
UNIVERSIDAD DE CONCEPCIÓN
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Abstract

The stability of Helmholtz decompositions in 3D is known to hold for convex polyhedral regions
and for arbitrary (not necessarily convex) domains of class C1,1. In this note we extend this result
to non-convex polyhedral regions and to the case of homogeneous Neumann boundary conditions
on a part of the boundary that is contained in the boundary of a convex extension of the original
region. Some implications on the associated discrete Helmholtz decomposition and its application
to the derivation of a posteriori error estimates, are also discussed.
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1 Introduction

Given a domain O in R3, we first introduce the well known Hilbert spaces

H(div;O) :=
{
v ∈ L2(O) : div(v) ∈ L2(O)

}
and

H(div;O) :=
{
τ ∈ L2(O) : div(τ ) ∈ L2(O)

}
,

where div denotes the distributional divergence operator acting on a vector field v, div stands for
the action of div along each row of a tensor field τ , and the spaces L2(O) and L2(O) correspond to
the vector and tensorial versions of L2(O), that is L2(O) := [L2(O)]3, and L2(O) := [L2(O)]3×3.
Then, we say that H(div;O) admits a stable Helmholtz decomposition if there exist bounded linear
operators A : H(div;O) → H2(O) and B : H(div;O) → H1(O), with Hm(O) := [Hm(O)]3 and
Hm(O) := [Hm(O)]3×3 for each integer m ≥ 1, such that there holds

τ = ∇
(
A(τ )

)
+ curl

(
B(τ )

)
∀ τ ∈ H(div;O) , (1.1)

where ∇ and curl denote the distributional gradient and curl operators acting on each component of a
vector and along each row of a tensor, respectively. The latter means that, given v := (vj)

3
j=1 ∈ L2(O)

and τ := (τij)
3
i,j=1 ∈ L2(O), we define the distribution curl(v) as

〈curl(v),ϕ〉 :=

∫
O
v · curl(ϕ) ∀ϕ := (ϕj) ∈ D(O)3 ,
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†CI2MA and Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile,

email: ggatica@ci2ma.udec.cl.

1



with

curl(ϕ) = ∇×ϕ :=

(
∂ϕ3

∂x2
− ∂ϕ2

∂x3
,
∂ϕ1

∂x3
− ∂ϕ3

∂x1
,
∂ϕ2

∂x1
− ∂ϕ1

∂x2

)
,

and

curl(τ ) :=

 curl(τ11, τ12, τ13)
curl(τ21, τ22, τ23)
curl(τ31, τ32, τ33)

 .

The above suggests to introduce the Hilbert spaces

H(curl;O) :=
{
v ∈ L2(O) : curl(v) ∈ L2(O)

}
and

H(curl;O) :=
{
τ ∈ L2(O) : curl(τ ) ∈ L2(O)

}
.

The norms of H(div;O), H(div;O), H(curl;O), and H(curl;O) are then denoted by ‖·‖div;O, ‖·‖div;O,
‖·‖curl;O, and ‖·‖curl;O, respectively. In addition, in what follows we use ‖·‖m,O and | · |m,O to identify
the norm and seminorm, respectively, of Hm(O) and its vector and tensorial versions given by Hm(O)
and Hm(O), for any integer m ≥ 0. Note, however, that when m = 0 we usually write L2(O) and
L2(O) instead of H0(O) and H0(O), respectively.

