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A REDUCED MODEL AND SIMULATIONS OF REACTIVE SETTLING
OF ACTIVATED SLUDGE

RAIMUND BÜRGERA,∗, JULIO CAREAGAA, STEFAN DIEHLB, CAMILO MEJÍASA,
INGMAR NOPENSC, AND PETER A. VANROLLEGHEMD

Abstract. Denitrification during the sedimentation process in secondary settlers in waste-
water treatment plants has been reported to be significant. The modelling of such a process
with the conservation of mass leads to a nonliner convection-diffusion-reaction partial differ-
ential equation, which needs non-standard numerical methods to obtain reliable simulations.
The purpose of this study is to present how the Bürger-Diehl settler model, which models
the sedimentation-consolidation process without reactions, can be extended to include bi-
ological reactions. This is done with a reduced model, having few particulate and soluble
components, which can be seen as a model of the last stage of a sequencing batch reactor
(SBR) process during which denitrification occurs. The main result is a numerical scheme,
which has been used for simulations with different initial conditions. One outcome of the
simulations is that the initial distribution of activated sludge, which in principle can be
controlled by the operator of an SBR, can have a significant impact on the reduction of
nitrate.

1. Introduction

A well-accepted model for the sedimentation process of the secondary clarifier, or settler, in
the activated sludge process of wastewater treatment plants originates from the conservation
of mass and can be stated as a scalar, nonlinear partial differential equation (PDE) for the
sludge concentration as function of depth and time (Bürger et al., 2011, 2013). It is the
purpose of this contribution to make a first step towards extending these advances for the
numerical treatment of non-reactive settling to the reactive case. To this end, we focus on a
reduced-order problem for batch sedimentation as a first approach.
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D modelEAU, Département de Génie Civil et de Génie des Eaux, Université Laval, 1065 Av. de la
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Most models of the activated sludge process are based on the assumption that all reactions
occur in the biological reactor and that there are no reactions in the secondary settling tank
(SST) (Gernaey et al., 2014). It is, however, well known that biological reactions do occur
in the settler. In particular, denitrification occurs at the bottom of the tank, where the
concentration of sludge is high and there is no supply of oxygen. Siegrist et al. (1995)
and Koch et al. (1999) reported measurements from three plants showing that of the total
denitrification in each plant, 15%, 30% and 37% occurred in the settler, respectively.

A couple of modelling approaches of reactive settling can be found in the literature. Ger-
naey et al. (2006) presented a simulation study of two different models to account for the
reaction taking place in the settler. Both models use the simulation model by Takács et
al. (1991) for the sedimentation process. The first model includes an extra model block in
the return sludge line consisting of an empirical, algebraic elimination of oxygen and ni-
trate to account for the reactions in the settler. The second model consists in placing the
entire activated sludge model no. 1 (ASM1) model by Henze et al. (1987), modelling the
bioreactions, in each of the 10 layers in the Takács settler model. Improvements in nitrogen
removal predictions were obtained and the first model was recommended mainly because of
the much larger computational cost for the second one, but also because the second model
overestimates the reactive capacity of the settler. Further studies with the second model
type and different ASMx models were reported by Flores-Alsina et al. (2012), Ostace et
al. (2012) and Guerrero et al. (2013). To compensate for the overestimation of the 10-layer
reactive settler model, Guerrero et al. (2013) introduced a reduction factor to the kinetics.
Such factors are not present in the original mass balances and it is therefore not in agreement
with a consistent modelling methodology (Bürger et al., 2011) to introduce any such as a
compensation for some other phenomenon — in this case the coarse spatial discretization
(10 layers) of the settler for the numerical simulation.

Already without reactions, the Takács simulation model is not recommended because of
failure of agreement with the solutions of the conservation of mass PDE in certain situations
(Jeppsson and Diehl, 1996a; Bürger et al., 2011, 2012), but also for other shortcomings
during normal operating conditions (Torfs et al., 2015a).

A related application is the reactive settling occurring in sequencing batch reactors (SBRs),
for which some heuristic modelling approaches can be found (Alex et al., 2011; Kazmi and
Furumai, 2000a,b). Keller and Yuan (2002) modelled SBRs without reactive settling.

