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with weak symmetry∗

Carlos Garćıa† Gabriel N. Gatica‡ Salim Meddahi§

Abstract

We provide a new mixed finite element analysis for linear elastodynamics with reduced symme-
try. The problem is formulated as a second order system in time by imposing only the Cauchy
stress tensor and the rotation as primary and secondary variables, respectively. We prove that
the resulting variational formulation is well-posed and provide a convergence analysis for a class
of H(div)-conforming semi-discrete schemes. In addition, we use the Newmark trapezoidal rule to
obtain a fully discrete version of the problem and carry out the corresponding convergence analysis.
Finally, numerical tests illustrating the performance of the fully discrete scheme are presented.
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1 Introduction

We analyze a mixed finite element approximation of the linear elastodynamic problem with reduced
symmetry. Mixed formulations in elasticity provide a direct finite element approximation of the Cauchy
stress tensor and they are immune to the locking phenomenon that generally affects displacement based
formulations in the nearly incompressible case. There are several families of mixed finite elements with
weak symmetry for the steady elasticity problem, [4, 12, 18, 25]. Our aim here is to prove the stability
of the corresponding Galerkin schemes for the elastodynamic problem.

Mixed methods for elastodynamics have already been studied in [5, 7, 10, 13, 21]. In contrast to
the strong symmetry approach considered in [7, 13, 21] for the stress tensor, we are interested here
in a weak imposition of this restriction, as in [5, 10]. The displacement-stress formulation method
presented in [10] relies on a the dual hybrid method introduced in [15] for a two-dimensional problem.
Here, we follow [5] and carry out a multi-dimensional error analysis for a class of mixed finite elements
satisfying conditions that are known to hold true for the mixed families introduced in [4, 12, 18, 25].
More precisely, our present approach can be formally considered as the second order version of the first
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order hyperbolic system studied in [5], whose main variables are the stress tensor and the velocity. As
a consequence, we only maintain the stress tensor as primary unknown (besides the rotation) and end
up with a classical wave equation for a tensorial grad-div operator. The advantage of our formulation
is that it naturally provides an a priori error bound for the stress variable in the H(div)-norm, which
improves the L2-error estimate obtained for this variable in [5]. Moreover, our error estimates are
shown to be uniform with respect to compressibility at the semi-discrete and fully discrete levels.
Finally, it is worthwhile to mention that, while the displacement is not explicitly involved in our
formulation, it can be numerically post-processed by integrating twice the linear momentum equation.

The rest of the paper is organized as follows. In the preliminary Section 2 we fix some basic notations
related with well-known Sobolev spaces. Then, in Section 3 we consider a tensorial wave equation for
the grad-div operator and prove its well-posedness by using the classical Galerkin procedure. Next,
in Section 4 we show that under suitable compatibility conditions on the initial data, the solution
of the aforementioned wave equation is the Cauchy stress tensor corresponding to a properly defined
elastodynamic problem. In Section 5 we introduce a semi-discretization of the problem relying on
a family of finite dimensional subspaces satisfying standard hypotheses (for mixed finite elements in
elasticity problems with reduced symmetry) and prove abstract error estimates. In turn, in Section 6
we use an implicit Newmark method to obtain a fully discrete version of the problem and carry out
its convergence analysis. In Section 7 we derive asymptotic error estimates for an example based on
the Arnold-Falk-Winther element. Finally, in Section 8 we present numerical results that confirm the
theoretical convergence estimates.

2 Notations and preliminary results

We denote by I the identity matrix of Rd×d (d = 2, 3), and 0 represents the null vector in Rd or the
null tensor in Rd×d. Given τ := (τij) and σ := (σij) ∈ Rd×d, we define as usual the transpose tensor

τ t := (τji), the trace tr τ :=
∑d

i=1 τii, the deviatoric tensor τ D := τ − 1
d (tr τ ) I, and the tensor inner

product τ : σ :=
∑d

i,j=1 τijσij . Let Ω be a polyhedral Lipschitz bounded domain of Rd (d = 2, 3),
with boundary ∂Ω. We denote by D(Ω) the space of indefinitely differentiable function with compact
support in Ω. For s ∈ R, ‖·‖s,Ω stands indistinctly for the norm of the Hilbertian Sobolev spaces
Hs(Ω), Hs(Ω) := Hs(Ω)d or Hs(Ω) := Hs(Ω)d×d, with the convention H0(Ω) := L2(Ω). We also denote
by (·, ·) the inner product in L2(Ω), L2(Ω) := L2(Ω)d or L2(Ω) := L2(Ω)d×d. We introduce the Hilbert
space

H(div,Ω) := {τ ∈ L2(Ω) : div τ ∈ L2(Ω)},

whose norm is given by ‖τ‖2H(div,Ω) := ‖τ‖20,Ω + ‖div τ‖20,Ω. Since we will deal with a time-domain
problem, besides the Sobolev spaces defined above, we need to introduce spaces of functions defined
on a bounded time interval (0, T ) and with values in a separable Hilbert space V , whose norm is
denoted here by ‖·‖V . For 1 ≤ p ≤ ∞, Lp(V ) is the space of classes of functions f : (0, T )→ V that
are Böchner-measurable and such that ‖f‖Lp(V ) <∞, with

‖f‖pLp(V ) :=

∫ T

0
‖f(t)‖pV dt (1 ≤ p <∞), ‖f‖L∞(V ) := ess sup

[0,T ]
‖f(t)‖V .

We use the notation C0(V ) for the Banach space consisting of all continuous functions f : [0, T ]→ V .
More generally, for any k ∈ N, Ck(V ) denotes the subspace of C0(V ) of all functions f with (strong)
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derivatives
djf

dtj
in C0(V ) for all 1 ≤ j ≤ k. In what follows, we will use indistinctly the notations

ḟ :=
df

dt
and f̈ :=

d2f

dt2

to express the first and second derivatives with respect to the variable t. Furthermore, we will use the
Sobolev space

W1,p(V ) :=

{
f : ∃g ∈ Lp(V ) and ∃f0 ∈ V such that

f(t) = f0 +

∫ t

0
g(s) ds ∀t ∈ [0, T ]

}
,

and denote H1(V ) := W1,2(V ). The space Wk,p(V ) is defined recursively for all k ∈ N.

On the other hand, given two Hilbert spaces S and Q and a bounded bilinear form a : S ×Q→ R,
we denote

ker(a) := {s ∈ S : c(s, q) = 0 ∀ q ∈ Q}.

We say that a satisfies the inf-sup condition for the pair {S,Q}, whenever there exists κ > 0 such that

sup
06=s∈S

a(s, q)

‖s‖S
≥ κ ‖q‖Q ∀ q ∈ Q .

We will repeatedly use the well-known fact (see [11] ) that if a satisfies the inf-sup condition for the
pair {S,Q} and if ` belongs to the polar of ker(a) in S′, defined by

ker(a)◦ := {χ ∈ S′; χ(s) = 0 ∀ s ∈ ker(a)},

then there exists a unique q ∈ Q such that

a(s, q) = `(s) ∀ s ∈ S .

Throughout this paper we use C (with or without subscripts) to denote generic constants inde-
pendent of the parameters indicated at each instance. We point out that these constants may take
different values at different places.

3 A wave equation in H(div,Ω)

Let Ω ⊂ Rd (d = 2, 3) be an open bounded Lipschitz polygonal/polyhedral domain. We denote by n
the outward unit normal vector to ∂Ω. We consider a subset ∅ 6= Γ ⊂ ∂Ω and denote its complement
Σ := ∂Ω \ Γ. We consider the closed subspace of H(div,Ω) given by

W :=
{
τ ∈ H(div,Ω) : 〈τn,v〉∂Ω = 0 ∀v ∈ H1/2(∂Ω), v|Γ = 0

}
,

where 〈·, ·〉∂Ω stands for the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω) with respect to the

L2(∂Ω)-inner product. Alternatively, recalling that the restriction of τn to Σ belongs to H
−1/2
00 (Σ) :=

H
1/2
00 (Σ)′, where H

1/2
00 (Σ) is the subspace of functions in H1/2(Σ) whose extensions by zero on Γ are

in H1/2(∂Ω), we can also set

W :=
{
τ ∈ H(div,Ω) : τn = 0 on Σ

}
.
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Next, we assume that {Ωj , j = 1 · · · , J} is a set of polygonal/polyhedral disjoint partition of Ω̄, i.e.,

Ωj ∩ Ωi = ∅ for all 1 ≤ i 6= j ≤ J and Ω̄ = ∪Jj=1Ω̄j .

Then we consider piecewise constant functions µ(x), λ(x), and ρ(x) defined, for j = 1, . . . , J , by
µ|Ωj := µj > 0, λ|Ωj := λj > 0, and ρ|Ωj := ρj > 0, and assume that there exist positive constants µ,
µ̄, λ, λ̄, ρ, and ρ̄, such that

µ ≤ µj ≤ µ̄, λ ≤ λj ≤ λ̄ and ρ ≤ ρj ≤ ρ̄ (1 ≤ j ≤ J).

In turn, we introduce on L2(Ω) the inner product (u,v)ρ := (ρ−1u,v) and denote the corresponding
norm

‖v‖ρ :=
√

(v,v)ρ.

In addition, we consider the elasticity stiffness tensor C defined by Cτ := λ (tr τ ) I + 2µτ and recall
that its inverse (the compliance tensor) is given by

C−1τ =
1

2µ

{
τ − λ

2µ+ dλ
tr(τ )I

}
.

We endow L2(Ω) with the norm

‖τ‖2C := (C−1τ , τ ) =

∫
Ω

1

2µ
τ D : τ D +

∫
Ω

1

d(dλ+ 2µ)
tr(τ )2. (3.1)

The following result proves that

‖τ‖2C,div := ‖τ‖2C + ‖div τ‖2ρ

is a Hilbertian norm on W that is equivalent to the H(div,Ω)-norm uniformly in λ.

Lemma 3.1. There exists a constant α > 0, independent of λ, such that

α ‖τ‖2H(div,Ω) ≤ ‖τ‖
2
C,div ≤ max(

1

2µ
,

1

ρ
) ‖τ‖2H(div,Ω) ∀τ ∈W . (3.2)

Proof. We deduce from (3.1) that

1

2µ̄
‖τ D‖20,Ω ≤ ‖τ‖2C ≤

1

2µ
‖τ‖20,Ω ∀τ ∈ L2(Ω), (3.3)

which gives the upper bound of (3.2). Next, given τ ∈ H(div,Ω), we let τ 0 := τ − 1
d|Ω|

(∫
Ω tr τ

)
I. It

is proved in [11, Proposition 9.1.1] that there exists C0 > 0, depending only on Ω, such that

‖τ 0‖20,Ω ≤ C0

(
‖τ D‖20,Ω + ‖div τ‖20,Ω

)
∀τ ∈ H(div,Ω).