Now, with regards to an eventual stable Helmholtz decomposition for H(div;O), we first recall
that once one finds a bounded operator A for which τ − ∇

(
A(τ )

)
is divergence-free (usually through

an auxiliary boundary value problem), the existence of an operator B completing the verification
of (1.1) only is already well established in 2D and 3D (see, e.g. [9, Chapter I, Theorems 3.1 and
3.4]). In turn, the required boundedness of B is always guaranteed in 2D thanks to the fact that
the corresponding operator curl satisfies ‖curlχ‖0,O = |χ|1,O ∀χ ∈ H1(O), whereas in the 3D
case, in which the foregoing identity does not hold, additional geometric or regularity properties of
the domain are needed to arrive at the same conclusion. In particular, the stability of a Helmholtz
decomposition for H(div;O) has already been established for convex polyhedral regions in 3D (see, e.g.
[10, Proposition 4.52]) by using [2, Theorems 2.17 and 3.12]. Moreover, the latter work by Amrouche
et al. is actually a classical reference providing existence, uniqueness and regularity results concerning
vector potentials associated with a divergence-free function in a bounded three-dimensional domain.
Indeed, another consequence that follows also from [2] refers to the aforementioned stability for the
case of arbitrary (not necessarily convex) domains of class C1,1. In the present paper we make further
use of some results from [2] to extend [10, Proposition 4.52] to non-convex polyhedral regions in 3D
and to a special case of homogeneous Neumann boundary conditions on a part of the boundary. The
rest of this work is organized as follows. In Section 2 we collect some preliminary results from [2].
Next, in Section 3 we provide our main contributions, and finally, the implications on the associated
discrete Helmholtz decomposition and its application to a posteriori error analysis, are discussed in
Section 4. Throughout the paper we employ 0 to denote a generic null vector (including the null
functional and operator), and use C and c, with or without subscripts, bars, tildes or hats, to denote
generic constants that may take different values at different places.

2 Preliminary results

We begin with some additional notations and definitions. Throughout this section, O is a bounded
and simply-connected polyhedral domain in R3 with boundary ∂O, which implies, in particular, that
there exists a unit exterior normal vector ν almost everywhere on ∂O. In this regard, we recall that
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there holds τ · ν ∈ H−1/2(∂O) (resp. τ ν ∈ H−1/2(∂O)) ∀ τ ∈ H(div;O) (resp. ∀ τ ∈ H(div;O)).
Then, following closely [2], we introduce the Hilbert spaces:

X(O) := H(div;O) ∩ H(curl;O) ,

H0(curl;O) :=
{
v ∈ H(curl;O) : v × ν = 0 on ∂O

}
,

H0(div;O) :=
{
v ∈ H(div;O) : v · ν = 0 on ∂O

}
,

Xn(O) := H(div;O) ∩ H0(curl;O) ,

Xt(O) := H0(div;O) ∩ H(curl;O) ,

(2.1)

and its corresponding tensorial versions:

X(O) := H(div;O) ∩ H(curl;O) ,

H0(curl;O) :=
{
τ ∈ H(curl;O) :

(
τi1, τi2, τi3

)
× ν = 0 on ∂O , ∀ i ∈ {1, 2, 3}

}
,

H0(div;O) :=
{
τ ∈ H(div;O) : τ ν = 0 on ∂O

}
,

Xn(O) := H(div;O) ∩ H0(curl;O) ,

Xt(O) := H0(div;O) ∩ H(curl;O) .

(2.2)

The spaces X(O), Xn(O), and Xt(O) are all provided with the natural norm

‖v‖X(O) :=
{
‖v‖20,O + ‖div v‖20,O + ‖curlv‖20,O

}1/2
∀v ∈ X(O) ,

whereas X(O), Xn(O), and Xt(O) are endowed analogously with

‖τ‖X(O) :=
{
‖τ‖20,O + ‖div τ‖20,O + ‖curl τ‖20,O

}1/2
∀ τ ∈ X(O) . (2.3)

In turn, the seminorm of X(O) is defined by

|τ |X(O) :=
{
‖div τ‖20,O + ‖curl τ‖20,O

}1/2
∀ τ ∈ X(O) . (2.4)

We now collect the tensorial versions of some results provided in [2].

