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Abstract

We introduce the property of pre-expansivity for cellular automata (CA): it is the property of being
expansive on asymptotic pairs of configurations (i.e. configurations that differ in only finitely many positions).
Pre-expansivity therefore lies between expansivity and pre-injectivity, two important notions of CA theory.

We show that there exist one-dimensional pre-expansive CAs which are not (positively) expansive and
they can be chosen reversible. We show however that no bi-dimensional CA which is linear over an Abelian
group can be pre-expansive. We also consider the finer notion of k-expansivity (expansivity over pairs of
configurations with exactly k differences) and show examples of linear CA in dimension 2 and on the free
group that are k-expansive depending on the value of k, whereas no (positively) expansive CA exists in this
setting.

1 Introduction

The model of cellular automata is at the crossroads of several domains and is often the source of surprisingly
complex objects in several senses (computationally, dynamically, etc).

From the dynamical systems and symbolic dynamics points of view, the theory of cellular automata is very
rich [1, 2, 3, 4] and tells us, on the one hand, that CA are natural examples of chaotic systems that can perfectly
fit the standard notions developed in a general context, and, on the other hand, that they have special properties
allowing and justifying the development of a refined and dedicated theory. For instance, the structure of the
space of configurations allows to define the notion of an asymptotic pair configurations: two configurations that
differ only on finitely many positions of the lattice. The Garden of Eden theorem, which has a long history
[1, 5, 6, 7, 4] and is emblematic of this CA specific theoretical development, then says that surjectivity is
equivalent to pre-injectivity (injectivity on asymptotic pairs) if and only if the lattice is given by an amenable
group.

Two important lines of questioning have been particularly developed and provide some of the major open
problems of the field [8]:

• surjective CA and their dynamics;

• how does CA theory change when changing the lattice.

In particular, the classical notion of (positive) expansivity has been applied to CA giving both a rich theory in
the one-dimensional case [9, 2, 10] and a general inexistence result in essentially any other setting [11, 12]. Even
in the one-dimensional case where positive expansivity is equivalent to being conjugated to a one-sided subshift
of finite type [13], it is interesting to note that outside the linear and bi-permutative examples, few construction
techniques are known to produce positively expansive CA [14]. On the other hand, it is still unknown whether
positive expansivity is a decidable property, although it is indeed decidable for some algebraic cellular automata
[15, 16].

In this paper, we introduce a new dynamical property called pre-expansivity that both generalizes expansivity
and refines pre-injectivity: it is the property of being expansive on asymptotic pairs. Our motivation is to better
understand surjective CA and expansive-like dynamics, in particular in higher-dimensional case or lattices where
the classical notion of (positive)expansivity cannot be satisfied by any CA [11, 12].

∗This work has been supported by FONDECYT#1140684 and Basal PFB03.
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The paper is organized as follows. In section 2 we give the main definitions and results we need to work on
cellular automata on groups. In section 3, we introduce pre-expansivity and k-expansivity, and we give some
preliminary results which do not depend on the group defining the space. We also consider the particular case
of linear cellular automata. In section 4, we restrict to the group Z and give examples of cellular automata
which are pre-expansive but not positively expansive. In section 5, we consider the free group and show that
k-expansivity is possible for infinitely many values of k although positive expansivity is impossible. Finally, in
section 6, we restrict to the group Z2 and we study some k-expansive examples for particular values of k but
also show that there is no pre-expansive cellular automaton which is linear for a structure of Abelian group on
states.

2 Definitions, notations and classical results

We will work on cellular automata defined over a finitely generated group G. We will consider abelian and non
abelian groups, but since most of our examples are given for abelian groups, we will prefer the additive notation
for G.

Fixing a generator set G, that is closed under inversion, a norm can be defined in G: given z ∈ G, ||z|| is the
length of the shortest sequence g1g2...gn of elements in G such that z = g1 + g2 + ...+ gn. This norm induces a
metric in G naturally, and given a non-negative integer r we can define also the ball of radius r and center z as
the set Br(z) = {x ∈ G | || − x+ z|| ≤ r}. Given a point z ∈ G and two sets X, Y ⊆ G, we accept the following
notation.

z + S = {z + x | x ∈ S}, and X + Y = {x+ y | x ∈ X, y ∈ Y }

Cellular automata are functions defined on the symbolic space QG = {c : G→ Q | c is a function}. An element
c, called configuration, assigns a symbol of Q to each element of the group G. We will use both c(z) and cz to
denote the value of c at the cell z. A G-action is defined on QG: given z ∈ G, the shift function: σz : QG → QG is
defined by σz(c)(x) = c(z+ x) for every x ∈ G. The Cantor distance in QG is defined for any two configurations
c, d as follows.

∆(c, d) =

{
2−min{||z||:c(z) 6=d(z)} if c 6= d

0 if c = d

Definition 1 Two configurations c, d are asymptotics, denoted c
∞
= d, if they differ only in finitely many posi-

tions: {z ∈ G : c(z) 6= d(z)} is finite.

A cellular automaton (CA) is an endomorphism of QG, compatible with the shift G-action and continuous
for the Cantor metrics. From Curtis-Hedlund theorem [1, 4], every cellular automaton F is characterized by a
local function f : QV → Q, where V ⊂ G is finite and called neighborhood of F , as follows:

∀c ∈ QG,∀z ∈ G, F (c)(z) = f(σ−z(c|z+V ))

Every function defined in this way is a cellular automaton.
Basic properties of F as surjectivity and injectivity have been considered. The weaker notion of pre-injectivity

says that, for every pair of different asymptotics configurations c and d, their image by F are different:

c
∞
= d and c 6= d⇒ F (c) 6= F (d).

The so-called Garden-of-Eden theorem establishes that surjectivity is equivalent to pre-injectivity, which in
particular implies that injective CAs are also bijective (equivalently reversible by Curtis-Hedlund theorem). It
was first proved in particular cases [1, 5, 6] and later it was shown that it holds exactly when the group G is
amenable, i.e. when it admits a finitely additive measure which is invariant under its action [4].

The pair (QG, F ) is a dynamical system and can be studied from the point of view of topological dynamics.
One of the important properties a CA can have is expansivity, which is a notion of strong sensitivity to initial
conditions.

Given T be equal to either N or Z, a CA F is called T-expansive if there exists a number δ > 0, called
expansivity constant, such that for every c 6= d there exists an instant t ∈ T such that ∆(F t(c), F t(d)) ≥ δ. In
this work we will frequently omit the prefix T, assuming by default that T = N (positive expansivity).
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In G = Z, given a one-dimensional CA with local rule f : Q[−l,r] → Q with l, r > 0, we say that it is LR-
permutif when for any q−l, . . . , qr ∈ Q the two following maps are bijective:

a 7→ f(a, q−l+1, . . . , qr)

a 7→ f(q−l, . . . , qr−1, a)

Definition 2 Let (Q, ⊕ ) be a finite group and denote by ⊕ the component-wise extension of ⊕ to QG and by
0 the configuration identically equal to 0. A CA F over QG is linear if

∀c, d ∈ QG : F (c⊕ d) = F (c)⊕F (d)

The following lemma shows that linear CA over Abelian groups can be decomposed according to the structure
of the group. It is a folklore knowledge that appears often in the particular case of cyclic groups [17, 18], and
also in the more general Abelian case [19].

Recall that the product F ×G of two CA F and G is the CA defined on the product alphabet and applying
F and G on each component independently.

Lemma 1 Let Q = Qp ×Q′ be an Abelian group (law + and neutral element (0, 0)) where Qp is a p-group (the
order of every element is a power of p) for some prime p and the order of Q′ is relatively prime with p.

Then, any linear CA F over Q is isomorphic to Fp × F ′ where Fp is a linear CA over Qp and F ′ is a linear
CA over Q′.

Proof. By linearity of F , if a configuration c is such that n · c = c+ · · ·+ c︸ ︷︷ ︸
n

= (0, 0), then F (c) must be such

that n · F (c) = (0, 0). We deduce that the subset of states Q1 = Qp × {0Q′} induces a subautomaton F1 of F

because any configuration c ∈ QG
1 is such that pk · c = (0, 0) for some k and no configuration in

(
Q \ Q1

)G
has

this property. Moreover if n · c = (0, 0) for n relatively prime with p, it implies that c ∈ QG
2 =

(
{0Qp} ×Q′

)G
(because the order of an element must divide the order of the group it belongs to). Therefore Q2 induces a
subautomaton F2 of F .

Now, any c ∈ QG can be written c = c1 + c2 where c1 ∈ QG
1 and c2 ∈ QG

2 through cellwise and componentwise
decomposition, and F (c) = F1(c1) + F2(c2). F1 is isomorphic to a linear CA Fp over Qp and F2 to a linear CA
F ′ over Q′, and then F is isomorphic to Fp × F ′. �

3 Pre-expansivity

Pre-expansivity is the property of expansivity restricted to asymptotic pairs of configurations.

Definition 3 Let T be either N or Z and let F be a cellular automaton over QG, supposed reversible in the case
T = Z. F is T-pre-expansive if:

∃δ > 0 : ∀c, d ∈ QG, c 6= d and c
∞
= d⇒ ∃t ∈ T,∆(F t(c), F t(d)) > δ.

The value δ is the expansivity constant.

In the sequel, when T is not explicitly mentioned, we will always refer to T = N. In particular this choice
does not require the hypothesis of reversibility on the cellular automaton considered.

