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Centro de Investigación en
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EXPONENTIAL STABILITY TO TIMOSHENKO SYSTEM WITH SHEAR

BOUNDARY DISSIPATION

MARGARETH ALVES, JAIME E. MUÑOZ RIVERA, AND MAURICIO SEPULVEDA

Abstract. In this paper we consider a Timoshenko model with boundary dissipation over
the shear force effective in only one side. We prove that to get the exponential stability of
the related contraction semigroup, the equality of the wave propagations is not enough, it is
necessary additional conditions over the coefficient of the system.

1. Introduction

In this work, we study the stabilization of a Timoshenko model system which arises in the
theory of the transverse vibration of a beam. This system is given by

ρ1 ϕtt − κ (ϕx + ψ)x = 0 in (0, ℓ) × (0,∞),

ρ2 ψtt − b ψxx + κ (ϕx + ψ) = 0 in (0, ℓ) × (0,∞),
(1.1)

where t denotes the time variable, x the space variable along the beam of length ℓ in its equi-
librium configuration; S = κ(ϕx + ψ) and M = bψx denote the shear force and the bending
moment, respectively. We denote by ϕ = ϕ(x, t) the transversal displacement(vertical deflec-
tion) and ψ = ψ(x, t) is the rotation angle of the filament. Here ρ1 = ρA, ρ2 = ρI, κ = KAG,
b = EI, where ρ denotes the density, A is the cross-sectional area, I is the area moment of
inertia, E is the modulus of elasticity, K is the shear factor and G is the shear modulus.

Here from on we consider the system (1.1) with the initial conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) in (0, ℓ), (1.2)

and the boundary conditions

ϕ(ℓ, t) = 0, ψ(0, t) = 0 in (0,∞),

κϕx(0, t) = γ ϕt(0, t), ψx(ℓ, t) = 0, in (0,∞),
(1.3)

with γ > 0.
Several authors studied the Timoshenko model with different mechanism of dissipation and

the most of them considered this mechanism effective only on the bending moment. We mention
here a few of them. For Timoshenko model with frictional damping we can refer to, e.g., [1,22].
There are also several works analyzing Timoshenko models with thermal dissipation, depending
on the Fourier law (see, e.g., [2]) or the Maxwell-Cattaneo law (see, e.g., [10, 21]) or the Pikpin
and Gurtin constitutive law (see, e.g. [8]) for the heat flux or with thermoelasticity of type
III (see, e.g., [15, 16]). In case of the Timoshenko model with dissipative memory effect, we
recall [5, 9, 14]. In all this cases, except for the Timoshenko model with Maxwell-Cattaneo law
(see [8, 10]), the condition necessary and sufficient for a corresponding semigroup associated to
system be exponentially stable is that the wave speeds of the system are equals, that is,

κ

ρ1
=

b

ρ2
. (1.4)

For dissipation boundary to model Timoshenko we have the pioneer work due to Kim and
Renardy [11]. They showed that the model with the dissipation effective in the shear force and
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the bending moment is exponentially stable. This result has been extended in [24] for a more
general dissipative boundary condition.

Ammar-Khodja et al. in [6] proved that the exponential stability holds ”up to a finite dimen-
sional space of initial data”, provided that the dissipative mechanism is effective in both sides
of the boundary of the bending moment (see [7, Theorem 2]). This means that the authors do
not consider dissipative mechanism over the shear force, they only consider over the bending
moment, but they claim that is possible that there exist some initial data, in a finite dimensional
space, for which the exponentially stability does not holds.

Concerning of the Timoshenko system with only one boundary dissipation mechanism the
situation is completely different. That is to say, in this case the equality of the speed waves is
not sufficient to establish exponential stability. In fact, Bassam et al. [7] showed the polynomial
stability for the Timoshenko system with boundary dissipation mechanism only on one side of
the bending moment, provided the coefficients of the system satisfy some conditions.

The main result of this paper is to prove that when the length ℓ of the interval is small the
corresponding semigroup associated to system (1.1)-(1.3) is exponential stability if only if the
condition (1.4) holds and

(j21 − j22)
2

j21 + j22
6= 2κ

b

(
2ℓ

π

)2

, (1.5)

for all natural odd numbers j1, j2, j1 6= j2.
The remaining part of this paper is organized as follows. In the next section 2, we show that

the model is well posed. In section 3 we show that there exists the condition that ensure the
strong stability of the semigroup associated to system (1.1)-(1.3) and in section 4 we prove that it
is exponential stable when (1.4)-(1.5) hold. Our main tools are recent results due to Prüss [20] as
well as spectral arguments. Finally, in section 5 we calculate numerically some large eigenvalues
near the imaginary axis using the Chebyshev-tau method [18], and we present some numerical
results illustrating the asymptotic behavior of the energy based on Finite Differences of second
order and the β−Newmark Method [12].

Throughout this paper, C is a generic constant, not necessarily the same at each occasion (it
will change line to line), which depends in an increasing way on the indicated quantities.

2. Existence and uniqueness

In this section we will show the well-posedness of the problem (1.1)–(1.3) using the semigroup
techniques (see [19]).

Firstly, we introduce the notation. Given a Banach space X, let ‖ · ‖X be the usual norm
defined on X. In particular, we denote by 〈·, ·〉 and ‖ · ‖ the inner product and the norm defined
on L2(0, ℓ), respectively. Before stating the existence and the uniqueness result of problem
(1.1)–(1.3), we first set-up the following short-hand notation for function space

H1
ℓ (0, ℓ) =

{
u ∈ H1(0, ℓ) : u(ℓ) = 0

}
,

H1
∗ (0, ℓ) =

{
u ∈ H1(0, ℓ) : u(0) = 0

}
.

