normal traces of
Hh(ΩD), we need to employ some inverse inequalities on Σ, which require quasi-uniform meshes
in a neighbourhood of the interface.

3.1.3 Well-posedness of the discrete Oseen-Darcy problem

Now we prove the well-posedness of problem (3.4). We begin by establishing the ellipticity of
ah(w, ·, ·) on the discrete kernel of b:

Vh := {v := (vS,vD) ∈ Hh : b(v, (qh, ξh)) = 0 ∀ (qh, ξh) ∈ Qh} ,

for a suitable w ∈ Hh.
Observe that, similarly to the continuous case, v ∈ Vh, if and only if,∫

ΩS

qh div vS +

∫
ΩD

qh div vD = 0, ∀ qh ∈ Lh,0(Ω),
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and
〈vS · n− vD · n, ξh〉Σ = 0, ∀ ξh ∈ Λh(Σ),

which, in particular imply that
div vD = 0 in ΩD. (3.28)

Remark 3.2 We recall here that if v := (vS,vD) Vh, then vS is not necessarily divergence-free.
This fact motivates the utilization of the skew-symmetric convective form OhS.

In the next lemma we establish the ellipticity of ah on Vh.

Lemma 3.4 Let w := (wS,wD) ∈ Hh, such that

‖wS‖1,ΩS
≤ 2µαS

ρC3
traceC

2
sob

. (3.29)

Then, there holds
ah(w; v,v) ≥ α ‖v‖2H ∀v ∈ Vh, (3.30)

with α = 1
2 min{µαS, αD}.

Proof. Let w := (wS,wD) ∈ Hh such that (3.29) holds. First, from identity (3.2), for all
vS ∈ Hh,ΓS

(ΩS), we obtain

OhS(wS; vS,vS) =
1

2

∫
Σ

(wS · n)|vS|2 ≥ −
1

2

∣∣∣∣∫
Σ

(wS · n)|vS|2
∣∣∣∣ .

Then, the result follows analogously to the proof of Lemma 2.2. We omit further details. �
We are now in a position of establishing the well-posedness of (3.4).

Theorem 3.1 Let w := (wS,wD) ∈ Hh, such that

‖wS‖1,ΩS
≤ 2µαS

ρC3
traceC

2
sob

.

and assume that (3.26) holds. Then, for each fS ∈ L2(ΩS) and fD ∈ L2(ΩD), there exists a
unique (uh, (λh, ph)) ∈ Hh × Qh solution of (3.4). Moreover, there exists a constant C̃ > 0,
independent of the solution, such that

‖(uh, (λh, ph))‖H×Q ≤ C̃ (‖fS‖0,ΩS
+ ‖fD‖0,ΩD

). (3.31)

Proof. It follows from Lemmas 3.3 and 3.4, and a straightforward application of the classical
Babuška-Brezzi theory. �

3.2 Well-posedness of the discrete Navier-Stokes/Darcy problem

In this section, we proceed analogously to Section 2.4 and prove the well-posedness of problem
(3.1) by means of Banach’s fixed point theorem.
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3.2.1 The discrete contraction mapping

Let us consider the reduced version of problem (2.7): Find uh := (uh,S,uh,D) ∈ Vh such that

ah(uh; uh,v) = f(v), ∀v := (vS,vD) ∈ Vh. (3.32)

Since the discrete inf-sup condition holds (see Lemma 3.3), it is easy to see that problems (3.1)
and (3.32) are equivalent. In fact, we have the following standard result (see [23]).

Lemma 3.5 Assume that (3.26) holds. If (uh, (ph, λh)) ∈ Hh ×Qh is a solution of (3.1), then
uh := (uh,S,uh,D) ∈ Vh is also a solution of (3.32). Conversely, if uh := (uh,S,uh,D) is a
solution of (3.32), then there exists a unique (ph, λh) ∈ Qh, such that (uh, (ph, λh)) ∈ Hh ×Qh

is a solution of (3.1).

