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A VIRTUAL ELEMENT METHOD FOR REISSNER-MINDLIN PLATES

L. BEIRÃO DA VEIGA∗, D. MORA†, AND G. RIVERA‡

Abstract. We present a virtual element method for the Reissner–Mindlin plate bending problem which uses
shear strain and deflection as discrete variables without the need of any reduction operator. The proposed method
is conforming in [H1(Ω)]2 × H2(Ω) and has the advantages of using general polygonal meshes and yielding a direct
approximation of the shear strains. The rotations are then obtained as a simple postprocess from the shear strain and
deflection. We prove convergence estimates with involved constants that are uniform in the thickness t of the plate.
Finally, we report numerical experiments which allow us to assess the performance of the method.
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1. Introduction. The Virtual Element Method (VEM), introduced in [7, 8], is a recent gen-
eralization of the Finite Element Method which is characterized by the capability of dealing with
very general polygonal/polyhedral meshes. The interest in numerical methods that can make use of
general polytopal meshes has recently undergone a significant growth in the mathematical and engi-
neering literature; among the large number of papers on this subject, we cite as a minimal sample
[4, 7, 10, 23, 27, 38, 41, 42].

Indeed, polytopal meshes can be very useful for a wide range of reasons, including meshing of the
domain (such as cracks) and data (such as inclusions) features, automatic use of hanging nodes, use
of moving meshes, adaptivity. Moreover, the VEM presents the advantage to easily implement highly
regular discrete spaces. Indeed, by avoiding the explicit construction of the local basis functions, the
VEM can easily handle general polygons/polyhedrons without complex integrations on the element
(see [8] for details on the coding aspects of the method). The Virtual Element Method has been
applied successfully in a large range of problems, see for instance [1, 2, 6, 7, 8, 11, 13, 14, 15, 18, 21,
22, 30, 35, 36, 37, 43].

The Reissner–Mindlin theory is the most used model to approximate the deformation of a thin or
moderately thick elastic plate. Nowadays, it is very well understood that the discretization of this
problem poses difficulties due to the so called locking phenomenon when the thickness t is small with
respect to the other dimensions of the plate. Nevertheless, adopting for instance a reduced integration
or a mixed interpolation technique, this phenomenon can be avoided. Indeed, several families of
methods have been rigorously shown to be free from locking and optimally convergent. We mention
[29, 33] for a thorough description and further references.

Recently, a new approach to solve the Reissner–Mindlin bending problem has been presented in [9]
by Beirão da Veiga et al. (see also [28, 32]). In this case a variational formulation of the plate bending
problem is written terms of shear strain and deflection with the advantage that the “shear locking
phenomenon” is avoided. A discretization of the problem by Isogeometric Analysis is proposed. Under
some regularity assumptions on the exact solution, optimal error estimates with constants independent
of the plate thickness are proved.

The aim of this paper is on developing a Virtual Element Method which applies to general polyg-
onal (even non-convex) meshes for Reissner-Mindlin plates. We consider a variational formulation
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‡ Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción, Concepción, Chile and
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written in terms of shear strain and deflection presented in [9]. Here, we exploit the capability of
VEM to built highly regular discrete spaces and propose a conforming [H1(Ω)]2 × H2(Ω) discrete
formulation, respectively for the shear strain and deflections. The resulting bilinear form is contin-
uous and elliptic with appropriate t-dependent norms. This method makes use of a very simple set
of degrees of freedom, namely 5 degrees of freedom per vertex of the mesh plus the number of edges,
and approximates directly the transverse shear strain, which is distinctive of this approach. Moreover,
the rotations are obtained as a simple postprocess from the shear strain and deflection. Under some
regularity assumptions on the exact solution, optimal error estimates (in the natural norms of the
adopted formulation) with constants independent of the plate thickness are proved for all the involved
variables. In addition, we present error estimates in weaker norms using a duality argument. Finally,
we point out that, differently from the finite element method where building globally C1(Ω) functions
is complicated, here the virtual deflection space can be built with a rather simple construction due to
the flexibility of the virtual approach. In a summary, the advantages of the proposed method are the
possibility to use general polygonal meshes and a better conformity with the limit Kirchhoff problem,
ensuing from the H2(Ω) approximation used for the discrete deflection.

The outline of this article is as follows: we introduce in Section 2 the Reissner-Mindlin plate model,
first in terms of deflection and rotations variables and then in an equivalent form in terms of deflection
and transverse shear strain variable. In Section 3, we present the discrete spaces for the shear strain
and deflection, together with their properties, next, we construct the discrete bilinear forms and the
loading term. We end this section with the presentation of the virtual element discrete formulation.
In Section 4, we present the error analysis of the virtual scheme. In Section 5, we report a couple of
numerical tests that allow us to assess the convergence properties of the method.

Throughout the paper, Ω is a generic Lipschitz bounded domain of R2. For s ≥ 0, ‖·‖s,Ω stands

indistinctly for the norm of the Hilbertian Sobolev spaces Hs(Ω) or [Hs(Ω)]2 with the convention
H0(Ω) := L2(Ω). Finally, we employ 0 to denote a generic null vector and we will denote with C a
generic constant which may take different values in different occurrences, and which is independent
of the mesh parameter h and the plate thickness t.

2. Continuous problem. Consider an elastic plate of thickness t, 0 < t ≤ 1, with reference
configuration Ω×(−t/2, t/2), where Ω is a convex polygonal domain of R2 occupied by the mid-section
of the plate. The deformation of the plate is described by means of the Reissner-Mindlin model in
terms of the rotations θ = (θ1, θ2) of the fibers initially normal to the plate mid-surface and the
deflection w. We subdivide the boundary Γ of Ω in three disjoint parts such that,

Γ = Γc ∪ Γs ∪ Γf .