The notion of pre-expansivity can be further refined by considering only pairs of configurations with a fixed
finite number of differences. Given c, d ∈ QG, we denote c 6=k d if #

{
z ∈ G : c(z) 6= d(z)

}
= k, i.e. if c and d

differ in exactly k positions.

Definition 4 Let T be either N or Z, let F be a cellular automaton over QG (supposed reversible in the case
T = Z) and let k > 0. F is T-k-expansive if:

∃δ > 0 : ∀c, d ∈ QG, c 6=k d⇒ ∃t ∈ T,∆(F t(c), F t(d)) > δ.

Denote by Tm : QG → (QBm(0))N the trace function which to any configuration associates its orbit restricted
to Bm(0):

Tm(c) =
(
t 7→

(
F t(c)

)
|Bm

)
.
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Proposition 1 Let F be any CA over QG where G is amenable. It holds:

• F is pre-expansive ⇒ ∀k > 0 F is k-expansive,

• F is k-expansive ⇒ F is sensitive to initial configurations,

• F expansive⇒ F pre-expansive⇒ F pre-injective⇒ F surjective,

• F is pre-expansive ⇔ Tm is pre-injective for some m.

• If L is a CA over Q̃G, then F ×L is k′-expansive for every k′ ≤ k if and only if L and F are k′-expansive
for every k′ ≤ k.

Proof.

• The first item follows directly from definitions.

• For the second item it is sufficient to note that for any configuration c, any δ > 0 and any k ≥ 1 there
always exist a configuration c′ with c 6=k c

′ and ∆(c, c′) ≤ δ.

• For the third item, it is clear that expansivity implies pre-expansivity (restriction of the universal quan-
tification). Then pre-expansivity implies pre-injectivity because if there is a pair of configurations c, c′

with c
∞
= c′ and F (c) = F (c′) then, eventually applying a translation, we can also suppose them such that

∆(c, c′) is arbitrary small. Finally, since G is amenable we have that pre-injectivity implies surjectivity by
Garden of Eden Theorem [4].

• For the fourth item, it is sufficient to note that the existence of some time t such that ∆
(
F t(c), F t(c′)

)
> δ

is equivalent to Tm(c) 6= Tm(c′) for a suitable choice of m.

• Finally, if F × L is k′-expansive, it is enough to take two configurations with their differences in only
one of their components, since both automata act independently, k′ expansivity of F × L, imply that
the perturbations will arrive to the center at the same component, proving the k′-expansivity of the
corresponding automaton.
If now L and F are k′-expansive for every k′ ≤ k, we take two configurations with k′ differences. They
may lay in one or both of their components, in any way there will be 0 < k′′ ≤ k′ differences in one of the
components of F ×L. By the k′′-expansivity of the corresponding automaton, we show the expansivity of
F × L.

�

Note however that k-expansivity does not generally imply pre-injectivity or surjectivity as shown by the
following example.

Proposition 2 For any k ≥ 1 there exists a CA which is not surjective but k′-expansive for any k′ ≤ k.

Proof. Consider any pre-expansive one-dimensional CA F of radius 1 over state set Q = {0, 1} (for instance
a bi-permutative CA), and define a CA Ψ over state set Qk+1 as follows. It has k + 1 “layers” and to any
configuration c we associate its projection πi(c) on the ith layer. Intuitively it behaves on the k first layers as k
independent copies of F , except that the (k + 1)th layer induce a state flip in the image in the following way:
if it has a 1 at position z then, in the image, layer i is flipped at position z + 3i. Moreover, (k + 1)th layer is
uniformly reset to 0 after one step. Formally, Ψ is defined by:

Ψ(c)z =
(
F (π1(c))z + πk+1(c)z−3 mod 2, . . . , F (πk(c))z + πk+1(c)z−3k mod 2, 0

)
First it is clear from the definition that it is not surjective since the image of any configuration is always 0

on layer k + 1. Note also that, when reduced to state set {0, 1}k × {0}, Ψ is isomorphic to F k which is pre-
expansive. Therefore, to show that Ψ is k′-expansive for any 1 ≤ k′ ≤ k, it is sufficient to show that for any pair
of configurations c and d with c 6=k′ d we have Ψ(c) 6= Ψ(d).

So consider such a pair (c, d). Ψ was defined such that, if c and d differ on the (k + 1)th layer at position
z, then, on the ith layer, F (c) and F (d) will differ at position z + 3i as soon as c and d are the same on the
ith layer at positions z + 3i− 1, z + 3i and z + 3i+ 1. Therefore, supposing that c and d indeed differ on the
(k+ 1)th layer at position z, it implies that F (c) and F (d) differ because c and d having only k′ ≤ k differences,
they can not differ at z and at one of the positions z + 3i− 1, z + 3i or z + 3i+ 1 for each 1 ≤ i ≤ k.

Finally, suppose that c and d are equal on the (k + 1)th layer. Then they must differ on some layer i with
1 ≤ i ≤ k. Therefore, we must have F (πi(c)) 6= F (πi(d)). We deduce that Ψ(c) 6= Ψ(d) because their respective
ith layers are F (πi(c)) and F (πi(d)) up to some modification by the (k+ 1)th layer which are identical in c and
d. �
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The next lemma talks about linear CA. When F is supposed to be linear (for law ⊕ ), then Tm is also linear,
i.e. Tm(c⊕ d) = Tm(c)⊕Tm(d) where ⊕ denotes the component-wise application of ⊕ either on QG or on(
QBm

)N
.

Proposition 3 Let F be a linear CA for law ⊕ and neutral element 0. Let I be the set

I = {k ∈ N : F is not k-expansive}

• if k1, k2 ∈ I then k1 + k2 ∈ I,

• F is pre-expansive if and only if for some m > 0 there is no finite non empty set {c1, . . . , cn} ⊆ X such
that

Tm(c1)⊕ · · · ⊕Tm(cn) = 0

where X = {c : c 6=1 0} is the set of configurations with a single non-0 cell.

Proof. First, by linearity of the trace functions Tm, we have that Tm(c) = Tm(c′) if and only if Tm
(
c′⊕ (−c)

)
= Tm(0)

where −c is the configuration such that c⊕ (−c) = 0. Moreover we also have c 6=k c
′ if and only if c′⊕ (−c) 6=k 0.

Hence F is pre-expansive (resp. k-expansive) if and only if there is m such that no c 6= 0 with c
∞
= 0 (resp.

c 6=k 0) can verify Tm(c) = Tm(0).
From this we deduce the second item of the Proposition.
For the first item, consider k1 and k2 in I. From what we said above, for any m1 there is c1 such that

c1 6=k1 0 and Tm1(c1) = Tm1(0). Now choose m2 large enough so that any non-zero state of c1 appears at
distance at most m2 from the center. Let us remark that the differences between c1 and 0 are outside Bm1

,
otherwise Tm1

(c1) 6= Tm1
(0), thus m2 > m1. Since k2 ∈ I we deduce from what we said earlier that there is c2

such that c2 6=k2 0 and Tm2
(c2) = Tm2

(0). By choice of m2, this implies that Tm1
(c1⊕ c2) = Tm1

(0). Moreover
c1⊕ c2 6=k1+k2 0. Since m1 was arbitrary, we deduce that F is not (k1 + k2)-expansive. �

4 1-dimensional Cellular Automata

The main goal of this section is to show that the notion of k-expansivity, pre-expansivity and expansivity all
differ. More precisely we will show the following existential result.

Theorem 1 For each item in the following list, there exists a CA having the given properties:

• N-pre-expansive and reversible and not N-expansive,

• N-pre-expansive and irreversible and not N-expansive,

• 1-pre-expansive and reversible and not N-pre-expansive, and

• 1-pre-expansive and irreversible and not N-pre-expansive.

For this purpose it will be sufficient to focus on linear cellular automata. Nevertheless, before the study of
the (linear) examples involved in Theorem 1, we give some additional results which hold in dimension 1 for (non)
linear CA. First, the expansivity constant can be fixed canonically as we will in lemma 3. The next lemma is
direct and it expresses the locality of CAs.

Lemma 2 Let F be a CA in Z with neighborhood [−l, r] the next assertions hold.

• If c]−∞,n] = d]−∞,n] and there exists an iteration t such that F t(c)]−∞,n] 6= F t(d)]−∞,n], then there is an

iteration t′ ≤ t such that F t
′
(c)[n−r,n] 6= F t

′
(d)[n−r,n].

• If c[n,∞[ = d[n,∞[ and there exists an iteration t such that F t(c)[n,∞[ 6= F t(d)[n,∞[, then there is an iteration

t′ ≤ t such that F t
′
(c)[n,n+l] 6= F t

′
(d)[n,n+l].

Proof. We will only prove the first assertion, the second one is completely analogous. Let t′ be the first time
such that F t

′
(c)]−∞,n] 6= F t

′
(d)]−∞,n], and let i ∈] − ∞, n] be a position such that F t

′
(c)i 6= F t

′
(d)i. Since

F t
′−1(c)]−∞,n] = F t

′−1(d)]−∞,n], and only the cells in ]n− r, n] depend on cells in ]n,∞[, i ≥ n− r. �
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This lemma shows a particularity of dimension 1: expansivity properties can be understood through left/right
propagation of information. Let us precise this notion.