The phase space of our problem is the Hilbert space

H = H1
l (0, ℓ)× L2(0, ℓ)×H1

∗ (0, ℓ) × L2(0, ℓ),

provided by inner product

〈(ϕ1,Φ1, ψ1,Ψ1), (ϕ2,Φ2, ψ2,Ψ2)〉H = κ

∫ ℓ

0
(ϕ1x + ψ1)(ϕ2x + ψ2)dx + b

∫ ℓ

0
ψ1xψ2xdx

+ ρ1

∫ ℓ

0
Φ1Φ2dx + ρ2

∫ ℓ

0
Ψ1Ψ2dx
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and normed by

‖(ϕ,Φ, ψ,Ψ)‖2H = κ‖ϕx + ψ‖2 + ρ1‖Φ‖2 + b‖ψx‖2 + ρ2‖Ψ‖2.
Putting Φ = ϕt and Ψ = ψt and introducing the state vector

U(t) = (ϕ(t),Φ(t), ψ(t),Ψ(t))⊤ ,

the system (1.1)–(1.3) can be written as a Cauchy problem in H of the form

d

dt
U(t) = AU(t), (2.1)

U(0) = U0,

where U0 = (ϕ0, ϕ1, ψ0, ψ1)
⊤ and A : D(A) → H is the operator linear given by

A =












0 Id 0 0
κ

ρ1
(.)xx 0

κ

ρ1
(.)x 0

0 0 0 Id

− κ

ρ2
(.)x 0

b

ρ2
(.)xx −

κ

ρ2
Id 0












while domain D(A) is the subspace

D(A) =
{
U ∈ H : ϕ,ψ ∈ H2(0, ℓ),Φ ∈ H1

ℓ (0, ℓ),Ψ ∈ H1
∗ (0, ℓ), κϕx(0)− γΦ(0) = 0, ψx(ℓ) = 0

}
.

It is not difficult to show that the operator A is dissipative, that is,

Re〈AU,U〉H = −γ|Φ(0)|2 ≤ 0, ∀ U ∈ D(A), (2.2)

and that 0 belongs to the resolvent set ρ(A). Consequently, it follows from the Lumer Phillips
Theorem that the operator A generates a C0-semigroup of contractions

SA(t) = etA : H → H
on the space H. Hence

Proposition 2.1. For any U0 = (ϕ0, ϕ1, ψ0, ψ1)
⊤ ∈ H the problem (2.1) has a unique weak

solution U(t) = SA(t)U0 = (ϕ(t), ϕt(t), ψ(t), ψt(t))
⊤

in U ∈ C([0,∞) : H). Moreover, if U0 ∈
D(An) then

U ∈ Cn−k([0,∞) : [D(Ak))]) ∩ Cn([0, ∞) : H), k = 1, . . . , n.

3. Strong stability

In this section we will prove the uniform stability of the semigroup {SA(t)}t≥0. Therefore we
will need to study the resolvent equation (iλ I− A)U = F , namely

iλϕ− Φ = f1 in H1
ℓ (0, ℓ), (3.1)

iλρ1 Φ− κ (ϕx + ψ)x = f2 in L2(0, ℓ), (3.2)

iλψ −Ψ = f3 in H1
∗ (0, ℓ), (3.3)

iλρ2 Ψ− b ψxx + κ (ϕx + ψ) = f4 in L2(0, ℓ), (3.4)

where F = (f1, f2, f3, f4)
⊤ ∈ H, U = (ϕ,Φ, ψ,Ψ) ∈ D(A) and λ ∈ R. Taking the real part of

the inner product in H of AU with U ∈ D(A) we obtain

|Re〈AU,U〉H| ≤ ‖U‖H‖F‖H (3.5)
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and using (2.2) we get

|Φ(0)|2 ≤ 1

γ
‖U‖H‖F‖H. (3.6)

By (3.1) we conclude that

|ϕ(0)|2 ≤ C

|λ|2 ‖U‖H‖F‖H +
C

λ2
‖F‖2H (3.7)

for a positive constant C. Since κϕ(0) = γΦ(0), it follows that

|ϕx(0)|2 ≤ C‖U‖H‖F‖H, (3.8)

for a positive constant C.

Lemma 3.1. The imaginary axis iR is contained in resolvent set ρ(A) if only if

(ρ1bj
2
1 − ρ2κj

2
2)(ρ2κj

2
1 − ρ1bj

2
2)

(j21 + j22)
6= ρ1κ(ρ1b+ ρ2κ)

(
2ℓ

π

)2

(3.9)

for all natural odd numbers j1, j2, j1 6= j2.

Proof. Since D(A) has compact immersion over the phase space H, the bounded linear operator
A
−1 : H → H is compact and then the spectrum σ(A) has only eigenvalues. We will prove that

A does not have pure imaginary eigenvalues.
By contradiction argument, let 0 6= U = (ϕ,Φ, ψ,Ψ) ∈ D(A) and 0 6= λ ∈ R such that

AU = iλU,

manely,

iλϕ− Φ = 0 in H1
ℓ (0, ℓ), (3.10)

iλρ1 Φ− κ (ϕx + ψ)x = 0 in L2(0, ℓ), (3.11)

iλψ −Ψ = 0 in H1
∗ (0, ℓ), (3.12)

iλρ2 Ψ− b ψxx + κ (ϕx + ψ) = 0 in L2(0, ℓ), (3.13)

Our goal is to find a contradiction by proving that U = 0. Since

〈AU,U〉 = iλ‖U‖2H
it follows that Re〈AU,U〉 = 0, and from (2.2) we have

Φ(0) = 0.

Hence, from (3.10) and by the condition κϕx(0) = γΦ(0) we obtain

ϕ(0) = 0, ϕx(0) = 0, and Φx(0) = 0.

Moreover, as ψ(0) = 0 and ϕx(0) = 0 we can conclude by (3.12)-(3.13) that ψxx(0) = 0.
Therefore, by (3.11) we have that

ϕxxx(0) = 0.

Finally, since that ψx(ℓ) = 0 it follows by (3.11) that

ϕxx(ℓ) = 0.