We are interested in modelling reactive settling with a consistent modelling methodology
(Bürger et al., 2011) by starting with the mass balances and using appropriate numerical
methods for the discretization of the model PDEs. Despite the simplicity of our reduced
model, it accounts for three constitutive assumptions that determine its mathematical nature:
i) the hindered settling of the flocculated particles; ii) compression of the flocculated particles
at high concentrations when a network is formed; iii) reaction terms containing nonlinear
growth rate kinetics and a constant decay rate of biomass. Properties (i) and (ii) are already
realized in the Bürger-Diehl model (Bürger et al., 2011, 2013; Torfs et al., 2015a).

The remainder of this paper is organized as follows. In Section 2 we introduce the govern-
ing model, which is defined by a system of convection-diffusion-reaction partial differential
equation (PDEs) supplemented by suitable initial and boundary conditions. (The word “dif-
fusion” is a common mathematical terminology for terms in the PDE with second-order
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spatial derivative; in our case such terms model either some diffusion or dispersion phenom-
ena or, in the case of the particulate material, the compression of the network of flocculated
particles at high concentrations.) Moreover, the material specific model functions, namely
the hindered settling and effective solid stress functions, are introduced. In Section 3 the nu-
merical method is introduced, starting from discretization in space only (Section 3.1), which
is closely related to a system of method-of-lines ordinary differential equations (ODEs). A
fully discrete, explicit scheme is outlined in Section 3.2. In Section 4, we present numerical
solutions of the governing model, where we are interested in three types of initial conditions:
the traditional Kynch test (KT) (Kynch, 1952), which describes the settling of an initially
homogeneous suspension in a column; the Diehl test (Diehl, 2007), in which the suspension
is initially located above clear liquid. Such an initial condition can be obtained either by
a membrane, which is removed at t = 0, or by rising the sludge to the top by aeration,
e.g., in an SBR. The third initial condition gives the “overcompressed test” (OT), which
corresponds to a hypothetical initial configuration of a layer of strongly concentrated sedi-
ment with clear liquid above where the “pressure” is released at t = 0, allowing the bed to
expand. The OT was employed by Bürger and Concha (1998) and Bustos et al. (1999) as an
example to illustrate the consequences of modelling sediment compressibility by a nonlinear,
possibly degenerate diffusion term under extreme conditions. Since the particle velocities in
OT are negative in some regions, contrary to the KT and DT, this experiment is important
for testing a numerical scheme. Sections 4.2, 4.3 and 4.4 present the numerical results for
KT, DT, and OT scenarios, respectively, and are followed by a brief discussion of numerical
error and convergence properties of the scheme (Section 4.5). Finally, conclusions arising
from the treatment are collected in Section 5.

2. Governing model

We study one-dimensional batch sedimentation of suspended particles in water with soluble
substrates in a closed vessel with a constant cross-sectional area. The depth z is measured
from the suspension surface z = 0 downwards to the bottom at z = B. For simplicity,
we study the last settling phase of a SBR process where we assume that, in addition to
particulate biomass and inert matter, there is still a certain amount of dissolved nitrate
(NO3) in the water. As the biomass decays, readily biodegradable COD is produced, which
reacts with the nitrate, and nitrogen gas (N2) is produced in such low concentrations that
it is dissolved in the water.

The particulate microorganisms are divided into only two components, which we for sim-
plicity call active biomass and inert matter, having the concentrations Xa and Xi, respec-
tively. These could typically be ordinary heterotrophic organisms (XOHO) and unbiodegrad-
able particulate matter (XU), respectively. The total concentration of the flocculated par-
ticles is X := Xa + Xi. Each particle is assumed to settle with a velocity v = v(X,Xz)
given by constitutive assumptions for hindered and compressive settling involving the local
concentration X and its spatial derivative Xz := ∂X/∂z. The notation for the soluble con-
centrations are SNO3 for the nitrate, SS for the readily biodegradable substrate and SN2 for
nitrogen gas. The small spatial movement of the substrate caused by the settling particles
is assumed to be captured by a single diffusion coefficient dS in the model equations.
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At the start of the settling, we assume a homogeneous suspension of particles with con-
centration X0, nitrate at the concentration S0

NO3
, readily biodegradable substrates at S0

S and
a zero concentration of nitrogen gas. Each particle consists initially of a certain percentage
p0 of active biomass and the remainder is inert. The balance of mass yields the following
partial differential equations for 0 < z < B and t > 0:

∂Xa

∂t
= − ∂

∂z

(
v(X,Xz)Xa

)
+
(
µ(SNO3 , SS)− b

)
Xa, (1)