On the other hand, it is shown in [17, Lemma 2.5] (see also [16, Lemma 2.2]) that there exists C1 > 0,
depending only on Ω, such that

‖τ‖2H(div,Ω) ≤ C1‖τ 0‖2H(div,Ω) ∀τ ∈W .

The lower bound of (3.2) follows now directly from (3.3), the last two inequalities, and the fact that
div τ 0 = div τ in Ω.
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We now introduce the space of skew symmetric tensors

Q := {s ∈ L2(Ω); s = −st} ,

and observe that the subspace S of symmetric tensors in W can be written, equivalently, as

S := {τ ∈W ; (τ , s) = 0 ∀s ∈Q}.

In addition, we notice that S is closed in H(div,Ω), and hence, the density of H(div,Ω) in L2(Ω)
proves that S is also densely embedded in L2

sym(Ω) := {s ∈ L2(Ω); s = st}. We may then identify
L2

sym(Ω) with its dual space and consider the Gelfand triple

S ↪→ L2
sym(Ω) ↪→ S ′,

where S ′ is the dual space of S. The following inf-sup condition ([1, 8]) is essential in the forthcoming
analysis: there exists β > 0 such that

sup
τ∈W

(τ , s) + (div τ,v)

‖τ‖H(div,Ω)
≥ β(‖s‖0,Ω + ‖v‖0,Ω), (3.4)

for all (s,v) ∈Q× L2(Ω).

Having established the above notations and preliminary results, we now introduce the wave equation
in H(div,Ω). Indeed, given f ∈ L1(L2(Ω)), σ0 ∈ S, σ1 ∈ L2

sym(Ω), and r0, r1 ∈ Q, we consider the
problem:

Find σ ∈ L∞(W) ∩W1,∞(L2(Ω)) and r ∈W1,∞(Q) such that

d2

dt2
(C−1σ(t) + r(t), τ ) + (divσ(t),div τ )ρ = −(f(t),div τ )ρ ,

(σ(t), s) = 0 ,

(3.5)

for all (τ , s) ∈W ×Q, and such that the following initial conditions are satisfied:

σ(0) = σ0 , σ̇(0) = σ1,
r(0) = r0 , ṙ(0) = r1.

(3.6)

We notice here that the second equation of (3.5) is the weak imposition of the symmetry of σ, where
r is the corresponding Lagrange multiplier. In this way, testing in particular the first equation of (3.5)
with τ ∈ S, we arrive at the following reduced form of (3.5):

Find σ ∈ L∞(S)) ∩W1,∞(L2
sym(Ω)) such that

d2

dt2
(C−1σ(t), τ ) + (divσ(t),div τ )ρ = −(f(t),div τ )ρ ∀τ ∈ S ,

σ(0) = σ0, σ̇(0) = σ1.

(3.7)

In what follows it will be useful to consider the energy functional E : W 1,∞(H(div,Ω))→ L∞((0, T ))
defined by

E(τ )(t) :=
1

2
‖τ̇ (t)‖2C +

1

2
‖div τ (t)‖2ρ ∀ τ ∈W 1,∞(H(div,Ω)) , ∀ t ∈ [0, T ] . (3.8)

Lemma 3.2. Assume that f ∈W1,1(L2(Ω)). Then, problem (3.7) admits at least a solution and there
exists a constant C > 0 such that

ess sup
[0,T ]

E(σ)1/2(t) ≤ C
{
‖f‖W1,1(L2(Ω)) + ‖σ0‖C,div + ‖σ1‖C

}
. (3.9)
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Proof. We only give a sketch of the proof since it follows by the classical Galerkin procedure (cf.
[14, 23]). In fact, we first consider a family of finite dimensional subspaces {Sn} of S such that, for
all τ ∈ S,

lim
n→∞

inf
τn∈Sn

‖τ − τn‖H(div,Ω) = 0.

Then we denote by σ0,n the (S, ‖·‖C,div)-orthogonal projection of σ0 onto Sn and by σ1,n the
(L2

sym(Ω), ‖·‖C)-orthogonal projection of σ1 onto Sn. It is easy to show, by using the classical ODE
theory, that the problem:

Find σn ∈ C1(Sn) such that,

(C−1σ̈n(t), τ ) + (divσn(t),div τ )ρ = −(f(t),div τ )ρ ∀τ ∈ Sn ,

σn(0) = σ0,n , σ̇n(0) = σ1,n ,

(3.10)

admits a unique solution. The first step of the proof reduces to deriving energy estimates for σn(t).
To this end, we take τ = σ̇n(t) in (3.10) and integrate the resulting identity over (0, t), which gives

E(σn)(t)− E(σn)(0) = −
∫ t

0
(f(s),div σ̇n(s))ρ ds.

Next, integrating by parts the right-hand side yields

E(σn)(t) =

∫ t

0
(ḟ(s),divσn(s))ρ ds− (f(t),divσn(t))ρ + (f(0),divσ0,n)ρ + E(σn)(0) . (3.11)

We now notice, according to the definition of σ0,n and σ1,n, that

E(σn)(0) ≤ 1

2
‖σ0‖2C,div +

1

2
‖σ1‖2C .

In turn, using the Sobolev embedding W1,1(L2(Ω)) ↪→ C0(L2(Ω)) (see [24, Lemma 7.1]) and the
Cauchy-Schwartz inequality, we deduce easily from (3.11) that there exists a constant C > 0 such that

max
[0,T ]
E(σn)1/2(t) ≤ C

{
‖f‖W1,1(L2(Ω)) + ‖σ0‖C,div + ‖σ1‖C

}
. (3.12)

It follows from (3.12) that (σ̇n)n is uniformly bounded in L∞(L2
sym(Ω)) and (σn)n is uniformly bounded

in L∞(S). We can then extract a weak-∗ convergent subsequence (also denoted (σn)n) satisfying∫ T

0
−(C−1σ̇n(t), τ )ψ̇(t) + (divσn(t),div τ )ρψ(t) dt

= −
∫ T

0
(f(t),div τ )ρψ(t) dt + ψ(0) (C−1σ̇n(0), τ )

(3.13)

for all τ ∈ Sn and for all ψ ∈ C1([0, T ]) such that ψ(T ) = 0. A classical procedure shows that the
limit σ ∈ L∞(S) ∩W1,∞(L2

sym(Ω)) of the subsequence (σn)n satisfies∫ T

0
−(C−1σ̇(t), τ )ψ̇(t) + (divσ(t),div τ )ρψ(t) dt

= −
∫ T

0
(f(t),div τ )ρψ(t) dt + ψ(0) (C−1σ1, τ )

(3.14)
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for all τ ∈ S and for all ψ ∈ C1([0, T ]) such that ψ(T ) = 0. This proves that σ solves (3.7) if the time
derivative is interpreted in the sense of distributions. In addition, we notice that σn also converges
weakly to σ in H1(L2

sym(Ω)) and hence σn(0) converges weakly to σ(0) in L2
sym(Ω). Moreover, since

σn(0) = σ0,n converges to σ0 in L2(Ω) as well, we conclude that the initial condition σ(0) = σ0 is
meaningful. Furthermore, it is clear from (3.14) that

d

dt
(C−1σ̇(t), τ ) = −(divσ(t) + f(t),div τ )ρ ∀τ ∈ S , (3.15)

from which it follows that d
dtC
−1σ̇(t) belongs to L1(S ′), and thus C−1σ̇(t) ∈ W1,1(S ′) ↪→ C0(S ′).

Next, testing (3.15) with ψ ∈ C1([0, T ]) such that ψ(T ) = 0 yields∫ T

0
−(C−1σ̇(t), τ )ψ̇(t) + (divσ(t),div τ )ρψ(t) dt

= −
∫ T

0
(f(t),div τ )ρψ(t) dt + ψ(0)

〈
C−1σ̇(0), τ

〉
S

(3.16)

for all τ ∈ S, where 〈·, ·〉S stands for the duality bracket between S ′ and S pivotal L2
sym(Ω), and

hence, comparing (3.14) with (3.16) we deduce that σ̇(0) = σ1 in L2
sym(Ω). Finally, the stability

estimate (3.9) is obtained by taking the limit in (3.12).

Lemma 3.3. The solution of problem (3.7) is unique.

Proof. Assume that σ is a solution of (3.7) with homogeneous data f(t) = 0 and σ0 = σ1 = 0. We
proceed as in [14, 23] and consider with s ∈ (0, T ) fixed

w(t) =

{
−
∫ s
t σ(z) dz t < s

0 t ≥ s
∈ W1,2(S) .

Then, testing (3.7) with w(t) and integrating by parts in the time variable, we obtain∫ T

0
(divσ(t),divw(t))ρ − (σ̇(t), ẇ(t))C dt = 0 ,

which can be rewritten as

1

2

∫ s

0

d

dt

(
‖divw(t)‖2ρ − ‖σ(t)‖2C

)
dt = 0 .

It follows that ‖divw(0)‖2ρ + ‖σ(s)‖2C = 0 , and the proof is finished.

It is important to remark that, following [23, Section 11.2.4], one can also show that the solution σ
to problem (3.7) is actually in C0(S) ∩ C1(L2

sym(Ω)).

Theorem 3.1. Assume that f ∈W1,1(L2(Ω)). Then problem (3.5) admits a unique solution. More-
over, there exists a constant C > 0 such that

max
[0,T ]
‖σ(t)‖H(div,Ω) + max

[0,T ]
‖σ̇(t)‖0,Ω + ‖r(t)‖W1,∞(L2(Ω))

≤ C
{
‖f‖W1,1(L2(Ω)) + ‖σ0‖H(div,Ω) + ‖σ1‖0,Ω + ‖r0‖0,Ω + ‖r1‖0,Ω

}
.

(3.17)
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Proof. We only have to prove the existence and uniqueness of the Lagrange multiplier r. To this end,
we consider G ∈ C1(W ′) given by

〈G(t), τ 〉W := (C−1σ(t), τ ) +

∫ t

0

( ∫ s

0
(divσ(z) + f(z),div τ )ρ dz

)
ds

−t(C−1σ1 + r1, τ )− (C−1σ0 + r0, τ ) ,

where 〈·, ·〉W denotes the duality bracket between W ′ and W pivotal L2(Ω). Integrating (3.7) twice
with respect to time yields

〈G(t), τ 〉W = 0 ∀τ ∈ S ,
which means that G(t) belongs to the polar set of S in W ′. Moreover, S is the kernel of W ×Q 3
(τ , r) 7→

∫
Ω τ : r and (3.4) implies that this bilinear form satisfies the inf-sup condition for the pair

{W ,Q}, which guarantees the existence of r ∈ C1(Q) such that

(r(t), τ ) = −〈G(t), τ 〉W ∀τ ∈W . (3.18)

We conclude that the pair {σ, r} solves the first equation of (3.5) by differentiating twice the last
identity in the sense of distributions with respect to t. Moreover, evaluating (3.18) and its time
derivative at t = 0, we deduce that r(0) = r0 and ṙ(0) = r1. Finally, using the inf-sup condition
(3.4), the Cauchy-Schwarz inequality and (3.2), we deduce that there exists C1 > 0 such that

β ‖ṙ(t)‖0,Ω ≤ sup
τ∈W

∫
Ω ṙ(t) : τ

‖τ‖H(div,Ω)
= sup

τ∈W

〈Ġ(t), τ 〉W
‖τ‖H(div,Ω)

≤ C1

{
‖σ1‖0,Ω + ‖r1‖0,Ω + max

[0,T ]
E(σ)1/2(t) + ‖f‖W1,1(L2(Ω)n)

}
.