The plate is assumed to be clamped on Γc, simply supported on Γs and free on Γf . We assume that Γc

has positive measure. We denote by n the outward unit normal vector to Γ, the following equations
describe the plate response to a conveniently scaled transverse load g:

(2.1)





−divCε(θ)− λt−2(∇w − θ) = 0 in Ω,
− div(λt−2(∇w − θ)) = g in Ω,
θ = 0, w = 0 on Γc,
Cε(θ)n = 0, w = 0 on Γs,
Cε(θ)n = 0, (θ −∇w) = 0 on Γf ,

where λ := Ek/2(1 + ν) is the shear modulus, with E being the Young modulus, ν the Poisson ratio,
and k a correction factor, ε(θ) := 1

2 (∇θ + (∇θ)t) is the standard strain tensor, and C is the tensor of
bending moduli, given by (for isotropic materials)

Cσ :=
E

12(1− ν2)
((1− ν)σ + ν tr(σ)I) , σ ∈ [L2(Ω)]2×2,

where tr(σ) is trace of σ and I is the identity tensor.
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Let us consider the space

X̃ := {(v,η) ∈ H1(Ω)× [H1(Ω)]2 : v = 0 on Γc ∪ Γs,η = 0 on Γc}.

By testing the system (2.1) with (v,η) ∈ X̃, integrating by parts and using the boundary conditions,
we write the following variational formulation:

Problem 2.1. Given g ∈ L2(Ω), find (w, θ) ∈ X̃ such that

a(θ,η) + b(θ −∇w,η −∇v) = (g, v)0,Ω ∀(v,η) ∈ X̃,

where (·, ·)0,Ω denotes the inner-product in L2(Ω), and the bilinear forms are given by

a(θ,η) := (Cε(θ), ε(η))0,Ω,

b(θ,η) := λt−2(θ,η)0,Ω.

The following result states that the bilinear form appearing in Problem 2.1 is coercive (see [9,
Proposition A.1]).

Lemma 2.1. There exists a positive constant α depending only on the material constants and the
domain Ω such that:

(2.2) a(η,η) + b(η −∇v,η −∇v) ≥ α
(
‖η‖21,Ω + t−2‖η −∇v‖20,Ω + ‖v‖21,Ω

)
∀(v,η) ∈ X̃.

It is well known that the discretization of the Reissner-Mindlin equations have difficulties due to the
so called locking phenomenon when the thickness t is small with respect to the other dimensions of
the plate. To avoid this phenomenon we will introduce and analyze an alternative formulation of the
problem that does not suffer from such a drawback. In order to simplify the notation, and without
any loss of generality, we will assume λ = 1 in the following.

2.1. An equivalent variational formulation. The variational formulation that will be con-
sidered here, was introduced in the context of shells in [28, 32] and has been studied in [9] for
Reissner-Mindlin plates using Isogeometric Analysis.

Now, we note that the equivalent formulation is derived by simply considering the following charge
of variables:

(2.3) (w, θ)←→ (w,γ) with θ = ∇w + γ.

We note that the physical interpretation of the variable γ corresponds to the transverse shear strain.

The equivalent formulation will be obtained by using the change the variables (2.3) in Problem 2.1.

For the analysis we will consider the following t-dependent energy norm:

(2.4) |||v, τ |||2 := ‖τ +∇v‖21,Ω + t−2‖τ‖20,Ω + ‖v‖21,Ω,

for all sufficiently regular functions τ : Ω −→ R
2 and v : Ω −→ R.

Now, we define the following variational spaces:

X̂ := C∞(Ω)× [C∞(Ω)]2
|||·,·|||

;

X := {(v, τ ) ∈ X̂ : v = 0 on Γc ∪ Γs,∇v + τ = 0 on Γc}.

It is immediately verified that

H2(Ω)× [H1(Ω)]2 ⊂ X̂ ⊂ H1(Ω)× [L2(Ω)]2.
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Moreover, note that the space X exactly corresponds to X̃ up to the change of variables (2.3).

Let us introduce the equivalent variational formulation for the Reissner-Mindlin model as follows:

Problem 2.2. Given g ∈ L2(Ω), find (w,γ) ∈ X such that

a(∇w + γ,∇v + τ ) + b(γ, τ ) = (g, v)0,Ω ∀(v, τ ) ∈X.

We have that Problem 2.2 is equivalent to Problem 2.1 up to the change of variables (2.3). As a
consequence, we have the following coercivity property for the bilinear form on the left hand side of
Problem 2.2 (see (2.2)):

(2.5) a(∇v + τ ,∇v + τ ) + b(τ , τ ) ≥ α|||v, τ |||2 ∀(v, τ ) ∈ X,

with same constant α. Moreover, bilinear forms a(·, ·) and b(·, ·) are bounded uniformly in t.

Therefore, Problem 2.2 has a unique solution (w,γ) ∈X and

|||w,γ||| ≤ C‖g‖0,Ω.

3. Virtual element discretization. We begin this section, by recalling the mesh construction
and the assumptions considered to introduce the discrete virtual element spaces for the shear strain
and deflection, together with their properties, next, we will introduce discrete bilinear forms and the
loading term. Finally, we end this section with the presentation of the virtual element discretization
of Problem 2.2.

3.1. Mesh regularity assumption. Let {Th}h be a sequence of decompositions of Ω into
polygons E. Let hE denote the diameter of the element E and h := max

E∈Th

hE .

For the analysis, we will make the following assumptions as in [7, 12, 13]: there exists a positive
real number CT such that, for every h and every E ∈ Th,

A1: the ratio between the shortest edge and the diameter hE of E is larger than CT ;
A2: E ∈ Th is star-shaped with respect to every point of a ball of radius CT hE .

