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Abstract We propose a novel technique to solve elliptic problems involving a
non-polygonal interface/boundary. It is based on a high order hybridizable discon-
tinuous Galerkin method where the mesh does not exactly fit the domain. We first
study the case of a curved-boundary value problem with mixed boundary condi-
tions since it is crucial to understand the applicability of the technique to curved
interfaces. The Dirichlet data is approximated by using the transferring technique
developed in a previous paper. The treatment of the Neumann data is new. We
then extend these ideas to curved interfaces. We provide numerical results showing
that, in order to obtain optimal high order convergence, it is desirable to construct
the computational domain by interpolating the boundary/interface using piecewise
linear segments. In this case the distance of the computational domain to the exact
boundary is only O(h2).

Keywords Discontinuous Galerkin, high order, curved boundary, curved
interface

1 Introduction

In this paper we present a technique to numerically solve second order elliptic
problems in domains Ω which are not necessarily polygonal. In addition, we deal
with domains divided in two regions by a curved interface Σ. In particular we
use a high order hybridizable discontinuous Galerkin method (HDG) [3,4] where
the computational domain do not exactly fit the curved boundary or interface.
The main motivation of this technique is being able to use high order polynomial
approximations and keep high order accuracy using triangular meshes having only
straight elements.
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One of the first ideas in this direction was introduced by [5] for the one-
dimensional case and then extended to higher space dimensions for pure diffusion
[8,9] and convection-diffusion [9] equations. In their work, the mesh does not fit the
domain and the distance between the computational domain and the boundary
Γ := ∂Ω is of only order O(h), making this method attractive from a compu-
tational point of view. In addition, [7] applied this method to couple boundary
element and HDG methods to solve exterior diffusion problems. However, only
Dirichlet boundary value problems have been considered since Neumann data can
not be handled in the same way as we will explain below. We will see that for the
Neumann boundary case the proposed technique works properly if the computa-
tional domain is order O(h2) away from the actual boundary.

The work presented here focuses first on the treatment of part of the boundary
where a Neumann data is prescribed. It is important to understand this situation
in order to extend the ideas to problems having a curved interface. In fact, the
transmission conditions at the interface involve jumps of the scalar variable and
jumps of the normal component of the flux. The computational jump of the scalar
variable can be treated considering the transferring technique of [9] and the com-
putational jump of the normal component of the flux can be handled using the
extrapolation method for the Neumann data that we will describe in the following
sections.

One of the first methods that approximate Neumann boundary conditions on
curved domains considering non-fitted meshes was introduced by [1]. Here, a piece-
wise linear finite element method was considered and optimal convergence in the
H1-norm was shown. In addition, the same authors solved a semi-definite Neu-
mann problem on curved domains using a similar technique ([2]). They showed
optimal behavior of the errors in H1 and L2-norms using again piecewise linear
elements. On the other hand, higher order approximation finite element methods
require to properly fit the boundary in order to keep high order accuracy. For
instance, isoparametric element can be considered ([2],[12]). In the case of elliptic
interface problems, usually the curve describing the interface is interpolated by a
piecewise linear computational interface. Hence, super-parametric elements near
the interface must be considered in order to achieve high order accuracy ([11]).

This article aims to develop a high order method based on a triangulation
of the domain involving only straight elements. As we will discuss, the bound-
ary/interface must be interpolated by piecewise linear function in order to obtain
the expected rates of convergence. Since most of the methods based on linear fitting
are only second order accurate, we believe our method constitutes a competitive
alternative.

The rest of the manuscript is organized as follows. We will begin by setting
notation. Then, we will describe the technique for a boundary-value problem where
Neumann data is prescribed in part of the boundary. In particular, we will discuss
the proper choice of the paths that will transfer the Dirichlet and impose the
Neumann data. We will provide numerical simulations showing the performance
of the method. Then, we will adapt these ideas in order to solve a elliptic interface
problem and show numerical experiments validating the technique.
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2 Mesh construction and notation

Let Dh be a a triangulation constructed by the union of disjoint straight triangles
that approximates a bounded domain Ω ⊂ R2 and does not necessarily fit its
boundary. The Dirichlet and Neumann part of the boundary Γ are denoted by ΓD
and ΓN (ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = Γ ). We also assume that the computational
boundary, Γh, satisfies Γh = ΓhD ∪ ΓhN and ΓhD ∩ ΓhN = ∅ where ΓhD and ΓhN
are part of Γh with Dirichlet (g̃D) and Neumman (g̃N ) data, respectively. Let
d(Γ, Γh) be the distance between Γ and Γh. We denote by hK the diameter of
the element K ∈ Dh and by n its outward unit normal. The meshsize h is defined
as maxK∈Dh

hK . Let E0h be the set of interior edges of Dh and E∂h the edges at the
boundary. We say that an edge e ∈ E0h if there are two elements K+ and K− in
Dh such that e = ∂K+ ∩ ∂K−. Also, we say that e ∈ E∂h if there is an element
K ∈ Dh such that e = ∂K ∩ Γh. We set Eh = E0h ∪ E∂h . For each element K in the
triangulation Dh, we denote by Pk(K) the space of polynomials of degree at most
k defined on the element K. For each edge e in Eh Pk(e) is the space of polynomials
of degree at most k defined on the edge e. Given an element K, (·, ·)K and 〈·, ·〉∂K
denote the L2(K) = {v :

∫
K
v2 < ∞} and L2(∂K) = {ξ :

∫
∂K

ξ2 < ∞} products,
respectively. Thus, for each ξ and ψ we define

(ξ, ψ)Dh
=
∑
K∈Dh

(ξ, ψ)K and 〈ξ, ψ〉∂Dh
=
∑
K∈Dh

〈ξ, ψ〉∂K .

3 Boundary value problem with mixed boundary conditions

We consider the following model problem:

−∇ · q = f in Ω, (1a)

q + K∇u = 0 in Ω, (1b)

u = gD on ΓD, (1c)

q · n = gN on ΓN . (1d)

Here gD ∈ H1/2(ΓD) and gN ∈ H−1/2(ΓN ) are given data at the border, f ∈
L2(Ω) is a source term and K ∈ [L∞(Ω)]2×2 is a symmetric and positive definite
tensor.

In the computational domain Dh, problem (1) can be written as follows:

−∇ · q = f in Dh, (2a)

q + K∇u = 0 in Dh, (2b)

u = g̃D on ΓhD, (2c)

q · n = g̃N on ΓhN . (2d)

Here g̃D and g̃N are unknowns. As we mentioned before, g̃D can be calculated
following [5,7,9], i.e.,

g̃D(x) := gD(x̄) +

∫
σ(x)

K−1q ·m ds, (3)
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where σ(x), is a path starting at x ∈ ΓhD and ending at x̄ ∈ ΓD; and m is the
tangent vector to σ(x). This expression comes from integrating (1b) along the
path σ(x) (see [9] for details).