∂Xi

∂t
= − ∂

∂z

(
v(X,Xz)Xi

)
+ fPbXa, (2)

∂SNO3

∂t
= dS

∂2SNO3

∂z2
− 1− Y

2.86Y
µ(SNO3 , SS)Xa, (3)

∂SS

∂t
= dS

∂2SS

∂z2
−
(
µ(SNO3 , SS)

Y
− (1− fP)b

)
Xa, (4)

∂SN2

∂t
= dS

∂2SN2

∂z2
+

1− Y
2.86Y

µ(SNO3 , SS)Xa, (5)

which are posed along with the initial conditions

Xa(z, 0) = p0X0, Xi(z, 0) = (1− p0)X0,

SNO3(z, 0) = S0
NO3

, SS(z, 0) = S0
S, SN2(z, 0) = 0,

(6)

where S0
NO3

and S0
S are given numbers, and the zero-flux boundary conditions

v(X,Xz)X|z=0 = v(X,Xz)X|z=B = 0,

(SNO3)z(0, t) = (SNO3)z(B, t) = 0,

(SS)z(0, t) = (SS)z(B, t) = 0,

(SN2)z(0, t) = (SN2)z(B, t) = 0.

Here, Y is a dimensionless yield factor and b is the constant decay rate of active biomass.
The specific growth rate function is the following product of two Monod expressions:

µ(SNO3 , SS) := µmax
SNO3

KNO3 + SNO3

SS

KS + SS

, (7)

where µmax is the maximum growth rate and KNO3 , KS ≥ 0 are half-saturation constants
(see Table 1). The constitutive function for the particle velocity v(X,Xz) is assumed to take
into account both hindered settling and compression and is of the following form (Bürger et
al., 2011):

v(X,Xz) =

vhs(X) for X < Xc,

vhs(X)

(
1− ρsσ

′
e(X)

Xg∆ρ

∂X

∂z

)
for X > Xc.

(8)

Here, vhs(X) is the hindered settling velocity function, σe the effective solids stress, ρs the
density of the solids, ∆ρ the density difference between solids and liquid, and Xc is a critical
concentration above which the particles touch each other and form a network which can bear
a certain stress.
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Model parameter symbol value and unit
parameter in hindered settling function vhs, cf. (9) v0 1.76× 10−3 m s−1

parameter in hindered settling function vhs, cf. (9) X̄ 3.87 kg m−3

parameter in hindered settling function vhs, cf. (9) q 3.58 [−]
proportion parameter fP 0.2 [−]
critical concentration Xc 5 kg m−3

parameter in effective stress function σe, cf. (10) α 0.1 m2 s−2

solid density ρs 1050 kg m−3

solid-fluid density difference ∆ρ 52 kg m−3

acceleration of gravity g 9.81 m s−2

diffusion coefficient dS 1.00× 10−6 m2 s−1

heterotrophic yield Y 0.67 [−]
heterotrophic maximal specific growth rate µmax 4.8 d−1 = 5.56× 10−5 s−1

heterotropic decay rate b 0.6 d−1 = 6.94× 10−6 s−1

half-saturation coefficient (hsc) for heterotrophs KS 20 g m−3 = 0.02 kg m−3

hsc for denitrifying heterotrophs KNO3 0.5 g m−3 = 5.00× 10−4 kg m−3

Table 1. Parameters employed for the simulation of reactive settling.

For the simulations in this paper, we choose (Diehl, 2015; Torfs et al., 2015b)

vhs(X) =
v0

1 + (X/X̄)q
, (9)

where the parameters v0, X̄ and q have the values given in Table 1 (Torfs et al., 2015b), and

σe(X) =

{
0 for X < Xc,

α(X −Xc) for X > Xc,
(10)

where the values of α and the critical concentration Xc are indicated in Table 1.

3. Numerical method

3.1. Spatial discretization. We define the batch settling flux function fb(X) := Xvhs(X),
set

dcomp(X) := vhs(X)
ρsσ

′
e(X)

g∆ρ
(11)

and define the primitive

D(X) :=

∫ X

Xc

dcomp(s) ds. (12)

For the numerical simulation, note that the sum of (1) and (2) gives the following equation,
which apart from the reaction term only contains derivatives of the total concentration X:

∂X

∂t
= − ∂

∂z

(
fb(X)− ∂D(X)

∂z

)
+ (µ(SNO3 , SS)− (1− fP)b)Xa, 0 < z < B, t > 0.