From equations (3.10) and (3.11) we have

bψxxx = −λ2ρ1b
κ
ϕxx − bϕxxxx

and from (3.12) and (3.13) we obtain

bψxxx = (κ− λ2ρ2)ψx + κϕxx.
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Thus, we get ψx in function of ϕxx and ϕxxxx. Substituting ψx into (3.10) we get that ϕ is a
solution of the ODE

κbϕxxxx + (ρ1b+ ρ2κ)λ
2ϕxx +

(
ρ1ρ2λ

4 − ρ1κλ
2
)
ϕ = 0, (3.14)

whose general solutions depends on the roots of the polynomial

p(r) = κb r4 + (ρ1b+ ρ2κ)λ
2r2 +

(
ρ1ρ2λ

4 − ρ1κλ
2
)
, (3.15)

which are given by

r = ±

√

−1

2

(ρ1
κ

+
ρ2
b

)

λ2 ± 1

2

√
(ρ1
κ

− ρ2
b

)2
λ4 + 4

ρ1
b
λ2.

In case of

ρ1ρ2λ
4 − ρ1κλ

2 = 0 (3.16)

i.e,

λ2 =
κ

ρ2
,

we have that r = 0 is a double root of (3.15). Denoting by r1 = iα, r2 = −iα, r3 = r4 = 0 the
roots of (3.15), the general solution of (3.14) must be of the form

ϕ(x) = c1e
iαx + c2e

−iαx + c3 + c4x.

Due to the boundary condition ϕxxx(0) = 0 we have that c1 = c2. Therefore we can write

ϕ(x) = 2c1 cos(αx) + c3 + c4x.

Since ϕx(0) = 0 we have that c4 = 0. Using that ϕ(0) = 0 we get that c3 = −2c1 and thus

ϕ(x) = 2c1(cos(αx) − 1).

Finally, using ϕ(ℓ) = ϕxx(ℓ) = 0, we obtain

2c1(cos(αℓ)− 1) = 0 and 2c1α
2 cos(αℓ) = 0.

Therefore we obtain that c1 = 0. This implies that ϕ = 0. Therefore, using (3.11) we get that
ψ = 0. So we arrive at contradiction. We conclude that the equality (3.16) does not hold.

Now we can suppose that the polynomial p(r), given in (3.15), has two imaginary roots and
two real roots, then its roots are of the type r1 = iα1, r2 = −iα1, r3 = α2, r4 = −α2 with
|α1| 6= |α2|. Therefore the solution of the ODE (3.14) can be written as

ϕ(x) = c1e
iα1x + c2e

−iα1x + c3e
α2x + c4e

−α2x.

Using that ϕx(0) = ϕxxx(0) = 0 we obtain that

iα1(c1 − c2) + α2(c3 − c4) = 0, −iα3
1(c1 − c2) + α3

2(c3 − c4) = 0,

and we conclude that

c1 = c2 and c3 = c4.

Since ϕ(0) = 0 we have c1 = −c3 and , hence the function ϕ must be of the form

ϕ(x) = 2c1[cos(α1x)− cosh(α2x)].

Proceeding as before, if c1 6= 0, using that ϕ(ℓ) = ϕxx(ℓ) = 0 we obtain
{

cos(α1ℓ) − cosh(α2ℓ) = 0,
α2
1 cos(α1ℓ) − α2

2 cosh(α2ℓ) = 0.

Since |α1| 6= |α2|, it follows that cos(α1ℓ) = 0 and cosh(α2ℓ) = 0, which is not possible. There-
fore, ϕ = 0 and then ψ = 0. Our conclusion follows.
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Now, we suppose that all the four roots of the polynomial (3.15) are imaginary and different,
that is, r1 = iα1, r2 = −iα1, r3 = iα2, r4 = −iα2 with 0 < α2 < α1. Therefore the solution can
be written as

ϕ(x) = c1e
iα1x + c2e

−iα1x + c3e
iα2x + c4e

−iα2x.

Using that ϕx(0) = ϕxxx(0) = 0 we get

α1(c1 − c2) + α2(c3 − c4) = 0, α3
1(c1 − c2) + α3

2(c3 − c4) = 0.

Since α1 6= α2 we conclude that c1−c2 = c3−c4 = 0. Moreover using that ϕ(0) = 0 we conclude
that c1 = −c3. Hence, the function ϕ must be of the form

ϕ(x) = 2c1[cos(α1x)− cos(α2x)].

If c1 6= 0, since ϕ(ℓ) = ϕxx(ℓ) = 0 we obtain
{

cos(α1ℓ)− cos(α2ℓ) = 0,
α2
1 cos(α1ℓ)− α2

2 cos(α2ℓ) = 0,

and as α1 6= α2 we conclude that

cos(α1ℓ) = 0 and cos(α2ℓ) = 0.

Therefore, there are non negative integer numbers m, n, m 6= n, such that

α1 =
(1 + 2m)π

2ℓ
, α2 =

(1 + 2n)π

2ℓ
,

i.e.

α1 =
j1π

2ℓ
, α2 =

j2π

2ℓ
, j1, j2 ∈ N, j1 6= j2, (3.17)

with j1, j2 being odd numbers. Note that

α2
1 + α2

2 =

(
ρ1b+ ρ2κ

κb

)

λ2 (3.18)

and

κbα4
1 − (ρ1b+ ρ2κ)λ

2α2
1 +

(
ρ1ρ2λ

4 − ρ1κλ
2
)
= 0. (3.19)

Substitution of α1 given by (3.17) and λ given by (3.18) in (3.19) yields

κb
( π

2ℓ

)4
j41−bκ(j21 + j22)j

2
1

( π

2ℓ

)4
+

ρ1ρ2κ
2b2

(ρ1b+ ρ2κ)2
(j21 + j22 )

2
( π

2ℓ

)4

− ρ1κ
2b

(ρ1b+ ρ2κ)
(j21 + j22)

( π

2ℓ

)2
= 0,

i.e.,

−bκj22j21 +
ρ1ρ2κ

2b2

(ρ1b+ ρ2κ)2
(j21 + j22)

2 − ρ1κ
2b

(ρ1b+ ρ2κ)
(j21 + j22)

(
2ℓ

π

)2

= 0.