In principle, any kind of numerical method using polygonal domains can be
used to solve the equations in Dh. However, it is desirable to consider those meth-
ods where an accurate approximation of q is obtained, since the boundary condi-
tion (3) depends on that flux. We also notice from (3) that the same idea will not
work for g̃N since a similar expression will involve derivatives of q which are not
well approximated by the numerical method.

3.1 The HDG method

The method seeks an approximation (qh, uh, ûh) of the exact solution (q, u, u|Eh)
in the space V h ×Wh ×Mh given by

V h = {v ∈ [L2(Dh)]2 : v|K ∈ [Pk(K)]2 ∀K ∈ Dh}, (4a)

Wh = {w ∈ L2(Dh) : w|K ∈ Pk(K) ∀K ∈ Dh}, (4b)

Mh = {µ ∈ L2(Eh) : µ|e ∈ Pk(e) ∀e ∈ Eh}. (4c)

It is defined by requiring that it satisfies the equations

−(K−1qh,∇w)Dh
+ 〈q̂h · n, w〉∂Dh

= (f, w)Dh
(5a)

(qh, v)Dh
− (uh,∇ · v)Dh

+ 〈ûh, v · n〉∂Dh
= 0, (5b)

〈µ, q̂h · ν〉∂Dh\Γh = 0, (5c)

〈µ, ûh〉Γh
D

= 〈µ, ghD〉Γh
D
, (5d)

〈µ, q̂h〉Γh
N

= 〈µ, ghN 〉Γh
N
, (5e)

for all (v, w, µ) ∈ V h ×Wh ×Mh. Here ghD is the approximation of g̃D proposed
by [9]. More precisely, let K ∈ Dh. We define the operator EK : [Pk(K)]2 →
[Pk(R2)]2 such that EK(v) = v for all v ∈ [Pk(K)]2. Then, for x ∈ e ⊂ ΓhD,

g̃D(x) ≈ ghD(x) := gD(x̄) +

∫
σ(x)

K−1EKe(qh) ·m ds, (5f)

where Ke is the triangle where e belongs. In other words, EKe is the standard
extension of a polynomial to the whole R2 space. On the other hand, ghN is an
approximation of g̃N which is still unknown. In Subsection 3.3 we propose to
replace (5e) by an equation involving known quantities at the right hand side.

Finally, to complete the definition of the HDG method we must specify the
definition of numerical trace q̂h on ∂Dh, which we takes of the form

q̂h = qh + τ(uh − ûh)n, (5g)

where τ : ∂Dh → (0,∞) is a stabilization parameter that guaranties solvability
of (5) and can be set as τ |K = ‖K‖L∞(K) on each element K ([3,13]).
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3.2 Definition of the family of paths

The representation of ghD in (5f) is independent on the integration path. Let x be a
point on a boundary edge e. Previous work have proposed two ways to determine
a point x̄ in Γ and hence construct σ(x):

(P1) If x is a vertex, an algorithm developed by [9] uniquely determines x̄ as the
closest point to x such that σ(x) does not intersect another path before termi-
nating at Γ and does not intersect the interior of the domain Ω. In addition,
if x is not a vertex, its corresponding path is defined as convex combination
of those paths associated to the vertices of e. For the Dirichlet boundary value
problem, the authors in [9] numerically showed optimal rates of convergence
with this choice of σ(x) when d(Γ, Γh) is of order h, that is, order k+ 1 for uh
and qh and order k + 2 for the numerical trace ûh.

(P2) On the other hand, [8] proposed to determine x̄ such that m is normal to the
edge e. In this case these authors theoretically proved that if d(Γ, Γh) is of
order h, the order of convergence for uh and qh is indeed k + 1, but the order
for ûh is only k+3/2. However, if d(Γ, Γh) is of order h5/4 the numerical trace
also superconverges with order k + 2. Moreover, they also showed numerical
evidence indicating that the numerical trace optimally superconverges even
though d(Γ, Γh) is of order h.

Let now be e a boundary edge with vertices x1 and x2. We denote by Γe the
part of Γ determined by x̄1 and x̄2 as it is shown in Fig. 1. In this paper we
assume that if e ⊂ ΓhD (or e ⊂ ΓhN ) then Γe ⊂ ΓD (Γe ⊂ ΓN ). The algorithm in
(P1) can be easily modified to satisfy this assumption. On the other hand, the
paths defined in (P2) will not always satisfy this condition.

Ke

e
x1 x2

σ(x1) σ(x2)

x̄2x̄1

Γe

Ke

e
x1 x2

σ(x1)

σ(x2)

x̄2

x̄1

Γe

Fig. 1 Examples of a boundary edge e with vertices x1 and x2. Γe is the segment of ΓN
determined by x̄1 and x̄2.
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3.3 Approximation of the Neumann boundary condition

Let e ⊂ ΓhN a Neumann boundary face and Γe ⊂ ΓN the part of ΓN associated to
e. We denote by Ke the element of the triangulation where e belongs.

The main idea is to characterize Γe using the parameterization induced by the
family of paths. More precisely, Let e = {x : x(θ) = (x2 − x1)θ + x1, θ ∈ [0, 1]}.
Then

Γe = {x̄ = φ(θ) : φ(θ) = x(θ) + |σ(x(θ))|m(θ), θ ∈ [0, 1]}, (6)

where we recall that |σ(x(θ))| and m(θ) are the length and tangent vector of the
segment joining x(θ) and x̄(θ). We define the space

Mφ(Γe) :=

{
µ ∈ L2(Γe) : µ =

µ̃ ◦ φ−1

‖φ′ ◦ φ−1‖2
with µ̃ ∈ Pk([0, 1])

}
. (7)

Equation (5e) is then replaced by imposing the following condition over qh:

〈EKe(qh) · n, µ〉Γe
= 〈gN , µ〉Γe

∀µ ∈Mφ(Γe). (8)

Notice that (8) becomes∫ 1

0

(
EKe(qh) · n) ◦ φ

)
(θ) µ̃(θ)dθ =

∫ 1

0

(gN ◦ φ) µ̃(θ)dθ (9)

for all µ̃((θ)) ∈ Pk([0, 1]); hence, there is no need of computing the derivative of
φ.

On the other hand, we observe that if m and σ were independent of θ (for
example, if Γe were polygonal and m perpendicular to e), then ‖φ′ ◦φ−1‖2 would
be constant and hence Mφ(Γe) becomes a standard space of polynomials through
pulling back polynomials from the interval [0, 1]. As we will see in the numerical
experiments provided in next section, this technique performs optimally if m and
n have the same direction.

3.4 Numerical results: boundary-value problem

In this section we present numerical experiments showing the performance the
extrapolation technique and the influence of the choice of paths. Since the size of
the computational domain changes with h, we measure the errors eu := u − uh,
eq := q − qh and eû := u− ûh by using the following norms:

‖eu‖int : =
‖eu‖L2(Dh)

|Dh|1/2
, ‖eq‖int :=

‖eq‖[L2(Dh)]2

|Dh|1/2
,

‖eû‖Eh : =

(∑
K∈Dh

hK‖P∂u− ûh‖2L2(∂K)∑
K∈Dh

hk|∂K|

)1/2

.