For any subset S ⊆ R
2 and nonnegative integer k, we indicate by Pk(S) the space of polynomials

of degree up to k defined on S. To keep the notation simpler, we denote by n a general normal unit
vector; in each case, its precise definition will be clear from the context and we denote by t the tangent
unit vector t defined as the anticlockwise rotation of n.

To continue the construction of the discrete scheme, we need some preliminary definitions. First,
we split the bilinear forms a(·, ·) and b(·, ·) introduced in the previous section as follows:

a (∇w + γ,∇v + τ ) =
∑

E∈Th

aE (∇w + γ,∇v + τ ) ∀(w,γ), (v, τ ) ∈ X,(3.1)

b (γ, τ ) =
∑

E∈Th

bE(γ, τ ) ∀γ, τ ∈ [H1(Ω)]2,(3.2)

with

aE (∇w + γ,∇v + τ ) := (Cε(∇w + τ ), ε(∇v + γ))0,E

and

bE(γ, τ ) := t−2(γ, τ )0,E .

Finally, we define

A((w,γ), (v, τ )) := a(∇w + γ,∇v + τ ) + b(γ, τ ) =
∑

E∈Th

AE((w,γ), (v, τ )) ∀(w,γ), (v, τ ) ∈ X,
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where

AE((w,γ), (v, τ )) = aE (∇w + γ,∇v + τ )) + bE (γ, τ ) .

In order to construct the discrete scheme associated to Problem 2.2, in what follows, we will show
that for each h > 0 it is possible to build the following:

1. a discrete virtual space Xh ⊆X such that

Xh := {(vh, τh) ∈ (Wh ×Vh) : vh = 0 on Γc ∪ Γs,∇vh + τ h = 0 on Γc},

in which the virtual spaces Wh ⊆ H2(Ω) and Vh ⊆ [H1(Ω)]2;
2. a symmetric bilinear form Ah : Xh ×Xh → R which can be split as

(3.3) Ah((wh,γh), (vh, τh)) :=
∑

E∈Th

AE
h ((wh,γh), (vh, τ h)) ∀(wh,γh), (vh, τh) ∈Xh,

with AE
h (·, ·) local bilinear forms on Xh|E ×Xh|E ;

3. an element gh ∈X ′
h and a discrete duality pair 〈·, ·〉h in such a way that the following discrete

problem: Find (wh,γh) ∈Xh such that

(3.4) Ah((wh,γh), (vh, τ h)) = 〈gh, vh〉h ∀(vh, τh) ∈ Xh,

admits a unique solution (wh,γh) ∈Xh and exhibits optimal approximation properties.

3.2. Discrete virtual spaces for shear strain and deflection. We introduce a pair of finite
dimensional spaces for shear strain and deflection:

Vh ⊆ [H1(Ω)]2, Wh ⊆ H2(Ω).

First, we construct the shear strain virtual space Vh, inspired from [2]. With this aim, we consider
a simple polygon E and we define

B∂E := {τh ∈ [C0(∂E)]2 : τ h · t|∂E ∈ P2(e) and τ h · n|∂E ∈ P1(e) ∀e ∈ ∂E}.

We then consider the finite dimensional space defined as follows:

VE
h := {τh ∈ [H1(E)]2 : rotτ h ∈ P0(E), τ h|∂E ∈ B∂E , τ h minimizes the H1-seminorm}.

Note that the space VE
h is well defined. Indeed, given a (piecewise polynomial) boundary value

τh|∂E ∈ [H1/2(∂E)]2, the associated function τ h inside the element E is obtained by solving the
following well-posed problem:




−∆τh + rot s = 0 in E,
rotτ h = f with f ∈ P0(E),
τ h assigned in ∂E,

(3.5)

where

f = rot τh|E =
1

|E|

∫

E

rotτh =
1

|E|

∫

∂E

τh · t.

It is important to observe that, since the functions in VE
h are uniquely identified by their boundary

values, dim(VE
h ) = dim(VE

h |∂E), i.e., dim(VE
h ) = 3NE, with NE being the number of edges of E.

This leads to introducing the following 3NE degrees of freedom for the space VE
h :

• Vh
E : the values of τh (vector) at the vertices of E.
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• EhE : the value of the

1

|e|

∫

e

τ h · t ∀ edge e ∈ ∂E.

Moreover, we note that as a consequence of the definition VE
h , the output values of the two sets of

degrees of freedom Vh
E and EhE are sufficient to uniquely determine τh · t and τh · n on the boundary

of E, for any τ h ∈ VE
h . Finally, we note that clearly [P1(E)]2 ⊂ VE

h .

For every decomposition Th of Ω into simple polygons E, we define the global space Vh without
boundary conditions.

Vh := {τh ∈ [H1(Ω)]2 : τ h|E ∈ VE
h ∀E ∈ Th}.

In agreement with the local choice of the degrees of freedom, in Vh we choose the following degrees
of freedom:

• Vh: the values of τ h (vector) at the vertices of Th.
• Eh: the value of the

1

|e|

∫

e

τ h · t ∀ edge e ∈ Th.

Now, we will introduce the discrete virtual space Wh for the deflection, see also [21, 2]. With this
aim, we first define the following finite dimensional space:

WE
h := {vh ∈ H2(E) : ∆2vh = 0, vh|∂E ∈ C0(∂E), vh|∂E ∈ P3(e),

∇vh|∂E ∈ [C0(∂E)]2 and ∂nvh|∂E ∈ P1(e) ∀e ∈ ∂E},

where ∆2 represents the biharmonic operator. We observe that any vh ∈ WE
h satisfy the following

conditions:

• the trace on the boundary of E is continuous and on each edge is a polynomial of degree 3;
• the gradient on the boundary is continuous and on each edge its normal (respectively tangen-
tial) component is a polynomial of degree 1 (respectively 2);
• inside E satisfy the biharmonic equation ∆2vh = 0;
• P2(E) ⊆WE

h .