Thus we get

(ρ1b j
2
1 − ρ2κ j

2
2)(ρ2κ j

2
1 − ρ1b j

2
2)

(j21 + j22)
= ρ1κ(ρ1b+ ρ2κ)

(
2ℓ

π

)2

for j1, j2 being natural odd numbers, j1 6= j2, which is not possible due to hypothesis (3.9).
Then the unique solution of the equation (3.14) must be ϕ = 0. In that case we conclude that
ψ = 0. So our conclusion follows.
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4. Exponential Stability

The main aim of this section is to prove the exponential stability of the corresponding semi-
group associated to system (1.1)–(1.3). Our main tool is the well known result (see [20]):

Theorem 4.1. Let {SB(t)}t≥0 be a C0-semigroup of contractions on Hilbert space H with infin-

itesimal generator B. Then S(t) is exponentially stable if and only if

(a) iR ⊂ ρ(B),

(b) lim
|λ|→∞

||(iλI − B)−1||L(H) <∞.

Here and in what follows we assume that (3.9) holds. Given F = (f1, f2, f3, f4) ∈ H and
λ ∈ R, let U = (ϕ,Φ, ψ,Ψ) be the unique solution of the resolvent equation (iλ I − A)U = F ,
namely

iλϕ− Φ = f1 in H1
ℓ (0, ℓ), (4.1)

iλρ1 Φ− κ (ϕx + ψ)x = ρ1f2 in L2(0, ℓ), (4.2)

iλψ −Ψ = f3 in H1
∗ (0, ℓ), (4.3)

iλρ2 Ψ− b ψxx + κ (ϕx + ψ) = ρ2f4 in L2(0, ℓ). (4.4)

Let us introduce the following notation

Iψ(α) = ρ2|Ψ(α)|2 + b|ψx(α)|2,
Iϕ(α) = ρ1|Φ(α)|2 + κ|ϕx(α) + ψ(α)|2,
I(α) = Iϕ(α) + Iψ(α),

I =

∫ ℓ

0
(Iψ(s) + Iϕ(s))ds.

Lemma 4.2. For any q ∈ H1(0, ℓ) we have that
∫ ℓ

0
q′(s)Iϕ(s) ds = q(α)Iϕ(α)|ℓ0 + 2ρ1 Re

∫ ℓ

0
q(x)ΦΨ dx + R1, (4.5)

∫ ℓ

0
q′(s)Iψ(s) ds = q(α)Iψ(α)|ℓ0 − 2κRe

∫ ℓ

0
q(ϕx + ψ)ψx dx + R2, (4.6)

where the term Rj verifies

|Rj| ≤ C‖U‖H‖F‖H, j = 1, 2,

for a positive constant C.

Proof. To get (4.5), let us multiply equation (4.2) by q(ϕx + ψ). Integrating on (0, ℓ) we obtain

iλρ1

∫ ℓ

0
Φq(ϕx + ψ)dx− κ

∫ ℓ

0
(ϕx + ψ)x q (ϕx + ψ)dx = ρ1

∫ ℓ

0
f2 q (ϕx + ψ)dx,

− ρ1

∫ ℓ

0
Φq(iλϕx + iλψ)dx− κ

∫ ℓ

0
(ϕx + ψ)x q (ϕx + ψ)dx = ρ1

∫ ℓ

0
f2 q (ϕx + ψ)dx.

Therefore, taking the real part we get

− ρ1
2

∫ ℓ

0
q(s)

d

dx
|Φ|2dx− κ

2

∫ ℓ

0
q
d

dx
|ϕx + ψ|2dx = ρ1 Re

∫ ℓ

0
qΦΨdx

+ ρ1 Re

∫ ℓ

0
qΦ(f1x + f3)dx+ ρ1Re

∫ ℓ

0
q f2 (ϕx + ψ)dx

︸ ︷︷ ︸

:=
R1
2

.
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Performing an integration by parts we arrive at
∫ ℓ

0
q′(s)[ρ1|Φ(s)|2 + κ|ϕx(s) + ψ(s)|2] ds = qIϕ|ℓ0 + 2ρ1 Re

∫ ℓ

0
qΦΨ dx+R1. (4.7)

Similarly, multiplying the equation (4.4) by qψx and integrating on (0, ℓ) we obtain

iλρ2

∫ ℓ

0
Ψqψxdx− b

∫ ℓ

0
qψxx ψxdx+ κ

∫ ℓ

0
(ϕx + ψ) q ψxdx = ρ2

∫ ℓ

0
f4 q ψxdx

and taking the real part we get

−ρ2Re
∫ ℓ

0
qΨΨxdx− bRe

∫ ℓ

0
ψxx q ψxdx = −κRe

∫ ℓ

0
q(ϕx + ψ)ψx dx

+ ρ2 Re

∫ ℓ

0
Ψ q f3xdx+ ρ2 Re

∫ ℓ

0
f4 q ψxdx

︸ ︷︷ ︸

:=
R2
2

.

Therefore

− ρ2
2

∫ ℓ

0
q(s)

d

dx
|Ψ|2ds− b

2

∫ ℓ

0
q
d

dx
|ψx|2ds = −κRe

∫ ℓ

0
q(ϕx + ψ)ψxdx+

R2

2
.

Integrating by part implies
∫ ℓ

0
q′(s)[ρ2|Ψ(s)|2 + b|ψx(s)|2] ds = qIψ|ℓ0 − 2κ

∫ ℓ

0
q(ϕx + ψ)ψx dx+R2. (4.8)

Our conclusion follows.

Remark 4.3. Multiplying equation (4.2) by qϕx, performing integration by parts and proceeding
as made in the last Lemma we get

∫ ℓ

0
q′[ρ1|Φ|2 + κ|ϕx|2]dx = q(α)Iϕ(α)|ℓ0 + 2κRe

∫ ℓ

0
q ϕxψx dx+R′

1, (4.9)

whit |R′
1| ≤ C‖U‖H‖F‖H, for a positive constant C. Summing (4.9) and (4.6) we obtain the

following observability result

q(α)Iϕ(α)|ℓ0 + q(α)Iψ(α)|ℓ0 =
∫ ℓ

0
q′[ρ1|Φ|2 + ρ2|Ψ|2 + κ|ϕx|2 + b|ψx|2]dx+R′

2

with

|R′
2| ≤ C‖U‖H‖F‖H +

C

|λ| ‖U‖2.