(13)
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A special feature of (13) is that as a consequence of (10), (11) and (12), this PDE is
second-order parabolic wherever the solution X exceeds Xc and first-order hyperbolic for
lower concentration values. Thus, the PDE (13) is called strongly degenerate parabolic or
parabolic-hyperbolic, where the location of the type-change interface is not known before-
hand. Moreover, due to the nonlinear and degenerate nature, discontinuities in the solution
appear and special techniques for the numerical solution have to be used (which are incor-
porated in the numerical method outlined herein).

Note that the total flux within the parenthesis on the right-hand side of (13) is

v(X,Xz)X = fb(X)− ∂D(X)

∂z
. (14)

This means that for (13) we can utilize ingredients of the numerical method presented by
Bürger et al. (2013) with the addition of the reaction term. To find numerical updates
for the two portions Xa and Xi of X, we use the idea by Diehl (1997) and Jeppsson and
Diehl (1996b). To this end, we introduce the percentage p := Xa/X when X > 0, so that
Xa = pX and Xi = (1− p)X hold, and rewrite Equation (1) as

∂(pX)

∂t
= − ∂

∂z

(
v(X,Xz)pX

)
+
(
µ(SNO3 , SS)− b

)
pX, 0 < z < B, t > 0. (15)

The idea of the numerical method is the following. In each discrete time step, X is first
updated via a discretized version of (13), assuming Xa is known. This means that the flux
(14) is known during this time step. Since the flux of (15) is p times the known flux (14), it is
only the variable p that needs to be updated, and this can be achieved by a discrete version of
(15). Then the concentration of the second particulate component is simply Xi = (1− p)X.
The numerical updates of SNO3 , SS and SN2 are then straightforward for the corresponding
equations (3)–(5).

We introduce the spatial discretization by dividing the interval (0, B) into N cells and set
∆z := B/N . Let Xj = Xj(t), SNO3,j = SNO3,j(t), etc. denote the approximate concentrations
in cell j and likewise Pj = Pj(t) the approximation of p. The numerical fluxes between cells j
and j+1 are defined as follows. The convective flux fb is discretized by the standard Godunov
numerical flux, i.e.,

Gj+1/2 :=

 min
Xj≤X≤Xj+1

fb(X), if Xj ≤ Xj+1,

max
Xj≥X≥Xj+1

fb(X), if Xj > Xj+1.

If the numerical compressive flux is defined as

Jj+1/2 :=
D(Xj+1)−D(Xj)

∆z
,

then the total flux (14) between cells j and j+1 is approximated by Fj+1/2 := Gj+1/2−Jj+1/2.
The corresponding flux of (15) is Pj+1/2(Gj+1/2 − Jj+1/2), where Pj+1/2 needs to be defined.
We use the idea of Diehl (1997), which is the following. If the total flux Fj+1/2 is positive,
this means that particles move in the direction of the z-axis over the boundary between cell
j to j + 1. Consequently, the value of Pj+1/2 at the boundary between the cells is the one in
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the left cell, i.e. Pj. If Fj+1/2 ≤ 0, then the value is Pj+1, i.e.

Pj+1/2 =

{
Pj+1, if Fj+1/2 ≤ 0,

Pj, if Fj+1/2 > 0.
(16)

Defining the zero boundary fluxes and percentages G1/2 = GN+1/2 = J1/2 = JN+1/2 = P1/2 =
PN+1/2 = 0, we obtain the following semi-discretized ODE system for the PDEs, where
j = 1, . . . , N :

dXj

dt
= −

Fj+1/2 − Fj−1/2

∆z
+
(
µ(SNO3,j, SS,j)− (1− fP)b

)
Xa,j, (17)

d(PjXj)

dt
= −

Pj+1/2Fj+1/2 − Pj−1/2Fj−1/2

∆z
+
(
µ(SNO3,j, SS,j)− b

)
Xa,j, (18)

dSNO3,j

dt
= dS

SNO3,j+1 − 2SNO3,j + SNO3,j−1

∆z2
− 1− Y

2.86Y
µ(SNO3,j, SS,j)Xa,j, (19)

dSS,j

dt
= dS

SS,j+1 − 2SS,j + SS,j−1

∆z2
−
(
µ(SNO3,j, SS,j)

Y
− (1− fP)b

)
Xa,j, (20)

dSN2,j

dt
= dS

SN2,j+1 − 2SN2,j + SN2,j−1

∆z2
+

1− Y
2.86Y

µ(SNO3,j, SS,j)Xa,j, (21)

Xa,j = PjXj,

Xi,j = (1− Pj)Xj.