We choose in WE
h the degrees of freedom introduced in [3, Section 2.2], namely:

• Wh
E : The values of vh and ∇vh at the vertices of E.

We note that as a consequence of the definition WE
h , the degrees of freedom Wh

E are sufficient to
uniquely determine vh and ∇vh on the boundary of E.

We now present the global virtual space for the deflection: for every decomposition Th of Ω into
simple polygons E, we define (without boundary conditions).

Wh := {vh ∈ H2(Ω) : vh|E ∈WE
h ∀E ∈ Th}.

In agreement with the local choice of the degrees of freedom, in Wh we choose the following degrees
of freedom:

• Wh: the values of vh and ∇vh at the vertices of Th.

As a consequence of the definition of local virtual spaces VE
h and WE

h , we have the following result
which will be used in the forthcoming analysis.

Proposition 3.1. Let E be a simple polygon with NE edges. Then ∇WE
h ⊆ VE

h .

Proof. Let vh ∈WE
h , then we have that: vh ∈ H2(E), ∆2vh = 0, vh|e ∈ P3(e) and ∇vh ·n|e ∈ P1(e)

for all e ∈ ∂E. Hence, ∇vh ∈ [H1(E)]2, ∇vh · t|e ∈ P2(e) and ∇vh · n|e ∈ P1(e) for all e ∈ ∂E, i.e,
∇vh|∂E ∈ B∂E . Moreover, rot(∇vh) = 0 ∈ P0(E). On the other hand, we have that

0 = ∆2vh = ∆(∆vh) = ∆ (div(∇vh)) = div (∆(∇vh)) .
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Since a star-shaped polygon E is simply connected, there exists q ∈ H1(E) such that ∆(∇vh) = rot q.
Thus, ∇vh satisfies (3.5) and therefore ∇vh ∈ VE

h . The proof is complete.

Finally, once we have defined Vh and Wh, we are able to introduce our virtual element space Xh.

Xh := {(vh, τ h) ∈ Wh ×Vh} ∩X.

3.3. Bilinear forms and the loading term. In this section we will discuss the construction
of the discrete version of the local bilinear forms aE(·, ·) (cf (3.1)) and bE(·, ·) (cf (3.2)), which will
be used to built the local bilinear form appearing in (3.3). Moreover, we will discuss the construction
of the loading term appearing in (3.4).

We define the projector ΠE
ε : VE

h −→ [P1(E)]2 ⊂ VE
h for each τ h ∈ VE

h as the solution of





aE(p,ΠE
ε τ h) = aE(p, τh) ∀p ∈ [P1(E)]2,

〈〈
p,ΠE

ε τ h

〉〉
= 〈〈p, τ h〉〉 ∀p ∈ ker(aE(·, ·)),

(3.6)

where for all rh, sh in VE
h

〈〈rh, sh〉〉 :=
1

NE

NE∑

i=1

rh(vi) · sh(vi), vi = vertices of E, 1 ≤ i ≤ NE .

We note that the second equation in (3.6) is needed for the problem to be well-posed. In fact, it is
easy to check that it returns one (and only one) function ΠE

ε τh ∈ [P1(E)]2. Moreover, we observe
that the local degrees of freedom allow us to compute exactly the right hand side of (3.6). Indeed, for
all p ∈ [P1(E)]2, we have

aE(p, τh) =

∫

E

Cε(p) : ε(τh) = −

∫

E

div(Cε(p)) · τh +

∫

∂E

(Cε(p)n) · τ h

=

∫

∂E

(Cε(p)n) · τh,

where we have used that div(Cε(p)) = 0. Therefore, since the functions τh ∈ VE
h are known explicitly

on the boundary, the right hand side of (3.6) can be computed exactly without knowing τh in the
interior of E. As a consequence, the projection operator ΠE

ε is computable solely on the basis of the
degrees of freedom values.

Let ΠE
0 : VE

h → [P0(E)]2 be the [L2(E)]2-projector, defined by

∫

E

ΠE
0 τh · p0 =

∫

E

τ h · p0 ∀p0 ∈ [P0(E)]2.

We note that as before, the right hand side above is computable. In fact, we consider a simple
polygon E with barycenter xE = (xE , yE)

t and we have that any p0 ∈ [P0(E)]2 can be written as
p0 = α(1, 0)t + β(0, 1)t = α rot(y − yE) + β rot(xE − x). Thus, for all τh ∈ VE

h we have

∫

E

τ h · (1, 0)
t =

∫

E

τ h · rot(y − yE) =

∫

E

rotτ h(y − yE)−

∫

∂E

(τh · t) (y − yE)

= rotτ h

∫

E

(y − yE)−

∫

∂E

(τ h · t) (y − yE) = −

∫

∂E

(τ h · t) (y − yE),

where we have used that for τ h ∈ VE
h , rot τh ∈ P0(E). Using the same arguments, we get

∫

E

τ h · (0, 1)
t = −

∫

∂E

(τh · t) (xE − x),

which shows that ΠE
0 τ h is computable solely on the basis of the degree of freedom values.
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Let now SE(·, ·) and SE
0 (·, ·) be any symmetric positive definite bilinear forms to be chosen as to

satisfy

c0a
E(τ h, τh) ≤ SE(τ h, τh) ≤ c1a

E(τ h, τh) ∀τh ∈ VE
h with ΠE

ε τ h = 0,(3.7)

c̃0b
E(τ h, τh) ≤ SE

0 (τ h, τh) ≤ c̃1b
E(τ h, τh) ∀τ h ∈ VE

h ,(3.8)

for some positive constants c0, c1, c̃0 and c̃1 depending only on the constant CT from mesh assumptions
A1 and A2. Then, we introduce on each element E the local (and computable) bilinear forms

aEh (γh, τ h) := aE(ΠE
ε γh,Π

E
ε τh) + SE(γh −ΠE

ε γh, τh −ΠE
ε τh) γh, τh ∈ VE

h ,

bEh (γh, τh) := bE(ΠE
0 γh,Π

E
0 τh) + SE

0 (γh −ΠE
0 γh, τh −ΠE

0 τh) γh, τh ∈ VE
h .