Lemma 2.1 Assume that O is convex. Then the spaces Xn(O) and Xt(O) are both continuously
imbedded in H1(O), that is, there exist positive constants Cn(O) and Ct(O), such that

‖τ‖1,O ≤ Cn(O) ‖τ‖X(O) ∀ τ ∈ Xn(O) (2.5)

and
‖τ‖1,O ≤ Ct(O) ‖τ‖X(O) ∀ τ ∈ Xt(O) . (2.6)

Proof. See [2, Theorem 2.17]. �

Lemma 2.2 Let τ ∈ H(div;O). Then τ is divergence-free in O if and only if there exists a unique
ψ ∈ Xt(O) such that divψ = 0 and τ = curlψ in O.
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Proof. See [2, Theorem 3.12]. �

Lemma 2.3 The seminorm | · |X(O) (cf. (2.4)) is equivalent to ‖ · ‖X(O) (cf. (2.3)) in Xt(O), that is,
there exists a positive constant ct(O), such that

‖τ‖X(O) ≤ ct(O) |τ |X(O) ∀ τ ∈ Xt(O) . (2.7)

Proof. See [2, Corollary 3.16]. �

Although it was already mentioned in the Introduction, we emphasize here that in the case of a
convex polyhedral region O in 3D, the stability of the Helmholtz decomposition for H(div;O) (cf. [10,
Proposition 4.52]) follows straightforwardly from Lemmata 2.1 and 2.2.

3 Main results

We begin with the extension of [10, Proposition 4.52] to the case of a non-convex region. This result
was already established and used for the first time in [7, Lemma 4.3] and [7, Section 4.2], respectively.
However, we recall it next for sake of completeness and because similar arguments to those utilized
in its proof will be employed for the second extension to be presented below. In what follows, Ω is a
bounded and simply-connected polyhedral domain in R3 with boundary Γ.

Theorem 3.1 There exist bounded linear operators A : H(div; Ω) → H2(Ω) and B : H(div; Ω) →
H1(Ω), such that there holds

τ = ∇
(
A(τ )

)
+ curl

(
B(τ )

)
∀ τ ∈ H(div; Ω) . (3.1)

Equivalently, given τ ∈ H(div; Ω) there exist z := A(τ ) ∈ H2(Ω) and χ := B(τ ) ∈ H1(Ω) such that

τ = ∇z + curl(χ) in Ω and ‖z‖2,Ω + ‖χ‖1,Ω ≤ c ‖τ‖div;Ω , (3.2)

where c is a positive constant independent of all the foregoing variables.

Proof. Since Ω is not assumed to be convex, we proceed as in the second part of the proof of [8,
Lemma 3.3] by extending each tensor of H(div; Ω) to a convex region containing the closure of Ω.
More precisely, let Θ be a sufficiently large convex domain such that Ω̄ ⊂ Θ, and let G := Θ \ Ω̄ be
the annular region with boundary ∂G := Γ ∪ ∂Θ. Then, given τ ∈ H(div; Ω), we let w ∈ H1(G) be
the unique solution (guaranteed by the Lax-Milgram Theorem) of the mixed boundary value problem:

∆w = 0 in G , ∇wν = τ ν on Γ , w = 0 on ∂Θ , (3.3)

where ν stands here for the inward (resp. outward) unit normal on Γ (resp. on ∂Θ). It is clear that

‖w‖1,G ≤ c̃ ‖τ ν‖−1/2,Γ ≤ c̃ ‖τ‖div;Ω , (3.4)

with a constant c̃ > 0, independent of τ . Next, we define τ̃ :=

{
τ in Ω
∇w in G

, and observe,

according to (3.3) and (3.4), that τ̃ ∈ H(div; Θ) and

‖τ̃‖div;Θ ≤
{

1 + c̃2
}1/2

‖τ‖div;Ω . (3.5)
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Hence, applying the Helmholtz decomposition provided by [10, Proposition 4.52] to Θ and τ̃ ∈