Here P∂ is the L2−projection over Pk(e) with e ⊂ ∂K.
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In addition we compute an element-by-element postprocessing, denoted by u∗h,
of the approximate solution uh, which provides a better approximation for the
scalar variable when k ≥ 1 ([4,6]). Given an element K we construct u∗h = ūh+ ũh
as the only function in Pk+1(K) such that

ūh =


1
3

∑
e∈∂K ûh|e if k = 0,

1
|K|

∫
K
uhdx if k > 0,

and ũh is the polynomial in Pk+1
0 (K) (set of functions in Pk+1(K) with mean

zero) satisfying

(∇ũh,∇w)K = −(qh,∇w)K ∀w ∈ Pk+1(K).

In the purely diffusive case, this new approximation of u has been proven to con-
verge with order k + 2 for k ≥ 1 when the domain is polygonal ([4,6]), and also
when it has curved Dirichlet boundary ([8,9]).

We set K = I in all the experiments of this section. In Subsection 3.4.1 we show
that deteriorate convergence can happen if d(Γ, Γh) = O(h). However, we will see
in Subsection 3.5 that optimal convergence is obtained when d(Γ, Γh) = O(h2).

3.4.1 Computational domain at a distance d(Γ, Γh) = O(h)

In the following examples the computational domain is constructed in such a way
that the distance d(Γ, Γh) is of order h. Moreover, f , gD and gN are chosen in
order that u(x, y) = sin(x) sin(y) is solution the exact of (1).

Example 1 Our first example consist of approximating a squared domain Ω =
(0, 1) by a squared subdomain satisfying d(Γ, Γh) = O(h) as Fig. 2 shows. Let
ΓN = {x : x = 0}, ΓD = ∂Ω \ ΓN and the family of paths is computed according
to (P2).

Fig. 2 Two consecutive meshes (h = 1/4 and h = 1/8) approximating the domain of Example
1. (Figure obtained from [8])
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In Table 1 we display the history of convergence for different polynomial degree
(k = 0, 1, 2 and 3) and meshsizes (h = 1/2, 1/4, 1/8, 1/16 and 1/32). We observe
that the error of u and q behaves optimally with convergence rate of order k + 1.
Moreover the error of numerical trace and postprocessed solution also converge
with order k + 1, which is not optimal for the standard HDG method on polygo-
nal domains. Even though, the errors eu∗ are always small than eu. We attribute
this lack of superconvergence to the fact that the Neumann condition (8) is being
imposed on qh and not on q̂h as in the standard HDG method.

‖eu‖int ‖eq‖int ‖eû‖Eh ‖eu∗‖int
k h error order error order error order error order

1/2 4.58E-03 - 6.59E-02 - 2.13E-02 - 7.50E-03 -

1/4 6.09E-03 -0.41 4.77E-02 0.46 5.75E-03 1.89 6.60E-03 0.18

0 1/8 4.62E-03 0.40 2.74E-02 0.80 1.75E-03 1.71 4.71E-03 0.49

1/16 2.78E-03 0.73 1.46E-02 0.91 6.18E-04 1.51 2.80E-03 0.75

1/32 1.52E-03 0.87 7.52E-03 0.96 2.51E-04 1.30 1.53E-03 0.88

1/2 1.54E-03 - 9.89E-03 - 3.70E-03 - 1.67E-03 -

1/4 5.67E-04 1.44 2.55E-03 1.96 6.31E-04 2.55 4.68E-04 1.84

1 1/8 1.69E-04 1.75 7.09E-04 1.85 1.50E-04 2.07 1.31E-04 1.83

1/16 4.62E-05 1.86 1.94E-04 1.87 3.84E-05 1.97 3.60E-05 1.87

1/32 1.21E-05 1.93 5.13E-05 1.92 9.83E-06 1.97 9.52E-06 1.92

1/2 2.29E-04 - 1.20E-03 - 5.23E-04 - 2.17E-04 -

1/4 2.82E-05 3.02 1.24E-04 3.28 3.36E-05 3.96 2.44E-05 3.16

2 1/8 3.43E-06 3.03 1.36E-05 3.19 3.22E-06 3.38 2.81E-06 3.12

1/16 4.25E-07 3.01 1.63E-06 3.06 3.61E-07 3.16 3.38E-07 3.05

1/32 5.28E-08 3.01 2.02E-07 3.01 4.26E-08 3.08 4.13E-08 3.03

1/2 3.37E-05 - 1.51E-04 - 7.55E-05 - 3.39E-05 -

1/4 2.30E-06 3.87 9.32E-06 4.02 3.12E-06 4.59 2.30E-06 3.88

3 1/8 1.55E-07 3.89 6.74E-07 3.79 1.78E-07 4.14 1.55E-07 3.89

1/16 1.05E-08 3.89 4.76E-08 3.82 1.12E-08 3.99 1.05E-08 3.89

1/32 6.90E-10 3.92 3.22E-09 3.89 7.13E-10 3.97 6.90E-010 3.92

Table 1 History of convergence of the approximation in Example 1.

Example 2 We now consider an annular domain Ω = {(x, y) ∈ R2 : 142 <
x2 + y2 < 202} that is being approximated by a polygonal subdomain satisfy-
ing d(Γ, Γh) = O(h) as shown in Fig. 3. We consider Neumman data in the outer
boundary ΓN = {(x, y) ∈ R2 : x2 + y2 = 202} and Dirichlet data in the inner
boundary ΓD = {(x, y) : x2 + y2 = 142}. Here the paths are computed according
to (P2).

The behavior of the L2-norm of the error displayed in Table 2 is similar to the
one obtained in the previous example, i.e., the rate of convergence of the error in
all the variables is of order k + 1. Thus, this example suggests that our technique
performs properly when the boundary is actually non-polygonal.

Remark 1 The construction of the family of paths according to (P1) in Examples
1 and 2 deliver similar results since the difference between (P1) and (P2) is
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Fig. 3 Annular domain and mesh in Example 2.