Now, we define in a natural way

ah(γh, τh) :=
∑

E∈Th

aEh (γh, τ h), bh(γh, τ h) :=
∑

E∈Th

bEh (γh, τh) γh, τh ∈ Vh.

The construction of aEh (·, ·) and bEh (·, ·) guarantees the usual consistency and stability properties
of VEM, as noted in the Proposition below. Since the proof is simple and follows standard arguments
in the Virtual Element literature, it is omitted.

Proposition 3.2. The local bilinear forms aEh (·, ·) and bEh (·, ·) on each element E satisfy

• Consistency: for all h > 0 and for all E ∈ Th we have that

aEh (p, τ h) = aE(p, τh) ∀p ∈ [P1(E)]2, ∀τh ∈ VE
h ;(3.9)

bEh (p0, τ h) = bE(p0, τh) ∀p0 ∈ [P0(E)]2, ∀τ h ∈ VE
h .(3.10)

• Stability: there exist positive constants α∗, α
∗, β∗ and β∗, independent of h and E, such that

α∗a
E(τh, τ h) ≤ aEh (τh, τ h) ≤ α∗aE(τ h, τh) ∀τ h ∈ VE

h , ∀E ∈ Th,(3.11)

β∗b
E(τh, τ h) ≤ bEh (τ h, τh) ≤ β∗bE(τh, τ h) ∀τh ∈ VE

h , ∀E ∈ Th.(3.12)

We note that as a consequence of (3.11) and (3.12), the bilinear forms aEh (·, ·) and bEh (·, ·) are
bounded with respect to the H1 and L2 norms, respectively.

We now discuss the construction of the loading term. For every E ∈ Th we approximate the data
g by a piecewise constant function gh on each element E defined as the L2(E)-projection of the load
g (denoted by ḡE). Let the loading term

(3.13) 〈gh, vh〉h :=
∑

E∈Th

ḡE

NE∑

i=1

vh(vi)ω
i
E .

where v1, . . . , vNE
are the vertices of E and ω1

E , . . . , ω
NE

E are positive weights chosen to provide the
exact integral on E when applied to linear functions.

3.4. Discrete problem. The results of the previous sections allow us to introduce the discrete
VEM in shear strain-deflection formulation for the approximation of the continuous Reissner-Mindlin
formulation presented in Problem 2.2.

With this aim, we first note that since ∇WE
h ⊂ VE

h (see Proposition 3.1), the operator ΠE
ε can be

also applied to ∇vh for all vh ∈ WE
h . Hence, we introduce the following VEM discretization for the

approximation of Problem 2.2.

Problem 3.1. Find (wh,γh) ∈ Xh such that

(3.14) ah(∇wh + γh,∇vh + τ h) + bh(γh, τh) = 〈gh, vh〉h ∀(vh, τh) ∈ Xh.
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The next lemma shows that the problem above is coercive in the ||| · ||| norm.

Lemma 3.3. There exists β > 0, independent of h and t such that

ah(∇vh + τ h,∇vh + τ h) + bh(τ h, τh) ≥ β |||(vh, τ h)|||
2

∀(vh, τh) ∈ Xh.

Proof. Thanks to (3.11), (3.12) and (2.5), we have that

ah(∇vh + τh,∇vh + τ h) + bh(τ h, τh) ≥ C∗ (a(∇vh + τh,∇vh + τ h) + b(τ h, τh)) ≥ β |||(vh, τ h)|||
2 ,

with β := min {C∗, α}. We deduce immediately from Lemma 3.3 that Problem 3.1 is well-posed.

Remark 3.1. The solution of Problem 2.2 delivers the shear strain and deflection. In addition,
it is possible to readily obtain the rotations θ by recalling (2.3). At the discrete level, this strategy
corresponds to computing the rotations as a post-processing of the shear strain and deflection. If
(wh,γh) ∈ Xh is the unique solutions of Problem 3.1, then the function

θh = ∇wh + γh,

is an approximation of the rotations. The accuracy of such approximation will be established in the
following section.

4. Convergence analysis. In the present section, we develop an error analysis for the discrete
virtual element scheme presented in Section 3.4. For the forthcoming analysis, we will assume that
the mesh assumptions A1 and A2, introduced in Section 3.1, are satisfied.

For the analysis we will introduce the broken H1-norm:

‖v‖21,h,Ω :=
∑

E∈Th

‖v‖21,E,

which is well defined for every v ∈ L2(Ω) such that v|E ∈ H1(E) for all polygon E ∈ Th.

Moreover, we have the following propositions, which are derived by interpolation between Sobolev
spaces (see for instance [31, Theorem I.1.5] from the analogous result for integer values of s. In
its turn, the result for integer values is stated in [7, Proposition 4.2] and follows from the classical
Scott-Dupont theory (see [17]).

Proposition 4.1. There exists a constant C > 0, such that for every v ∈ Hs(E) there exists
vΠ ∈ Pk(E), k ≥ 0 such that

|v − vΠ|l,E ≤ Chs−l
E |v|s,E 0 ≤ s ≤ k + 1, l = 0, . . . , s.