Lemma 4.4. We have that

b Reϕx(0)ψx(0)− b χ Re

∫ ℓ

0
ΦxΨdx+ κ

∫ ℓ

0
|ϕx + ψ|2dx = b

∫ ℓ

0
|ψx|2dx+R5 (4.10)

where R5 = bR3 + bR4,

χ =
ρ2
b

− ρ1
κ

(4.11)

and

|R3| ≤ C‖U‖H‖F‖H and |R4| ≤
C

|λ|‖U‖2H.
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Proof. Multiplying equation (4.2) by ψx and (4.4) by ϕx, integrating on (0, ℓ) we obtain the
equations

− ρ1

∫ ℓ

0
ΦΨxdx− κ

∫ ℓ

0
(ϕx + ψ)xψxdx = ρ1

∫ ℓ

0
Φ f3xdx+ ρ1

∫ ℓ

0
f2 ψxdx,

− ρ2

∫ ℓ

0
ΨΦxdx− b

∫ ℓ

0
ψxx (ϕx + ψ)dx+ κ

∫ ℓ

0
(ϕx + ψ)(ϕx + ψ)dx = −b

∫ ℓ

0
ψxx ψdx

+ κ

∫ ℓ

0
(ϕx + ψ)ψdx+ ρ2

∫ ℓ

0
f4ϕx dx+ ρ2

∫ ℓ

0
Ψf1xdx.

Taking the real part of each one of the above equations and summing the results we obtain

(ρ1
κ

− ρ2
b

)

Re

∫ ℓ

0
ΦxΨdx− Re

∫ ℓ

0

d

dx
[(ϕx + ψ)ψx]dx+

κ

b

∫ ℓ

0
|ϕx + ϕ|2dx = −Re

∫ ℓ

0
ψxx ψdx

+Re

(
ρ1
κ

∫ ℓ

0
Φ f3xdx+

ρ1
κ

∫ ℓ

0
f2 ψxdx+

ρ2
b

∫ ℓ

0
f4ϕx dx+

ρ2
b

∫ ℓ

0
Ψf1xdx

)

︸ ︷︷ ︸

:=R3

+Re
κ

b

∫ ℓ

0
(ϕx + ψ)ψdx

︸ ︷︷ ︸

:=R4

.

Due to boundary conditions Φ(l) = Ψ(0) = ψ(0) = ψx(l) = 0, after that we perform some
algebraic manipulations we obtain (4.10).

Lemma 4.5. We have that

ρ2

∫ ℓ

0
|Ψ|2dx = κ

∫ ℓ

0
|ϕx + ψ|2dx− bRe ψx(0)ϕx(0) − b χRe

∫ ℓ

0
ΨΦxdx+R6, (4.12)

where χ is given in (4.11) and |R6| ≤ C‖U‖H‖F‖H, for a positive constant C.

Proof. Multiplying equation (4.4) by ϕx + ψ and integrating on (0, ℓ) we obtain

κ

∫ ℓ

0
|ϕx + ψ|2dx = ρ2

∫ ℓ

0
Ψ(Φx +Ψ)dx+ bψx(ϕx + ψ) |ℓ0 −b

∫ ℓ

0
ψx(ϕx + ψ)xdx

+ ρ2

∫ ℓ

0
f4(ϕx + ψ)dx+ ρ2

∫ ℓ

0
Ψ(f1x +Ψ)dx

= ρ2

∫ ℓ

0
|Ψ|2dx+ ρ2

∫ ℓ

0
ΨΦxdx+ bψx(ϕx + ψ) |ℓ0 +

bρ1
κ

∫ ℓ

0
ΨxΦdx

+ ρ2

∫ ℓ

0
f4(ϕx + ψ)dx+

bρ1
κ

∫ ℓ

0
ψxf2dx+ ρ2

∫ ℓ

0
Ψ(f1x +Ψ)dx.

Therefore we have that

κ

∫ ℓ

0
|ϕx + ψ|2dx = ρ2

∫ ℓ

0
|Ψ|2dx+ bRe ψx(ϕx + ψ) |ℓ0 +

bρ1
κ

Re ΨΦ |ℓ0 +b χRe
∫ ℓ

0
ΨΦxdx

+ ρ2Re

∫ ℓ

0
f4(ϕx + ψ)dx+

bρ1
κ

Re

∫ ℓ

0
ψxf2dx+ ρ2

∫ ℓ

0
Ψ(f1x +Ψ)dx

︸ ︷︷ ︸

:=−R6

= ρ2

∫ ℓ

0
|Ψ|2dx+ bRe ψx(0)ϕx(0) + b χRe

∫ ℓ

0
ΨΦxdx−R6
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where

|R6| ≤ C‖U‖H‖F‖H.

Lemma 4.6. There exists a positive constant C such that

κ

∫ ℓ

0
|ϕx + ψ|2dx = ρ1

∫ ℓ

0
|Φ|2dx+ κReϕx(0)ϕ(0) + R7 + R8, (4.13)

where

|R7| ≤ C‖U‖H‖F‖H and |R8| ≤
C

|λ| ‖U‖2H.

Proof. Multiplying the equation (4.2) by ϕ, integrating on (0, ℓ) and integrating by parts we get

−ρ1
∫ ℓ

0
Φiλϕdx+ kϕx(0)ϕ(0) + k

∫ ℓ

0
|ϕx + ψ|2dx = ρ1

∫ ℓ

0
f2ϕdx+ k

∫ ℓ

0
(ϕx + ψ)ψdx.

Since iλϕ = φ+ f1 we have

k

∫ ℓ

0
|ϕx + ψ|2dx = ρ1

∫ ℓ

0
|Φ|2dx− kReϕx(0)ϕ(0) + ρ1Re

∫ ℓ

0
f2ϕdx+ ρ1Re

∫ ℓ

0
Φf1dx

︸ ︷︷ ︸

:=R7

+ kRe

∫ ℓ

0
(ϕx + ψ)ψdx

︸ ︷︷ ︸

:=R8

.