‖eu‖int ‖eq‖int ‖eû‖Eh ‖eu∗‖int
k h error order error order error order error order

1.89 9.56E+00 - 8.79E+00 - 4.66E-01 - 9.80E+00 -

0.96 8.47E+00 0.18 5.82E+00 0.61 3.72E-01 0.33 8.50E+00 0.21

0 0.49 5.72E+00 0.57 3.38E+00 0.79 2.42E-01 0.63 5.72E+00 0.56

0.24 3.29E+00 0.81 1.82E+00 0.90 1.37E-01 0.83 3.29E+00 0.81

0.12 1.76E+00 0.91 9.42E-01 0.91 7.26E-02 0.92 1.76E+00 0.91

1.89 2.03E+01 - 7.85E+00 - 9.56E-01 - 2.04E+01 -

0.96 5.94E+00 1.82 2.12E+00 1.94 2.58E-01 1.94 5.96E+00 1.82

1 0.49 1.43E+00 2.08 5.03E-01 2.10 6.00E-02 2.13 1.43E+00 2.08

0.24 3.40E-01 2.09 1.20E-01 2.08 1.40E-02 2.11 3.40E-01 2.09

0.12 8.19E-02 2.06 2.92E-02 2.06 3.35E-03 2.11 8.20E-02 2.06

1.89 4.04E+00 - 1.82E+00 - 1.90E-01 - 4.04E+00 -

0.96 6.80E-01 2.64 3.42E-01 2.46 2.95E-02 2.76 6.81E-01 2.64

2 0.49 1.41E-01 2.30 5.86E-02 2.58 5.89E-03 2.36 1.41E-01 2.30

0.24 2.12E-02 2.75 8.33E-03 2.83 8.75E-04 2.77 2.12E-02 2.75

0.12 2.88E-03 2.89 1.10E-03 2.93 1.16E-04 2.90 2.88E-03 2.93

1.89 4.12E+00 - 1.52E+00 - 1.93E-01 - 4.12E+00 -

0.96 3.17E-01 3.80 1.07E-01 3.93 1.37E-03 3.92 3.17E-01 3.80

3 0.49 1.89E-02 4.13 6.29E-03 4.15 7.89E-04 4.18 1.89E-02 4.13

0.24 1.10E-03 4.13 3.70E-04 4.12 4.53E-05 4.15 1.10E-03 4.13

0.12 6.56E-05 4.08 2.23E-05 4.07 2.68E-06 4.09 6.56E-05 4.08

Table 2 History of convergence of the approximation in Example 2.

not significant for these domains. That is why we do not display the convergence
tables for this case. This numerical evidence indicates that the technique proposed
provides optimal rate of convergence when d(Γ, Γh) = O(h) and the family of paths
is constructed according to (P1) or (P2). However, in practice, this condition over
the distance can not be satisfied in general, unless the mesh is constructed properly
to do so.

A practical construction of the computational domain Dh was described in [9].
It consists of “immersing” the domain in a Cartesian background mesh and set
Dh as the union of all the elements that are completely inside of Ω as it is shown
in Fig. 4. Here d(Γ, Γh) = O(h). In this case it is not convenient to construct the
paths according to (P2). In fact, given a point x ∈ E∂h it might happen that x̄
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is extremely far from x, specially in parts of Γ where the domain is non-convex.
Since both procedures deliver similar results in previous examples, we will consider
from now on (P1).

Fig. 4 Left: Domain Ω, its boundary Γ (solid line), a background mesh Bh and the polygonal
subdomain Dh (gray). Right: Dirichlet data g on Γ transferred to ϕ on Γh. (Figure taken from
[9])

Example 3 In order to observe the performance of the method where the mesh
satisfies d(Γ, Γh) = O(h) and the paths are given by (P1), we consider the ring
Ω = {(x, y) ∈ R2 : 0.252 < (x − 0.5)2 + (y − 0.5)2 < 1} with ΓN = {(x, y) ∈ R2 :
x2 + y2 = 1} and ΓD = {(x, y) : x2 + y2 = 0.252}. In Fig. 5 we show a zoom at
the upper-right corner of three consecutive meshes. We also plot the family paths
from vertices and quadrature points on the boundary edges. In Table 3 we display
the history of convergence. Even though the method is still convergent for k = 0,
1 and 2, the rates deteriorate. Moreover, there is no convergence when k = 3
. For the Dirichlet boundary value problem this non-optimal behavior does not
occur as [9] showed. This example suggests that in a practical situation (meshes
satisfying d(Γ, Γh) = O(h) and paths constructed using (P1), the method does
not perform properly. So, it seems that for Neumann boundary data, the family
of paths needs to be build according to (P2). Even though we have no theoretical
support that explains this behavior, we believe it might be related to the oscillatory
nature of high degree polynomials. In fact, for the Dirichlet problem, [8] showed
error estimates where some of the constants depend on the polynomial degree.
In addition, [10] numerically studied the robustness of this method applied to a
convection-diffusion problem with Dirichlet boundary data. The concluded that,
even though d(Γ, Γh) = O(h), Γ and Γh must be “close enough’ when k ≥ 1.

One way of always being able to construct the paths using (P2) is to interpo-
late the boundary by a piecewise linear function. In this case d(Γ, Γh) = O(h2).

Remark 2 In Example 3 it is not possible to construct the family of path by (P1).
In fact, a path perpendicular to an inner boundary edge might not intersect the
inner ring . Moreover, a path perpendicular to an outer boundary edge might
intersect the outer boundary extremely “far” as would happen in the third mesh
of Fig. 5.
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Fig. 5 Zoom at the upper-right corner of three consecutive meshes of Example 3. Mesh (grey
region) constructed considering the procedure in [9] and family of paths determined according
to (P1). Blue lines: paths from the vertices. Red lines: paths from quadrature points of the
boundary edges (k = 1).

‖eu‖int ‖eq‖int ‖eû‖Eh ‖eu∗‖int
k h error order error order error order error order

0.312 4.12E-02 - 1.83E-01 - 4.40E-02 - 4.15E-02 -

0.156 3.70E-02 0.16 1.27E-01 0.53 3.26E-02 0.43 3.69E-02 0.17

0 0.078 1.69E-02 1.13 1.37E-01 -0.11 1.50E-02 1.12 1.69E-02 1.13

0.039 9.11E-03 0.89 7.00E-02 0.96 7.61E-03 0.97 9.11E-03 0.89

0.019 8.50E-03 0.10 4.92E-02 0.51 5.66E-03 0.43 8.50E-03 0.10

0.312 6.13E-03 - 1.82E-02 - 3.75E-03 - 5.71E-03 -

0.156 3.44E-03 0.84 1.06E-02 0.77 2.18E-03 0.78 3.37E-03 0.76

1 0.078 3.86E-03 -0.17 9.41E-03 0.18 2.36E-03 -0.11 3.86E-03 -0.20

0.039 1.16E-03 1.74 2.68E-03 1.81 6.88E-04 1.78 1.16E-03 1.73

0.019 5.17E-04 1.16 1.16E-03 1.20 3.04E-04 1.18 5.16E-04 1.16

0.312 4.68E-04 - 1.25E-03 - 3.03E-04 - 4.60E-04 -

0.156 2.25E-04 1.06 5.89E-04 1.08 1.45E-04 1.06 2.24E-04 1.04

2 0.078 1.21E-04 0.89 3.24E-04 0.86 7.39E-05 0.97 1.21E-04 0.89

0.039 1.31E-05 3.20 3.60E-05 3.17 7.79E-06 3.25 1.31E-05 3.21

0.019 2.63E-06 2.32 7.03E-06 2.35 1.54E-06 2.33 2.63E-06 2.32

0.312 3.02E-05 - 8.78E-05 - 1.98E-05 - 3.00E-05 -

0.156 1.11E-05 1.44 3.45E-05 1.35 7.19E-06 1.45 1.10E-05 1.44

3 0.078 1.65E-06 2.75 5.37E-06 2.67 1.01E-06 2.83 1.65E-06 2.75

0.039 6.69E-06 - 1.53E-05 - 3.98E-06 - 6.70E-06 -

0.019 8.03E-03 - 2.26E-02 - 4.73E-03 - 8.04E-03 -

Table 3 History of convergence of the approximation in Example 3.