H(div; Θ), we deduce that there exist z̃ ∈ H2(Θ) and χ̃ :=

(
χ̃1
χ̃2
χ̃3

)
∈ H1(Θ), with χ̃i := (χ̃i1, χ̃i2, χ̃i3)t

∈ H1(Θ), i ∈ {1, 2, 3}, such that

τ̃ = ∇z̃ + curl(χ̃) in Θ (3.6)

and
‖z̃‖2,Θ + ‖χ̃‖1,Θ ≤ C ‖τ̃‖div;Θ ≤ C̃ ‖τ‖div;Ω , (3.7)

where the last inequality in (3.7) follows from (3.5), thus yielding C̃ = C
{

1 + c̃2
}1/2

. Then, defining

z = A(τ ) := z̃|Ω ∈ H2(Ω) and χ = B(τ ) := χ̃|Ω ∈ H1(Ω), noting that certainly τ̃ |Ω = τ , and
employing (3.6) - (3.7), we arrive at (3.2). Finally, since the extension τ̃ and the mappings yielding
z̃ ∈ H2(Θ) and χ̃ ∈ H1(Θ) are all linear, we conclude the linearity of our implicit operators A and B,
which ends the proof. �

We continue our analysis with the stability of the Helmholtz decomposition for H(div; Ω) in 3D
when a particular case of Neumann boundary conditions is considered. More precisely, we now let ΓN

be a part of Γ such that Γ̄N ⊂ Γ and |ΓN| > 0, and introduce the spaces

HN(div; Ω) :=
{
τ ∈ H(div; Ω) : τ ν = 0 on ΓN

}
, (3.8)

and
H1

N(Ω) :=
{
χ ∈ H1(Ω) : χ|ΓN

∈ P0(ΓN)
}
, (3.9)

where P0(ΓN) stands for the constant tensors on ΓN.

Then, we establish next the stability of the Helmholtz decomposition for HN(div; Ω) when ΓN is
contained in the boundary of a convex extension of Ω. We remark that the 2D version of this result,
which, coherently with the comments in the Introduction, makes use of the identity ‖curlχ‖0,Ω =
|χ|1,Ω ∀χ ∈ H1(Ω), was recently proved in [1, Lemma 3.9]. In turn, the proof of the following theorem,
which provides the aforementioned stability in 3D, combines similar arguments to those from the proofs
of Theorem 3.1 and [1, Lemma 3.9], and apply the preliminary results collected in Section 2.

Theorem 3.2 Assume that there exists a convex domain Ξ such that Ω̄ ⊆ Ξ and ΓN ⊆ ∂ Ξ. Then
there exist bounded linear operators A : HN(div; Ω) → H2(Ω) and B : HN(div; Ω) → H1

N(Ω), such
that there holds

τ = ∇
(
A(τ )

)
+ curl

(
B(τ )

)
∀ τ ∈ HN(div; Ω) . (3.10)

Equivalently, given τ ∈ HN(div; Ω) there exist z := A(τ ) ∈ H2(Ω) and χ := B(τ ) ∈ H1
N(Ω) such that

τ = ∇z + curl(χ) in Ω and ‖z‖2,Ω + ‖χ‖1,Ω ≤ c ‖τ‖div;Ω , (3.11)

where c is a positive constant independent of all the foregoing variables.

Proof. We begin with a suitable extension of each tensor of HN(div; Ω) to an intermediate convex
domain Θ satisfying Ω ⊆ Θ ⊆ Ξ, ΓN ⊆ ∂Θ, and |Ξ\Θ̄| > 0 (see Figure 3.1 for a 2D illustration of
the corresponding geometry). Note that the existence of such a Θ is guaranteed by the conditions
required on Ω, Ξ and ΓN. Then, given τ ∈ HN(div; Ω), we proceed similarly as in the first part of the
proof of Theorem 3.1 to find τ̃ ∈ H(div; Θ) such that τ̃ |Ω = τ and

‖τ̃‖div;Θ ≤ C̃ ‖τ‖div;Ω , (3.12)
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with a positive constant C̃ independent of τ and τ̃ . In fact, denoting G := Θ\Ω̄ and splitting

∂G = Σ̄ ∪ S̄, with Σ := ∂G ∩ ∂Ω and S := ∂G\Σ̄, it suffices to set τ̃ :=

{
τ in Ω
∇w̃ in G

, where

w̃ ∈ H1(G) is the unique solution of the mixed boundary value problem (see again Figure 3.1 for a
2D version of the geometry):

∆w̃ = 0 in G , ∇w̃ ν = τ ν on Σ , w = 0 on S . (3.13)

Figure 3.1: 2D illustration of the geometry for the proof of Theorem 3.2.