Now, similarly to the analysis of the continuous problem, we assume that

‖fS‖0,ΩS
+ ‖fD‖0,ΩD

≤ α 2µαS

ρC3
traceC

2
sob

, (3.33)

and define the set

Xh :=
{

v := (vS,vD) ∈ Vh :

‖vS‖1,ΩS
+ ‖vD‖div ,ΩD

≤ α−1(‖fS‖0,ΩS
+ ‖fD‖0,ΩD

)
}
,

(3.34)

and the mapping

Th : wh := (wh,S,wh,D) ∈ Xh → uh := (uh,S,uh,D) ∈ Xh,

where uh is the unique element in Xh, such that

a(wh; uh,v) = f(v), ∀v := (vS,vD) ∈ Xh. (3.35)

Proceeding as in Section 2.4, we easily obtain that owing to assumption (3.33), the mapping Th
is well defined and maps Xh into Xh.

The following result establishes that Th has a unique fixed point in Xh. Its proof follows
analogously to the proof of Lemma 2.4 by means of Banach’s fixed point theorem. We omit
further details.

Lemma 3.6 Let fS ∈ L2(ΩS) and fD ∈ L2(Ω), such that

‖fS‖0,ΩS
+ ‖fD‖0,ΩD

< γ̃, (3.36)

with

γ̃ :=
α

ρ
min

(
2µαS

C3
traceC

2
sob

,
α

C̃O

)
Then, Th has a unique fixed point in Xh.
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3.2.2 The main result

Now, we are in position of establishing the main result of this section, namely, existence and
uniqueness of solution of problem (3.1).

Theorem 3.2 Let fS ∈ L2(ΩS) and fD ∈ L2(Ω). Assume that (3.26) and (3.36) hold. Then,
there exists a unique (uh, (ph, λh)) ∈ Hh × Qh, solution of (3.1). In addition, there exists a
constant C̃ > 0, independent of the solution, such that

‖(uh, (ph, λh))‖H×Q ≤ C̃(‖fS‖0,ΩS
+ ‖fD‖0,ΩD

). (3.37)

Proof. The proof follows analogously to the proof of Theorem 2.2. In fact, we first observe
that uh is the unique solution of (3.32) if and only if Th(uh) = uh, that is uh is the unique
fixed point of Th. Then, according to the equivalence established in Lemma 3.5, and owing to
Lemma 3.6, it follows that problem (3.1) is well posed. In turn, as in the proof of Theorem 2.2,
the continuous dependence result (3.37) easily follows from the inf-sup condition (3.27), the fact
that the solution uh is in Xh, and the continuity of AS, AD and OhS . �

3.3 Convergence of the Galerkin scheme

Our next goal is to provide the corresponding Cea’s estimate and rate of convergence of the
Galerkin scheme (3.1). To this end and in order to simplify the subsequent analysis, we write
euS = uS − uh,S, euD = uD − uh,D, ep = p − ph, and eλ = λ − λh, where (u, (p, λ)) :=
((uS,uD), (p, λ)) ∈ H×Q and (uh, (ph, λh)) := ((uh,S,uh,D), (p, λh)) ∈ Hh ×Qh are the unique
solutions of (2.7) and (3.1), respectively.

On the other hand, since the exact solution uS ∈ H1
ΓS

(ΩS) satisfies div uS = 0 in ΩS, we
have

OhS(uS,uS,vh,S) = OS(uS,uS,vh,S) ∀vh,S ∈ Hh,ΓS
(ΩS).

Owing to this identity, the following Galerkin orthogonality property holds:

AS(euS ,vS) +AD(euD ,vD) +OhS(uS,uS,vS)

−OhS(uh,S,uh,S,vS) + b(v, (ep, eλ)) = 0

b((euS , euD), (q, ξ)) = 0

(3.38)

for all v := (vS,vD) ∈ Hh , and (q, ξ) ∈ Qh.
The following theorem provides the corresponding Cea’s estimate.