(3.19)

Finally, we deduce from the fundamental theorem of calculus that

‖σ(t)‖C ≤ T max
[0,T ]
‖σ̇(t)‖C + ‖σ0‖C and ‖r(t)‖0,Ω ≤ T max

[0,T ]
‖ṙ(t)‖0,Ω + ‖r0‖0,Ω , (3.20)

so that (3.17) is obtained by combining (3.9), (3.19), and (3.20).

4 Relationship with the elastodynamic problem

We assume that Ω represents an isotropic and linearly elastic body with mass density ρ and Lamé
coefficients µ and λ. The solid is assumed to be fixed at Γ and free of stresses on Σ. The elastodynamic
equations with body force f : Ω× [0, T ]→ Rd and initial data u0,u1 : Ω→ R are given by

ρü− div Cε(u(t)) = f(t) in Ω× (0, T ],
u(t) = 0 on Γ× (0, T ],

Cε(u(t))n = 0 on Σ× (0, T ],
u(0) = u0 in Ω,
u̇(0) = u1 in Ω,

(4.1)

where u : Ω→ Rd is the displacement field and ε(u) := 1
2 [∇u+ (∇u)t] is the linearized strain tensor.

In order to establish a relationship between problems (4.1) and (3.5) we need to introduce the subspace

V :=
{

(σ, r) ∈W ×Q; (C−1σ + r, τ ) + (σ, s) = 0 ∀(τ , s) ∈ K×Q
}
, (4.2)

where
K :=

{
τ ∈W ; div τ = 0

}
.
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Lemma 4.1. The linear operator D : V→ L2(Ω) uniquely characterized by

(div τ , D(σ, r)) = −(C−1σ + r, τ ) ∀τ ∈W , (4.3)

is well-defined and bounded.

Proof. We deduce from (3.4) that the bilinear form (τ ,v) 7→
∫

Ω div τ ·v satisfies the inf-sup condition
for the pair {W ,L2(Ω)}. Moreover, by definition of V, the linear form τ 7→ (C−1σ + r, τ ) vanishes
identically on the kernel K of this bilinear form. This proves the existence of a unique D(σ, r) ∈ L2(Ω)
satisfying (4.3).

We are now ready to give the main result of this section.

Theorem 4.1. We consider the same right hand side f in (3.5) and (4.1), and assume that the initial
data of these problems satisfy

(σ0, r0) , (σ1, r1) ∈ V , u0 := D(σ0, r0) , and u1 := D(σ1, r1) . (4.4)

Then

u(t) :=

∫ t

0

{∫ s

0
ρ−1
(

divσ(z) + f(z)
)

dz
}

ds + u0 + tu1 (4.5)

solves the (primal) weak formulation of problem (4.1). Moreover, the solution (σ(t), r(t)) of (3.5)
coincides with the stress and rotation tensors associated with u(t), that is

σ(t) = Cε(u(t)) and r(t) =
1

2

[
∇u− (∇u)t

]
. (4.6)

Proof. We first notice that, testing (3.5) with (τ , s) ∈ K × Q and taking into account (4.4), we
deduce that (σ(t), r(t)) ∈ V for all t ∈ [0, T ]. Hence, Lemma 4.1 ensures that there exists a unique
u(t) := D(σ(t), r(t)) ∈ L2(Ω) satisfying

(div τ ,u(t)) = −(C−1σ(t) + r(t), τ ) ∀τ ∈W , ∀t ∈ [0, T ]. (4.7)

On the other hand, integrating the first equation of (3.5) twice with respect to time yields,

(C−1σ(t) + r(t), τ ) = (C−1σ0 + r0, τ ) + t(C−1σ1 + r1, τ )−
∫ t

0

( ∫ s

0
(divσ(z) + f(z),div τ )ρ dz

)
ds.

Comparing the last identity with (4.7) we deduce that u is given by (4.5). On the other hand, testing
(4.7) with τ ∈ D(Ω)d×d yields

∇u(t) = C−1σ(t) + r(t) ∈ L2(Ω), (4.8)

and considering the symmetric and skew symmetric parts of this identity gives (4.6). Then, integrating
by parts the left-hand side of (4.7) and using the last identity yields

〈τ · n,u(t)〉∂Ω = 0 ∀τ ∈W .

Consequently, u ∈ C1(H1
Γ(Ω)) where H1

Γ(Ω) := {v ∈ H1(Ω); v|Γ = 0}. Multiplying (4.5) by ρ,
testing with v ∈ H1

Γ(Ω), integrating by parts in space and differentiating twice in time we find that
u ∈ C1(H1

Γ(Ω)) satisfies the week displacement-based variational formulation of (4.1), namely,

d2

dt2
(ρu(t),v) + (Cε(u)(t), ε(v)) = (f(t),v) ∀v ∈ H1

Γ(Ω) ,

and the result follows.

Henceforth, we assume that condition (4.4) is satisfied, which will permit us to interpret the solution
pair (σ, r) of (3.5) as the stress tensor and the rotation associated to the solution u of (4.1).
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5 Semi-discretization in space

5.1 Finite element subspaces

We consider finite dimensional families of subspaces

Wh ⊂W Qh ⊂Q Uh ⊂ L2(Ω)

indexed with a parameter h→ 0, and assume that there holds

lim
h→0

{
inf

τh∈Wh

‖σ − τ h‖H(div,Ω) + inf
sh∈Qh

‖r − sh‖0,Ω + inf
vh∈Uh

‖u− vh‖0,Ω
}

= 0 (5.1)

for all σ ∈W , r ∈ Q and u ∈ L2(Ω). Besides the approximation property (5.1) we need to impose
conditions ensuring that the triple of spaces {Wh,Uh,Qh} provides a stable Galerkin approximation
method for the dual-mixed formulation of the (steady state) elasticity problem with weak symmetry.
By virtue of the Babuška-Brezzi theory, such a stability is guaranteed by the following two hypotheses
and Lemma 3.1 (see [4]).

Hypothesis 1. There exists β∗ > 0, independent of h, such that

sup
τ∈Wh

(τ , s) + (div τ,v)

‖τ‖H(div,Ω)
≥ β∗(‖s‖0,Ω + ‖v‖0,Ω), (5.2)

for all (s,v) ∈Qh × Uh.

Hypothesis 2. div(Wh) = Uh and ρ−1 div(Wh) = Uh.

We point out that in practice, as ρ is assumed to be a piecewise constant function, we will be able to
choose the triangulations upon which the finite element spaces Wh and Uh are constructed in such a
way that the two conditions of Hypothesis 2 are equivalent.

Finally, we assume the existence of an operator satisfying the following stability and commuting
diagram properties.

Hypothesis 3. There exists a linear operator Πh : H(div,Ω) ∩Hε(Ω)→Wh, with ε > 0, such that

‖Πhτ‖0,Ω ≤ C
{
‖τ‖ε,Ω + ‖div τ‖0,Ω

}
∀τ ∈ H(div,Ω) ∩Hε(Ω) (5.3)

for a constant C > 0 independent of h and

divΠhτ = Uh div τ ∀τ ∈ H(div Ω) ∩Hε(Ω) , (5.4)

where Uh is the orthogonal projection from (L2(Ω), ‖·‖0,Ω) onto Uh.

We now introduce the discrete analogue of V (cf. (4.2)), that is

Vh :=
{

(σh, rh) ∈Wh ×Qh; (C−1σh + rh, τ ) + (σh, s) = 0 ∀(τ , s) ∈ Kh ×Qh

}
,

where
Kh :=

{
τ ∈Wh; div τ = 0

}
.

Then, the discrete version of Lemma 4.1 reads as follows.
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Lemma 5.1. The linear operator Dh : Vh → Uh uniquely characterized by

(div τ , Dh(σh, rh)) = −(C−1σh + rh, τ ) ∀τ ∈Wh. (5.5)

is well-defined and uniformly bounded.

Proof. The result is obtained by following the same steps given in the proof of its continuous counter-
part and by using the discrete inf-sup condition (5.2).

5.2 An auxiliary operator

In order to facilitate our analysis we now introduce an auxiliary operator Ξ and its discrete counterpart
Ξh. More precisley, we define

Ξ : W → W ×Q× L2(Ω)

σ 7→ Ξσ := (σ∗, r∗,u∗),

where (σ∗, r∗,u∗) ∈W ×Q× L2(Ω) is the solution of

(C−1σ∗ + r∗, τ ) + (u∗,div τ ) = 0 ∀τ ∈W ,

(divσ∗,v) = (divσ,v) ∀v ∈ L2(Ω),

(σ∗, s) = 0, ∀s ∈Q.
(5.6)

It is easy to prove, using the continuous inf-sup condition (3.4), Lemma 3.1, and the Babuška-Brezzi
theory, that Ξ : W →W ×Q × L2(Ω) is well-defined and uniformly bounded in λ. In addition, we
notice that (σ∗, r∗) ∈ V for all σ ∈W and u∗ = D(σ∗, r∗). Moreover, it is crucial for the forthcoming
analysis to observe that

(σ∗, r∗,u∗) := Ξσ = (σ, r, D(σ, r)) ∀(σ, r) ∈ V. (5.7)

Indeed, by virtue of Lemma 4.1, given (σ, r) ∈ V there exists a unique u := D(σ, r) ∈ L2(Ω) such
that

(div τ ,u) = −(C−1σ + r, τ ) ∀τ ∈W ,

from which it follows that (σ,u, r) ∈ W × L2(Ω) ×Q is the unique solution to problem (5.6) with
datum divσ.

In turn, the discrete counterpart of Ξ is given by

Ξh : W → Wh ×Qh × Uh
σ 7→ Ξhσ := (σ∗h, r

∗
h,u

∗
h)

where (σ∗h, r
∗
h,u

∗
h) ∈Wh ×Qh × Uh is the solution of

(C−1σ∗h + r∗h, τ ) + (u∗h,div τ ) = 0 ∀τ ∈Wh,

(divσ∗h,v) = (divσ,v) ∀v ∈ Uh,
(σ∗h, s) = 0, ∀s ∈Qh.