Definition 5 Given two configurations c 6= d, and a CA F , we define the left and right propagation sequences
as follows.

ldt (c) = min{z ∈ Z :
(
F t(c)

)
(z) 6=

(
F t(d)

)
(z)}

rdt (c) = max{z ∈ Z :
(
F t(c)

)
(z) 6=

(
F t(d)

)
(z)}

Lemma 3 Given a CA F of neighborhood [−l, r] and k ∈ N, the next assertion hold.

1. If F is k-expansive, then ∀c 6=k d, (l
d
t (c))t∈N is not lower bounded and (rdt (c))t∈N is not upper bounded.

2. If ∀k′ ≤ k, ∀c 6=k′ d, (l
d
t (c))t∈N is not lower bounded and (rdt (c))t∈N is not upper bounded, then F is k-

expansive with expansivity constant 2−max{l,r}.

Proof.

1. Let us suppose that F is k-expansive with expansivity constant m. Let c 6=k d be two configurations, and
let us assume that ldt (c) > n for some n ∈ Z; this means that F t(c)]−∞,n] = F t(d)]−∞,n] for every t ∈ N.

Thus Tm(σn−m(c)) = Tm(σn−m(d)), which is a contradiction. The analogous happens if (rdt (c))t∈N is upper
bounded.

2. We need to prove that F is k-expansive with expansivity constant 2−m = 2−max{l,r}. Let c 6=k d be two
configurations, and let us define the next two additional configurations.

cl(i) =

{
c(i) if i < 0
d(i) if i ≥ 0

cr(i) =

{
d(i) if i < 0
c(i) if i ≥ 0

If c[−m,m] 6= d[−m,m], Tm(c) 6= Tm(d) and we are done, so let us suppose that c[−m,m] = d[−m,m]. Let k′

and k′′ be such that cr 6=k′ d, cl 6=k′′ d and k′ + k′′ = k.

If k′ 6= 0, (ldt (cr))t∈N is not lower bounded, thus by lemma 2 and the fact that cr is equal to d below position
m, there is a minimal iteration tr such that F tr (cr)[m−r,m] 6= F tr (d)[m−r,m]. Analogously, if k′′ 6= 0 there

is a minimal iteration tl such that F tl(cl)[−m,−m+l] 6= F tl(d)[−m,−m+l].

Let us take t = min{tr, tl}, by the choice of m we have that F t(c)[0,m] = F t(cr)[0,m] and F t(c)[−m,0] =

F t(cl)[−m,0], and at least one of them is different from F t(d) between [−m,m], thus Tm(c) 6= Tm(d).

�

The last lemma establishes that the expansivity constant is uniform in dimension one (it does not depends
on k), thus we can conclude the next corollary.

Corollary 1 If F is k-expansive for every k ∈ N then it is pre-expansive.

Lemma 4 F is pre-expansive if and only if for all c
∞
= d, (ldt (c))t∈N is not lower bounded and (rdt (c))t∈N is not

upper bounded.

Proof.

(⇒) Let c 6=k d be two asymptotics configurations. Since F is pre-expansive, it is also k-expansive, thus by
lemma 3, (ldt (c))t∈N is not lower bounded and (rdt (c))t∈N is not upper bounded.

(⇐) If for every k ∈ N and every pair c 6=k d we have that (ldt (c))t∈N is not lower bounded and (rdt (c))t∈N is not
upper bounded, then by lemma 3, F is k-expansive, and by corollary 1, we conclude that F is pre-expansive.

�
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Left and right propagation determines also expansivity. The next lemma can be proven by using the tech-
niques from the last lemmas.

Lemma 5 F is expansive if and only if for any pair of different configurations c, d, if c]−∞,0] = d]−∞,0] then

(ldt (c))t∈N is not lower bounded, and if c[0,∞[ = d[0,∞[ then (rdt (c))t∈N is not upper bounded.

The following proposition shows that the simplest form of linearity is not sufficient to achieve the separation
between expansivity and pre-expansivity. Let us first introduce some notation. Given a ∈ Q, we denote by ca

the configuration that is equal to 0 everywhere except at cell 0 where its value is a.

Proposition 4 Let Zn be the the group of integers modulo n with addition, and let F be a one-dimensional
linear CA over Zn. Then F is 1-expansive if and only if it is expansive.

Proof. First by Proposition 1 if F is expansive it is in particular 1-expansive.
For the other direction, it is sufficient to consider the case n = pk with p a prime number by lemma 1 because

if some F1 × F2 is 1-expansive then both F1 and F2 must be 1-expansive.
By commutation with shifts we have l0t (σn(ca)) = −n+ l0t (c

a) and the analogous for rt. Moreover ca = a · c1
because we are on a cyclic group.

Let us define lUt (ca) = min{i ∈ Z | gcd(F t(ca)i, p) = 1}. The next properties hold.

1. If gcd(a, p) 6= 1, then lUt (ca) =∞ (respectively rUt (ca) = −∞). In fact, in this case the entire evolution of
F over ca is composed by multiples of a, which are multiples of p too.

2. If gcd(a, p) = 1, then lUt (ca) = lUt (c1) (respectively rUt (ca) = rUt (c1)). In fact, in this case F t(ca)i = aF t(c1)i
is coprime with p if and only if F t(c1)i does.

3. l0t (c
a) ≤ lUt (c1) (respectively r0t (c

a) ≥ rUt (c1)). In fact, if F t(c1)i is coprime with p, then F t(ca)i = aF t(c1)i
is not null.

4. l0t (c
pk−1

) = lUt (c1) (respectively r0t (c
pk−1

) = rUt (c1)). In fact, F t(cp
k−1

)i = pk−1F t(c1) = 0⇔ gcd(F t(c1)i, p) 6=
1.

From the last assertion and lemma 3 (first item) we have that lUt (c1) is not lower bounded and rUt (c1) is not
upper bounded.

Now let us take a configuration v ∈ (Zpk)Z, such that vi = 0 for every i < 0 and v0 6= 0. Let us define
j = max{i ∈ {0, ..., k} | ∀x ∈ Z, pi|v(x)}, and let us consider u = v/pj . In this way, there is y ≥ 0 with u(y) 6= 0
and gcd(p, u(y)) = 1. Let y be the smallest integer with this property.

F t(u)lUt (c1)+y =

lUt (c1)+y+rt∑
x=0

F t(cux)lUt (c1)+y−x

But u(x) is a multiple of p when x < y, thus F t(cux)i = 0 mod p for any i. For x > y, F t(cux)lUt (c1)+y−x is

also a multiple of p because the smallest index for which F t(cux) is coprime with p is lUt (cux) which is greater
than or equal to lUt (c1). In this way we conclude that

F t(u)lUt (c1)+y = F t(cuy )lUt (c1) mod p

is coprime with p and is non null. Therefore F t(v)lUt (c1)+y is non null as well. This imply that l0t (v) is not lower

bounded. Symmetrically, r0t (w) is not upper bounded when w is any configuration equal to zero on positive
coordinates. Lemma 5 concludes that F is (positively) expansive. �

To establish a separation between expansivity and pre-expansivity, we will focus on linear CA obtained by
what is often called “second order method” in the literature [20]. The idea is to turn any CA into a reversible
one by memorizing one step of history and combining, in a reversible way, the memorized past step into the
produced future step. The interest of this construction for our purpose is that expansivity is excluded from the
beginning because no CA can be N-expansive and reversible at the same time [21].

Let Q = {0, . . . , n− 1} be equipped with some group law ⊕ and consider some CA F over state set Q. The
second-order CA associated to F and ⊕ , denoted SO

(
F, ⊕

)
is the CA over state set Q×Q, which is conjugated

through the natural bijection QZ ×QZ → (Q×Q)Z to the map:

(c, d) 7→
(
d, F (d)⊕ c

)
7



The following proposition shows that second order construction is useful to separate expansivity from 1-
expansivity. Some of the results in the next proposition can be deduced from more general results in [16, 22, 23],
but we develop a new specific proof here.

Proposition 5 Let ⊕ be a group law over Q with neutral element 0 and F be a CA over Q which is linear for
⊕ . It holds:

• SO
(
F, ⊕

)
is bijective and linear for the law ⊕ × ⊕ ;

• if F is LR-permutive then SO
(
F, ⊕

)
is Z-expansive and 1-expansive;

• if F is LR-permutive then for any m > 0 the subshift of traces Tm
(
(Q×Q)Z

)
is an SFT.

Proof. For the first item it is sufficient to check that the CA over the state set Q×Q is conjugated to the
following map:

(c, d) 7→
(
ι(F (c))⊕ d, c

)
is the inverse of SO

(
F, ⊕

)
, where ι denotes the inverse function for the group law ⊕ . Moreover SO

(
F, ⊕

)
is

linear for ⊕ × ⊕ because it is component-wise linear for ⊕ .
For the second item, suppose that F is LR-permutive with neighborhood {−l, ..., r} and denote Ψ =

SO
(
F, ⊕

)
. To prove Z-expansivity of Ψ it is sufficient to notice that Ψ propagates to left and right when

the second Q-component is non-null and Ψ−1 propagates to left and right when the first Q-component is non-
null. In fact, let us consider a configuration c ∈ (Q×Q)Z equal to (0, 0) on negative coordinates but such that
c(0) 6= (0, 0). If the second Q-component of c(0) is non-null then, and since F (0, ..., 0) = 0, the leftmost non-null
cell of Ψ(c) is at position −r and it is its second Q-component which is non-null, i. e., if the leftmost difference
from (0,0) is in the second Q-component, this will be always like this and the difference will propagate to the
left. The same holds symmetrically for propagation to the right. In the same way, and given the form of Ψ−1,
differences in the first Q-component will propagate to the left and right through Ψ−1, thus by lemma 5, Ψ is
Z-expansive.