Theorem 3.3 Let fS ∈ L2(ΩS) and fD ∈ L2(ΩD) such that

‖fS‖0,ΩS
+ ‖fD‖0,ΩD

≤ 1

2
min{γ, γ̃}, (3.39)

where γ and γ̃ are the constants in Lemmas 2.4 and 3.6, respectively. Assume that (3.26) holds.
Let (u, (p, λ)) := ((uS,uD), (p, λ)) ∈ H×Q and (uh, (ph, λh)) := ((uh,S,uh,D), (ph, λh)) ∈ Hh×
Qh be the unique solutions of the continuous and discrete problems (2.7) and (3.1), respectively.
Then there exists C > 0, independent of h and the continuous and discrete solutions, such that

‖(u, (p, λ)) − (uh, (ph, λh))‖H×Q
≤ C

{
inf

vh∈Hh

‖u− vh‖H + inf
(qh,ξh)∈Qh

‖(p, λ)− (qh, ξh)‖Q
}
. (3.40)
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Proof. Given v̄ = (v̄h,S, v̄h,D) ∈ Vh and (q̄h, ξ̄h) ∈ Qh, as usual we decompose these errors into

euS = δuS + ηuS
, euD = δuD + ηuD

, ep = δp + ηp, eλ = δλ + ηλ, (3.41)

where
δuS = uS − v̄h,S, ηuS

= v̄h,S − uh,S,

δuD = uD − v̄h,D, ηuD
= v̄h,D − uh,D,

δp = p− q̄h, ηp = q̄h − ph, δλ = λ− ξ̄h, ηλ = ξ̄h − λh.

(3.42)

Now, we recall that owing to assumption (3.39), it follows that u = (uS,uD) ∈ X and uh =
(uh,S,uh,D) ∈ Xh (cf. (2.33) and (3.34)), which implies

‖uS‖1,ΩS
≤ α−1(‖fS‖0,ΩS

+ ‖fD‖0,ΩD
),

‖uh,S‖1,ΩS
≤ α−1(‖fS‖0,ΩS

+ ‖fD‖0,ΩD
),

(3.43)

and
u ∈ V, uh ∈ Vh. (3.44)

In particular, from (3.44) we have

(ηuS
,ηuD

) ∈ Vh. (3.45)

According to the above, and noting that for all vS ∈ Hh,ΓS
(ΩS), there holds

OhS(uS; uS,vS) − OhS(uh,S; uh,S,vS)

= OhS(euS ; uS,vS) +OhS(uh,S; euS ,vS)

= OhS(uh,S;ηuS
,vS) + R,

(3.46)

with
R = OhS(uh,S; δuS ,vS) +OhS(δuS ; uS,vS) +OhS(ηuS

; uS,vS),

we add and subtract suitable terms in the first equation of (3.38) with v = (ηuD
,ηuD

), and
observe that b((ηuS

,ηuD
), (ηp, ηλ)) = 0, to obtain

ah(uh; (ηuS
,ηuD

), (ηuS
,ηuD

)) =

−AS(δuS ,ηuS
)−AD(δuD ,ηuD

)−R− b((ηuS
,ηuD

), (δp, δλ)).

Hence, proceeding analogously to the proof of Lemma 2.2, and using the continuity of AS, AD,
OhS and b, we obtain

µαS‖ηuS
‖21,ΩS

+ αD‖ηuD
‖2div ,ΩD

≤ CS‖δuS‖1,ΩS
‖ηuS

‖1,ΩS
+ CD‖δuD‖div ,ΩD

‖ηuD
‖div ,ΩD

+ C̃O(‖uh,S‖1,ΩS
+ ‖uS‖1,ΩS

)‖δuS‖1,ΩS
‖ηuS

‖1,ΩS

+ C̃O‖uS‖1,ΩS
‖ηuS

‖21,ΩS
+ Cb‖(ηuS

,ηuD
)‖H‖(δp, δλ)‖Q,
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which together with (3.43) and assumption (3.39), implies that there exists C > 0, independent
of h, such that

‖(ηuS
,ηuD

)‖H ≤ C
{
‖(δuS , δuD)‖H + ‖(δp, δλ)‖Q

}
. (3.47)

In this way, from (3.41), (3.47) and the triangle inequality, we obtain

‖(euS , euD)‖H ≤ ‖(δuS , δuD)‖H + ‖(ηuS
,ηuD

)‖H

≤ C̃
{
‖(δuS , δuD)‖H + ‖(δp, δλ)‖Q

}
.