(5.8)

Similarly to the continuous case, the discrete inf-sup condition given by Hypothesis 1, Lemma 3.1, the
first condition of Hypothesis 2, and the Babuška-Brezzi theory imply that Ξh : W →Wh×Qh×Uh is
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well-defined and uniformly bounded in h and λ. In addition, there holds (σ∗h, r
∗
h) ∈ Vh for all σ ∈W

and u∗h = Dh(σ∗h, r
∗
h). Furthermore, we have the Céa estimate

‖σ∗ − σ∗h‖H(div,Ω) + ‖r∗ − r∗h‖0,Ω + ‖u∗ − u∗h‖0,Ω

≤ C
{

inf
τh∈Wh

‖σ∗ − τ h‖H(div,Ω) + inf
sh∈Qh

‖r∗ − sh‖0,Ω + inf
vh∈Uh

‖u∗ − vh‖0,Ω
}

(5.9)

with C > 0 independent of h and λ.

5.3 The semi-discrete problem

From now on, we assume that the discrete initial data are given by

(σ0,h, r0,h,u0,h) := Ξhσ0 and (σ1,h, r1,h,u1,h) := Ξhσ1 , (5.10)

which, according to a previous observation, yields u0,h := Dh(σ0,h, r0,h) and u1,h := Dh(σ1,h, r1,h).
Then, we consider the following semi-discrete counterpart of (3.5):

Find σh ∈ C1(Wh) and rh ∈ C1(Qh) such that

(C−1σ̈h(t) + r̈h(t), τ ) + (divσh(t),div τ )ρ = −(f(t),div τ )ρ ∀τ ∈Wh,

(σh(t), s) = 0 ∀s ∈Qh,

(5.11)

and
σh(0) = σ0,h , σ̇h(0) = σ1,h,
rh(0) = r0,h , ṙh(0) = r1,h .

(5.12)

The kernel of the bilinear form Wh ×Qh 3 (τ , s) 7→
∫

Ω τ : s is defined by

Sh := {τ ∈Wh; (τ , s) = 0 ∀s ∈Qh} ,

which, being the subspace of Wh whose elements are symmetric only in a discrete sense, is generally
not contained in S. Then, as in the continuous case, we now introduce a reduced version of problem
(5.11):

Find σh ∈ C1(Sh) such that

(C−1σ̈h(t), τ ) + (divσh(t),div τ )ρ = −(f(t),div τ )ρ ∀τ ∈ Sh,

σh(0) = σ0,h, σ̇h(0) = σ1,h ,

(5.13)

whose unique solvability is ensured by classical ODE theory.

Next, we prove the existence of the Lagrange multiplier rh(t) by proceeding as in the continuous
case. To this end, we let Gh(t) ∈ C1(W ′

h) be given by

〈Gh(t), τ 〉 := (C−1σh(t), τ ) +

∫ t

0

{∫ s

0
(divσh(z) + f(z),div τ )ρ dz

}
ds

−(C−1σ0,h + r0,h, τ )− t(C−1σ1,h + r1,h, τ ) .

Using the fact that σh(t) solves (5.13), we deduce that Gh(t) belongs to the polar set of Sh in W ′
h,

and hence, by virtue of the discrete inf-sup condition (5.2), we deduce that there exists a unique
rh ∈ C1(Qh) such that

(rh(t), τ ) = −〈Gh(t), τ 〉 ∀τ ∈Wh, (5.14)
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which proves that (σh(t), rh(t)) is the unique solution to (5.11). In turn, since by construction (see
(5.10)) (σ0,h, r0,h) ∈ Vh and (σ1,h, r1,h) ∈ Vh, we find from (5.11) that (σh(t), rh(t)) ∈ Vh for all
t ∈ [0, T ]. Consequently, we can propose the function uh(t) := Dh(σh(t), rh(t)) as a semi-discrete
approximation of the displacement u(t), which can be computed by solving a saddle point problem of
the form (5.8) with datum divσh(t). However, comparing (5.5) with the first equation of (5.11), we
easily obtain the following explicit expression for the semi-discrete displacement field:

uh(t) =

∫ t

0

{ ∫ s

0
ρ−1
(

divσh(z) + Uhf(z)
)

dz
}

ds+ u0,h + tu1,h . (5.15)

5.4 Convergence analysis

We begin by recalling from Section 5.2 (cf. (5.8)) that (σ∗h(t), r∗h(t),u∗h(t)) = Ξh σ(t). Then, we
introduce

eσ,h(t) := σ∗h(t)− σh(t) and er,h(t) := r∗h(t)− rh(t) ,

and deduce from (5.10) that

eσ,h(0) = er,h(0) = 0 and ėσ,h(0) = ėr,h(0) = 0. (5.16)

Lemma 5.2. Assume that the solutions σ ∈ C0(S) ∩ C1(L2
sym(Ω)) and r ∈ C1(Q) to problem (3.5)

satisfy the regularity assumptions σ ∈ C2(H(div,Ω) ∩ Hε(Ω)) for some ε > 0 and r ∈ C2(L2(Ω)).
Then, there exists a constant C > 0 independent of λ and h such that

max
[0,T ]
‖(σ − σh)(t)‖C,div + max

[0,T ]
‖(σ̇(t)− σ̇h)(t)‖C

≤ C
{
‖σ −Πhσ‖W2,∞(H(div,Ω)) + ‖r −Qhr‖W2,∞(L2(Ω) + ‖u− Uhu‖W2,∞(L2(Ω)

}
.

Proof. Let us first notice that, as (σ(t), r(t)) ∈ V for all t ∈ [0, T ] (see the proof of Theorem 4.1), we
deduce from (5.7) that

(σ∗(t), r∗(t),u∗(t)) := Ξσ(t) = (σ(t), r(t), D(σ(t), r(t))) ∀ t ∈ [0, T ] , (5.17)

and because of the regularity assumptions we also have(diσ∗

dti
(t),

dir∗

dti
(t),

diu∗

dti
(t)
)

:=
diΞσ(t)

dti
= Ξ

diσ

dti
(t)

=
(diσ

dti
(t),

dir

dti
(t), D

(diσ

dti
(t),

dir

dti
(t)
))

∀ i ∈ {1, 2} , ∀ t ∈ [0, T ] .

(5.18)

Moreover, by virtue of (5.9), (5.18) and Hypothesis 3, there holds

‖σ∗ − σ∗h‖W2,∞(H(div,Ω)) + ‖r∗ − r∗h‖W2,∞(L2(Ω) + ‖u∗ − u∗h‖W2,∞(L2(Ω)

≤ C0

{
‖σ −Πhσ‖W2,∞(H(div,Ω)) + ‖r −Qhr‖W2,∞(L2(Ω) + ‖u− Uhu‖W2,∞(L2(Ω)

}
, (5.19)

with C0 > 0 independent of h and λ. Next, it is straightforward to see that

(C−1ëσ,h(t) + ër,h(t), τ ) + (div eσ,h(t),div τ )ρ

= (C−1(σ̈∗h(t)− σ̈(t)), τ ) + (r̈∗h(t)− r̈(t), τ ) + (div(σ∗h(t)− σ(t)),div τ )ρ
(5.20)
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for all τ ∈Wh, and, as a consequence of (5.18),

(C−1ëσ,h(t) + ër,h(t), τ ) + (div eσ,h(t),div τ )ρ

= (C−1(σ̈∗h(t)− σ̈∗(t)), τ ) + (r̈∗h(t)− r̈∗(t), τ ) + (div(σ∗h(t)− σ∗(t)),div τ )ρ
(5.21)

for all τ ∈Wh. Now, by definition of Ξ and Ξh, we have that

divσ∗h(t) = Uh divσ∗(t) ∀ t ∈ [0, T ] , (5.22)

and the second condition of Hypothesis 2 implies that

(div(σ∗h(t)− σ∗(t)),div τ )ρ = 0 ∀ τ ∈Wh .

Consequently, eσ,h(t) ∈ Sh and er,h(t) ∈Qh satisfy

(C−1ëσ,h(t) + ër,h(t), τ ) + (div eσ,h(t),div τ )ρ = F (τ ) ∀τ ∈Wh ,

(eσ,h(t), s) = 0 ∀s ∈Qh ,
(5.23)

with
F (τ ) :=

(
C−1

(
σ̈∗h − σ̈∗

)
(t) +

(
r̈∗h − r̈∗

)
(t), τ

)
.

Taking τ = ėσ,h(t) in the first equation of (5.23) and using the Cauchy-Schwarz inequality yields

Ė(eσ,h)(t)

2
√
E(eσ,h)(t)

≤ 1√
2

{(
C(r̈∗ − r̈∗h)(t), (r̈∗ − r̈∗h)(t)

)1/2
+ ‖(σ̈∗ − σ̈∗h)(t)‖C

}
,

which, using (3.3) and the fact that
Cs = 2µs ∀s ∈Q, (5.24)

implies that

Ė(eσ,h)(t)

2
√
E(eσ,h)(t)

≤ 1√
2

{
1√
2µ
‖(σ̈∗ − σ̈∗h)(t)‖0,Ω +

√
2µ̄‖(r̈∗ − r̈∗h)(t)‖0,Ω

}
.

Integrating with respect to time gives

max
[0,T ]
E(eσ,h)1/2(t) ≤

∫ T

0

{
1

2
√
µ
‖(σ̈∗ − σ̈∗h)(t)‖0,Ω +

√
µ̄‖(r̈∗ − r̈∗h)(t)‖0,Ω

}
dt. (5.25)

On the other hand, we deduce easily from the identity eσ,h(t) =
∫ t

0 ėσ,h(s) and (3.8) that there exists
a constant C0 > 0, independent of λ and h, such that

‖eσ,h(t)‖C,div + ‖ėσ,h(t)‖C ≤ C0 max
[0,T ]
E(eσ,h)1/2(t) ∀ t ∈ [0, T ]. (5.26)

In this way, combining (5.25) and (5.26) with the triangle inequality we arrive at

‖(σ − σh)(t)‖C,div + ‖(σ̇(t)− σ̇h)(t)‖C

≤ ‖eσ,h(t)‖C,div + ‖ėσ,h(t)‖C + ‖(σ∗ − σ∗h)(t)‖C,div + ‖(σ̇∗ − σ̇∗h)(t)‖C ,
(5.27)

which, together with (3.3) and (5.19), imply the existence of a constant C1 > 0, independent of h and
λ, such that

‖(σ − σh)(t)‖C,div + ‖(σ̇(t)− σ̇h)(t)‖C

≤ C1

{
‖σ −Πhσ‖W2,∞(H(div,Ω)) + ‖r −Qhr‖W2,∞(L2(Ω) + ‖u− Uhu‖W2,∞(L2(Ω)

}
for all t ∈ [0, T ] and the result follows.
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Lemma 5.3. Under the hypotheses of Lemma 5.2 there exists a constant C > 0, independent of λ
and h, such that

‖r − rh‖W1,∞(L2(Ω)) ≤ C
{

max
[0,T ]
‖(ṙ(t)−Qhṙ)(t)‖0,Ω + max

[0,T ]
‖div(σ − σh)(t)‖0,Ω

+ ‖σ1 − σ1,h‖0,Ω + ‖r1 − r1,h‖0,Ω + ‖r0 − r0,h‖0,Ω
}
.