Now let us take c(a,b) as a configuration equal to (a, b) at 0 and (0, 0) everywhere else. By the previous

arguments, if b 6= 0, (l
(0,0)
t (c(a,b)))t∈N is not lower bounded and (r

(0,0)
t (c(a,b)))t∈N is not upper bounded. But

if b = 0 and a 6= 0, then (Ψ(c))(0) = (0, a) and null everywhere else, then again (l
(0,0)
t (c(a,b)))t∈N is not lower

bounded and (r
(0,0)
t (c(a,b)))t∈N is not upper bounded. Therefore, Ψ (and Ψ−1) is 1-expansive.

The proof of the third item will be performed in two steps. To simplify notations, for any pair of words
u, v ∈ Q∗ of the same length, we will denote by

(
u
v

)
the word over alphabet Q×Q whose projection on the first

(resp. second) component is u (resp. v).

Assertion 1L: For every word u ∈ Qr there exists a configuration c such that Ψt(c)|[0,r−1] =
(
u
0r

)
and Ψk(c)i =

(0, 0) for every 0 ≤ k ≤ t and 0 ≤ i < (t− k)r.

Proof of Assertion 1L. By induction on t. If t = 0 it is obvious, we just take c equal to
(
u
0r

)
at [0, r−1] and

(0, 0) everywhere else. Now, since F is LR-permutive, given a word w ∈ Ql+r, let us define the permutation
τw(a) = f(wa) for every a ∈ Q. Given a word u ∈ Qr, we inductively define another word v ∈ Qr as follows:
v0 = τ−1

0l+r (u0), vi+1 = τ−1
0l+r−iv[0,i]

(ui+1). In this way, f(0l+rv) = u. By induction hypothesis, there exists

a configuration c such that Ψt(c)|[0,r−1] =
(
v
0r

)
and Ψk(c)i = (0, 0) for every 0 ≤ k ≤ t and i < (t − k)r.

We take d = σ−r(c), then Ψt(d)|[r,2r−1] =
(
v
0r

)
, and (0, 0) to the left of r; and Ψt+1(d)|[0,r−1] =

(
u
0r

)
, and

(0, 0) to the left of 0. Moreover, Ψk(d)i = (0, 0) for every 0 ≤ k ≤ t+ 1 and 0 ≤ i < (t+ 1− k)r.

Assertion 1R: For every word u ∈ Ql there exists a configuration c such that Ψt(c)|[−l+1,0] =
(
u
0l

)
and

Ψk(c)i = (0, 0) for every 0 ≤ k ≤ t and i > (k − t)l.
The proof of Assertion 1R is analogous to the proof of Assertion 1L.

Assertion 2: A sequence
(
wt
)n
t=0

, with wt ∈ (Q×Q)2m+1, is a finite subsequence of a trace in Tm
(
(Q×Q)Z

)
if and only if for any t, there are extensions wR ∈ (Q×Q)r and wL ∈ (Q×Q)l verifying

ψ(wL · wt · wR) = wt+1

where ψ denotes the action of Ψ over finite words.

Proof of Assertion 2. In one direction, it is clear, so let
(
wt
)n
t=0

be a sequence such that for any t, there

are extensions wR ∈ (Q×Q)r and wL ∈ (Q×Q)l verifying ψ(wL · wt · wR) = wt+1, and let us prove that

8



it is a subsequence of a trace of Ψ. We perform the proof by induction on n. If n = 0 there is nothing
to prove, of course any sequence of length 1 can be part of a trace. Now let c be a configuration such
that Ψk(c)|[−m,m] = wk, for every k ∈ {0, ..., n − 1}. By locality, only the values of c between −m − nl
and m + nr are relevant to this hypothesis, and we take c(i) = (0, 0) outside these limits. Let wR and
wL be such that ψ(wL · wn−1 · wR) = wn. Let us remark that the first Q-component of wL and wR
can be chosen arbitrarily, given the form of Ψ. We will suppose that π1(wL) = π1(Ψn−1(c)[−m−l,−m−1])

and π1(wR) = π1(Ψn−1(c)[m+1,m+r]), thus we can take
(
uL

0l

)
= wL − Ψn−1(c)|[−m−l,−m−1] and

(
uR

0r

)
=

wR − Ψn−1(c)|[m+1,m+r]. We take from Assertion 1L a configuration cR that produces the word
(
uR

0r

)
at

time n − 1 at position [m+ 1,m+ r] and (0, 0) to the left of the light cone that starts at m + nr with
slope −1/r. From Assertion 1R we take a configuration cL that produces the word

(
uL

0r

)
at time n− 1 at

position [−m− l,−m− 1] and (0, 0) to the right of the light cone that starts at −m−nl with slope 1/l. By
linearity, Ψn−1(cL⊕ cR⊕ c)|[−m−l,m+r] = wLwn−1wR, and then Ψn(cL⊕ cR⊕ c)|[−m,m] = wn, moreover

Ψk(cL⊕ cR⊕ c)|[−m,m] = wk, for every 0 ≤ k < n, which completes the proof.

�

We will now give an example of pre-expansive CA which is not expansive.

Example 1 (Ψ) Let Q = {0, 1, 2}, + be the addition modulo 3, and F3 be the CA defined over QZ by F3 = σ+σ−1.
We define Ψ as the second order construction applied to F3:

Ψ = SO
(
F3,+

)
.

To establish the pre-expansivity of Ψ we will study its dependency structure, i.e. how the value of the
cell at position z and time t depends on value of cells at other positions and earlier times. To express these
space-time relations we denote by Ψt

z the map σz ◦ Ψt and by ⊕ the component-wise addition modulo 3 over
{0, 1, 2} × {0, 1, 2} naturally extended to configurations of (Q × Q)Z and then naturally extended to functions
on such configurations.

Lemma 6 Let c be a configuration in (Q×Q)Z.Then, for any k ≥ 0, any t ≥ 0 and any z ∈ Z we have:

Ψ2·3k+t
z (c) = Ψt

z ⊕Ψ3k+t
z−3k ⊕Ψ3k+t

z+3k
(c).

Proof. First it is straightforward to check that

Ψ2
0(c) = Ψ1

−1 ⊕ Id⊕Ψ1
1(c).

Then, by Lucas’ lemma, we have (a+ b)3
k

= a3
k

+ b3
k

when doing the arithmetics modulo 3. This identity
naturally extends to ⊕ and therefore we have:

Ψ2·3k
0 (c) = Ψ3k

−3k ⊕ Id⊕Ψ3k

3k(c).

Finally, by linearity of both σ and Ψ with respect to ⊕ we can compose both sides of the above equality by Ψt
z

and the lemma follows. �

Using the above lemma, we can show that Ψ has a simple dependency structure at some space-time locations.

Lemma 7 Let us consider a configuration c = c(a,b) for some pair (a, b) ∈ Q × Q. For any k ≥ 0, let dk =

Ψ3k+1

(c). Then we have:

• dk(−3k) = dk(3k) = φ(a, b)

• dk(i) = (0, 0) for −3k < i < 3k

where φ is an automorphism of Q×Q which does not depend on k.

Proof. Denote by ctz the state
(
Ψt(c)

)
(z). First, by a simple recurrence we can show that cn−n = cnn = π(a, b)

where π is the projection π(a, b) = (0, b). Then, applying lemma 6 on Ψ2·3k+3k

−3k , we obtain:

dk(−3k) = c2·3
k

−2·3k + c3
k

−3k + c2·3
k

0 .
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Figure 1: Some space-time diagrams of Ψ (state (0, 0) is represented by empty space)
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Applying lemma 6 on Ψ2·3k+0
0 we then have:

dk(−3k) = c2·3
k

−2·3k + 2 · c3
k

−3k + c3
k

3k + c00

= (0, b) + 2(0, b) + (0, b) + (a, b)

= (a, 2b)

where φ(a, b) = (a, 2b) is an automorphism. The same equality holds for dk(3k) by symmetry and the first item
of the lemma is shown.

For the second item, first note that ctz = (0, 0) whenever z < −t or z > t because Ψ has radius 1. Consider

any i with −3k < i < 3k. Applying lemma 6 on Ψ2·3k+3k

i , we obtain:

dk(i) = c2·3
k

i−3k + c3
k

i + c2·3
k

i+3k .

Applying lemma 6 on Ψ2·3k+0
i−3k and Ψ2·3k+0

i+3k
we further get:

dk(i) = c3
k

i−2·3k + c0i−3k + 3 · c3
k

i + c0i+3k + c3
k

i+2·3k .

From what we said before and doing the arithmetics modulo 3 we deduce dk(i) = (0, 0) and the lemma follows.
�

Proposition 6 Ψ is pre-expansive.

Proof. Let c be any configuration with c
∞
= (0, 0). Denote l = l

(0,0)
0 (c) and r = r

(0,0)
0 (c) and consider any k

such that 3k > max(|l|, |r|). By a finite number of applications of Lemma 7, and by linearity and translation
invariance of Ψ, we have: (

Ψ3k+1

(c)
)
(r − 3k) = φ

(
c(r)

)(
Ψ3k+1

(c)
)
(l + 3k) = φ

(
c(l)
)
.