3.5 Computational domain at a distance d(Γ, Γh) = O(h2)

Another practical construction of Dh is defining first Γh by interpolating Γ using
piecewise linear segments. Then, Dh is the domain enclosed by Γh as Fig. 6 shows.
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In this case d(Γ, Γh) = O(h2) and the family of paths can be easily defined ac-
cording to (P2).

Example 4 We consider the domain Ω = {(x, y) ∈ R2 : 1 < (x−0.5)2+(y−0.5)2 <
4} with ΓN = {(x, y) ∈ R2 : x2 + y2 = 1} and ΓD = {(x, y) : x2 + y2 = 4}. In
Table 4 we observe again that the order of convergence in all the variables in
k + 1. We point out that part of the computational domain is outside of Ω as it
can be observed in the inner circle in Fig. 6. This was never the case in the examples
provided by [9] and [8]. Thus, these results indicates that their technique also works
when Ωc ∩ Dh 6= ∅. In Fig. 7 we show the approximated solution ph considering
h = 1.10 (left) and 0.55 (right) and using polynomials of degree k = 0, 1 and 2.
We clearly see an improvement either when the mesh is refined or the polynomial
degree increases.

Fig. 6 Zoom at the upper-right corner of Example 4. Blue line: boundary Γ . Grey region:
mesh.
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‖eu‖int ‖eq‖int ‖eû‖Eh ‖eu∗‖int
k h error order error order error order error order

1.72 5.31E-01 - 2.14E+00 - 2.22E-01 - 6.63E-01 -

1.10 2.87E-01 1.37 1.19E+00 1.3 1.14E-01 1.48 3.00E-01 1.77

0 0.55 1.45E-01 0.99 6.13E-01 0.95 5.76E-02 1.00 1.46E-01 1.04

0.29 8.10E-02 0.89 3.31E-01 0.95 3.10E-02 0.95 8.05E-02 0.91

0.15 4.36E-02 0.98 1.69E-01 1.07 1.60E-02 1.05 4.34E-02 0.98

0.08 2.24E-02 0.99 8.48E-02 1.02 8.12E-03 1.01 2.23E-02 1.00

1.72 2.59E-01 - 9.51E-03 - 9.51E-03 - 1.22E-01 -

1.10 7.11E-02 2.89 1.61E-03 3.97 1.61E-03 3.97 1.80E-02 4.27

1 0.55 1.77E-02 2.01 2.50E-04 2.68 2.50E-04 2.68 2.54E-03 2.82

0.29 4.45E-03 2.12 5.92E-05 2.22 5.92E-05 2.22 4.23E-04 2.76

0.15 1.08E-03 2.26 1.43E-05 2.25 1.43E-05 2.25 9.03E-05 2.45

0.08 2.66E-04 2.08 4.24E-06 1.81 4.24E-06 1.81 2.69E-05 1.80

1.72 4.59E-02 - 6.22E-02 - 1.43E-03 - 1.04E-02 -

1.10 6.55E-03 4.35 9.09E-03 4.29 1.95E-04 4.44 1.35E-03 4.56

2 0.55 8.37E-04 2.97 1.26E-03 2.85 1.10E-05 4.15 8.25E-05 4.03

0.29 1.12E-04 3.09 1.71E-04 3.07 2.14E-06 2.52 1.44E-05 2.67

0.15 1.42E-05 3.29 2.11E-05 3.32 2.01E-07 3.75 1.34E-06 3.77

0.08 1.77E-06 3.10 2.63E-06 3.10 3.37E-08 2.66 2.22E-07 2.68

1.72 5.61E-03 - 8.48E-03 - .57E-04 - 1.28E-03 -

1.10 4.47E-04 5.65 6.59E-04 5.71 6.52E-06 7.11 4.82E-05 7.32

3 0.55 3.31E-05 3.75 4.77E-05 3.78 1.77E-07 5.20 1.42E-06 5.08

0.29 2.26E-06 4.12 3.30E-06 4.11 1.51E-08 3.78 1.04E-07 4.01

0.15 1.37E-07 4.46 2.12E-07 4.36 9.59E-10 4.39 6.42E-09 4.43

0.08 8.47E-09 4.14 1.32E-08 4.13 9.52E-11 3.43 6.28E-10 3.46

Table 4 History of convergence of the approximation in Example 4.

Example 5 Now we test the performance of the method where Ω is a bounded
domain exterior to an airfoil. This is the most difficult case in our examples since
the domain has a boundary with a curved, re-entrant corner. The airfoil is obtained
by using the Joukowsky transformation:

J(z) = z +
λ2

z
,

where z ∈ C and λ ∈ R. It is well known that this transformation maps the disc
centered at (s1, s2) of radius R to an airfoil when we set λ = R−

√
s21 + s22. Here,

we take R = 0.1605 and s1 = s2 = 0.01. In Fig. 8 we show two triangulations of
the domain with meshsizes h = 0.143 and 0.073. Neumann boundary conditions
are imposed around the airfoil and Dirichlet data in the remaining part of the
boundary.

We consider the following two examples:

a) Smooth solution. We set f and g such that u(x, y) = sin(x) sin(y) is the exact
solution as in previous example. In Table 5 we observe that similar conclusions
to those in previous examples can be drawn, even though in the case the domain
is more complicated.
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Fig. 7 Approximation of the scalar variable in Example 4. Columns: meshsize h = 1.10 and
0.55. Rows: Polynomial of degree k = 0, 1 and 2.

b) Non-smooth solution. We now consider a potential flow around the airfoil

where the exact solution in polar coordinates is u(r, θ) = r cos(θ)

(
1 +

R2

r2

)
.
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Here gN = 0 around the airfoil. In this case ∇u has singularities at the leading
and trailing edges, hence we do not expect high order convergence rates. In
fact, this can be seen on Table 6 where in all the cases u converges with order
one and q converges with order less than one. However, for a fixed mesh, the
errors decrease when the polynomial degree increases. In Fig. 9 we show the
approximation of the x-component of q considering h = 0.143 and 0.024 and
k = 0, 1 and 2.

Fig. 8 Meshes of Example 5. Meshsizes h = 0.143 and 0.073.