Next, we define f̃ ∈ L2(Ξ) by

f̃ :=


div τ̃ in Θ ,

−1

|Ξ\Θ̄ |

∫
Θ

div τ̃ in Ξ\Θ̄ ,

observe that
‖f̃‖0,Ξ ≤ C̃(Ξ,Θ) ‖div τ̃‖0,Θ , (3.14)

where C̃(Ξ,Θ) is a positive constant depending on |Θ| and |Ξ\Θ̄|, and let w ∈ H1(Ξ) be the unique
weak solution of the Neumann boundary value problem:

∆w = f̃ in Ξ , ∇wν = 0 on ∂ Ξ,

∫
Ξ
w = 0 . (3.15)

It follows, thanks to the elliptic regularity result for (3.15) and the estimate (3.14), that there actually
hold w ∈ H2(Ξ) and

‖w‖2,Ξ ≤ c ‖f̃‖0,Ξ ≤ c C̃(Ξ,Θ) ‖div τ̃‖0,Θ . (3.16)

Then, introducing ζ := ∇w in Ξ, we deduce from the boundary condition in (3.15) that ζ ∈ Xt(Ξ)
(see definition of Xt(Ξ) in (2.2)), which, applying (2.6) (cf. Lemma 2.1) and (2.7) (cf. Lemma 2.3),
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recalling the definition of the seminorm | · |X(Ξ) (cf. (2.4)), and using that div ζ = ∆w = f̃ in Ξ,
yields

‖ζ‖1,Ξ ≤ Ct(Ξ) ‖ζ‖X(Ξ) ≤ Ct(Ξ) ct(Ξ) |ζ|X(Ξ) = Ct(Ξ) ct(Ξ) ‖∆w‖0,Ξ

= Ct(Ξ) ct(Ξ) ‖f̃‖0,Ξ ≤ Ct(Ξ) ct(Ξ) C̃(Ξ,Θ) ‖div τ̃‖0,Θ .
(3.17)

In turn, setting ζ̃ := ζ|Θ, we readily see that div
(
τ̃ − ζ̃

)
= 0 in Θ, which, according to Lemma 2.2,

implies the existence of a unique χ̃ ∈ Xt(Θ), such that div χ̃ = 0 and τ̃ − ζ̃ = curl χ̃ in Θ. In
this way, applying now (2.6) (cf Lemma 2.1) and (2.7) (cf. Lemma 2.3) to χ̃ and the convex set Θ,
recalling again the definition of the seminorm | · |X(Ξ) (cf. (2.4)), and employing the bound (3.17), we
find that

‖χ̃‖1,Θ ≤ Ct(Θ) ‖χ̃‖X(Θ) ≤ Ct(Θ) ct(Θ) |χ̃|X(Θ) = Ct(Θ) ct(Θ) ‖τ̃ − ζ̃‖0,Θ

≤ Ct(Θ) ct(Θ)
{
‖τ̃‖0,Θ + ‖ζ‖0,Θ

}
≤ Ct(Θ) ct(Θ)

{
‖τ̃‖0,Θ + ‖ζ‖1,Ξ

}
≤ Ct(Θ) ct(Θ)C(Ξ,Θ) ‖τ̃‖div;Θ ,

(3.18)

where C(Ξ,Θ) :=
{

1 +
(
Ct(Ξ) ct(Ξ) C̃(Ξ,Θ)