Since φ is a permutation of Q sending (0, 0) to itself and since c(r) and c(l) are both different from (0, 0) we deduce

that l
(0,0)

3k+1(c) < r − 3k and r
(0,0)

3k+1(c) > l + 3k for any k large enough. This shows that L(c) is not lower-bounded
and R(c) is not upper-bounded and concludes the proof by Lemma 4. �

We now give an example of CA that is 1-expansive but not pre-expansive.

Example 2 (Υ) Let Q = {0, 1}, + be the addition modulo 2, and F2 be the CA defined over QZ by F2 = σ+σ−1.
We define Υ as the second order construction applied to F2:

Υ = SO
(
F2,+

)
.

Proposition 7 Υ is not k-expansive when k ≥ 2 and in particular Υ is not pre-expansive.

Proof. Let k ≥ 2 be fixed and for each z ∈ Z define the configuration cz by:

cz(z′) =



(0, 0) if z′ < z,

(0, 1) if z′ = z,

(1, 1) if z < z′ ≤ z + k − 2,

(1, 0) if z′ = z + k − 1,

(0, 0) if z′ ≥ z + k.

We have cz 6=k (0, 0) and it is straightforward to check that Υ(cz) = cz−1. We conclude that Υ is not k-expansive
by lemma 4.

�
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Figure 2: Some space-time diagrams of Υ (state (0, 0) is not represented)

We are now ready to prove the main result announced at the beginning of this section.
Proof.[Proof of Theorem 1] Let F be any irreversible and expansive CA. It holds:

• Ψ is N-pre-expansive (by proposition 6) and it is reversible and not N-expansive (by proposition 5 and
[21]);

• therefore Ψ× F is N-pre-expansive and irreversible and not N-expansive;

• Υ is 1-pre-expansive and reversible (by proposition 5) but it is not N-pre-expansive (by proposition 7);

• therefore Υ× F is 1-pre-expansive and irreversible and not N-pre-expansive.

�

5 Cellular automata over the free group

Some of the properties proved in the last section come from the fact that (Z, {(i, i+ j) | j ∈ V }) can be always
disconnected by extracting a finite part from Z. Any free group with any finite neighborhood has this property,
and we would be able to extend some of the previous properties to the case of a cellular automaton over the free
group. In particular, the expansivity constant is strictly related with the neighborhood size, as in Z, and it does
not depend on k for a k-expansive CA. We denote by Fn the free group with n generators (F1 is Z).

Proposition 8 If F is a cellular automaton with a neighborhood V ⊆ Br(0) of radius r over the free group Fn
and it is k′-expansive for all k′ ≤ k, then F is k-expansive with expansivity constant equal to 2−r.

Proof. The proof takes the ideas of lemma 3. Let c 6=k d be two configurations in Fn. Let us call S the set of
generators of Fn, including their inverses (i. e. |S| = 2n), and for each s ∈ S, let us call Rs the branch of Fn
that hangs from s; we mean the set of elements whose shortest description in terms of S start with s. In this
way Fn = {0} t (ts∈SRs).

Now let us define D = {i ∈ Fn | c(i) 6= d(i)} and Ds = D ∩ Rs. We want to prove that Tr(c) 6= Tr(d) so let
us suppose the opposite. This imply that D = ts∈SDs, and we can consider ks = |Ds| ≤ |D| = k. As in the
case of lemma 3, we define configurations cs which are equal to d everywhere except on branch s, as follows.

cs(i) =

{
c(i) if i ∈ Rs
d(i) otherwise

At the beginning, cs differs from d only on branch Rs. We will see that this will be always the case. Let us
suppose that, for some t ∈ N, F t(cs)i = F t(c)i for all i ∈ Rs and F t(cs)j = F t(d)j , for all j 6∈ Rs. We remark
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that, we assumed that if j ∈ Br(0), F t(cs)j = F t(d)j = F t(c)j . Since Fn is a tree and F is a CA of radius r, if
i ∈ Rs, Br(i) ⊂ Rs∪Br(0), thus F t+1(cs)i = F t+1(c)i.If j ∈ {0}t

(
ts′∈S\{s}Rs′

)
, Br(j) ⊂

(
ts′∈S\{s}Rs′

)
∪Br(0),

then F t+1(cs)j = F t+1(d)j .
We conclude that Tr(c

s) = Tr(c) = Tr(d), for every s ∈ S.
But we know, by hypothesis, that F is k′-expansive, let us take its expansivity constant as ε = 2−m.

Let us consider now the configuration σ−ms(c
s), the shift of cs by ms ∈ Fn. By construction, σ−ms(c

s) and
σ−ms(d) are equal over Bm(0). By the k′-expansivity of F , there exists a time t and j ∈ Bm(0) such that
F t(σ−ms(c

s))j 6= F t(σ−ms(d))j . But, as shown before, F t(cs) and F t(d) differ only on branch Rs. Therefore
F t(σ−ms(c

s)) and F t(σ−ms(d)) differ only on branch Rms which is disjoint from Bm(0): this is a contradiction.
�

Not all the properties survives from F1 = Z to Fn, when n > 1; k-expansivity is possible for infinitely many
k’s in Fn even without pre-expansivity, as the next example shows.

Example 3 (Λn) Let Q = {0, 1}, + be the addition modulo 2, and Λn be the CA defined over QFn by

Λn(c)i = c(i) +
∑
j∈S

c(i+ j).

Lemma 8 If ||x|| = ||y||, then for every t ∈ N Λtn(c1)x = Λtn(c1)y, moreover Λ
||x||
n (c1)x = 1.

Proof. We prove by induction on l that for every t ≤ l and every x, y ∈ Bl(0),
[
||x|| = ||y|| ⇒ Λtn(c1)x = Λtn(c1)y

]
and that Λln(c1)x = 1 if ||x|| = l.

For l = 0 is clear since in this case x = 0 = y and Λ0
n(c1)0 = 1. Now let us suppose it true for some l, and

let us prove it for l + 1.

Case 1, t ≤ l. By the induction hypothesis, we only need to verify the property for x, y ∈ Bl+1(0)−Bl(0), but
Λtn(c1)x = 0 = Λtn(c1)y because at time t ≤ l no perturbation at 0 has the time to arrive to these cells.

Case 2, t = l + 1. We first remark that any cell x in Fn has exactly 2n − 1 neighbors farther and exactly one
neighbor closer than x to 0; we also remark that the local rule of Λn is totalistic, only the quantity of
neighbors at a given state counts. If x, y ∈ Bl(0), all of their neighbors are in Bl+1(0), thus by Case 1, their
state at time l depends only on their distance to 0, thus Λl+1

n (c1)x = Λl+1
n (c1)y. If x, y ∈ Bl+1(0) \ Bl(0),

then their neighbors outside Bl(0) and themselves have all state 0 at time l; their unique neighbors in Bl(0)
have both state 1, by induction hypothesis. Thus, by the definition of Λn, Λl+1

n (c1)x = Λl+1
n (c1)y = 1.

�

Proposition 9 Λn is k-expansive for every k odd and it is not 2-expansive if n ≥ 2.

Proof. Let c 6=k 0. Let D = {i | c(i) 6= 0} and let Dl = D ∩ (Bl(0) \Bl−1(0)). It is clear that c =
∑
i∈D σ−i(c

1).

Since |D| = k is odd, there exists some l such that |Dl| is odd, let us take l as the smallest one. For every
x, y ∈ Dl, T0(σ−x(c1)) = T0(σ−y(c1)), thanks to lemma 8. Therfore, given a cell y ∈ Dl,

Λln(c)0 = Λln(
∑
l∈N

∑
x∈Dl

σ−x(c1))0

= Λln(

l∑
l=0

∑
x∈Dl

σ−x(c1))0

=

l∑
l=0

Λln(
∑
x∈Dl

σ−x(c1))0

= Λln(
∑
x∈Dl

σ−x(c1))0

= Λln(σ−y(c1))0.

By lemma 8, this last term is equal to 1 which proves the k-expansivity when k is odd.
The second part of the proposition is almost direct from lemma 8. In fact, let m ∈ N be any natural number

and let us take z = ms for some fixed generator s. Now let s′ be another generator, different from s and −s
and define x = z + s′ and y = z − s′. This imply that ||x|| = ||y|| = ||z|| + 1 = m + 1. Lemma 8 says that
T0(σx(c1)) = T0(σy(c1)), but also that Tm(σx(c1)) = Tm(σy(c1)), because x and y are equidistant from z, as well
as from all the other members of Bm(0). �
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6 Cellular Automata on Zn, with n ≥ 2

Expansivity is not possible in dimension n ≥ 2 or more, due to combinatorial reasons: the number of possible
n-dimensional patterns grows too quickly to be uniformly conveyed into a 1-dimensional array without loss (see
[12] for a general result of innexistence of expansive CA).

This argument does not apply to pre-expansivity because the definition allows loss of information in some
cases: only finite differences should be propagated, but nothing is required for non-asymptotic pairs of configu-
rations.

Nevertheless, in linear CA over abelian groups, the information propagates in a very regular way, and pre-
expansivity is impossible as we will show.

6.1 No pre-expansivity for linear CA in dimension 2 or higher

Given a linear CA F , spot configurations (i.e. configurations c with c 6=1 0) form a basis of the whole set
of configurations and we get a complete knowledge on the orbit of any configuration from the orbits of spot
configurations. The main argument of this section comes from the fact that the space time diagram of spot
configurations in a linear CA is substitutive.