(5.28)

Proof. By virtue of the inf-sup condition (5.2), and the identities provided by (3.18) and (5.14), we
find that

β∗‖ṙh(t)−Qhṙ(t)‖0,Ω ≤ sup
τ∈Wh

∫
Ω(ṙh(t)−Qhṙ(t)) : τ

‖τ‖H(div,Ω)

≤ ‖ṙ(t)−Qhṙ(t)‖0,Ω + sup
τ∈Wh

|
∫

Ω(ṙ(t)− ṙh(t)) : τ |
‖τ‖H(div,Ω)

= ‖ṙ(t)−Qhṙ(t)‖0,Ω + sup
τ∈Wh

|〈Ġ(t)− Ġh(t), τ 〉W |
‖τ‖H(div,Ω)

.

(5.29)

In turn, using the Cauchy-Schwarz inequality and (3.3) we have that

|〈Ġ(t)− Ġh(t), τ 〉W | ≤ T max
[0,T ]
‖divσ(t)− divσh(t)‖ρ‖div τ‖ρ

+
{ 1√

2µ
‖σ̇(t)− σ̇h(t)‖C +

1

2µ
‖σ1 − σ1,h‖0,Ω + ‖r1 − r1,h‖0,Ω

}
‖τ‖0,Ω

≤

{
T
√
ρ

max
[0,T ]
‖divσ(t)− divσh(t)‖ρ +

1√
2µ
‖σ̇(t)− σ̇h(t)‖C

+
1

2µ
‖σ1 − σ1,h‖0,Ω + ‖r1 − r1,h‖0,Ω

}
‖τ‖H(div,Ω) .

(5.30)

In this way, combining (5.29) and (5.30) we deduce that

‖ṙ(t)− ṙh(t)‖0,Ω ≤ ‖ṙ(t)−Qhṙ(t)‖0,Ω + ‖Qhṙ(t)− ṙh(t)‖0,Ω

≤
(

1 +
1

β∗

)
‖ṙ(t)−Qhṙ(t)‖0,Ω +

1

β∗

{
T
√
ρ

max
[0,T ]
‖divσ(t)− divσh(t)‖ρ

+
1√
2µ
‖σ̇(t)− σ̇h(t)‖C +

1

2µ
‖σ1 − σ1,h‖0,Ω + ‖r1 − r1,h‖0,Ω

}
.

Finally, the bound for ‖r(t) − rh(t)‖0,Ω is obtained from the foregoing estimate and the identity

r(t)− rh(t) = r0 − r0,h +
∫ t

0 (ṙ(s)− ṙh(s)) ds, which completes the proof.

Lemma 5.4. Under the hypotheses of Lemma 5.2, there exists a constant C > 0, independent of λ
and h, such that

‖u − uh‖W2,∞(L2(Ω)) ≤ C
{
‖u − Uhu‖W2,∞(L2(Ω)) + max

[0,T ]
‖div(σ − σh)(t)‖0,Ω

}
.

Proof. According to (4.5) and (5.15) we have that ü(t) := D(σ̈(t), r̈(t)) and üh(t) := Dh(σ̈h(t), r̈h(t)),
which satisfy

(div τ , ü(t)− üh(t)) = (div(σ − σh)(t),div τ )ρ ∀ τ ∈Wh, ∀ t ∈ [0, T ] . (5.31)
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Then, it follows from (5.2), (5.31), (4.7), and Hypothesis 2, that

β∗‖üh(t)− Uhü(t)‖0,Ω ≤ sup
τ∈Wh

(üh(t)− Uhü(t),div τ )

‖τ‖H(div,Ω)

= sup
τ∈Wh

(üh(t)− ü(t),div τ )

‖τ‖H(div,Ω)
≤ 1

ρ
‖divσ(t)− divσh(t)‖0,Ω ,

which, thanks to the triangle inequality, gives the estimate

max
[0,T ]
‖ü(t)− üh(t)‖0,Ω ≤

1

β∗
max
[0,T ]
‖ü(t)− Uhü(t)‖0,Ω +

1

β∗ρ
‖div(σ − σh)(t)‖0,Ω.

The same estimates for ‖u̇(t) − u̇h(t)‖0,Ω and ‖u(t) − uh(t)‖0,Ω are obtained after integrating, and
the result follows.

We conclude by providing the following convergence result.

Theorem 5.1. Assume that the solutions σ ∈ C0(S) ∩ C1(L2
sym(Ω)) and r ∈ C1(Q) to problem (3.5)

satisfy σ ∈ C2(H(div,Ω) ∩ Hε(Ω)) for some ε > 0 and r ∈ C2(L2(Ω)). Then, there exists a constant
C > 0, independent of λ and h, such that

max
[0,T ]
‖σ(t)− σh(t)‖H(div,Ω) + ‖r − rh‖W1,∞(L2(Ω)) + ‖u− uh‖W2,∞(L2(Ω))

≤ C
{
‖σ −Πhσ‖W2,∞(H(div,Ω)) + ‖u− Uhu‖W2,∞(L2(Ω)) + ‖r −Qhr‖W2,∞(L2(Ω))

}
.

Proof. The required error estimate is a direct consequence of Lemmas 5.2, 5.3 and 5.4, and the norm
equivalence provided by Lemma 3.1.

Remark 5.1. We notice that the uniformity of the error estimate provided by Theorem 5.1 with
respect to the coefficient λ shows that the semi-discrete Galerkin scheme (5.11) is immune to locking
phenomenon in the nearly incompressible case.

Remark 5.2. If the Lamé coefficients λ and µ are constant in Ω, it is shown in [22, Lemmas 3.2
and 3.4] that there exists an index ε ∈ (0, 1] such that V ⊂ Hε(Ω) × Hε(Ω). Hence, we only need to
assume in Theorem 5.1 that the solution (σ, r) to problem (3.5) satisfies σ ∈ C2(H(div,Ω)). Indeed,
in such a case, the regularity σ ∈ C2(H(div,Ω)∩Hε(Ω)) for some ε > 0 is guaranteed by the fact that
(σ(t), r(t)) ∈ V, ∀t ∈ [0, T ].

6 Time-space discretization

6.1 The fully discrete scheme

Given L ∈ N, we consider a uniform partition of the time interval [0, T ] with step size ∆t := T/L.
Then, for any continuous function φ : [0, T ]→ R and for each k ∈ {0, 1, . . . , L} we denote φk := φ(tk),
where tk := k∆t. In addition, we adopt the same notation for vector/tensor valued functions and

consider tk+ 1
2

:=
tk+1+tk

2 , φk+ 1
2 := φk+1+φk

2 , φk−
1
2 := φk+φk−1

2 , and the discrete time derivatives

∂tφ
k :=

φk+1 − φk

∆t
and ∂̄tφ

k :=
φk − φk−1

∆t
,
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from which we notice that

∂t∂̄tφ
k =

∂̄tφ
k+1 − ∂̄tφk

∆t
=
∂tφ

k − ∂tφk−1

∆t
=
φk+1 − 2φk + φk−1

∆t2
.

In what follows we utilize the Newmark trapezoidal rule for the time discretization of (5.11): For
k = 1, . . . , L− 1, we look for (σk+1

h , rk+1
h ) ∈Wh ×Qh solution of

(
∂t∂̄t(C−1σkh + rkh), τ

)
+
(

div
σ
k+ 1

2
h + σ

k− 1
2

h

2
,div τ

)
ρ

= −
(
f(tk),div τ

)
ρ
∀ τ ∈Wh ,

(σk+1
h , s) = 0 ∀ s ∈Qh ,

(6.1)

where, for the sake of simplicity, we assume that the scheme (6.1) is started up with

(σ0
h, r

0
h) := Ξhσ0, and (σ1

h, r
1
h) := Ξhσ(t1). (6.2)

Then, we introduce the functions

ekσ,h := σ∗h(tk)− σkh ∈ Sh and ekr,h := r∗h(tk)− rkh ∈Qh,

where, as usual, (σ∗h(tk), r
∗
h(tk)) := Ξhσ(tk). We note here that (6.2) permits us to ignore the error

at the first two initial steps since e0
σ,h = e1

σ,h = 0 and e0
r,h = e1

r,h = 0. Next, it is straightforward to
see that (

∂t∂̄t(C−1ekσ,h + ekr,h), τ
)

+
(

div
e
k+ 1

2
σ,h + e

k− 1
2

σ,h

2
,div τ

)
ρ

= (χk1, τ ) + (divχk2,div τ )ρ ∀τ ∈Wh ,

(6.3)

where
χk1 := ∂t∂̄t(C−1σ∗h(tk) + r∗h(tk)) − (C−1σ̈∗(tk) + r̈∗(tk))

and

χk2 :=
σ∗h(tk+1) + 2σ∗h(tk) + σ∗h(tk−1)

4
− σ∗(tk) .

Moreover, thanks to the second condition of Hypothesis 2 there holds

(div(σ∗h(tk)− σ∗(tk)),div τ )ρ = 0 ∀ τ ∈Wh ,

and hence the consistency term χk2 can be substituted in the error equation (6.3) by

χ̄k2 = χk2 − (σ∗h(tk)− σ∗(tk)) =
σ∗h(tk+1)− 2σ∗h(tk) + σ∗h(tk−1)

4
.

6.2 Convergence results

We begin the analysis with the following stability result for the main variable σ.

Lemma 6.1. There exists a constant C > 0, independent of λ, h and ∆t, such that for each n there
holds

max
n
‖∂tenσ,h‖C + max

n
‖div e

n+ 1
2

σ,h ‖ρ

≤ C
{

max
n
‖Cχn1‖C + max

n
‖div ∂tχ̄

n
2‖0,Ω + max

n
‖div χ̄n2‖0,Ω

}
.

(6.4)
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Proof. Taking τ =
ek+1
σ,h − e

k−1
σ,h

2∆t
in (6.3) and using that

ek+1
σ,h − e

k−1
σ,h

2∆t
=
e
k+ 1

2
σ,h − e

k− 1
2

σ,h

∆t
=

∂te
k
σ,h + ∂te

k−1
σ,h

2
,

we find that

1

2∆t

(
C−1(∂te

k
σ,h − ∂tek−1

σ,h ), (∂te
k
σ,h + ∂te

k−1
σ,h )

)
+

1

2∆t

(
div(e

k+ 1
2

σ,h + e
k− 1

2
σ,h ),div(e

k+ 1
2

σ,h − e
k− 1

2
σ,h )

)
ρ

=
(
χk1,

∂te
k
σ,h + ∂te

k−1
σ,h

2

)
+
(

div χ̄k2,div
e
k+ 1

2
σ,h − e

k− 1
2

σ,h

∆t

)
ρ
,

which can also be written as

1

2∆t

(
‖∂tekσ,h‖2C − ‖∂tek−1

σ,h ‖
2
C

)
+

1

2∆t

(
‖div e

k+ 1
2

σ,h ‖
2
ρ − ‖div e

k− 1
2

σ,h ‖
2
ρ

)
=
(
χk1,

∂te
k
σ,h + ∂te

k−1
σ,h

2

)
+
(

div χ̄k2,div
e
k+ 1

2
σ,h − e

k− 1
2

σ,h

∆t

)
ρ
.