‖eu‖int ‖eq‖int ‖eû‖Eh ‖eu∗‖int
k h error order error order error order error order

0.143 5.69E-03 - 2.25E-02 - 1.35E-03 - 5.76E-03 -

0.113 4.78E-03 0.75 1.71E-02 1.18 7.52E-04 2.50 4.81E-03 0.77

0 0.073 3.12E-03 0.98 1.05E-02 1.11 4.30E-04 1.29 3.14E-03 0.98

0.038 1.59E-03 1.03 5.36E-03 1.04 1.97E-04 1.19 1.59E-03 1.04

0.024 9.93E-04 1.02 3.25E-03 1.08 1.21E-04 1.06 9.94E-04 1.02

0.143 1.41E-04 - 2.91E-04 - 1.46E-05 - 1.48E-05 -

0.113 8.04E-05 2.38 1.68E-04 2.33 8.36E-06 2.39 8.46E-06 2.37

1 0.073 3.36E-05 2.01 6.72E-05 2.11 1.95E-06 3.35 1.96E-06 3.36

0.038 8.51E-06 2.11 1.74E-05 2.07 5.30E-07 2.00 5.14E-07 2.05

0.024 3.21E-06 2.11 6.50E-06 2.12 1.32E-07 3.00 1.28E-07 3.00

0.143 1.89E-06 - 3.58E-06 - 1.92E-07 - 1.85E-07 -

0.113 8.56E-07 3.37 1.55E-06 3.56 6.58E-08 4.56 6.34E-08 4.56

2 0.073 2.27E-07 3.06 4.06E-07 3.09 5.65E-09 5.65 5.67E-09 5.56

0.038 2.96E-08 3.12 5.30E-08 3.12 6.17E-10 3.39 5.97E-10 3.45

0.024 6.87E-09 3.15 1.24E-08 3.14 7.78E-11 4.47 7.57E-11 4.45

0.143 2.13E-08 - 3.00E-08 - 1.04E-08 - 9.98E-10 -

0.113 7.16E-09 4.64 1.06E-08 4.44 3.33E-09 4.86 3.20E-10 4.85

3 0.073 1.32E-09 3.89 1.80E-09 4.08 1.89E-10 6.61 1.83E-11 6.58

0.038 8.65E-11 4.18 1.20E-10 4.14 1.47E-11 3.91 1.40E-12 3.95

0.024 1.25E-11 4.17 1.75E-11 4.16 3.52E-12 3.09 3.32E-13 3.10

Table 5 History of convergence of the approximation in Example 5a) (smooth solution).
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‖eu‖int ‖eq‖int ‖eû‖Eh ‖eu∗‖int
k h error order error order error order error order

0.143 2.49E-03 - 2.20E-02 - 1.40E-03 - 2.53E-0 -

0.113 1.81E-03 1.35 1.62E-02 1.29 7.08E-04 2.92 1.84E-03 1.36

0 0.073 1.11E-03 1.11 1.10E-02 0.90 2.94E-04 2.02 1.12E-03 1.14

0.038 5.75E-04 1.01 7.23E-03 0.64 1.63E-04 0.91 5.77E-04 1.02

0.024 3.49E-04 1.08 5.73E-03 0.50 9.09E-05 1.26 3.50E-04 1.08

0.143 4.04E-04 - 8.38E-03 - 4.29E-04 - 3.97E-04 -

0.113 1.80E-04 3.45 5.60E-03 1.72 2.08E-04 3.09 1.89E-04 3.15

1 0.073 7.93E-05 1.88 3.38E-03 1.16 8.83E-05 1.97 8.07E-05 1.96

0.038 4.52E-05 0.86 2.00E-03 0.80 4.82E-05 0.93 4.53E-05 0.88

0.024 3.03E-05 0.86 1.63E-03 0.45 3.23E-05 0.87 3.03E-05 0.87

0.143 1.55E-04 - 4.37E-03 - 1.77E-04 - 1.57E-04 -

0.113 8.10E-05 2.78 3.02E-03 1.58 9.16E-05 2.81 8.12E-05 2.82

2 0.073 4.91E-05 1.15 1.72E-03 1.30 5.35E-05 1.24 4.91E-05 1.16

0.038 2.70E-05 0.92 9.71E-04 0.87 2.87E-05 0.95 2.70E-05 0.92

0.024 1.70E-05 0.99 8.32E-04 0.33 1.81E-05 0.99 1.70E-05 0.99

0.143 7.94E-05 - 2.73E-03 - 9.13E-05 - 8.02E-05 -

0.113 4.89E-05 2.06 1.84E-03 1.68 5.45E-05 2.19 4.92E-05 2.08

3 0.073 3.59E-05 0.71 1.09E-03 1.21 3.90E-05 0.77 3.60E-05 0.72

0.038 1.79E-05 1.07 6.34E-04 0.83 1.90E-05 1.10 1.79E-05 1.07

0.024 1.07E-05 1.10 5.15E-04 0.45 1.14E-05 1.10 1.08E-05 1.10

Table 6 History of convergence of the approximation in Example 5b) (Non smooth solution).

4 Elliptic interface problem

Let us now consider and interface Σ that divides the domain Ω in two disjoint
subdomains Ω1 and Ω2 as Figure 10 show. Then, problem (1) becomes

−∇ · q = f in Ω, (10a)

q + K∇u = 0 in Ω, (10b)

u = gD on ΓD, (10c)

q · n = gN on ΓN , (10d)

u|Σ1 − u|Σ2 = sD on Σ, (10e)

q|Σ1 · n1 + q|Σ2 · n2 = sN on Σ. (10f)

Here Σ1 and Σ2 are defined by

Σ1 := {x− εn1 : x ∈ Σ and ε→ 0},

Σ2 := {x− εn2 : x ∈ Σ and ε→ 0},

where nj (j ∈ {1, 2}) is the unit outward normal unit vector of the subdomain
Ωj , sD ∈ H1/2(Σ) and sN ∈ H−1/2(Σ) are prescribed jumps at the interface. At
Σ we adopt the convention n := n1.

For the sake of simplicity we assume ∂Ω to be polygonal (if not, we apply the
technique explained in previous section). However, the interface Σ is not necessar-
ily piecewise flat. The numerical results provided in section (3.4) for a boundary
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value problem, suggested that the distance between the computational domain
and the boundary should be of order O(h2) with a family of paths normal to the
computational boundary. That is why we interpolate the interface Σ by piecewise
linear segments. The computational interface, denoted by Σh, divides the compu-
tational domain Dh in two disjoint unions of elements D1

h and D2
h. Σjh (j ∈ {1, 2})

is defined as Σjh := {x− εnjh : x ∈ Σh and ε→ 0}, where njh is the unit outward

normal vector of the computational domain Djh.

Fig. 9 Approximation of the x-component of q Example 5 (non-smooth solution). Columns:
meshsize h = 0.143 and 0.024. Rows: Polynomial of degree k = 0, 1 and 2.