Lemma 9 (Main Theorem of [19]) Let F be any d-dimensional linear CA on a p-group Q. Then there exists
a substitution of factor M describing space-time dependency, that is to say, there exists:

• M ≥ 2,

• a finite set E,

• e : Zd × N→ E,

• Ψ : E → (Q→ Q),

• for any 0 ≤ a1, .., ad, s < M , a function Φs~a : E → E, such that,

e(M~z + ~a,Mt+ s) = Φs~a
(
e(~z, t)

)
• Γt~z = Ψ(e(~z, t))

where Γt~z is the space-time dependency function given by:

Γt~z : q 7→ σ~z ◦ F t(cq).

Proof.[Proof sketch] We review the proof of [19] written in the one-dimensional setting to show that it works
straightforwardly for CA over Zd.

First, as shown by proposition 1 of [19], it is sufficient to consider Q a p-group of the form Q = ZDpl since
any linear CA on a p-group can be embedded in a linear CA on a group of this form. Then, a linear CA in that
case can be viewed as a D ×D matrix whose coefficients are Laurent polynomials with d variables u1, . . . , ud
and coefficients in Zpl .

Formally, we denote by Zpl [ui, u−1i ]1≤i≤d the Laurent polynomials with variables u1, . . . , ud, i.e. the ring
of linear combinations of monomials made with positive or negative powers of the variables. A monomial

corresponds to a vector of Zd, hence we use the notation u
~i for any~i = (i1, . . . , id) ∈ Zd to denote the monomial

ui11 · · ·u
id
d . A linear CA is identified with some T ∈MD

(
Zpl [ui, u−1i ]1≤i≤d

)
where the coefficient a~z ∈ Zpl of the

monomial u~z of the coefficient Ti,j of the matrix T means intuitively that, when applying the CA, the layer j
of cell ~z0 receives a~z times the content of the layer i of cell ~z + ~z0, and all these individual contributions are
summed-up. This matrix representation works well with the powers of F in the sense that Fn is represented by
Tn.

We now mimic step by step the proof of [19]:

• by the Cayley-Hamilton theorem (Laurent polynomials form an Abelian ring), the characteristic polynomial
of T gives a relation of the form:

Tm =

m−1∑
j=0

∑
~i∈I

λ~i,ju
~iT j

for some m, some finite I ⊆ Zd, and where λ~i,j ∈ Zpl ;
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• first, by standard techniques (binomial theorem and binomial coefficients modulo p), we have the following
identity on any commutative algebra of characteristic pl:(∑

i

Xi

)pn+l−1

=

(∑
i

Xpn

i

)pl−1

for any positive n. Then, applying this to the expression of Tm obtained above we get:

Tm·p
n+2(l−1)

=

m−1∑
j=0

∑
~i∈I

λp
n

~i,j
up

n·~i

pl−1

T p
n+l−1·j


pl−1

• noting that the sequence (λp
n

~i,j
)n is ultimately periodic, with common period N for all~i, j, denoting k = pN

and expanding the above equality, we have:

T k
nm′ =

m′−1∑
j=0

∑
~i∈I′

µ~i,ju
kn~iT k

nj

for some m′ large enough and n ≥ 1, some finite I ′ ⊆ Zd, and where µ~i,j ∈ Zpl ;

• we are interested in the space-time dependency function T j~i of T which is the matrix of MD(Q) corre-

sponding to the terms in u
~i of the matrix T j , so that T j =

∑
~i T

j
~i
u
~i; we therefore have the following:

T k
nm′+y

~x =
∑
~i∈I′

m′−1∑
j=0

µ~i,jT
y+knj

~x−kn~i

• choosing n = blogk
y
m′ c, we can rewrite it for all y > m′ as:

T y~x =
∑
~i,j

µ~i,jT
g~i,j(y)

~x+f~i,j(y)
(1)

where ~i and j range over fixed finite sets, and where for any 0 ≤ t < k we have:

1. g~i,j(y) < y,

2. f~i,j(ky + t) = kf~i,j(y),

3. g~i,j(ky + t) = kg~i,j(y) + t;

• starting from any point (~x, y) ∈ Zd × N and applying recursively the equation above as much as we can,
we get:

T y~x =
∑

~i,j<m′

α~i,j(~x, y)T j~i (2)

we take this as a definition of α~i,j(x, y);

• now, by the properties of the functions f~i,j and g~i,j we have that

α~i,j(~x, y) = α~0,j(~x−~i, y),

and in the equation (1) the transformation (~x, y) 7→ (k~x+ ~s, ky + t) (for t < k and ‖s‖∞ < k) applied to
the left term T y~x , translates into the same transformation on each term T b~a of the right hand side; therefore,
denoting αj = α~0,j , the recursive application of (1) in (2) can be reproduced identically starting from

T ky+tk~x+~s so that we have

T ky+tk~x+~s =
∑

~i1,j<m′

αj(~x− ~i1, y)T kj+t
k~i1+~s

(3)
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that we want to compare to the final decomposition of T ky+tk~x+~s which is by definition of the αj :

T ky+tk~x+~s =
∑

~i2,j<m′

αj(k~x+ ~s− ~i2, ky + t)T j~i2
(4)

• since kj + t is bounded by k(m+ 1), going from (3) to (4) involves only a bounded number of applications
of (1) to each term of the right hand side; therefore, there is some finite set ∆ ⊆ Zd such that each term
T b~a on the right will produce only terms in T j

~a+~i
for j < m′ and ~i ∈ ∆.

Therefore, αj(k~x+ ~s− ~i2, ky + t) only depends on the αj(~x+ ~s−~i2
k − ~i′, y) for ~i′ ∈ ∆;

• we choose X ⊆ Zd large enough so that:

1. ~i2 ∈ X implies ~i′ − ~s−~i2
k ∈ X for any ~i′ ∈ ∆;

2. T j~i is null for j < m′ and ~i 6∈ X;

with such an X we finally set M = k and

e(~x, y) =
(
αj(~x−~i, y) : j < m′,~i ∈ X

)
.

The lemma follows. �

The existence of this substitution has strong consequences on the structure of traces: the trace of a finite
configuration is determined by a prefix of linear size in the distance of the farthest non-zero cell. Let us first
define some notation.

• For z ∈ Zd, ‖z‖∞ = max{|zi| : i ∈ {1, .., d}.

• The size of a configuration c
∞
= 0 is the smallest n ∈ N such that c(z) 6= 0 imply ‖z‖∞ ≤ n.

Lemma 10 Let F be any d-dimensional linear CA on a p-group. Let m > 0 and denote by Tm the trace function
associated to F and m. There exist a function λ : N → N with λ ∈ O(n) and such that for any n and for any
pair of configurations c1, c2 with:

• the size of ci is less than or equal to n,

• Tm(c1)(t) = Tm(c2)(t) for any t ≤ λ(n),

then Tm(c1) = Tm(c2).

Proof. First F fullfils the hypothesis of Lemma 9 so we have the existence of the substitution and adopt the
notations of the Lemma.

Let’s focus on the substitution given by the function e and consider k ≥ 0, t ≥ Mk, and ~z ∈ Zd with
‖z‖∞ ≤Mk. By k − 1 applications of the substitution we get the following expression for e(~z, t):

e(~z, t) = Φt mod M
~z mod M ◦ · · · ◦ Φ

t/Mk−1 mod M

~z/Mk−1 mod M

(
e(ρ(~z), t/Mk)

)
where ‖ρ(~z)‖∞ ≤M , and where the division/modulus correspond to the standard Euclidean division on Zd.

The sequence of superscripts in this expression only depends on t mod Mk. The sequence of subscripts
depends only on ~z. Therefore we can write this functional dependency of e(~z, t) on e(ρ(~z), t/Mk) in the following
way:

e(~z, t) = χt mod Mk

~z

(
e(ρ(~z), t/Mk)

)
. (5)

Now consider a time t0 sufficiently large to see any possible vector of the form (e(~z0, t))‖ ~z0‖∞≤M before t0,
precisely:

∀t,∃t′ ≤ t0,∀~z0, ‖~z0‖∞ ≤M : e(~z0, t) = e(~z0, t
′).

Given an index set I, consider any uple (~zi)i∈I , with ‖~zi‖∞ ≤Mk, and any P ⊆ EI . For any time t, we can
define the property PI(t) by:

PI(t)⇔
(
e(~zi, t)

)
i∈I ∈ P.

Claim: if PI(t) holds for every t ≤ (t0 + 1) ·Mk then PI(t) holds for every t ∈ N.
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Indeed, take some time t > (t0 + 1) ·Mk. Then by choice of t0 there exists t′ ≤ t0 such that:

∀~z0, ‖~z0‖∞ ≤M : e(~z0, t/M
k) = e(~z0, t

′).

Now we can choose t′′ ≤ (t0 + 1) ·Mk with

t′′/Mk = t′ and

t′′ mod Mk = t mod Mk

and equation 5 yields the equalities:

e(~zi, t) = χt mod Mk

~z

(
e(ρ(~zi), t/M

k)
)

= χt
′′ mod Mk

~z

(
e(ρ(~zi), t

′)
)

= e(~zi, t
′′).