In this way, summing up the foregoing identity over k = 1, . . . , n, gives

‖∂tenσ,h‖2C + ‖div e
n+ 1

2
σ,h ‖

2
ρ = 2∆t

n∑
k=1

(
χk1,

∂te
k
σ,h + ∂te

k−1
σ,h

2

)
+ 2∆t

n∑
k=1

(
div χ̄k2,div

e
k+ 1

2
σ,h − e

k− 1
2

σ,h

∆t

)
ρ

= 2∆t
n∑
k=1

(
χk1,

∂te
k
σ,h + ∂te

k−1
σ,h

2

)
− 2 ∆t

n−1∑
k=1

(div ∂tχ̄
k
2,div e

k+ 1
2

σ,h )ρ + 2(div χ̄n2 ,div e
n+ 1

2
σ,h )ρ .

It is now straightforward to deduce from the last identity, the Cauchy-Schwarz inequality, and (3.3)
that there exists a constant C0 > 0, independent of λ, h and ∆t, such that

max
n
‖∂tenσ,h‖C + max

n
‖div e

n+ 1
2

σ,h ‖ρ

≤ C0

{
∆t

L∑
k=1

‖Cχk1‖C +
∆t
√
ρ

L∑
k=1

‖div ∂tχ̄
k
2‖0,Ω +

1
√
ρ

max
n
‖div χ̄n2‖0,Ω

}
,

(6.5)

and the result follows.

We now turn to prove stability estimates for the Lagrange multiplier r.

Lemma 6.2. There exists a constant C > 0, independent of h, such that for each n there holds

max
n
‖∂tenr,h‖0,Ω ≤ C

{
max
n
‖Cχn1‖C + max

n
‖div ∂tχ̄

n
2‖0,Ω + max

n
‖div χ̄n2‖0,Ω

}
. (6.6)

Proof. Given k ≥ 1 we deduce from the error equation (6.3) that

(∂̄te
k+1
r,h − ∂̄te

k
r,h, τ ) = − (C−1(∂̄te

k+1
σ,h − ∂̄te

k
σ,h), τ ) − ∆t

(
div

e
k+ 1

2
σ,h + e

k− 1
2

σ,h

2
,div τ

)
ρ

+ ∆t(χk1, τ ) + ∆t(div χ̄k2,div τ )ρ ,
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which, summing over k = 1, . . . , n, yields

(∂te
n+1
r,h , τ ) = − (C−1∂te

n+1
σ,h , τ ) − ∆t

n∑
k=1

(
div

e
k+ 1

2
σ,h + e

k− 1
2

σ,h

2
,div τ

)
ρ

+ ∆t

n∑
k=1

(χk1, τ ) + ∆t

n∑
k=1

(div χ̄k2,div τ )ρ .

It follows from the inf-sup condition (5.2), the Cauchy-Schwarz inequality, and (3.3) that there exists
a constant C1 > 0, independent of λ, h and ∆t, such that

β∗‖∂ten+1
r,h ‖0,Ω ≤ sup

τ∈Wh

(∂te
n+1
r,h , τ )

‖τ‖H(div,Ω)

≤ C1

{
max
n

(‖∂ten+1
σ,h ‖C +

1
√
ρ

max
n
‖div e

n+ 1
2

σ,h ‖ρ + max
n
‖Cχn1‖C +

1

ρ
max
n
‖div χ̄n2‖0,Ω

}
,

and the result follows from Lemma 6.1.

Lemma 6.3. Assume that the solutions σ ∈ C0(S) ∩ C1(L2
sym(Ω)) and r ∈ C1(Q) to problem (3.5)

satisfy σ ∈ C2(H(div,Ω) ∩Hε(Ω)) ∩ C4(H(div,Ω)) and r ∈ C4(L2(Ω)). Then, there exists a constant
C > 0, independent of λ, h and ∆t, such that

max
n
‖σ̇(tn+ 1

2
)− ∂tσnh‖C + max

n
‖div(σ(tn+ 1

2
)− σn+ 1

2
h )‖ρ + max

n
‖ṙ(tn+ 1

2
)− ∂trnh‖0,Ω

≤ C
{
‖σ −Πhσ‖W2,∞(H(div,Ω)) + ‖r −Qhr‖W2,∞(L2(Ω))

+ ‖u− Uhu‖W2,∞(L2(Ω)) + (∆t)2 ‖σ‖W4,∞(H(div,Ω))

}
.

(6.7)

Proof. It follows from the triangle inequality and the stability estimates (6.4) and (6.6) that

max
n
‖σ̇(tn+ 1

2
)− ∂tσnh‖C + max

n
‖divσ(tn+ 1

2
)− divσ

n+ 1
2

h ‖ρ + max
n
‖ṙ(tn+ 1

2
)− ∂trnh‖0,Ω

≤ max
n
‖σ̇(tn+ 1

2
)− ∂tσ∗h(tn)‖C + max

n

∥∥div
(
σ(tn+ 1

2
)−

σ∗h(tn+1) + σ∗h(tn)

2

)∥∥
ρ

+ max
n
‖ṙ(tn+ 1

2
)− ∂tr∗h(tn)‖0,Ω + max

n
‖∂tenσ,h‖C + max

n
‖div e

n+ 1
2

σ,h ‖ρ + max
n
‖∂tenr,h‖C

≤ max
n
‖σ̇(tn+ 1

2
)− ∂tσ∗h(tn)‖C + max

n
‖ṙ(tn+ 1

2
)− ∂tr∗h(tn)‖0,Ω

+ max
n

∥∥div
(
σ(tn+ 1

2
)−

σ∗h(tn+1) + σ∗h(tn)

2

)∥∥
ρ

+ C
{

max
n
‖Cχn1‖C + max

n
‖div ∂tχ̄

n
2‖0,Ω + max

n
‖div χ̄n2‖0,Ω

}
.

(6.8)

Then, using Taylor expansions centered at t = tn with integral remainder and keeping in mind (5.24)
we have that

Cχn1 = σ̈∗h(tn)− σ̈∗(tn) + 2µ(r̈∗h(tn)− r̈∗(tn))

+
1

6(∆t)2

∫ tn+1

tn−1

(
d4σ∗h(t)

dt4
+ 2µ

d4r∗h(t)

dt4
) (∆t− |t− tn|)3 dt ,

(6.9)
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χ̄n2 =
1

4

∫ tn+1

tn−1

σ̈∗h(t)(∆t− |t− tn|) dt , (6.10)

and

∂tχ̄
k
2 =

σ∗h(tn+2)− 3σ∗h(tn+1) + 3σ∗h(tn)− σ∗h(tn−1)

4∆t
=

1

8∆t

{∫ tn+2

tn

d3σ∗h
dt3

(t)(tn+2 − t)2 dt

− 3

∫ tn+1

tn

d3σ∗h
dt3

(t)(tn+1 − t)2 dt +

∫ tn

tn−1

d3σ∗h(t)

dt3
(tn−1 − t)2 dt

}
.

(6.11)

In turn, Taylor expansions centered this time at t = tn+ 1
2

give

σ(tn+ 1
2
)−

σ∗h(tn+1) + σ∗h(tn)

2
= σ(tn+ 1

2
)− σ∗h(tn+ 1

2
) − 1

2

∫ tn+1

tn

σ̈∗h(t)(
∆t

2
− |t− tn+ 1

2
|) dt, (6.12)

σ̇(tn+ 1
2
)− ∂tσ∗h(tn) = σ̇(tn+ 1

2
)− σ̇∗h(tn+ 1

2
) − 1

2∆t

∫ tn+1

t
n+1

2

d3σ∗h(t)

dt3
(tn+1 − t)2 dt

− 1

2∆t

∫ t
n+1

2

tn

d3σ∗h(t)

dt3
(tn − t)2 dt .

(6.13)

and

ṙ(tn+ 1
2
)− ∂tr∗h(tn) = ṙ(tn+ 1

2
)− ṙ∗h(tn+ 1

2
) − 1

2∆t

∫ tn+1

t
n+1

2

d3r∗h(t)

dt3
(tn+1 − t)2 dt

− 1

2∆t

∫ t
n+1

2

tn

d3r∗h(t)

dt3
(tn − t)2 dt .

(6.14)

Having established the above estimates, we now deduce from (6.9), (6.10) and (6.11) that there exists
a constant C1 > 0, independent of λ, h and ∆t, such that

max
n
‖Cχn1‖C + max

n
‖div ∂tχ̄

n
2‖0,Ω + max

n
‖div χ̄n2‖0,Ω ≤ C1

{
‖σ∗ − σ∗h‖W2,∞(H(div,Ω))

+ ‖r∗ − r∗h‖W2,∞(L2(Ω)) + (∆t)2
(
‖r∗h‖W4,∞(L2(Ω)) + ‖σ∗h‖W4,∞(H(div,Ω))

)}
,

(6.15)

whereas (6.12), (6.13) and (6.14) yield the existence of a constant C2 > 0, independent of λ, h and
∆t, such that

max
n
‖σ̇(tn+ 1

2
)− ∂tσ∗h(tn)‖C + max

n
‖ṙ(tn+ 1

2
)− ∂tr∗h(tn)‖0,Ω

+ max
n

∥∥div
(
σ(tn+ 1

2
)−

σ∗h(tn+1) + σ∗h(tn)

2

)∥∥
ρ
≤ C2

{
‖σ∗ − σ∗h‖W1,∞(H(div,Ω))

+ ‖r∗ − r∗h‖W1,∞(H(div,Ω)) + (∆t)2
(
‖r∗h‖W3,∞(L2(Ω)) + ‖σ∗h‖W3,∞(H(div,Ω))

)}
.

(6.16)

Finally, we deduce from the uniform boundedness of Ξh : W →Wh×Qh×Uh with respect to h and
λ, and from our regularity assumptions, that there exists a constant C3 > 0, independent of h and λ,
such that

‖σ∗h‖W4,∞(H(div,Ω)) + ‖r∗h‖W4,∞(L2(Ω)) ≤ C3 ‖σ‖W4,∞(H(div,Ω)) , (6.17)

and thus, combining (6.15), (6.16), and (6.17) with (6.8), we conclude that

max
n
‖σ̇(tn+ 1

2
)− ∂tσnh‖C + max

n
‖divσ(tn+ 1

2
)− divσ

n+ 1
2

h ‖ρ + max
n
‖ṙ(tn+ 1

2
)− ∂trnh‖0,Ω

≤ C4

{
‖σ∗ − σ∗h‖W2,∞(H(div,Ω)) + ‖r∗ − r∗h‖W2,∞(L2(Ω)) + (∆t)2‖σ‖W4,∞(H(div,Ω))

}
,

(6.18)

and the result follows from (5.18) and (5.19).
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Lemma 6.4. Under the hypotheses of Lemma 6.3 there exists a constant C > 0, independent of λ, h
and ∆t, such that

max
n
‖σ(tn+ 1

2
)− σn+ 1

2
h ‖C + max

n
‖r(tn+ 1

2
)− rn+ 1

2
h ‖0,Ω ≤ C

{
‖σ −Πhσ‖W2,∞(H(div,Ω))

+ ‖r −Qhr‖W2,∞(L2(Ω)) + ‖u− Uhu‖W2,∞(L2(Ω))

+ (∆t)2 (‖σ‖W4,∞(H(div,Ω)) + ‖r‖W4,∞(L2(Ω)))
}
.