(3.48)

Now, to estimate ep and eλ we observe that from the discrete inf-sup condition (3.27), the
first equation of (3.38), and the first equation of (3.46), there holds

β̃‖(ηp, ηλ)‖Q ≤ sup
v∈Hh
v 6=0

b(v, (ηp, ηλ))

‖v‖H
= sup

v∈Hh
v 6=0

b(vh, (ep, eλ))− b(v, (δp, δλ))

‖v‖H

= sup
v∈Hh
v 6=0

−
(
AS(euS ,vS) +AD(euD ,vD) +OhS(euS ; uS,vS)

‖v‖H

+
OhS(uh,S; euS ,vS) + b(v, (δp, δλ))

‖v‖H

)
.

Then, owing to the continuity of AS, AD, OhS , b, inequalities (3.48) and (3.43), and assumption
(3.39), we obtain

‖(ηp, ηλ)‖Q ≤ c
{
‖(δuS , δuD)‖H + ‖(δp, δλ)‖Q

}
,

which together to the triangle inequality implies

‖(ep, eλ)‖Q ≤ ‖(ηp, ηλ)‖Q + ‖(δp, δλ)‖Q

≤ c̃
{
‖(δuS , δuD)‖H + ‖(δp, δλ)‖Q

}
,

(3.49)

with c̃ > 0 independent of h.
Therefore, recalling that v̄h ∈ Vh and (q̄h, λ̄h) ∈ Qh are arbitrary, from (3.48) and (3.49) we

obtain
‖((euS , euD), (ep, eλ))‖H×Q

≤ C
{

inf
vh∈Vh

‖u− vh‖H + inf
(qh,ξh)∈Qh

‖(p, λ)− (qh, ξh)‖Q
}
.

We conclude the proof by recalling that the discrete inf-sup condition (3.27), and a classical
result on mixed methods (see, for instance [17, Theorem 2.6]) ensure the existence of a constant
c > 0, independent of h, such that

inf
vh∈Vh

‖u− vh‖H ≤ c inf
vh∈Hh

‖u− vh‖H.

�
Now, in order to provide the theoretical rate of convergence of the Galerkin scheme (3.1), we

recall the approximation properties of the subspaces involved (see, e.g. [2, 6, 8, 17, 36]). Note
that each one of them is named after the unknown to which it is applied later on.
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(APuS
h ) For each vS ∈ H2(ΩS), there holds

‖vS −ΠS(vS)‖1,ΩS
≤ C h ‖vS‖2,ΩS

.

(APuD
h ) For each vD ∈ H1(ΩD) with div vD ∈ H1(ΩD), there holds

‖vD −ΠD(vD)‖div ;ΩD
≤ C h

{
‖vD‖1,ΩD

+ ‖div vD‖1,ΩD

}
.

(APph
h ) For each q ∈ H1(Ω) ∩ L2

0(Ω), there exists qh ∈ Lh,0(Ω) such that

‖q − qh‖0,Ω ≤ C h ‖q‖1,Ω .

(APλ
h) For each ξ ∈ H3/2(Σ), there exists ξh ∈ Λh(Σ) such that

‖ξ − ξh‖1/2,Σ ≤ C h ‖ξ‖3/2,Σ .

The following theorem provides the theoretical rate of convergence of the Galerkin scheme
(3.1), under suitable regularity assumptions on the exact solution.

Theorem 3.4 Let fS ∈ L2(ΩS) and fD ∈ L2(ΩD), such that (3.39) holds. Assume that (3.26)
holds. Let (u, (p, λ)) ∈ H × Q and (uh, (ph, λh)) ∈ Hh × Qh be the unique solutions of the
continuous and discrete problems (2.7) and (3.1), respectively, and assume that uS ∈ H2(ΩS),
uD ∈ H1(ΩD), div uD ∈ H1(ΩD), p ∈ H1(Ω), and λ ∈ H3/2(Σ). Then there exists C > 0,
independent of h and the continuous and discrete solutions, such that

‖(u, (p, λ)) − (uh, (ph, λh))‖H×Q ≤ C h
{
‖uS‖2,ΩS

+ ‖uD‖1,ΩD

+ ‖div uD‖1,ΩD
+ ‖p‖1,Ω + ‖λ‖3/2,Σ

}
.