It shows that PI(t)⇔ PI(t′′) and the claim follows.
Since the space-time dependency function is completely determined by the substitution e (Lemma 9), the

fact that the trace of a finite configuration at time t is null can be expressed by a property of the form PI(t).
More precisely, for any configuration c of size Mk, we can define

D = {z ∈ Zd : c(z) 6= 0},
I =

⋃
z∈D

Bm(z),

P = {f ∈ EI : ∀x ∈ Bm(0),
∑
z∈D

Ψ(fz+x)(c(z)) = 0}.

We then have that

PI(t) ⇔ ∀x ∈ Bm(0),
∑
z∈D

Ψ(e(z + x, t))(c(z)) = 0

⇔ ∀x ∈ Bm(0),
∑
z∈D

Γtz+x(c(z)) = 0

⇔
∑
z∈D

Tm(cc(z)) = 0

⇔ Tm(c)t = 0.

We deduce that if F t(c) is null on Bm(0) until time (t0+1) ·Mk then it is null forever. By linearity of F , equality
of two traces is equivalent to nullity of their difference. We have thus shown the Lemma for m ≥ 0 by choosing
λ(n) = (t0 + 1) ·Mk for k = dlogM (n)e. �

Theorem 2 If a CA of dimension d ≥ 2 is linear over an Abelian group then it is not pre-expansive.

Proof. First, if G is the Abelian group of the Theorem it can be decomposed in a direct product G = Gp ×G′
where Gp is a finite p-group for some prime p and G′ is a group whose order m is such that p doesn’t divide m
(structure theorem for finite abelian groups, see [24]). Then F is isomorphic to Fp × F ′ according to Lemma 1,
where Fp is linear over Gp. Moreover if F is pre-expansive, then Fp must also be pre-expansive (by Proposition 1).
It is therefore sufficient to show the Theorem for p-groups.

Now consider F of dimension d ≥ 2 linear over a p-group and some m ≥ 0. By lemma 10, we know that the
trace Tm of finite configurations of size n is determined by its prefix of size λ(n) where λ ∈ O(n). The number of

such finite configurations grows like αn
d

for some α > 0 and the number of prefixes of Tm of length λ(n) grows
like βλ(n) for some β > 0 which depends only on m, Gp and d. Since d ≥ 2 and λ is linear we deduce for n large
enough that two finite configurations of size n have the same trace Tm. Therefore Tm is not pre-injective and by
Proposition 1, F is not pre-expansive. �

Note that this does not avoid a priori the existence of a linear CA which is k-expansive for any k ∈ N or for
infinitely many k.
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6.2 Linear CA with Q = Zp

In general, in a CA with neighborhood V ⊂ G, we can remark that the influence of the cell 0 is restricted to the
set generated by linear combinations of −V . More precisely, at time t, its influence is restricted to the following
set:

−Vt(0) =

{
t∑
i=1

vi | (∀i ∈ {1, .., t}) vi ∈ −V

}
A perturbation in a cell u ∈ G can produce a change in the state of cells in −Vt(u) = u− Vt(0) up to time t.
If G is commutative, for example G = Zn and V = {v1, .., vm}, this set can be computed as follows.

−Vt(0) =

{
m∑
k=1

nk(−vk) |
m∑
k=1

nk = t and for each k, nk ∈ N

}

=

{
m∑
k=1

nk
t

(−tvk) |
m∑
k=1

nk = t and for each k, nk ∈ N

}

⊆

{
m∑
k=1

λk(−tvk) |
m∑
k=1

λk = 1 and for each k, λk ∈ [0, 1],

}
⊆ co(−tV )

Where tV = {tv | v ∈ V }, and co(·) stands for the convex hull (in Rn).
In the simpler case where Gp = Zp, any linear CA F can be expressed as

F =
∑
z∈V

azσz,

where (az)z∈V is a sequence of elements of Zp. When p is prime, we have Lucas’ lemma, which gives even
stronger properties to linear CAs, more precisely.

F p
k

=
∑
z∈V

azσpkz (6)

The next lemma establishes that the constant of k-expansivity in a linear CA on Zp depends only on the
radius of the neighborhood. The radius of a neighborhood V is the smallest number r ∈ Z such that V ⊆ Br(0).

Lemma 11 (Amplification) Let F be a linear CA with neighborhood V ⊂ Zn of radius r, with state set Zp.
If there exists a configuration c 6= 0 such that Tr(c) = 0, then for any m ≥ r there exists a configuration c′ 6= 0
such that Tm(c′) = 0.

Proof. Let c be such that Tr(c) = 0 and let k be such that m ≤ pk − 1. We define c′ by c′pkx = cx for every
x ∈ Zn and 0 elsewhere.

From equation 6, it is easy to see that F tp
k

(c′)pkx = F t(c)x, and 0 elsewhere. Therefore, for every t ∈ N and

every v ∈ Br(0), F tp
k

(c′)pkv = 0.
Now, between iterations tpk and (t + 1)pk, we know, from the former remarks, that only cells in Ω =⋃

x 6∈Br(0)

(pkx− Vpk(0)) can have a state different from 0. Since −V ⊆ Br(0), we have that −Vpk(0) ⊆ Brpk(0),

and the complement of Ω contains Bpk−1(0), which is what we were looking for, in fact,

y ∈ Ω =

 ⋃
x 6∈Br

pkx− Vpk(0)


⇒ (∃x 6∈ Br(0))(∃v ∈ −Vpk(0)) y = pkx+ v

⇒ ||y|| ≥ ||pkx|| − ||v|| ≥ pk(r + 1)− pkr = pk

⇒ y 6∈ Bpk−1(0).

�
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Figure 3: Potentially active cells at iteration t2k cannot influence B2k−1−1(0) before iteration (t+ 1)2k. Big dots
represent the initially active cells.

Corollary 2 Let F be a linear CA in Zp. It holds:

• F is k-expansive, if and only if F is k-expansive with expansivity constant 2−r;

• F is k-expansive for all k ∈ N if and only if F is pre-expansive.

With this lemma we can establish k-expansivity just by looking at Tr. We will show a CA in that setting which
is 1-expansive, 3-expansive and non 2-expansive, and another which is non 1-expansive (and so non k-expansive
for every k).

6.2.1 The rule ⊕2 with von Neumann neighborhood in Z2

The rule that simply sums the state of its 5 neighbors in the von Neumann neighborhood: (0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)
is not 2-expansive. This can be seen through a simple picture: let us suppose that we start with the configuration
c that has a ‘1’ in cell (−2k, 2k−1) and in cell (2k, 2k−1). By symmetry, the vertical line {0} × Z will be always
null. Thus, at iterations t2k only cells at 2k(Z \ {0})×Z will be activated. Between iterations t2k and (t+ 1)2k

these cells cannot influence the ball B2k−1−1(0, 0) (see figure 3) and this ball will have a null trace: T2k−1(c) = 0.
In order to establish the 3-expansivity of this CA, we will start by proving some lemmas that describe the

form of the traces T1(σz(c
1)) of the evolution of the configuration c1 at the different points of Z2. In order to

achieve this, we start by computing the partial traces T0(σz(c
1))|[0,2k−1] and T0(σz(c

1))|[2k,2k+1−1]. We first give
a way for compute them, and afterwards we prove they are effectively the partial traces.

Definition 6 Given k ≥ 0 and z ∈ B2k−1(0, 0), we recursively define uk(z) and vk(z) as follows. Let us define
Sk = {(0, 0), (0, 2k), (2k, 0), (0,−2k), (−2k, 0)}, the active cells of iteration 2k.

u0(z) = v0(z) = 1;

uk(z) =


uk−1(z)vk−1(z) if z ∈ B2k−1−1(0, 0)

02
k−1

uk−1(z − x) if z ∈ B2k−1−1(x) \B2k−1−1(0, 0) and x ∈ Sk−1
02

k

otherwise

vk(z) =


uk−1(z)uk−1(z) if z ∈ B2k−1−1(0, 0)
uk−1(z − x)uk−1(z − x) if z ∈ B2k−1−1(x) \B2k−1−1(0, 0) and x ∈ Sk
02

k

otherwise

Lemma 12 If z ∈ B2k−1(0, 0), then uk(z) and vk(z) represent the trace of z from 0 to 2k − 1 and from 2k to
2k+1 − 1 respectively.
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(a) (b)

Figure 4: (a) Represents the evolution from iteration 0 to 2k. Non null cells at iterations 0 and 2k−1 are marked
with brown and red dots, respectively (cell (0,0) is active at both instants). The balls of radius 2k−1 around
these cells are colored with similar colors. (b) Represents the evolution from iteration 2k to 2k+1. Brown dots
represent non null cells at iterations 2k and 2k + 2k−1, while red dots represent the cells which are non null at
iteration 2k + 2k−1. The balls of radius 2k−1 around these cells are colored with similar colors. Faded colors
represent the cells outside the ball of radius 2k.

Proof. When k = 0, B0(0, 0) = {(0, 0)}, and the trace of (0, 0) is constant and equal to 1.
Let us suppose the lemma true for k − 1 ≥ 0. Let z ∈ B2k−1(0, 0).
Figure 4(a) depicts the first two cases in the definition of uk(z), the last one corresponds to cells over the

central diagonals.

• Case 1) z ∈ B2k−1−1(0, 0). In this case, the induction hypothesis says that the trace until 2k − 1 is given
by uk−1(z)vk−1(z)

• Case 2) z ∈ B2k−1(0, 0)\B2k−1−1(0, 0). From 0 to 2k−1−1, z has not been touched jet, thus its trace until

2k−1 − 1 is 02
k−1

. At iteration 2k−1, only the cells in Sk−1 are in state 1, thus z is influenced by only one
of the cells in Sk−1, say x, its trace from 2k−1 to 2k − 1 is equal to the trace of the cell z − x from 0 to
2k−1 − 1, thus by induction again, it is equal to uk−1(z − x).