The main idea is to impose the jump of the scalar variable, denoted by s̃hD, on
the computational interface Σh. On the other hand, the jump sN will be imposed
at Σ by using the idea explained in Section 3.3.
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Ω1

Ω2

∂Ω

Σ
n

Fig. 10 Example domain Ω divided in two regions Ω1 and Ω2 by an interface Σ

Following the approach by [11], the method HDG applied to the interface
problem seeks an approximation (qh, uh, λh) ∈ V h ×Wh ×Mh such that

(K−1qh, v)Dh
− (uh,∇h · v)Dh

+ 〈λh, v · n〉∂Dh
= 0, (11a)

(w,∇h · qh)Dh
+ 〈(q̂h − qh) · n, w〉∂Dh

= (f, w)Dh
, (11b)

〈q̂h · n, µ〉∂Dh\(Γ∪Σh) = 0, (11c)

〈λh, µ〉ΓD
= 〈gD, µ〉ΓD

, (11d)

〈q̂h · n, µ〉ΓN
= 〈gN , µ〉ΓN

, (11e)

for all (v, w, µ) ∈ V h×Wh×Mh. We still need to specify the jump of the normal
component of q at Σ.

Here λh is a single-valued function, however the approximation of u must be
double-valued on Σh. Then, similarly to [11], we let λh be the approximation of
uh|Σ2

h
and consider λh + s̃hD as an approximation of uh|Σ1

h
. Thus, we define

ûh := λh + δΣh
s̃hD, (11f)

where δΣh
, defined on ∂Dh, satisfies

δΣh
=

{
1 on ∂K ∩Σh, if ∂K ∩Σh 6= ∅ and K ∈ D1

h,

0 otherwise.
(12)

To complete the method we define the numerical flux as usual

q̂h := q̃h − τ(uh − ûh)n on ∂Dh.

4.1 Approximation s̃hD

In order to define an approximation of s̃hD, we use the same transferring technique
used for the Dirichlet data on a curved boundary (3). Let e ⊂ Σh such that
e = ∂K1 ∩ ∂K2 and, without loss of generality, assume that e lies completely
inside of Ω2. We denote by (qjh, u

j
h) the approximation (qh, uh) restricted to the

domain Djh. Now, for each x ∈ e, we observe that σ(x) ⊂ K1 ∩ Ω2 and then,
according to the approximation given in (5f),
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u2h(x) ≈ u2h(x̄) +

∫
σ(x)

K−1EK2(q2h) ·m, (13)

where EK2(q2h) is the standard extrapolation of q2h to the whole R2 space defined
in (5d). Similarly,

u1h(x) ≈ u1h(x̄) +

∫
σ(x)

K−1EK1(q1h) ·m, (14)

In this case EK1(q1h) = q1h.

Combining both equations,

u1h(x)− u2h(x) ≈ u1h(x̄)− u2h(x̄) +

∫
σ(x)

K−1EK1(q1h) ·m−
∫
σ(x)

K−1EK2(q2h) ·m.

This expression suggest the following approximation

shD(x) := sD(x̄) +

∫
σ(x)

K−1EK1(q1h) ·m−
∫
σ(x)

K−1EK2(q2h) ·m. (15)

4.2 Imposition of sN

For approximating sN we use the same idea that we applied for a Neumann bound-
ary edge. For each interface edge e ∈ Σh, we consider Σe ⊂ Σ, the part of Σ
associated to e. We denote by K1

e and K2
e the element of D1

h and D2
h where e

belongs. Then, we impose the following condition at the interface Σ:

〈EK
1
e (qh) · n1 + EK

2
e (qh) · n2, µ〉Σe

= 〈sN , µ〉Σe
∀µ ∈Mφ(Σe), (16)

where Mφ(Σe) is defined similarly as in (7).

4.3 Numerical results: Interface problem

Finally, in this section we consider three numerical examples showing the per-
formance of our technique in elliptic interface problems. Since the computational
domains D1

h and D2
h do not exactly fit Ω1 and Ω2, we exclude from the com-

putation of the errors the triangles intersecting the interface. Let D̃h the set of
triangles whose faces are not interface edges. We measure the errors using the
following norms ‖ · ‖L2(D̃h)

and

‖eû‖L2(Ẽh) : =

 ∑
K∈D̃h:K∩Σh=∅

hK‖P∂u− ûh‖2L2(∂K)

1/2

.
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Example 6 (Elliptical-shaped domain) We first solve a Poisson equation in a the
domain Ω = (−1, 1)2 divided by the elliptical interface Σ described by (x/0.8)2 +
(y/0.4)2 = 1. We take K = I and

u =

{
ex cos(y) inΩ1

sin(πx) sin(πy) inΩ2 .

as exact solution. The source term, transmission and Dirichlet boundary condi-
tions are obtained from this exact solution.

In Table 7 the history of convergence for this example is displayed. Similarly
to the examples involving Neumann boundary data, the order of convergence for
u and q are optimal whereas the convergence of the numerical trace is subopti-
mal, i.e., O(hk+1). Moreover, even though superconvergence of the postprocessed
solution u∗h is lost, it provides a more accurate approximation of u. Figure 11
shows the approximation uh obtained with meshsizes of h = 0.072 and 0.018; and
polynomial degree k = 0, 1 and 2.

Example 7 (Kidney-shaped domain) We now consider the same exact solution as
in previous example, but considering a kidney-shaped described by (2[(x+ 0.5)2 +
y2]−x−0.5)2− [(x+0.5)2 +y2]+0.1 = 0. In despite of the changes of convexity of
this geometry, Table 8 shows similar accuracy on the approximations as the ones
obtained in Example 6. Figure 12 shows the quality of the approximations of the
scalar variable uh and its postprocessing u∗h obtained with a meshsize of h = 0.069
and polynomial degree k = 0, 1 and 2. As expected, u∗h provides a more accurate
approximation of uh without significantly increase the computational cost.

Example 8 (Thermal conductivity) Finally, considering the example provided by
[11], we simulate the heat distribution u at steady state, due to the heat source
f , over the domain Ω = (−1, 1)2 divided by a circular interface of radius R = 0.5
centered at the origin. The source term f and the thermal conductivity tensor are
given by

f(x, y) = −10(x2 + y2)3/2 − 15x2(x2 + y2)1/2 − 15y2(x2 + y2)1/2

and K = κjI in Ωj (j = 1, 2). The exact solution of this problem is

u =

{
1
κ1

(x2 + y2)5/2 in ∈ Ω1

1
κ2

(x2 + y2)5/2 +
(

1
κ1
− 1

κ2

)
R5 in Ω2 ,

and we consider κ1 = 1, κ2 = 100. Dirichlet boundary condition on Γ is derived
from the previous equation. In this case the jumps sD and sN are both equal to
zero. Table 9 validates the optimal convergence rates of order hk+1 for the heat
distribution u and the flux q. Figure 13 shows the approximated heat distribution
considering meshes of size h = 0.072 and 0.018, and polynomials of degree k = 0,
1 and 2.