)2 }1/2
. Furthermore, restricting to Ω the identity

τ̃ = ζ̃ + curl χ̃ in Θ, we arrive at τ = ∇z + curlχ in Ω, where z = A(τ ) := w|Ω ∈ H2(Ω)
and χ = B(τ ) := χ̃|Ω ∈ H1(Ω). Moreover, since curlχν =

(
τ − ∇z

)
ν =

(
τ − ∇w)ν = 0 on

ΓN, we deduce that χ|ΓN
∈ P0(ΓN), and hence χ ∈ H1

N(Ω). Finally, utilizing the estimates (3.16)
and (3.18), we obtain

‖z‖2,Ω + ‖χ‖1,Ω ≤ ‖w‖2,Ξ + ‖χ̃‖1,Θ ≤
{
c C̃(Ξ,Θ) + Ct(Θ) ct(Θ)C(Ξ,Θ)

}
‖τ̃‖div;Θ ,

which, thanks to (3.12), gives the stability estimate in (3.11) and completes the proof. �

We find it important to remark here that the introduction of the auxiliary intermediate convex
region Θ is crucial for the foregoing proof. Otherwise, instead of ‖χ̃‖1,Θ and the use of the fact that
Xt(Θ) is continuously imbedded in H1(Θ) (cf. Lemma 2.1) to derive (3.18), we would have had to deal
with ‖χ̃‖1,Ω, for which, due to the lack of convexity of Ω, such an imbedding result is unfortunately
not available for this domain. This is exactly the reason why, previously to the introduction of the
key boundary value problem (3.15) and the derivation of its consequences, we need to extend the
given τ ∈ HN(div; Ω) to a tensor τ̃ ∈ H(div; Θ). In other words, our proof of Theorem 3.2 can be
summarized as a two-steps approach through the auxiliary boundary value problems (3.13) and (3.15).

4 Application to a posteriori error analysis

Along the derivation of residual-based a posteriori error estimates for mixed finite element methods
in continuum mechanics and related areas, one is usually faced to the problem of estimating the
norms of functionals F ∈ H ′, where H is either the whole space H(div; Ω) or a subspace of it. More
precisely, these functional arise from the mixed variational formulation of the underlying boundary
value problem and the application of the global continuous inf-sup condition to the total error, whereas
the definition of H depends on the particular boundary conditions involved. In addition, thanks to
the Galerkin “orthogonality condition”, there usually holds F (τ h) = 0 ∀ τ h ∈ Hh, where Hh is the
finite element subspace of H, and therefore, given any τ h ∈ Hh, one can write

‖F‖H′ = sup
τ∈H\0

|F (τ − τ h)|
‖τ‖div;Ω

. (4.1)
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As a consequence, the aforementioned estimation problem reduces first to choose a suitable τ h ∈ Hh,
and then to obtain a residual expression ηF , splitted into explicitly computable local quantities, such
that

|F (τ − τ h)| ≤ C ηF ‖τ‖div;Ω ∀ τ ∈ H , (4.2)

thus yielding
‖F‖H′ ≤ C ηF .

Moreover, for sake of efficiency of the resulting global a posteriori error estimator, it is also very
desirable that each one of the local residual quantities forming part of ηF be bounded by local or
quasi-local expressions of the true error. In this regard, we remark that actually the suitability of
τ h depends on whether one is able or not of obtaining such a ηF satisfying (4.2) and the foregoing
efficiency issue, and this is exactly the place where the Helmholtz decomposition and its discrete
version (to be introduced below) enter into play.

Indeed, let us first suppose that H = H(div; Ω) (which occurs, for instance, when the Poisson
problem with Dirichlet boundary conditions is under consideration) and that Hh is the usual tensorial
Raviart-Thomas space of order k ≥ 0. Then, given τ ∈ H and its stable Helmholtz decomposition
provided by Theorem 3.1, that is

τ = ∇z + curl(χ) in Ω , (4.3)

with z ∈ H2(Ω) and χ ∈ H1(Ω), we introduce what we call its discrete Helmholtz decomposition as

τ h := Πk
h(∇z) + curl

(
Ih(χ)