Proposition 4.2. There exists a constant C > 0, such that for every τ ∈ [Hs(E)]2 there exists
τΠ ∈ [Pk(E)]2, k ≥ 0 such that

|τ − τΠ|l,E ≤ Chs−l
E |τ |s,E 0 ≤ s ≤ k + 1, l = 0, . . . , s.

The first step is to establish the following result.

Lemma 4.3. Let (w,γ) ∈ X be the unique solution to the continuous Problem 2.2 and let θ :=
∇w + γ. Let (wh,γh) ∈ Xh be the unique solution to the discrete Problem 3.1. Then, for any
(wI ,γI) ∈ Xh and (θΠ,γΠ,γ0) ∈ [L2(Ω)]6 such that θΠ|E ∈ [P1(E)]2, γΠ|E ∈ [P1(E)]2 and γ0|E ∈
[P0(E)]2 for all E ∈ Th, there exists C > 0 independent of h and t such that

|||w − wh,γ − γh||| ≤ C
(
t−1 (‖γ − γI‖0,Ω + ‖γ0 − γ‖0,Ω) + ‖γ − γI‖1,Ω + h‖g‖0,Ω

+‖θ − θΠ‖1,h,Ω + ‖∇w −∇wI‖1,Ω) .
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Proof. We set δγ := γh−γI , δw := wh−wI , θh := ∇wh+γh, θI := ∇wI +γI and δθ := θh−θI .
Thanks to Lemma 3.3 and equations (3.14), (3.9), (3.10) we have that

β|||(wh − wI), (γh − γI)|||
2 ≤ ah(θh − θI , δθ) + bh(γh − γI , δγ)

= ah(∇wh + γh, δθ) + bh(γh, δγ)− (ah(θI , δθ) + bh(γI , δγ))

= 〈gh, δw〉h −
∑

E∈Th

(
aEh (θI − θΠ, δθ) + aE(θΠ − θ, δθ) + aE(θ, δθ)

)

−
∑

E∈Th

(
bEh (γI − γ0, δγ) + bE(γ0 − γ, δγ) + bE(γ, δγ)

)

≤ T1 + T2 + T3,

where

T1 :=
∣∣∣〈gh, δw〉h − (g, δw)0,Ω

∣∣∣ , T2 :=

∣∣∣∣∣
∑

E∈Th

(
aEh (θI − θΠ, δθ)− aE(θΠ − θ, δθ)

)
∣∣∣∣∣ ,

T3 : =

∣∣∣∣∣
∑

E∈Th

(
bEh (γI − γ0, δγ)− bE(γ0 − γ, δγ)

)
∣∣∣∣∣ .

We now bound each term Ti, i = 1, 2, 3, with a constant C independent of h and t.

First, we bound the term T2. Using (3.11), the fact that bilinear form a(·, ·) is bounded and finally
adding and subtracting θ, we obtain

T2 ≤
∑

E∈Th

∣∣aEh (θI − θΠ, δθ)
∣∣+

∑

E∈Th

∣∣aE(θΠ − θ, δθ)
∣∣

≤
∑

E∈Th

C(‖θI − θΠ‖1,E + ‖θΠ − θ‖1,E)‖δθ‖1,E

≤
∑

E∈Th

C(‖θI − θ‖1,E + ‖θΠ − θ‖1,E)‖δθ‖1,E .

For the term T3, using (3.12), the definition of bilinear form b(·, ·), the Cauchy–Schwarz inequality,
and finally adding and subtracting γ, we obtain

T3 ≤
∑

E∈Th

C(‖γI − γ‖0,E + ‖γ0 − γ‖0,E)t
−2‖δγ‖0,E .

Now, we bound T1. Using the definition (3.13), and adding and subtracting ḡE we rewrite the
term as follows

T1 =

∣∣∣∣∣
∑

E∈Th

(
ḡE

NE∑

i=1

δw(vi)ω
i
E

)
−
∑

E∈Th

∫

E

gδw

∣∣∣∣∣

=

∣∣∣∣∣
∑

E∈Th

(
ḡE

NE∑

i=1

δw(vi)ω
i
E −

∫

E

ḡEδw

)
+
∑

E∈Th

(∫

E

(ḡE − g)(δw − p)

)∣∣∣∣∣ ,

for any p ∈ P0(E), where we have used the definition of ḡE . Therefore,

T1 ≤

∣∣∣∣∣
∑

E∈Th

(
ḡE

NE∑

i=1

δw(vi)ω
i
E −

∫

E

ḡEδw

)∣∣∣∣∣+
∑

E∈Th

‖g − ḡE‖0,E‖δw − p‖0,E := T a
1 + T b

1 .
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First, T b
1 is easily bounded. In fact, taking p as in Proposition 4.1, we obtain that

T b
1 ≤ Ch‖g‖0,Ω‖δw‖1,Ω.

In what follows we will manipulate the terms T a
1 : adding and subtracting p0 ∈ P0(E), and since the

integration rule in (3.13) is exact for constant functions, we have

T a
1 ≤

∣∣∣∣∣
∑

E∈Th

∫

E

ḡE(δw − p0)

∣∣∣∣∣ +
∣∣∣∣∣
∑

E∈Th

(
ḡE

(
NE∑

i=1

(δw − p0)(vi)ω
i
E

))∣∣∣∣∣

≤ ‖g‖0,Ω

(∑

E∈Th

‖δw − p0‖
2
0,E

)1/2

+
∑

E∈Th

|E|ḡE‖δw − p0‖L∞(∂E)

≤ ‖g‖0,Ω

(∑

E∈Th

‖δw − p0‖
2
0,E

)1/2

+ ‖g‖0,Ω

(∑

E∈Th

h2
E‖δw − p0‖

2
L∞(∂E)

)1/2

.