These equations are thus exact conservation laws for each of the N cells (layers). Note that
Xi,j can be defined after the entire simulation.

3.2. Explicit fully discrete scheme. Let tn, n = 0, 1, . . . denote the discrete time points
and ∆t the time step that should satisfy a certain CFL condition depending on the chosen
time-integration method. Set λ := ∆t/∆z. For explicit schemes, the right-hand sides of
the equations are evaluated at time tn. The value of a variable at time tn is denoted by an
upper index, e.g., P n

j . The main restriction of the time step (for small ∆z) is due to the
second-order spatial derivatives in the compression term (Bürger et al., 2005, 2012). The
CFL condition for explicit Euler and batch sedimentation is

∆t ≤ 1

k1/∆z + k2/∆z
2 , (22)

with

k1 := max
0≤X≤Xmax

∣∣f ′b(X)
∣∣, k2 := 2 max

0≤X≤Xmax

dcomp(X), (23)

and where Xmax is the maximum concentration.
For explicit Euler, the time derivatives on the left-hand side of (17)–(21) are approximated

by the standard finite difference ratio and the right-hand side is evaluated at time tn. First,
Equation (17) gives the update Xn+1

j according to

Xn+1
j = Xn

j + ∆t

(
−
F n
j+1/2 − F n

j−1/2

∆z
+
(
µ(Sn

NO3,j
, Sn

S,j)− (1− fP)b
)
Xn

a,j

)
.
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The equations for the substrates can be written converted in the same way. For Equa-
tion (18), the approximation of the time derivative is

d(PjXj)

dtn
≈
P n+1
j Xn+1

j − P n
j X

n
j

∆t
.

Note that if Xn+1
j = 0, then there is no particle in cell j, hence the value of P n+1

j is irrelevant,

since the product P n+1
j Xn+1

j = 0. If Xn+1
j > 0, then we get the following update formula for

P n+1
j :

P n+1
j =

1

Xn+1
j

[
P n
j X

n
j + ∆t

(
−
P n
j+1/2F

n
j+1/2 − P n

j−1/2F
n
j−1/2

∆z

+
(
µ(Sn

NO3,j
, Sn

S,j)− b
)
Xn

a,j

)]
.

3.3. Method-of-lines equations. In order to apply any standard ODE solver for the time
discretization, the semi-discretized equation (18) should be rewritten with the variable Xa,j =
PjXj. Recall that the total flux Fj depends only on Xj, whereas the formula (16) should be
replaced by

Pj+1/2 =

{
Xa,j+1/Xj+1, if Fj+1/2 ≤ 0,

Xa,j/Xj, if Fj+1/2 > 0.

The inert matter can be defined by Xi,j = Xj −Xa,j.

4. Numerical results

4.1. Preliminaries. For all tests we employ the hindered settling velocity function vhs and
effective stress function σe given by (9) and (10), respectively. The heterotrophic maximal
specific growth rate µ that we use is given in (7), and all other parameters are indicated
in Table 1 (unless otherwise stated). For the KT we simulated three different scenarios
differing in the choice of the diffusion coefficient dS (Examples 1 to 3), while the two scenarios
considered for each of the DT (Examples 4 and 5) and OT (Examples 6 and 7) differ in the
initial concentration.

In all numerical examples, we employ the explicit scheme with N = 100 cells for a column
of height B = 1 m. To properly represent the reaction dynamics we present simulations up to
t = T = 2 h, except for one long simulation of the KT, which is run to T = 100 h. The time
step ∆t is chosen by 98% of the bound given in the right-hand side of (22), with constants
k1 and k2 defined by (23).

The initial values common to all examples are

S0
S = 9.00× 10−4 kg m−3 and S0

NO3
= 6.00× 10−3 kg m−3,

while we recall that by (6), the initial value of SN2 is zero.
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Figure 1. Example 1 (Kynch test, dS = 10−6 m2 s−1). Here and in Figures 2
to 6, the visual grid used to display the numerical solution is coarser than the
computational grid, and plots of solutions have been rotated for each quantity
such that almost all parts are visible.