)
, (4.4)

where Πk
h : H1(Ω) → Hh is the corresponding Raviart-Thomas interpolation operator (see [3], [6]),

and Ih is the tensorial version of the well-known Clément interpolation operator mapping H1(Ω) into
the classical Lagrange finite element subspace of degree 1 (see [5]). Certainly, all the above assuming

that a regular family of triangulations
{
Th
}
h>0

of Ω made of tetrahedra T with diameter hT has been

introduced. Note in this case that the fact that curl
(
Ih(χ)

)
is a divergence-free piecewise constant

tensor implies that it belongs to the Raviart-Thomas space of order 0, and therefore to Hh, whence
τ h does belong to Hh, thus confirming the applicability of the identity (4.1). In this way, it follows
from (4.3) and (4.4) that

F (τ − τ h) = F
(
∇z − Πk

h(∇z)
)

+ F
(
curl

(
χ− Ih(χ)

))
=: F1(z) + F2(χ) , (4.5)

which transforms the deduction of (4.2) into the seeking of suitable upper bounds for the component
functionals F1 and F2. In fact, by using the characterization and approximation properties of Πk

h (see,
e.g. [6, Section 3.4]), one arrives at the estimate

|F1(z)| =
∣∣F(∇z − Πk

h(∇z)
)∣∣ ≤ C ηF1

‖z‖2,Ω , (4.6)

whereas integrating by parts (so that the curl operator is taken away from the Clément interpolation
error χ− Ih(χ)), and then applying the approximation properties of Ih (cf. [5]), one finds that

|F2(χ)| =
∣∣F(curl

(
χ− Ih(χ)

))∣∣ ≤ C ηF2
‖χ‖1,Ω , (4.7)

where ηF1
and ηF2

are residual expressions giving rise to ηF . Finally, combining (4.5), (4.6), and
(4.7) with the stability estimate given in (3.2), the required inequality (4.2) is attained. In turn, the
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efficiency issue concerning ηF is handled in the standard way by applying inverse inequalities (see [4])
and the localization technique based on tetrahedron-bubble and face-bubble functions (see [10]).

On the other hand, in what follows we take ΓN as indicated in Section 3 and assume the hypotheses
on Ω and ΓN specified in Theorem 3.2. Then, we suppose that H = HN(div; Ω) (cf. (3.8)) (which
arises, in particular, when one considers the Poisson problem with homogeneous Neumann boundary
condition on ΓN and Dirichlet boundary condition on ΓD := Γ\Γ̄N), and let Hh be the usual tensorial
Raviart-Thomas space of order k ≥ 0 with vanishing normal components on ΓN. In this way, given
τ ∈ H, its stable Helmholtz decomposition from Theorem 3.2 reads

τ = ∇z + curl(χ) in Ω , (4.8)

with z ∈ H2(Ω) and χ ∈ H1
N(Ω) (cf. (3.9)). Since χ|ΓN

∈ P0(ΓN), it is clear that curl(χ)ν = 0 on
ΓN, which together with (4.8) and the fact that τ ν = 0 on ΓN, imply that ∇zν vanishes on ΓN as
well. Then, proceeding as in (4.4), we introduce the discrete Helmholtz decomposition

τ h := Πk
h(∇z) + curl

(
Ih(χ)

)
, (4.9)

for which it only remains to verify that it belongs to Hh. In fact, since one of the characterization
properties of Πk

h guarantees that this operator preserves normal components given by piecewise poly-
nomials of degree ≤ k, we easily find that Πk

h(∇z)ν = ∇zν = 0 on ΓN. In turn, since the Clément
interpolant preserves a constant value on any part of the boundary, we deduce that Ih(χ) is also a
constant tensor on ΓN, which yields curl

(
Ih(χ)

)
ν = 0 on ΓN. In this way we conclude from (4.9)

that τ h ν = 0 on ΓN, which confirms that τ h ∈ Hh. The rest of the analysis is exactly as for the
previous case, and therefore further details are omitted.
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