Remark 3 If the mesh is fine enough, the errors eu, eq and eu∗ can be computed
in the entire computational domain Dh since the quadrature points of a triangle
K ∈ Djh will eventually lie in Ωj . This happens in all previous examples. In fact,
we computed the errors ‖eu‖L2(Dh), ‖eq‖L2(Dh) and ‖eu∗‖L2(Dh). Their behavior
and magnitude are similar to ones displayed in the convergence tables.
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‖eu‖L2(D̃h)
‖eq‖L2(D̃h)

‖eû‖L2(Ẽh) ‖eu∗‖L2(D̃h)

k h error order error order error order error order

0.072 2.37E − 01 − 3.53E − 01 − 3.66E − 02 − 4.16E − 02 −
0.035 1.22E − 01 0.94 1.92E − 01 0.87 2.01E − 02 0.85 2.16E − 02 0.93

0 0.018 5.97E − 02 1.03 9.22E − 02 1.04 1.05E − 02 0.93 1.09E − 02 0.98

0.009 2.98E − 02 1.01 4.66E − 02 0.99 5.60E − 03 0.92 5.67E − 03 0.95

0.004 1.50E − 02 1.00 2.34E − 02 1.00 2.84E − 03 0.98 2.86E − 03 0.99

0.072 1.98E − 02 − 4.20E − 02 − 1.75E − 03 − 2.24E − 03 −
0.035 4.95E − 03 1.97 1.01E − 02 2.03 1.63E − 04 3.37 2.72E − 04 3.00

1 0.018 1.24E − 03 1.97 2.36E − 03 2.07 2.05E − 05 2.96 3.06E − 05 3.12

0.009 3.12E − 04 2.01 5.78E − 04 2.05 7.79E − 06 1.41 8.02E − 06 1.95

0.004 7.85E − 05 2.00 1.43E − 04 2.02 1.24E − 06 2.67 1.22E − 06 2.73

0.072 1.44E − 03 − 3.93E − 03 − 1.25E − 04 − 1.58E − 04 −
0.035 2.00E − 04 2.80 5.24E − 04 2.86 2.69E − 05 2.18 2.78E − 05 2.47

2 0.018 2.43E − 05 3.01 5.99E − 05 3.10 1.89E − 06 3.80 1.96E − 06 3.79

0.009 3.07E − 06 3.01 7.54E − 06 3.01 3.00E − 07 2.67 3.03E − 07 2.72

0.004 3.92E − 07 2.98 9.54E − 07 2.99 3.99E − 08 2.92 4.01E − 08 2.93

0.072 1.10E − 04 − 3.02E − 04 − 7.05E − 06 − 8.09E − 06 −
0.035 7.78E − 06 3.76 2.16E − 05 3.75 1.79E − 07 5.21 3.06E − 07 4.65

3 0.018 4.49E − 07 4.08 1.17E − 06 4.16 6.33E − 09 4.78 8.78E − 09 5.08

0.009 2.82E − 08 4.02 7.17E − 08 4.06 4.60E − 10 3.81 4.96E − 10 4.18

0.004 1.80E − 09 3.98 4.49E − 09 4.01 1.93E − 11 4.59 2.02E − 11 4.63

Table 7 History of convergence of the approximation in Example 6 (elliptical-shaped)

‖eu‖L2(D̃h)
‖eq‖L2(D̃h)

‖eû‖L2(Ẽh) ‖eu∗‖L2(D̃h)

k h error order error order error order error order

0.069 2.37E − 01 − 3.76E − 01 − 3.80E − 02 − 4.39E − 02 −
0.035 1.23E − 01 0.97 2.05E − 01 0.90 1.97E − 02 0.98 2.12E − 02 1.08

0 0.018 6.07E − 02 1.03 9.73E − 02 1.09 1.09E − 02 0.86 1.13E − 02 0.92

0.009 3.01E − 02 1.01 4.79E − 02 1.02 5.69E − 03 0.94 5.77E − 03 0.97

0.004 1.51E − 02 1.00 2.41E − 02 1.00 2.89E − 03 0.99 2.91E − 03 1.00

0.069 2.13E − 02 − 4.35E − 02 − 1.89E − 03 − 2.59E − 03 −
0.035 5.30E − 03 2.06 1.08E − 02 2.05 4.31E − 04 2.19 4.94E − 04 2.45

1 0.018 1.33E − 03 2.03 2.63E − 03 2.07 1.03E − 04 2.10 1.08E − 04 2.23

0.009 3.28E − 04 2.01 6.24E − 04 2.07 2.22E − 05 2.20 2.27E − 05 2.24

0.004 8.28E − 05 2.00 1.56E − 04 2.01 5.74E − 06 1.97 5.78E − 06 1.99

0.069 1.56E − 03 − 3.72E − 03 − 1.39E − 04 − 1.74E − 04 −
0.035 2.02E − 04 3.02 5.62E − 04 2.79 1.78E − 05 3.04 1.93E − 05 3.25

2 0.018 2.58E − 05 3.02 6.53E − 05 3.15 2.53E − 06 2.86 2.60E − 06 2.93

0.009 3.19E − 06 3.01 7.76E − 06 3.07 4.17E − 07 2.60 4.19E − 07 2.63

0.004 4.04E − 07 3.00 9.80E − 07 3.01 5.03E − 08 3.07 5.04E − 08 3.08

0.069 1.31E − 04 − 3.50E − 04 − 1.27E − 05 − 1.40E − 05 −
0.035 7.96E − 06 4.13 2.11E − 05 4.15 9.42E − 07 3.84 9.68E − 07 3.94

3 0.018 4.92E − 07 4.08 1.27E − 06 4.11 4.03E − 08 4.61 4.10E − 08 4.63

0.009 2.92E − 08 4.06 7.37E − 08 4.10 2.22E − 09 4.18 2.23E − 09 4.19

0.004 1.87E − 09 3.99 4.71E − 09 4.00 1.44E − 10 3.98 1.44E − 10 3.98

Table 8 History of convergence of the approximation in Example 7 (kidney-shaped)
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Fig. 11 Approximation of the scalar variable in Example 6. Columns: meshsize of h = 0.072
and 0.018. Rows: Polynomial of degree k = 0, 1 and 2.

5 Conclusions

We have proposed a technique for high order approximation of boundary value
problems in curved domains with mixed boundary conditions. We have provided
numerical evidence suggesting that the technique performs properly if the family
of paths is normal to the computational boundary. A practical way to always
satisfy this restriction is to define Γh by interpolating Γ using only piecewise linear
segments. Moreover, we have extend this technique to elliptic interface problems
where the interface is not necessarily polygonal. We have presented numerical
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Fig. 12 Approximations uh (left) and u∗h of the scalar variable u of Example 7. Columns:
meshsize h = 0.069. Rows: Polynomial of degree k = 0, 1 and 2.

results indicating that the order of convergence of are optimal for the error of u
and q if the interface is interpolated by piecewise linear segments.
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