• Case 3) If z belong to none of these balls, it is over one of the two diagonals that pass by (0, 0), and its
trace is null.

Figure 4(b) depicts the three cases in the definition of vk(z).

• Case 1) z ∈ B2k−11(0, 0). At iteration 2k, only the cells in Sk are in state 1. Therefore, from 2k to
2k+2k−1−1, z will be influenced only by the cell (0, 0), and its trace will be equal to uk−1(z). At iteration
2k + 2k−1, the active cells corresponds to red and brown cells in Figure 4(b), and again only cell (0, 0)
reaches z, the process is repeated.

• Case 2) z ∈ B2k−1(0, 0) \ B2k−1−1(0, 0). At iteration 2k, only the cells in Sk are in state 1, thus, before
iteration 2k + 2k−1, z is touched only if it is at distance less than 2k−1 from one of the cells in Sk, say x,
(orange zone in Figure 4(b)), then its trace is equal to uk−1(z− x). At iteration 2k + 2k−1, the active cells
are far again, and z is influenced only by x again.

• Case 3) If z belong to none of these balls, its trace is null.

�

This lemma proves that the traces can be obtained through the substitution u→ uv and v → uu. The basic
u and v for a given cell z are obtained at iteration 2k+1 if B2k−1(0, 0) is the smallest ball containing z. From
the next lemma we can conclude the 1-expansiveness of this automaton with expansivity constant equal to 2−1.

20



Lemma 13 If i + j is odd and smaller than 2k, then the trace of the cell z = (i, j), T0(σz(c
1)) is not null and

its first non null index is odd and smaller than 2k, in particular uk(i, j) is not null.

Proof. For k = 1, the trace of the odd cells inside B1(0, 0) from 0 to 1 is u = 01, the result holds. Let us assume
the result true for k ≥ 1, and let z = (i, j) be an odd cell in B2k+1−1(0, 0) \B2k−1(0, 0). Since the cell is odd, it
is not over the diagonals, and it belongs to the ball of radius 2k of one of the four cells of Sk \ {(0, 0)}, say x.
Then, by lemma 12, its trace from 2k to 2k+1 − 1 is given by uk(z − x). Since the cells of Sk are even, (z − x) is
also odd, and the conclusion follows by induction. �

Now we will prove several properties that will be useful to prove 3-expansivity.

Lemma 14 Given k > 0, if z ∈ B2k−1(0, 0) then vk(z) is a square.

Proof. It is clear from Definition 6 and the fact that k > 0. �

Lemma 15 Given k > 0, if z ∈ B2k−1(0, 0) \ {(0, 0)} and uk(z) 6= 02
k

, then uk(z) is not a square.

Proof. By induction on k. For k = 1, if z is inside the von Neumann neighborhood of (0, 0), thus u1(z) = 01
which is not a square. Let us suppose the assertion true for k − 1 ≥ 1. Since k ≥ 1, from definition 6, we
recognize two cases for uk(z).

Case 1: uk(z) = 02
k

uk−1(z − x), for some x ∈ Sk−1. The only way for uk(z) to be a square is to be equal to

02
k

.

Case 2: uk(z) = uk−1(z)vk−1(z). By the induction hypothesis u is either null or not a square. From lemma 14

vk−1(z) is a square, then uk(z) is a square if and only if uk(z) = 02
k

.

�

Lemma 16 If |i| = |j| and (i, j) 6= 0, then the trace of the cell (i, j), T0(σ(i,j)(c
1)) is equal to 0ω.

Proof. Cells in the diagonals systematically falls in the boundaries of the zones given by the substitution, then
their traces are systematically assigned equal to 0. �

Lemma 17 If i+ j is even, smaller than 2k and the trace of the cell z = (i, j), T0(σz(c
1)) is not null, then the

first non null index of the trace is even and it is smaller than 2k.

Proof. For k = 0, the trace of the even cell inside B0(0, 0) from 0 to 0 is u = 1, the result holds. Let us assume
the result true for k ≥ 0, and let z = (i, j) be an even cell in B2k+1−1(0, 0)\B2k−1(0, 0). Since the cell is attained,
from Lemma 16, it is not over the diagonals, then it belongs to the ball of radius 2k of one of the four cells in
Sk, say x. Then, its trace from 2k to 2k+1 − 1 is given by uk(z − x). Since the cells in Sk are even, z − x is also
even, and the conclusion follows by induction. �

Now we are ready to prove that this automaton is 3-expansive.

Lemma 18 If z1, z2 and z3 are three different cells and T0(σz1(c1))+T0(σz2(c1))+T0(σz3(c1)) = 0ω, then there
exists z ∈ {z1, z2, z3} such that T0(σz(c

1)) = 0ω.

Proof. We will prove a stronger assertion:

If z1, z2 and z3 are three different cells in B2k−1(0, 0) and uk(z1) + uk(z2) + uk(z3) = 02
k

, then there

exists z ∈ {z1, z2, z3} such that uk(z) = 02
k

.

It is stronger because from Lemmas 13 and 17, if z ∈ B2k−1(0, 0) and uk(z) = 02
k

, then T0(σz(c
1)) = 0ω.

By contradiction, let z1, z2 and z3 be three different cells in a ball B2k−1(0, 0) such that uk(z1) + uk(z2) +

uk(z3) = 02
k

and for all i ∈ {1, 2, 3}, uk(zi) 6= 02
k

. Let us choose these cells such that k is as small as possible.
Let be tz1 , tz2 and tz3 the indices where the respective traces equals 1 by the first time. It is clear that two

of these numbers are equal and smaller than the third. Let us suppose that tz1 = tz2 < tz3 .
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Figure 5: Simulation of ⊕2 with a triangular neighborhood at iteration 25 starting from an initial configuration
with a single 1 inside 0s: cells in state 1 are in red, cells that have been in state 1 between iteration 0 and 24
but not at 25 are in blue, and the others cells are not drawn.

Case 1: z1, z2 ∈ B2k−1−1(0, 0). In this case, the trace of z3 from 2k−1 to 2k− 1 is equal to uk(z3−x), for some

x ∈ Sk, thus uk(z3) = 02
k−1

uk−1(z3 − x). On the other hand, uk(zi) = uk−1(zi)vk−1(zi) for i ∈ {1, 2}.
From Lemma 14, vk−1(z1) and vk−1(z2) are squares if k > 0, which is the case, since B0(0, 0) contains only
one cell. Thus vk−1(z1) + vk−1(z2) is also a square, then it cannot be equal to uk−1(z3 − x) which is not a
square thanks to Lemma 15.

Case 2: z1, z2, z3 6∈ B2k−1−1(0, 0). In this case, for each i ∈ {1, 2, 3} there exists some xi ∈ Sk−1 such that

uk(zi) = 02
k−1

uk−1(zi − xi). Of course zi − xi ∈ B2k−1−1(0, 0) for each i ∈ {1, 2, 3} and uk−1(z1 − x1) +

uk−1(z2 − x2) + uk−1(z3 − x3) = 02
k−1

, which contradicts the minimality of k.

�

With this last lemma we know that if three cells produces a null trace of radius 1, thus one of them has a
null trace of radius 0, this means that this cell is even, and its four neighbors are odd. When looking at the
neighbors of these cells, their sum is also null, for each if its neighbors. Thus at least one cell must have even
neighbors with a null trace, but in this case, two of these cells are odd, and its four even neighbors cannot equal
the odd neighbors of the first cell, and then the trace of radius 1 of the sum of the three cells cannot be null.

6.2.2 The rule ⊕2 with triangular neighborhood

The last rule is 1 and 3 expansive, now we present a linear rule which is even not 1-expansive. Thanks to
Proposition 3, it implies in particular that is not k-expansive, for every k ∈ N. It correspond to addition modulo
2 as the last one but with a triangle shaped neighborhood: N = {(−1, 1), (1, 1), (0, 0), (0,−1)}.

Proposition 10 T2(σ(0,36)(c
1)) is null.

Proof. We will prove, by induction, that T2(σ(0,36)(c
1)) is null from 0 to 2k. For k = 0 to 5 is clear since cell

(0, 36) is too far to touch B2(0, 0). At iteration 2k the only active cells are (−2k,−2k + 36), (2k,−2k + 36),
(0, 2k + 36) and (0, 36). The first three are too far to touch B2(0, 0) from iterations 2k to 2k+1. By induction
hypothesis (0, 36) does not attain B2(0, 0) in 2k iterations, thus B2(0, 0) remains null until iteration 2k+1. �

7 Open Problems

We showed in this paper that dynamics like pre-expansivity or k-expansivity can exist without necessarily
implying positive expansivity. We also showed that some combinations of the space structure and the local rule
structure forbid pre-expansivity (Theorem 2).

However, we left many open questions concerning pre-expansivity and k-expansivity:

• is there a pre-expansive cellular automata on Zd when d ≥ 2?
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• is there a 2-expansive cellular automata on Z2? on the free group? more generally which is the set of
integers k such that a given group admits k-expansive cellular automata?

• are pre-expansive CA always transitive? mixing? open?

• is the property of pre-expansivity decidable?
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