We now recall that δw − p0 is a (continuous) piecewise polynomial on ∂E, and that the length of the
edges of E is bounded from below in the sense of assumption A1. Therefore, we can apply Lemma
3.1 in [16], standard polynomial approximation estimates and a trace inequality to derive

‖δw − p0‖L∞(∂E) ≤ C|δw|1/2,∂E + h
−1/2
E ‖δw − p0‖0,∂E ≤ C|δw|1/2,∂E ≤ C|δw|1,E .

Hence, we obtain,

T a
1 ≤Ch‖g‖0,Ω|δw|1,Ω.

Thus, since |δw|1,Ω ≤ |||δw, δγ |||, we have that

(4.1) T1 ≤ T a
1 + T b

1 ≤ Ch‖g‖0,Ω|||δw, δγ |||.

Therefore, by combining (4.1) with the above bounds for T2 and T3, we get

|||(wh − wI), (γh − γI)||| ≤C
(
t−1(‖γ − γI‖0,Ω + ‖γ0 − γ‖0,Ω)

+ ‖θ − θI‖1,Ω + ‖θΠ − θ‖1,h,Ω + h‖g‖0,Ω
)
.

Hence, the proof follows from the bound above, the triangular inequality, the definition of ||| · ||| (see
(2.4)), the definition of θI and the inequality ‖θ − θI‖1,Ω ≤ ‖∇w −∇wI‖1,Ω + ‖γ − γI‖1,Ω. In fact,

|||w − wh,γ − γh||| ≤|||w − wI ,γ − γI |||+ |||wI − wh,γI − γh|||

≤C(t−1‖γ − γI‖0,Ω + t−1‖γ0 − γ‖0,Ω + ‖γ − γI‖1,Ω

+ h‖g‖0,Ω + ‖θ − θΠ‖1,h,Ω + ‖∇w −∇wI‖1,Ω).

The proof is complete.

The next step is to find appropriate terms (wI ,γI), (wΠ,γΠ) and γ0 that can be used in Lemma 4.3
to prove the claimed convergence. As a preliminary construction, we introduce, for every vertex v of
the mesh laying on ∂Ω, the following function. Let ev be any one of the two edges on ∂Ω sharing v,
fixed once and for all; the only rule being that, if one of the two edges is in Γc and the other is not,
then the one in Γc must be chosen. Then, we denote by ϕ

v
the unique (vector valued) polynomial of

degree 2 living on ev such that

(4.2)

∫

ev

p ·ϕ
v
= p(v) ∀p ∈ [P2(ev)]

2.

Then, for the term wI ∈Wh, we have the following result.
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Proposition 4.4. There exists a positive constant C, such that for every v ∈ H3(Ω) there exists
vI ∈ Wh that satisfies

|v − vI |l,Ω ≤ Ch3−l
E |v|3,Ω, l = 0, 1, 2.

Proof. Given v ∈ H3(Ω), we consider vΠ ∈ L2(Ω) defined on each E ∈ Th so that vΠ|E ∈ P2(E)
and the estimate of Proposition 4.1 holds true.

For each polygon E ∈ Th, consider the triangulation T E
h obtained by joining each vertex of E

with the midpoint of the ball with respect to which E is starred. Let T̂h :=
⋃

E∈Th
T E
h . Since we are

assuming A1 and A2,
{
T̂h
}
h
is a shape-regular family of triangulations of Ω.

Let vc be the reduced Hsieh-Clough-Tocher triangle (see [25, 26]) interpolant of v over T̂h, slightly
modified as follows. For the nodes on the boundary, the value of ∇vc is given by

∇vc(v) :=

∫

ev

∇vc ·ϕv
,

see (4.2), while the values of the remaining degrees of freedom is the same as in the original version.
This is a modification, in the spirit of the Scott-Zhang interpolation [39], of the standard nodal value;
the motivation for such modification is not related directly to the present result (that would hold also
with the original HCT interpolant) and will be clearer in the sequel. This modified version still satisfies
similar approximation properties with respect the original version [25, 26]; we omit the standard proof
and simply state the result:

(4.3) |v − vc|l,Ω ≤ Ch3−l
E |v|3,Ω l = 0, 1, 2.

Now, for each E ∈ Th, we define vI |E ∈ H2(E) as the solution of the following problem:





−∆2vI = −∆2vΠ in E,

vI = vc on ∂E,

∂nvI = ∂nvc on ∂E.

Note that vI |E ∈ WE
h . Moreover, although vI is defined locally, since on the boundary of each

element it coincides with vc which belongs to H2(Ω), we have that also vI belongs to H2(Ω) and,
hence, vI ∈Wh.

According to the above definition we have that





−∆2(vΠ − vI) = 0 in E,

vΠ − vI = vΠ − vc on ∂E,

∂n(vΠ − vI) = ∂n(vΠ − vc) on ∂E,

and, hence, it is easy to check that

|vΠ − vI |2,E = inf
{
|z|2,E , z ∈ H2(E) : z = vΠ − vc on ∂E and ∂nz = ∂n(vΠ − vc) on ∂E

}

≤ |vΠ − vc|2,E .

Therefore,

|v − vI |2,E ≤ |v − vΠ|2,E + |vΠ − vI |2,E

≤ |v − vΠ|2,E + |vΠ − vc|2,E

≤ 2 |v − vΠ|2,E + |v − vc|2,E .
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By summing on all the elements and recalling (4.3) (plus standard approximation estimates for poly-
nomials on polygons) we obtain

|v − vI |2,Ω ≤ C
(
|v − vΠ|2,Ω + |v − vc|2,Ω

)
≤ Ch|v|3,Ω.