4.2. Examples 1 to 3: Kynch test (batch settling of an initially homogeneous sus-
pension). In Examples 1–3, we simulate the settling of an initially homogeneous suspension
of initial density X0 = 3.5 kg m−3, which is divided into active biomass and inert matter by
p0 = 5/7 ≈ 0.7143, so that

Xa(z, 0) = 2.5 kg m−3, Xi(z, 0) = 1.0 kg m−3 for 0 < z < B.

We employ this configuration to assess the influence of the substrate diffusion coefficient dS.
Example 1 has been obtained by employing the default value dS = 10−6 m2 s−1 informed
in Table 1. Figure 1 and 2 show the numerical results for all unknowns for T = 2 h and
T = 100 h, respectively. We observe that the solids settle downwards rapidly and form
a sludge blanket with a sharp interface at Xc = 5 kg m−3. Moreover, the concentration
increases downwards gradually until reaching about 20 kg m−3 at the bottom. Here, and
in Examples 2 to 7, the solutions for all quantities are bounded and non-negative. The
SNO3 plot indicates a very rapid degradation of nitrate within the sludge blanket while that
same quantity decays only very slowly within the supernatant clear liquid. We observe the
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Figure 2. Example 1 (Kynch test, dS = 10−6 m2 s−1): long-time simulation
(T = 100 h).

formation of readily biodegradable substrate (of concentration SS) at the bottom of the
column. Furthermore, the solution for SN2 has a plateau at 6 × 10−3 kg m−3, which is the
initial value of SNO3 . This suggests that within the sludge blanket, almost all soluble nitrate
degrades into nitrogen.

For this particular case we also present a simulation until T = 100 h to study the long-
time behaviour of the model. The results shown in Figure 2 illustrate that the total solids
concentration attains a maximum of about 20 kg m−3 at the bottom but that this maximum,
as well as the total solids mass, decay in time. Moreover, the proportion of inert matter
increases in time (as expected). The substrates slowly approach an equilibrium concentration
as a consequence of their slow diffusive movement.

Figures 3 and 4 show the corresponding results for the same scenario but with increased
values of the substrate diffusion parameter, namely dS = 9 × 10−6 m2 s−1 (Figure 3) and
dS = 1.3×10−5 m2 s−1 (Figure 4). We observe that the changes in this parameter practically
do not affect the solids settling behaviour; the solutions for X, Xa and Xi are virtually the
same as in Example 1. However, difference in the solution behaviour of the substrates are
appreciable, especially for SNO3 . Roughly speaking, since increasing dS means increasing the
diffusive flux of each susbstrate, that is, the flow rate from regions of high concentration to
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Figure 3. Example 2 (Kynch test, dS = 9× 10−6 m2 s−1).

those of low concentration, we observe that the flux of nitrate into the sludge zone consistently
increases comparing the results of Examples 1, 2, and 3. Since the degradation of nitrate
takes place due to reactions in that zone, we obtain that for this test, increasing dS produces
an overall more rapid denitrification. Corresponding differencs in solution behaviour are
visible with the two other substrates.

4.3. Examples 4 and 5: Diehl test (batch settling of suspension initially located
above clear liquid). We here choose the following initial distribution of the solids:

X(z, 0) =

{
7 kg m−3 for 0 m < z ≤ 0.5 m,

0 for 0.5 m < z ≤ 1 m

for Example 4, and

X(z, 0) =

{
14 kg m−3 for 0 m < z ≤ 0.25 m,

0 for 0.25 m < z ≤ 1 m

for Example 5. All other parameters are chosen as in Example 1. Since the initial total
solids mass is the same as in Examples 1 to 3, results can be compared. The numerical
solutions are shown in Figures 5 and 6. We observe in both examples that the initial



12 BÜRGER, CAREAGA, DIEHL, MEJÍAS, NOPENS, AND VANROLLEGHEM

.

Total solids Active biomass Inert matter

0

0.5

1

0

1

2
0

5

10

15

20

z [m]t [h]

X
(z
,t
)
[k
g
/
m

3
]

0

0.5

1

0

1

2
0

5

10

15

20

z [m]t [h]
X

a
(z
,t
)
[k
g
/
m

3
]

0

0.5

1

0

1

2
0

5

10

15

20

z [m]t [h]

X
i(
z
,t
)
[k
g
/
m

3
]

NO3 Substrate S Substrate N2 Substrate

0

0.5

1

0

1

2

0

2

4

6

x 10
−3

z [m]t [h]

S
N
O

3
(z
,t
)
[k
g
/
m

3
]

0

0.5

1

0

1

2
0

0.05

0.1

0.15

0.2

z [m]t [h]