(3.50)

Proof. It is suffices to apply Theorem 3.3 and the approximation properties of the discrete
subespaces. We omit further details. �

4 Numerical results

In this section we present some examples illustrating the performance of our mixed finite ele-
ment scheme (3.1) on a set of quasi-uniform triangulations of the corresponding domains. Our
implementation is based on a FreeFem++ code [26], in conjunction with the direct linear solver
UMFPACK [11].

In order to solve the nonlinear problem, we propose the Newton-type strategy: Given u0 =
(u0

S,u
0
D) ∈ Hh, p0 ∈ Lh,0(Ω) and λ0 ∈ Λh(Σ), for m ≥ 1, find um = (umS ,u

m
D ) ∈ Hh, pm ∈

Lh,0(Ω) and λm ∈ Λh(Σ), such that

AS(umS ,vS) +OhS(um−1
S ; umS ,vS) +OhS(umS ; um−1

S ,vS)

+AD(umD ,vD) + b(v, (pm, λm)) = OhS(um−1
S ; um−1

S ,vS) + f(v)

b(um, (q, ξ)) = 0,

(4.1)

for all v = (vS,vD) ∈ Hh, q ∈ Lh,0(Ω) and ξ ∈ Λh(Σ).
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In all the numerical experiments below, the iterations are terminated once the relative error
of the entire coefficient vectors between two consecutive iterates is sufficiently small, that is,

‖Coeffm+1 −Coeffm‖l2
‖Coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of
freedom defining the finite element subspaces Hh and Qh, and tol is a fixed tolerance chosen as
tol = 1e− 06. For each example shown below we simply take u0 = 0 and (p0, λ0) = 0 as initial
guess.

We now introduce some additional notations. We denote by hΣ := max{he : e ∈ Σ2h}.
As in Section 3.3, the individual errors are denoted by euS = uS − uh,S, euD = uD − uh,D,
epS = pS − ph,S, epD = pD − ph,D and eλ = λ− λh. Also, we let ruS , ruD , rpS , rpD and rλ be the
experimental rates of convergence given by

ruS :=
log(euS/e

′
uS

)

log(hS/h′S)
, ruD :=

log(euD/e
′
uD

)

log(hD/h′D)
,

rpS :=
log(epS/e

′
pS

)

log(hS/h′S)
, rpD :=

log(epD/e
′
pD

)

log(hD/h′D)
rλ :=

log(eλ/e
′
λ)

log(hΣ/h′Σ)
,

where h? and h′? (? ∈ {S,D,Σ}) denote two consecutive mesh sizes with their respective errors
e, e′ (or e, e′).

For each example below we consider the parameters αd = 1, ρ = 1, κ = 1 and K = I.

In our first example we illustrate the accuracy of our method considering a manufactured
exact solution defined on Ω = ΩS ∪ Σ ∪ ΩD, with ΩS := (−1/2, 1/2) × (0, 1/2) and ΩD :=
(−1/2, 1/2) × (−1/2, 0). We consider the viscosity µ = 1 and the terms on the right-hand side
are adjusted so that the exact solution is given by the functions

uS(x1, x2) =

 16x2 cos(πx1)2(x2
2 − 1/4)

8π cos(πx1) sin(πx1)(x2
2 − 1/4)2

 in ΩS ,

uD(x1, x2) =

 −2x2 cos(πx1)2

−2π cos(πx1) sin(πx1)(x2
2 − 1/4)

 in ΩD ,

p?(x1, x2) = ex2 sin(x1) in Ω?,

with ? ∈ {S,D}. Notice that, uS = uD on Σ.

In Table 4.1 we summarize the convergence history for a sequence of quasi-uniform trian-
gulations. We observe that the rate of convergence O(h) predicted by Theorem 3.4 is attained
in all the cases. Next, in Figure 4.1 we display (to the left) the vector field of the approximate
velocity uh and the magnitude of the error |u − uh| (to the right) with N = 443758. Notice
that our method preserves the direction of the velocities on Σ as expected. Also observe that
the maximum value of the error in ΩS is of the order of 3e − 05 whereas in ΩD is of the order
of 3e − 03. In addition, in Figure 4.2 we display (to the left) the approximate pressure and
the magnitude of the error |p− ph| (to the right) with N = 443758. Notice that the maximum
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value of |p − ph| in ΩS is of the order of 3e − 02, whereas in ΩD is of the order of 2e − 05. As
noted from Figures 4.1 and 4.2 (to the right), the approximation is not very accurate in those
regions of high gradients. Nevertheless, this aspect could be easily fixed by applying an adaptive
algorithm based on suitable a posteriori error estimates.