(6.19)

Proof. We first notice that

(σ(tk+ 1
2
)− σk+ 1

2
h )− (σ(tk− 1

2
)− σk−

1
2

h ) = σ(tk+ 1
2
)− σ(tk− 1

2
)

− ∆t

2
(σ̇(tk+ 1

2
) + σ̇(tk− 1

2
)) +

∆t

2
(σ̇(tk+ 1

2
)− ∂tσkh) +

∆t

2
(σ̇(tk− 1

2
)− ∂tσk−1

h ) (6.20)

and

(r(tk+ 1
2
)− rk+ 1

2
h )− (r(tk− 1

2
)− rk−

1
2

h ) = r(tk+ 1
2
)− r(tk− 1

2
)

− ∆t

2
(ṙ(tk+ 1

2
) + ṙ(tk− 1

2
)) +

∆t

2
(ṙ(tk+ 1

2
)− ∂trkh) +

∆t

2
(ṙ(tk− 1

2
)− ∂trk−1

h ) . (6.21)

Then, using a Taylor expansion centered at t = tk, we find that

σ(tk+ 1
2
)− σ(tk− 1

2
)− ∆t

2
(σ̇(tk+ 1

2
) + σ̇(tk− 1

2
)) =

1

2

∫ t
k+1

2

tk

d3σ

dt3
(t)(tk+ 1

2
− t)2 dt

+
1

2

∫ tk

t
k− 1

2

d3σ

dt3
(t)(tk− 1

2
− t)2 dt − ∆t

2

∫ t
k+1

2

t
k− 1

2

d3σ

dt3
(t)(

∆t

2
− |t− tk|) dt

(6.22)

and

r(tk+ 1
2
)− r(tk− 1

2
)− ∆t

2
(ṙ(tk+ 1

2
) + ṙ(tk− 1

2
)) =

1

2

∫ t
k+1

2

tk

d3r

dt3
(t)(tk+ 1

2
− t)2 dt

+
1

2

∫ tk

t
k− 1

2

d3r

dt3
(t)(tk− 1

2
− t)2 dt− ∆t

2

∫ t
k+1

2

t
k− 1

2

d3r

dt3
(t)(

∆t

2
− |t− tk|) dt .

(6.23)

In this way, substituting (6.22) in (6.20) and (6.23) in (6.21), and summing the resulting identities
over k = 1, . . . , n, we deduce that there exists a constant C0 > 0, independent of λ, h and ∆t, such
that

maxn‖σ(tn+ 1
2
)− σn+ 1

2
h ‖C + maxn‖r(tn+ 1

2
)− rn+ 1

2
h ‖0,Ω ≤ C0

{
(∆t)2

(
‖σ‖W3,∞(L2(Ω))

+ ‖r‖W3,∞(L2(Ω))

)
+ max

n
‖σ̇(tn+ 1

2
)− ∂tσnh‖C + max

n
‖ṙ(tn+ 1

2
)− ∂trnh‖0,Ω

}
.

Finally, (6.19) is a direct consequence of the foregoing estimate and Lemma 6.3.

It follows from (6.1) and the fact that (σ0
h, r

0
h) and (σ1

h, r
1
h) belong to Vh that for each n ∈ {2, . . . , L},

(σnh, r
n
h) belongs to Vh as well. Hence, we may define unh := Dh(σnh, r

n
h) ∈ Uh, which is characterized

by
(div τ ,unh) = −(C−1σnh + rnh, τ ) ∀ τ ∈Wh, ∀n ∈ {0, . . . , L} . (6.24)
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Moreover, we propose u
n+ 1

2
h and anh := ∂̄t∂tu

n as suitable approximations of the displacement field
u(tn+ 1

2
) and the acceleration ü(tn), respectively. To this regard, we remark again that, one can

compute u
n+ 1

2
h by solving a saddle point problem of the form (5.8) with right-hand side divσ

n+ 1
2

h .
However, a better option consists in using an explicit representation of the fully discrete displacement

field u
n+ 1

2
h , which is obtained as follows. We first notice from the characterization (6.24) of the operator

Dh that (
div τ , ∂̄t∂tu

n
h

)
= −

(
∂t∂̄t(C−1σnh + rnh), τ

)
∀ τ ∈Wh, ∀n ∈ {1, . . . , L− 1} ,

whereas from the first equation of (6.1) we have that

(
div τ , ∂̄t∂tu

n
h

)
=
(

div
σ
n+ 1

2
h + σ

n− 1
2

h

2
+ f(tn),div τ

)
ρ
∀ τ ∈Wh, ∀n ∈ {1, . . . , L− 1} .

It follows from the foregoing equation that

anh := ∂̄t∂tu
n = ρ−1

div
σ
n+ 1

2
h + σ

n− 1
2

h

2
+ Uhf(tn)

 , (6.25)

and summing twice the last identity we obtain

unh = (∆t)2
n−1∑
l=1

l∑
k=1

ρ−1

div
σ
k+ 1

2
h + σ

k− 1
2

h

2
+ Uhf(tk)

 + u0
h + tn∂̄tu

1
h ∀n ∈ {2, . . . , L} , (6.26)

with u0
h := Dh(σ0

h, r
0
h) and u1

h := Dh(σ1
h, r

1
h).

Lemma 6.5. Under the hypotheses of Lemma 6.3 there exists a constant C > 0, independent of λ, h
and ∆t, such that

max
n
‖ü(tn)− anh‖0,Ω + max

n
‖u(tn+ 1

2
)− un+ 1

2
h ‖0,Ω ≤ C

{
(∆t)2‖σ‖W2,∞(H(div,Ω))

+ ‖u− Uhu‖W2,∞(L2(Ω)) + max
n
‖σ(tn+ 1

2
)− σn+ 1

2
h ‖H(div,Ω) + max

n
‖r(tn+ 1

2
)− rn+ 1

2
h ‖0,Ω

}
.

Proof. We begin by observing, thanks to the inf-sup condition (5.2) and Hypothesis 2, that

β∗‖Uhü(tn) − anh‖0,Ω ≤ sup
τ∈Wh

(Uhü(tn)− anh,div τ )

‖τ‖H(div,Ω)
= sup

τ∈Wh

(ü(tn)− anh,div τ )

‖τ‖H(div,Ω)
. (6.27)

Next, we notice that by definition of ü(t) = D(σ̈(t), r̈(t)) and anh, it holds that

(ü(tn)− anh,div τ ) =
(

div
(
σ(tn)−

σ
n+ 1

2
h + σ

n− 1
2

h

2

)
,div τ

)
ρ
. (6.28)

In this way, writing

σ(tn)−
σ
n+ 1

2
h + σ

n− 1
2

h

2
= −1

2

∫ t
n+1

2

t
n− 1

2

σ̈(t)(
∆t

2
−|t− tn|) dt+

1

2
(σ(tn+ 1

2
)−σn+ 1

2
h )+

1

2
(σ(tn− 1

2
)−σn−

1
2

h ) ,
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we deduce from (6.27) and (6.28) that

β∗max
n
‖Uhü(tn)− anh‖0,Ω ≤ max

n
sup
τ∈Wh

(ü(tn)− anh,div τ )

‖τ‖H(div,Ω)
≤ (∆t)2

4ρ
‖σ‖W2,∞(H(div,Ω))

+
1

2ρ
max
n
‖div(σ(tn+ 1

2
)− σn+ 1

2
h )‖0,Ω +

1

2ρ
max
n
‖div(σ(tn− 1

2
)− σn−

1
2

h )‖0,Ω ,

which, combined with the triangle inequality, gives

max
n
‖ü(tn)− anh‖0,Ω ≤ max

n
‖ü(tn)− Uhü(tn)‖0,Ω + max

n
‖Uhü(tn)− anh‖0,Ω

≤ max
n
‖ü(tn)− Uhü(tn)‖0,Ω +

(∆t)2

4ρβ∗
‖σ‖W2,∞(H(div,Ω)) +

1

2ρβ∗
max
n
‖div(σ(tn+ 1

2
)− σn+ 1

2
h )‖0,Ω .

On the other hand, in order prove error estimates for the displacement, we use again the inf-sup
condition (5.2) and the identities (4.7) and (6.24) to obtain

β∗‖un+ 1
2

h − Uhu(tn+ 1
2
)‖0,Ω ≤ sup

τ∈Wh

(u
n+ 1

2
h − Uhu(tn+ 1

2
),div τ )

‖τ‖H(div,Ω)

= sup
τ∈Wh

(u
n+ 1

2
h − u(tn+ 1

2
),div τ )

‖τ‖H(div,Ω)

= sup
τ∈Wh

(C−1σ(tn+ 1
2
) + r(tn+ 1

2
)− C−1σ

n+ 1
2

h − rn+ 1
2

h , τ )

‖τ‖H(div,Ω)

≤ ‖r(tn+ 1
2
)− rn+ 1

2
h ‖0,Ω +

1

2µ
‖σ(tn+ 1

2
)− σn+ 1

2
h ‖0,Ω .

Finally, the triangle inequality gives the estimate

max
n
‖u(tn+ 1

2
)− un+ 1

2
h ‖0,Ω ≤ max

n
‖u(tn+ 1

2
)− Uhu(tn+ 1

2
)‖0,Ω

+ 1
β∗ max[0,T ]‖r(tn+ 1

2
)− rn+ 1

2
h ‖0,Ω + 1

2µβ∗ maxn‖σ(tn+ 1
2
)− σn+ 1

2
h ‖0,Ω ,

and the result follows.

Theorem 6.1. Assume that the solutions σ ∈ C0(S) ∩ C1(L2
sym(Ω)) and r ∈ C1(Q) to problem (3.5)

satisfy σ ∈ C2(H(div,Ω) ∩Hε(Ω)) ∩ C4(H(div,Ω)) and r ∈ C4(L2(Ω)). Then, there exists a constant
C > 0 independent of λ, h and ∆t such that

max
n
‖σ(tn+ 1

2
)− σn+ 1

2
h ‖H(div,Ω) + max

n
‖r(tn+ 1

2
)− rn+ 1

2
h ‖0,Ω + max

n
‖ü(tn)− anh‖0,Ω

+ max
n
‖u(tn+ 1

2
)− un+ 1

2
h ‖0,Ω ≤ C

{
‖σ −Πhσ‖W2,∞(H(div,Ω)) + ‖r −Qhr‖W2,∞(L2(Ω))

+ ‖u− Uhu‖W2,∞(L2(Ω)) + (∆t)2
(
‖σ‖W4,∞(H(div,Ω)) + ‖r‖W4,∞(L2(Ω))

)}
.