S
S
(z
,t
)
[k
g
/
m

3
]

0

0.5

1

0

1

2
0

2

4

6

8

x 10
−3

z [m]t [h]

S
N

2
(z
,t
)
[k
g
/
m

3
]

1

Figure 4. Example 3 (Kynch test, dS = 1.3× 10−5 m2 s−1).

body of sludge dilutes, forming a so-called rarefaction wave, the solids settle downward, and
accumulate at the bottom to form a sludge layer. Under suitable choices of parameters and
initial concentrations, the solution behaviour of a Diehl test produces a curved trajectory
of the suspensions-supernate interface that does not arise with a Kynch test, and that can
be converted into certain portions of the function fb. While this property has led us to
propose a Diehl test as a device for identification of fb (Diehl, 2007; Bürger and Diehl, 2013;
Betancourt et al., 2014), we use this configuration in the present context to evaluate the
effect of the initial configuration on the denitrification process. We see that the solution for
SNO3 is non-monotone (as a function of z for fixed t), which is also reflected in the solution
for SN2 , and comparing the SNO3 plot of Figure 6 with that of Figure 1 shows that the total
amount of nitrate at T = 2 h is significantly smaller in Examples 4 and 5 than in Example 1.

In light of the latter observation we measure the time-dependent normalized total mass of
nitrate, the so-called normalized inventory, defined by

INO3(t) :=
1

S0
NO3

B

∫ B

0

SNO3(z, t) dz.
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Figure 5. Example 4 (Diehl test, X(z, 0) = 7 kg m−3 above z = 0.5 m).

For a given discretization ∆ = (∆z,∆t) and t = n∆t this quantity is approximated by

I∆
NO3

(t) :=
1

S0
NO3

B

N∑
j=1

Sn
NO3,j

∆z =
1

S0
NO3

N

N∑
j=1

Sn
NO3,j

.

Note that INO3(0) = I∆
NO3

(0) = 1. Figure 7 displays the evolution of I∆
NO3

(t) for Examples 1
to 5. Comparing the curves for Examples 1, 2 and 3, we find confirmed that an increased
value of the substrate diffusion coefficient dS accelerates the denitrification process in the
setup of the Kynch test. However, dS is a model parameter that is not possible to control,
so it is of more practical interest to compare the results of Example 1 (KT) with those of
Examples 4 and 5 (DT) (calculated with the same value of dS). Here we observe that the
initial rate of fairly rapid denitrification is the same in all of these three examples, but is
maintained over a longer period of time in case of the DT, with the effect that the portions
of the curve corresponding to slow rates of denitrification (produced in the consolidation
stage) lie about 10% and 15%, in the respective cases of the DT Examples 4 and 5, below
that of the KT Example 1. This result illustrates how the initial placement of solids mass
may influence the rate of denitrification.
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Figure 6. Example 5 (Diehl test, X(z, 0) = 14 kg m−3 above z = 0.25 m).

4.4. Examples 6 and 7: overcompressed test (expansion of compressed sludge).
We utilize the same parameters as in Example 1 and place a highly compressed body of
sludge near the bottom of the column. Specifically, we choose

X(z, 0) =

{
0 for 0 m < z ≤ 0.7 m,

20 kg m−3 for 0.7 m < z ≤ 1 m

for Example 6 and

Xa(z, 0) =

{
0 for 0 m < z ≤ 0.9 m,

25 kg m−3 for 0.9 m < z ≤ 1 m

for Example 7. The respective numerical results are shown in Figures 8 and 9. In both
cases, the compressed layer expands once the system starts to evolve. These simulations
alert to the limitations of modelling sediment compresibility by a nonlinear diffusion term
∂2D(φ)/∂z2. This approach corresponds to elastic and in a sense reversible material be-
haviour which is usually not observed with activated sludge in reality. While this behaviour
in an anomalous situation calls for an improvement of the constitutive assumptions concern-
ing sediment compressibility, we emphasize that this test produces an upward movemnt of
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Figure 7. Examples 1 to 5: evolution of the approximate normalized nitrate
inventory I∆

NO3
(t). Examples 1–3 show results of three KTs with increasing

diffusion coefficient dS, while Examples 4–5 show results of two DT with the
same value on dS as in Ex. 1.

solid partices, which is associated with negative values of the velocity v defined in (8). The
case discrimination in (16), which goes back to the method by Diehl (1997), has precisely
been devised to handle this situation. Thus, Figures 8 and 9 demonstrate that the model is
sound, and the numerical scheme works properly, even for settling velocities of variable sign.