Our results follows.

Lemma 4.7. Suppose 0 < ℓ <
√

ρ2
2ρ1
. Moreover, assume that χ = 0 and

(j21 − j22)
2

j21 + j22
6= 2κ

b

(
2ℓ

π

)2

,

for all natural odd numbers j1, j2, j1 6= j2. Then there exists a positive constant C such that

‖(iλ I − A)‖L(H) ≤ C

for |λ| large enough.

Proof. If we consider in (4.5) the function q(x) = x− ℓ, x ∈ (0, ℓ) then we get
∫ ℓ

0
Iϕ(x)dx = ℓk|ϕx(0) + ψ(0)|2 + ρ1ℓ|Φ(0)|2 + 2ρ1 Re

∫ ℓ

0
(x− ℓ)ΦΨ dx+R1.

Applying the Young inequality and using estimates (3.6), (3.8) we obtain
∫ ℓ

0
Iϕ(x)dx ≤ 2ρ1ℓ

∫ ℓ

0
|Φ||Ψ|dx+ C‖U‖H‖F‖H

≤ ρ1
2

∫ ℓ

0
|Φ|2dx+ 2ℓ2ρ1

∫ ℓ

0
|Ψ|2dx+ C‖U‖H‖F‖H.

Therefore
∫ ℓ

0
Iϕ(x)dx ≤ 4ℓ2ρ1

ρ2

∫ ℓ

0
ρ2|Ψ|2dx+ C‖U‖H‖F‖H. (4.14)
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By equations (4.12) and (4.13) we obtain
∫ ℓ

0
ρ2|Ψ|2dx =

1

2

∫ ℓ

0
κ|ϕx + ψ|2dx+

1

2

∫ ℓ

0
κ|ϕx + ψ|2dx− bReψx(0)ϕx(0) +R6

=
1

2

∫ ℓ

0
[ρ1|Φ|2 + κ|ϕx + ψ|2]dx+ κReϕx(0)ϕ(0) − bReψx(0)ϕx(0) +

8∑

j=6

Rj .

It results by equation (4.14) and estimates (3.7) and (3.8) that
∫ ℓ

0
ρ2|Ψ|2dx ≤ 2ℓ2ρ1

ρ2

∫ ℓ

0
ρ2|Ψ|2dx+ C‖U‖H‖F‖H +

C

|λ|2 ‖U‖H‖F‖H

+ C|ψx(0)||ϕx(0)| +
C

|λ|2 ‖F‖
2
H +

C

|λ| ‖U‖2H.

Thus
(

1− 2ρ1ℓ
2

ρ2

)∫ ℓ

0
ρ2|Ψ|2dx ≤ C‖U‖H‖F‖H + C|ψx(0)||ϕx(0)|

+
C

|λ|2 ‖U‖H‖F‖H +
C

|λ|2 ‖F‖
2
H +

C

|λ| ‖U‖2H
(4.15)

for a positive constant C. From the equation (4.10) and from the estimates (4.14) and (4.15)
we obtain

∫ ℓ

0
|ψx|2dx ≤ C‖U‖H‖F‖H + C|ψx(0)||ϕx(0)| +

C

|λ|‖U‖2H + C‖F‖2H

for |λ| > 1. Therefore, we have
∫ ℓ

0
Iψ(x)dx ≤ C‖U‖H‖F‖H + C|ψx(0)||ϕx(0)| +

C

|λ|‖U‖2H + C‖F‖2H (4.16)

for a positive constant C and |λ| > 1. By (4.14), (4.15) and (4.16) we obtain

I ≤ C‖U‖H‖F‖H + C|ψx(0)||ϕx(0)| +
C

|λ|‖U‖2H + C‖F‖2H, (4.17)

for a positive constant C and |λ| > 1. In Lemma 4.2, taking q(x) = x − l and summing the
equations (4.5) and (4.6) we get

ℓ(ρ1|Φ(0)|2 + κ|ϕx(0)|2 + b|ψx(0)|2) ≤ I + 2ρ1ℓ

∫ ℓ

0
|Φ||Ψ|dx+ 2κℓ

∫ ℓ

0
|ϕx + ψ||ψx|dx

+ C‖U‖H‖F‖H.
Therefore using (3.8), (4.17) and the Young inequality we obtain

ℓ(ρ1|Φ(0)|2 + κ|ϕx(0)|2 + b|ψx(0)|2) ≤ C‖U‖H‖F‖H +
bℓ

2
|ψx(0)|2 +

C

|λ| ‖U‖2H + C‖F‖2H.

Finally, it follows from last estimate and from (4.17) that
(

1− C

|λ|

)

‖U‖2H ≤ C‖F‖2H (4.18)

for |λ| > 1 and a positive constant C. Our result follows.

Theorem 4.8. Assume that the conditions of the Lemma 4.7 hold. Then semigroup {SA(t)}t≥0

is exponentially stable.

Proof. The result follows from Lemmas 3.1, 4.7 and Theorem 4.1 and due to continuity of the
operator (λI − A)−1 on C.
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5. Numerical Examples

In this section, we present some numerical results illustrating the asymptotic behavior of the
energy and importance of the different conditions and assumptions for the exponential decay.

5.1. Numerical study of the spectrum. We present numerical results on the linear stability
of our system. We use normal mode analysis and set

φ(x, t) = eλtP (x), ψ(x, t) = eλtQ(x).