Proof. The result is a direct consequence of Lemmas 6.3, 6.4 and 6.5 and the norm equivalence provided
by Lemma 3.1.

Remark 6.1. We end this section by remarking, as shown by Theorem 6.1, that the fully discrete
scheme maintains the convergence properties obtained in Theorem 5.1 for the semidiscrete Galerkin
scheme as discussed at the end of Section 5. Indeed, (6.7) shows that the fully discrete scheme can
deal safely with nearly incompressible materials. Finally, we notice from (6.26) that the displacement
field can also be post-processed at the fully discrete level.
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7 Asymptotic error estimates for the AFW element

It is important to notice that Hypotheses 1, 2 and 3 are satisfied for most known mixed finite elements
[4, 12, 18, 25] for the steady elasticity problem with reduced symmetry (see [5] for more details).
However, for the sake of brevity we restrict our choice of finite element examples to the Arnold-Falk-
Winther (AFW) family [4]. We consider shape regular affine meshes Th that subdivide the domain Ω̄
into triangles/tetrahedra K of diameter hK . The parameter h := maxK∈Th{hK} represents the mesh
size of Th. In what follows, we assume that Th is compatible with the partition Ω̄ = ∪Jj=1Ω̄j , i.e.,

{K ∈ Th, K ⊂ Ω̄j} = Ω̄j ∀j = 1, · · · , J.

Hereafter, given an integer m ≥ 0 and a domain D ⊂ Rd, Pm(D) denotes the space of polynomials of
degree at most m on D. The space of piecewise polynomial functions of degree at most m relatively
to Th is denoted by

Pm(Th) := {v ∈ L2(Ω); v|K ∈ Pm(K), ∀K ∈ Th}.
For k ≥ 1, the finite element spaces

Wh := Pk(Th)d×d ∩W , Qh := Pk−1(Th)d×d ∩Q and Uh := Pk−1(Th)d

correspond to the Arnold-Falk-Winther (AFW) family introduced in [4] for the steady elasticity prob-
lem. It is shown in [4] that Hypothesis 1 and the first condition of Hypothesis 2 hold true. Moreover,
the fact that Th is compatible with the partition Ω̄ = ∪Jj=1Ω̄j implies that the second condition of
Hypothesis 2 follows from the first one.

We also let Πh : H1(Ω) → Wh be the tensorial version of the BDM-interpolation operator and
recall the following classical error estimate, see [11, Proposition 2.5.4],

‖τ −Πhτ‖0,Ω ≤ Chm‖τ‖m,Ω ∀τ ∈ Hm(Ω) with 1 ≤ m ≤ k + 1. (7.1)

Moreover, thanks to the commutativity property, if div τ ∈ Hk(Ω), then

‖div(τ −Πhτ )‖0,Ω = ‖div τ − Uh div τ‖0,Ω ≤ Chm‖div τ‖m,Ω for 0 ≤ m ≤ k. (7.2)

In addition, it is well known (see, e.g. [19, Theorem 3.16]) that Πh is defined on Hε(Ω) ∩ H(div,Ω)
for any ε > 0 and there exists C > 0, independent of h, such that

‖Πhτ‖0,Ω ≤ C
{
‖τ‖ε,Ω + ‖div τ‖0,Ω

}
, (7.3)

which proves that Hypothesis 3 is satisfied.

We deduce from (7.1), (7.2) and Theorem 5.1 that if the solutions σ ∈ C0(S) ∩ C1(L2
sym(Ω)) and

r ∈ C1(Q) to problem (3.5) satisfy σ ∈ C2(Hk(Ω)), divσ ∈ C2(Hk(Ω)) and r ∈ C2(Hk(Ω)), then there
exists a constant C > 0 independent of h such that

max
[0,T ]
‖σ(t) − σh(t)‖H(div,Ω) + ‖r − rh‖W1,∞(L2(Ω)) + ‖u − uh‖W2,∞(L2(Ω)) ≤ Chk. (7.4)

Similarly, it follows from Theorem 6.1 that if the solutions to problem (3.5) satisfy σ ∈ C4(H(div,Ω))∩
C2(Hk(Ω)), divσ ∈ C2(Hk(Ω)) and r ∈ C4(L2(Ω)) ∩ C2(Hk(Ω)) then, there exists a constant C > 0
independent of h, ∆t and λ such that

max
n
‖σ(tn+ 1

2
)− σn+ 1

2
h ‖H(div,Ω) + max

n
‖r(tn+ 1

2
)− rn+ 1

2
h ‖0,Ω

+ max
n
‖ü(tn)− anh‖0,Ω + max

n
‖u(tn+ 1

2
)− un+ 1

2
h ‖0,Ω ≤ C

{
hk + (∆t)2)

}
.

(7.5)
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h = ∆t eh(σ) rh(σ) eh(r) rh(r) ëh(u) r̈h(u) eh(u) rh(u)

1/8 4.65e−01 − 3.18e−02 − 9.53e−00 − 1.23e−01 −
1/16 1.08e−01 2.11 9.03e−03 1.82 2.27e−00 2.07 3.05e−02 2.01
1/32 2.65e−02 2.02 2.47e−03 1.87 5.59e−01 2.02 7.56e−03 2.01
1/64 6.63e−03 2.00 6.47e−04 1.93 1.39e−01 2.01 1.89e−03 2.00
1/128 1.65e−03 2.01 1.66e−04 1.96 3.47e−02 2.00 4.72e−04 2.00
1/256 4.10e−04 2.01 4.19e−05 1.99 8.67e−03 2.00 1.18e−04 2.00

Table 8.1: Convergence history in the case λ = µ = ω = 1 and k = 2.

8 A mixed FEM example and numerical results

We present a series of numerical experiments confirming the good performance of the fully discrete
Galerkin scheme (6.1). For simplicity we consider a two-dimensional model problem and the AFW
element element for the spatial discretization. All the numerical results have been obtained by using
FEniCS [20].

We choose Ω = (0, 1)× (0, 1), T = 1, ρ = 1 and select the data f so that the exact solution is given
by

u(x1, x2) = sin(2πωx1) sin(2πωx2)

(
sin t
cos t

)
. (8.1)

We also assume that the body is fixed on the whole boundary, i.e., we take Γ = ∂Ω. The numerical
results have been obtained by considering nested sequences of uniform triangular meshes Th of the
unit square Ω. For each mesh size h, we take ∆t = h and the individual relative errors produced by
the fully discrete Galerkin method (6.1) are measured at the final time step as follows:

eh(σ) :=
‖σ(tL− 1

2
)− σL−

1
2

h ‖H(div,Ω)

‖σ(tL− 1
2
)‖H(div,Ω)

, eh(r) :=
‖r(tL− 1

2
)− rL−

1
2

h ‖0,Ω
‖r(tL− 1

2
)‖0,Ω

,

eh(u) :=
‖u(tL− 1

2
)− uL−

1
2

h ‖0,Ω
‖u(tL− 1

2
)‖0,Ω

ëh(u) :=
‖ü(tL−1)− aL−1

h ‖0,Ω
‖ü(tL−1)‖0,Ω

,

where (σ, r) and {(σnh, rnh), n = 0, . . . , L} are the solutions of (3.5) and (6.1) respectively and aL−1
h

is obtained from (6.25). We introduce the experimental rates of convergence

rh(σ) :=
log(eh(σ)/eĥ(σ))

log(h/ĥ)
, rh(r) :=

log(eh(r)/eĥ(r))

log(h/ĥ)
,

rh(u) :=
log(eh(u)/eĥ(u))

log(h/ĥ)
, r̈h(u) :=

log(ëh(u)/ëĥ(u))

log(h/ĥ)
,

where eh and êĥ are the errors corresponding to two consecutive triangulations with mesh sizes h and

ĥ, respectively.

We report in Table 8.1 the relative errors and the convergence orders obtained for the AFW element
of order k = 2 (AFW(2)) and with an exact solution defined as in (8.1) with λ = µ = ω = 1. It is
clear that the correct quadratic convergence rate of the error (see (7.5)) is attained in each variable.
To test the locking-free character of the method in the nearly incompressible case, we consider now
Lamé coefficients λ and µ corresponding to a Poisson ratio ν = 0.499 and a Young modulus E = 10.
We fix the polynomial degree to k = 2, take ω = 1 and report in Table 8.2 the experimental rates of
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h = ∆t eh(σ) rh(σ) eh(r) rh(r) ëh(u) r̈h(u) eh(u) rh(u)

1/8 4.18e−01 − 4.43e−00 − 5.28e+03 − 3.53e−01 −
1/16 9.70e−02 2.11 5.69e−01 2.96 1.25e+03 2.07 3.67e−02 3.26
1/32 2.23e−02 2.12 7.80e−02 2.87 3.09e+02 2.02 7.73e−03 2.25
1/64 6.12e−03 1.87 9.50e−03 3.04 7.67e+01 2.01 1.88e−03 2.04
1/128 1.48e−03 2.05 1.14e−03 3.06 1.91e+01 2.00 4.72e−04 2.00
1/256 3.43e−04 2.11 1.53e−04 2.90 4.79e+00 2.00 1.18e−04 2.00

Table 8.2: Convergence history in a nearly incompressible case: ν = 0.499, ω = 1, k = 2.

h = ∆t eh(σ) rh(σ) eh(r) rh(r) ëh(u) r̈h(u) eh(u) rh(u)

1/8 2.25e+02 − 1.22e+01 − 3.16e+04 − 4.39e+02 −
1/16 1.59e+02 0.50 1.68e−00 2.86 3.08e+04 0.04 2.29e+01 4.26
1/32 2.44e+01 2.70 1.78e−01 3.24 5.18e+03 2.57 1.21e−01 7.56
1/64 1.28e+00 4.25 4.88e−03 5.19 3.35e+02 3.95 7.75e−03 3.97
1/128 7.82e−02 4.03 2.29e−04 4.41 2.24e+01 3.90 5.31e−04 3.87
1/256 5.54e−03 3.82 1.25e−05 4.19 1.43e+00 3.98 3.37e−05 3.98

Table 8.3: Convergence history in the case λ = µ = 1, ω = 16 and k = 4.

convergence. We observe that the method is thoroughly robust for nearly incompressible materials.
Finally, we notice that the higher ω is in (8.1), the smaller is the mesh size h needed to reduce the
predominance of the spatial component of the error. In such a case, it is meaningful to use a polynomial
degree k > 2 in order to make the error reach its asymptotic behavior without using too small mesh
sizes h. This is illustrated in Table 8.3 where AFW(4) is used with the choice ω = 16.
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