4.5. Accuracy and efficiency. To illustrate the accuracy of the method, we plot in Fig-
ures 10 and 11 solutions of Examples 1 and 4 obtained at two different times with fairly
coarse discretizations, N = 20 and N = 50, against a reference solution obtained with
N = 3200 subintervals. We observe that smooth portions of the solution profiles are ap-
proximated quite well by approximate solutions at these coarse discetizations. Nevertheless,
discontinuities appear smeared out. Furthermore, we calculated the approximate relative
error, defined at a fixed time point,

erel
N :=

‖Xa −Xref
a ‖L1

‖X0
a‖L1

+
‖Xi −Xref

i ‖L1

‖X0
i ‖L1

+
‖SNO3 − Sref

NO3
‖L1

‖Send
NO3
‖L1

+
‖SN2 − Sref

N2
‖L1

‖S0
N2
‖L1

+
‖SS − Sref

S ‖L1

‖S0
S‖L1

,

and the observed convergence rates between two discretizations N = N1 and N = N2 given
by

θ := − log(erel
N1
/erel

N2
)/ log(N1/N2)

apart from measuring the CPU time for each run; see Table 2. Our results are consistent with
the fact that the scheme is formally first-order accurate in space and time, and moreover
the approximated solutions exhibit discontinuities. Of course, while these results suggest
that the scheme converges to a definite limit function, a rigorous convergence proof is still
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Figure 8. Example 6 (overcompressed test, X(z, 0) = 20 kg m−3 below z =
0.7 m)

under preparation. Furthermore, CPU times indicate that the CFL condition (22) essentially
imposes ∆t ∼ ∆z2, with the effect that halving the spatial discretization ∆z (to increase
accuracy) and choosing ∆t according to (22) causes roughly an eightfold increase in CPU
time.

5. Conclusions

A reduced model of simultaneous biological reactions and sedimentation of flocculated
particles in batch operation has been written as a system of convection-diffusion-reaction
PDEs, and a numerical scheme for its numerical simulation has been suggested. The idea
of introducing a percentage vector for the composition of the flocculated particles (Diehl,
1997) can be used in a natural way also when the effects of compression and reactions are
included in the equations. In the reduced model here, with only two particulate components,
this vector is simply (p, 1 − p)T. The advantage of this approach is that, since the vector
appears linearly in each term of the equations for the particle concentrations, the sum of
these equations yields an equation of the total suspended solids concentration X except for
a reaction term. This equation is the Bürger-Diehl settler model equation with an additional
reaction term. Consequently, we can utilize the numerical ingredients presented by Bürger
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Figure 9. Example 6 (overcompressed test, X(z, 0) = 25 kg m−3 below z =
0.9 m)

et al. (2013) for a correct spatial discretization into computational cells (layers). The time
discretization utilizes that X can be updated first, so that the numerical fluxes between the
dells are known, which is utilized in the update of the percentage vector.

Numerical examples for the modelling of the last stage of an SBR sequence, where deni-
trification occurs, indicate that the suggested numerical scheme works well and the expected
denitrification process is simulated. Furthermore, these simulations show that the initial dis-
tribution of the sludge has a certain implication in the efficiency of reducing nitrate. Turning
up the aeration from below so that a layer of sludge appears at the top of the vessel as the
aeration is turned off (Diehl test) means a more efficient reduction of the inventory of nitrate
than the initially homogeneous concentration of suspension (Kynch test); see Figure 9.

There are obvious continuations of this initial work on reactive settling, which include:
a more accurate modelling of the movement of the liquid, in which the substrates are dis-
solved; the extension to include a full ASM model for the biological reactions; analysis of
the convergence properties of the numerical scheme; and development of more efficient time
discretizations.
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Figure 10. Example 1 (Kynch test): comparison between a reference solution
(N = 3200) and two fastly obtained simple numerical solutions (N = 20 and
N = 50) at simulated times t = 4 min (top row) and t = 30 min (bottom row),
showing results for X (left), SNO3 and SS (right).
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Figure 11. Example 4 (Diehl test): comparison between a reference solution
(N = 3200) and two fastly obtained simple numerical solutions (N = 20 and
N = 50) at simulated times t = 6 min (top row) and t = 30 min (bottom row),
showing results for X (left), SNO3 (middle) and SS (right).
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