Thus, (1.1), (1.3) become the following eigenvalues problem:

κ(Px +Q)x = λ2P (5.1)

bQxx − κ(Px +Q) = λ2Q (5.2)

κPx(0) = λγP (0) (5.3)

P (ℓ) = Q(0) = Q(ℓ) = 0 (5.4)

We discretize P (x) and Q(x) by the Chebyshev-tau method [18] (see also [11]). This is a
spectral method where the expansion functions are the Chebyshev polynomials Tn(z) defined by
Tn(cos θ) = cosnθ when z = cos θ. This method approximates discrete eigenvalues belonging to
C∞ eigenfunctions with infinite-order accuracy. We rescale the spatial variable to z = 2x/ℓ− 1,
so that −1 < z < 1. We set

P (z) =
N∑

n=0

pnTn(z), and Q(z) =
N∑

n=0

qnTn(z) (5.5)

and substitute into (5.1)-(5.4). The four boundary conditions are imposed as part of the condi-
tions determining the coefficients pn and qn. The (4N + 4)× (4N + 4) matrix equation is given
by







O I O O

K1 O K2 O

O O O I

K4 O K3 O













pn
rn
qn
zn







= λ







I O O O

O I0,0 O O

O O I O

O O O I0,0













pn
rn
qn
zn







(5.6)

where Ki, with i = 1, . . . , 4 are the matrices applied to the coefficients of the series (5.5), O are
the null matrix, I the identity and I0,0 = diag{1, . . . , 1, 0, 0}.

5.2. Some examples for different cases. In this subsection we show some numerical exam-
ples of the spectrum for different cases. Here we assume that N = 500. In Figure 1, we observe
the spectrum for different sizes of L, with the coefficients ρ1 = ρ2 = κ = b = 1. That is,
we consider here the case κ

ρ1
= b

ρ2
. In the same Figure 1 we note that for ℓ = 0.25, ℓ = 0.5,

ℓ = 1.0 and even ℓ = 2.0, the spectrum is well separated from the imaginary axis, as is to be
expected when exponential decay of energy. Recall that Theorem 4.8 requires the assumption

0 < ℓ <
√

ρ2
2ρ1
, that in this example holds for ℓ < 1/

√
2. However, for the case ℓ = 5, it is nu-

merically observed that the spectrum approaches the imaginary axis with a pair of eigenvalues
that apparently are on the imaginary axis. In this example there is not exponential decay since
besides not verified hypothesis of Theorem 4.8. Further observed that in all cases of this Figure

1,
(j21−j

2
2)

2

j2
1
+j2

2

6= 2κ
b

(
2ℓ
π

)2
.

Furthermore, we observe in Figure 2, several spectral examples with parameters such that
2κ
b

(
2ℓ
π

)2
=

(j2
1
−j2

2
)2

j2
1
+j2

2

, or, when this condition is verified asymptotically, i.e. for a sequence of

parameters converging to this condition. The graph in Figure 2(A) shows a set of three spectra,

in which the fixed parameters are ℓ = 0.25, ρ2 = κ = 1.0, and ρ1 = κ = 1
2
(j2

1
−j2

2
)2

j2
1
+j2

2

(
π
2ℓ

)2
, for three

pairs of odd indices (j1, j2). We observe in the three cases for this graph ((j1 = 3, j2 = 1), (j1 =
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Figure 1. Exponential Decay: case κ
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ues for different sizes of L.
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(b) Eigenvalues for the case ρ2 = b = 1 and

ρ1 = κ = m
2

(
π
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)2
with m = 8.

Figure 2. Spectra for parameters around condition 2κ
b

(
2ℓ
π

)2
=

(j2
1
−j2

2
)2

j2
1
+j2

2

, when

it is verified, or when an infinite number of cases approaching it.

5, j2 = 1) and (j1 = 7, j2 = 1)), the three pair of eigenvalues on the imaginary axis, or at least
very close to this (away by some numerical inaccuracy). This eigenvalues are λ3,1 ≈ ±i14.0496,
λ5,1 ≈ ±i22.6543 and λ7,1 ≈ ±i31.4159, respectively.

On the other hand, the graph in Figure 2(B) shows the spectrum with the parameters ℓ = 0.25,

ρ2 = κ = 1.0, and ρ1 = κ = m
2

(
π
2ℓ

)2
, with m = 8. This case is special, and corresponds to the

accumulation point of the sequence of consecutive indexes odd (j1, j2), with j2 = j1+2. That is

lim
j2=j1+2→∞

(j21 − j22)
2

j21 + j22
= 8.

Here, there are countless pairs of indices close to the condition, but that equality is not verified
for any of them, then in theory should be exponential decay, and the values themselves distanced
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from the imaginary axis. However, numerically and as shown in Figure 2(B), a large number of
eigenvalues pasted to the imaginary axis is observed.
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2ℓx)
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Exponential decay of the energy in semilog scale
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(b) Exponential decay of the Energy.

Figure 3. Exponential decay of the Energy for L = 0.25, with parameters

such that κ
ρ1

= b
ρ2

and
(j21−j

2
2)

2

j2
1
+j2

2

6= 2κ
b

(
2ℓ
π

)2
. Comparison with y = Ceαt with

C = 0.0025 and α = −0.0046.

5.3. Numerical study of the energy decay. We study numerically here, the decay of Energy.
For this, we use Finite Difference (of second order in space and time) which are more stable
than the Chebyshev-tau method for solving evolution equations. Furthermore, the method of
β−Newmark is a second order method preserving the discrete energy always when the discrete
system of equations of motion is symmetric (i.e. matrices associated to the system should be
symmetric).

We consider J an integer non-negative and h = ℓ/(J+1) an spatial subdivision of the interval
(0, ℓ) given by 0 = x0 < x1 < . . . < xJ < xJ+1 = ℓ, with xj = jh each node of the mesh. We
use ϕj(t), ψj(t), for all j = 1, 2, . . . , J and t > 0 to denote the approximate values of ϕ(jh, t)

and ψ(jh, t), respectively. In addition, we denote the discrete operator ∆hϑj =
ϑj+1−2ϑj+ϑj−1

h2

We assume the following finite difference scheme applied to system (1.1)-(1.3)

ρ1
ϕ′′
j+1 + 2ϕ′′

j + ϕ′′
j−1

4
− κ∆hϕj − κ

ψj+1 − ψj−1

2h
= 0, (5.7)

ρ2
ψ′′
j+1 + 2ψ′′

j + ψ′′
j−1

2
− b∆hψj + κ

ϕj+1 − ϕj−1

2h
+ κ

ψj+1 + 2ψj + ψj−1

4
= 0, (5.8)

j = 1, . . . , J,

ϕJ = ψ0 = ψJ+1 − ψJ = 0, (5.9)