Table 4.1: Example 1: Degrees of freedom N , mesh sizes h?, errors, and rates of convergence
for the mixed approximation of the Navier-Stokes/Darcy problem with µ = 1.

N hS euS ruS epS rpS

491 0.1875 0.3844 – 0.1617 –
1824 0.1085 0.1799 1.3878 0.0699 1.5331
7099 0.0500 0.0916 0.8713 0.0341 0.9253
27986 0.0274 0.0450 1.1861 0.0168 1.1847
111931 0.0131 0.0228 0.9135 0.0078 1.0343
443758 0.0071 0.0113 1.1499 0.0039 1.1414

N hD euD ruD epD rpD

491 0.2001 0.0847 – 0.0154 –
1824 0.0938 0.0433 0.8844 0.0077 0.9224
7099 0.0494 0.0211 1.1227 0.0038 1.0751
27986 0.0262 0.0107 1.0747 0.0019 1.0779
111931 0.0141 0.0053 1.1257 0.0009 1.1283
443758 0.0070 0.0027 0.9796 0.0004 0.9868

N hΣ eλ rλ
491 0.1250 0.0304 –
1824 0.0625 0.0114 1.4132
7099 0.0312 0.0050 1.1924
27986 0.0156 0.0027 0.8994
111931 0.0078 0.0013 1.0430
443758 0.0039 0.0006 0.9898

In our second example we focus on the performance of the iterative method (4.1) with
respect to the viscosity µ. To do this we consider the domain Ω = ΩS ∪ Σ ∪ ΩD, with ΩS :=
(−1/2, 3/2) × (0, 1/2) and ΩD := (−1/2, 3/2) × (−1/2, 0). Then, the terms on the right-hand
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Figure 4.1: Example 1: Velocity vector fields uh (left) and |u− uh| (right) with N = 443758.
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Figure 4.2: Example 1: ph (left) and |p− ph| (right) with N = 443758.

side are adjusted so that the exact solution is given by the functions:

uS(x1, x2) =

 1− eγx1 cos(2πx2)

γ
2πe

γx1 sin(2πx2)

 in ΩS ,

pS(x1, x2) = −1

2
e2γx1 + c in ΩS,

uD(x1, x2) =

 (x1 + 0.5)(x1 − 1.5)

−(x2 + 2)(2x1 − 1.0)

 in ΩD ,

pD(x1, x2) = (x1 − 0.5)3(x2 + 1) in ΩD
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where

γ :=
−8π2

µ−1 +
√
µ−2 + 16π2

.

and the constant c is such that
∫

Ω p = 0. Notice that (uS, pS) is the well known analytical solution
for the Navier-Stokes problem obtained by Kovasznay in [31], which presents a boundary layer
at {−1/2} × (0, 2).

In Table 4.2 we show the behaviour of the iterative method (4.1) as a function of the viscosity
µ, considering different mesh sizes h := max{hS, hD}, and a tolerance tol = 1e−06. Here we
observe that the smaller the parameter µ the higher the number of iterations as it occurs also
in the Newton method for the sole Navier-Stokes equations. Numerical experiments for smaller
values of µ are not reported since the iterative methods need too many iterations to converge
(more than 100). Next, the numerical results in Table 4.3 show the convergence history for a
sequence of quasi-uniform triangulations, considering the viscosity µ = 0.1. We see there that
the rate of convergence O(h) provided by Theorem 3.4 is attained by the unknowns.

Table 4.2: Example 2: Convergence behavior of the iterative method (4.1) with respect to the
parameter µ.

µ h = 0.4129 h = 0.1955 h = 0.1084 h = 0.0517 h = 0.0320

1 5 5 5 5 5
0.1 6 6 6 6 6
0.01 9 7 7 7 7
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