κ
ϕ1 − ϕ0

h
= γϕ′

0 (5.10)

ϕj(0) = ϕ0
j , ϕ

′
j(0) = ϕ1

j , ψj(0) = ψ0
j , ψ

′
j(0) = ψ1

j , j = 1, . . . , J.(5.11)

The discrete Energy of (5.7)-(5.11) is given by

E∆(t) = ρ1
h

2

J∑

j=0

|ϕ′
j |2 + ρ2

h

2

J∑

j=0

|ψ′
j |2 +

h

2

[

b

∣
∣
∣
∣

ψj+1 − ψj
h

∣
∣
∣
∣

2

+ κ

∣
∣
∣
∣

ϕj+1 − ϕj
h

+
ψj+1 + ψj

2

∣
∣
∣
∣

2
]

(5.12)
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Figure 4. Energy behaviour for the case ρ2 = b = 1 and ρ1 = κ = m
2

(
π
2ℓ

)2
with

m = 8, and different initial conditions.

5.4. Equation of motion and time discretization. The system (5.7)-(5.10) can be rewritten
as

M

[
ϕ̈h
ψ̈h

]

+ C

[
ϕ̇h
ψ̇h

]

+ K

[
ϕh
ψh

]

= 0, (5.13)

where M, C and K are the mass, damping and stiffness matrices of the system in M2J(R), and
ϕh = (ϕ1, . . . , ϕJ )

⊤, ψh = (ψ1, . . . , ψJ)
⊤ ∈ R

J .
The Newmark algorithm [17] is based on a set of two relations expressing the forward dis-

placement [ϕn+1
h , ψn+1

h ]⊤ and velocity [Φn+1
h ,Ψn+1

h ]⊤ = [ϕ̇n+1
h , ψ̇n+1

h ]⊤. The method consists in
updating the displacement, velocity and acceleration vectors from current time tn = nδt to the
time tn+1 = (n+ 1)δt,

Φn+1
h = Φnh + (1− γ)δt Φ̇nh + γδt Φ̇n+1

h (5.14)

ϕn+1
h = ϕnh +

(
1

2
− β

)

δt2 Φ̇nh + βδt2 Φ̇n+1
h (5.15)

Ψn+1
h = Ψn

h + (1− γ)δt Ψ̇n
h + γδt Ψ̇n+1

h (5.16)

ψn+1
h = ψnh +

(
1

2
− β

)

δt2 Ψ̇n
h + βδt2 Ψ̇n+1

h , (5.17)

where β and γ are parameters of the methods that will be fixed later. Replacing (5.14)-(5.17)
in the equation of motion (5.13), we obtain

(
M+ γδtC + βδt2K

)
[

Φ̇n+1
h

Ψ̇n+1
h

]

= −C

([
Φnh
Ψn
h

]

+ (1− γ)δt

[
Φ̇nh
Ψ̇n
h

])

−K

([
ϕnh
ψnh

]

+ δt

[
Φnh
Ψn
h

]

+

(
1

2
− β

)

δt2
[

Φ̇nh
Ψ̇n
h

])

. (5.18)

The acceleration [Φ̇n+1
h , Ψ̇n+1

h ]⊤ is computed from (5.18), and the velocities [Φn+1
h ,Ψn+1

h ]⊤ are

obtained from (5.14) and (5.16), respectively. Finally, displacement [ϕn+1
h , ψn+1

h ]⊤ follow from
(5.15) and (5.17), by simple matrix operations. Thus, the fully discrete energy of the system
(5.14)-(5.18) is given by

Enh :=
1

2

[

Φ⊤
h ,Ψ

⊤
h

]

M

[
Φh
Ψh

]

+
1

2

[

ϕ⊤
h , ψ

⊤
h

]

K

[
ϕh
ψh

]

(5.19)
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which is an approximation of energy for the continuous case. The increment of this energy can
be expressed in terms of mean values and increments of the displacement and velocity. Then,
we choose γ = 1

2 and β = γ
2 , reducing the above expression to

En+1
δ − Enδ = −1

2

{
[

∆ϕ⊤
h ,∆ψ

⊤
h

]

C

[
∆ϕh
∆ψh

]

+ δt

[

Φ
n+ 1

2
,⊤

h ,Ψ
n+ 1

2
,⊤

h

]

C

[

Φ
n+ 1

2

h

Ψ
n+ 1

2

h

]}

6 0.

With this, the fully discrete Energy obtained by the β−Newmark method is decreasing and we
expect that its asymptotic behavior be a reflection of the continuous case (see [12] and also [3,4]).

5.5. Numerical examples. We make simulations with parameters ℓ = 0.25, ρ2 = b = γ = 1,
and the initial condition:

ϕ(x, 0) = cos(α1x)− cos(α2x), x ∈ (0, ℓ), (5.20)

and Φ(x, 0) = ψ(x, 0) = Ψ(x, 0) = 0.
In Figure 3, the exponential decay of energy is observed in scale semi-log from the initial

condition (5.20) with α1 = 3π
2ℓ , α2 = π

2ℓ , ℓ = 0.25 and ρ1 = κ = ρ2 = b = γ = 1. This is
compared to an exponential curve whose rate is given by α = −0.0046, and is in line with the
separation between the spectrum and the imaginary axis seen in Figure 1.

Figure 4 shows the evolution in time of the energies simulated using parameters that give
the spectrum shown in the graph of Figure 2(B). In this graph certain eigenvalues stick to the
imaginary axis, and therefore it is not expected to have any decay of the energy, or at least
numerically decay has been extremely slow. That is what actually is observed in Figure 4(B),
and specifically this happens for hight frequencies of the initial condition in terms of cosine
functions, i.e. when we come to the eigenfunctions of the eigenvalues closer to the imaginary
axis. In particular, for the higher frequencies pair (j1, j2) = (21; 19), the energy remains
practically constant as shown in Figure 4(B).
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