Moreover, from the above bound and (recalling that ∂n(vI − vc) = 0 and (vI − vc) = 0 on ∂E) a
Poincaré-type inequality, we have

|v − vI |1,E ≤ |v − vc|1,E + |vc − vI |1,E ≤ |v − vc|1,E + ChE |vc − vI |2,E

≤ |v − vc|1,E + ChE |v − vc|2,E + ChE |v − vI |2,E ,

so that, summing on all the elements and using the bounds above,

|v − vI |1,Ω ≤ Ch2 |v|3,Ω .

By an analogous argument one obtains

‖v − vI‖0,Ω ≤ C
(
‖v − vc‖0,Ω + h |vc − vI |1,Ω

)
≤ Ch3 |v|3,Ω ,

which allows us to complete the proof.

Finally, we present the following result for the approximation properties of the space Vh.

Proposition 4.5. There exists C > 0 such that for every τ ∈ [Hs(Ω)]2 with s ∈ [1, 2] there exists
τ I ∈ Vh that satisfies

‖τ − τ I‖0,Ω + h|τ − τ I |1,Ω ≤ Chs|τ |s,Ω.

Proof. We refer the reader to Section 3.2 for the definition of the degrees of freedom of Vh and
define τ I as follows. All degrees of freedom associated to internal vertices are calculated as an integral
average of τ on the elements sharing the vertex (as in standard Clément interpolation). All the vertex
boundary values are taken as (see (4.2))

τ I(v) =

∫

ev

τ · ϕ
v
.

Finally, the edge degrees of freedom are computed directly by

1

|e|

∫

e

τ I · t =
1

|e|

∫

e

τ · t ∀ edge e ∈ Th.

The rest of the proof is omitted since it follows repeating essentially the same argument used to
establish [12, Proposition 4.1].

According to the above results, we are able to establish the convergence of the Virtual Element
scheme presented in Problem 3.1.

Theorem 4.6. Let (w,γ) ∈ X and (wh,γh) ∈ Xh be the unique solutions of the continuous and
discrete problems, respectively. Assume that (w,γ) ∈ (H3(Ω), [H2(Ω)]2). Then, there exists C > 0
independent of h, g and t such that

|||w − wh,γ − γh||| ≤ Ch
(
t−1|γ|1,Ω + |θ|2,Ω + |w|3,Ω + ‖g‖0,Ω

)
,

where θ := ∇w + γ.

Proof. The proof follows from Lemma 4.3 and Propositions 4.1, 4.2, 4.4 and 4.5. In fact,

|||w − wh,γ − γh||| ≤C
(
t−1(‖γ − γI‖0,Ω + ‖γ0 − γ‖0,h,Ω) + ‖γ − γI‖1,Ω

+ h‖g‖0,Ω + ‖θ − θΠ‖1,h,Ω + ‖∇w −∇wI‖1,Ω

)

≤Ch
(
t−1|γ|1,Ω + |θ|2,Ω + |w|3,Ω + ‖g‖0,Ω

)
,
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where we have used that γ = θ−∇w so that |γ|2,Ω ≤ |w|3,Ω + |θ|2,Ω. Thus, we conclude the proof.

Remark 4.1. It is easy to check that the couple (wI ,γI) used in Theorem 4.6 (accordingly to the
interpolants definition given in Propositions 4.4 and 4.5) does actually satisfy the boundary conditions
and is thus in Xh. Indeed, the condition wI = 0 on Γc ∪ Γs follows immediately from the analogous
one for w. The condition ∇wI + γI = 0 on Γc can be easily derived from the analogous one for
(w,γ) combined with our choice for the boundary node interpolation and the definition of the discrete
spaces.

Remark 4.2. We note that Theorem 4.6 provides also an error estimate for the rotations in
H1(Ω)-norm.

In what follows, we restrict our analysis considering clamped boundary conditions on the whole
boundary, essentially to exploit the associated regularity properties of the continuous solution of
the Reissner-Mindlin equations. Nevertheless, the analysis in what follows can be straightforwardly
extended to other boundary conditions.

Now, we present the following result which establish an improve error estimate for rotations in
L2(Ω)-norm and the deflection in H1(Ω)-norm.

Proposition 4.7. Assume that the hypotheses of Theorem 4.6 hold. Moreover, assume that the
domain Ω be either regular, or piecewise regular and convex, that g ∈ H1(E) for all E ∈ Th and
that Γc = Γ. Then, for any (wΠ,γΠ,γ0) ∈ [L2(Ω)]5 such that wΠ|E ∈ P2(E), γΠ|E ∈ [P1(E)]2 and
γ0|E ∈ [P0(E)]2 for all E ∈ Th, there exists C > 0 independent of h, g and t such that

‖θ − θh‖0,Ω ≤ C(h+ t) (|||w − wh,γ − γh|||+ h‖g‖1,h,Ω + ‖∇w −∇wΠ‖1,h,Ω(4.4)

+‖γ − γΠ‖1,h,Ω + t−1‖γ − γ0‖0,Ω
)
;

‖w − wh‖1,Ω ≤ C(‖θ − θh‖0,Ω + ‖γ − γh‖0,Ω).(4.5)

Proof. The core of the proof is based on a duality argument. We first establish (4.4). We begin
by introducing the following well-posed auxiliary problem: Find (w̃, γ̃) ∈X such that

(4.6) a(∇w̃ + γ̃,∇v + τ ) + b(γ̃, τ ) = (θ − θh,∇v + τ )0,Ω ∀(v, τ ) ∈ X.

The following regularity result for the solution of problem above holds (see [34, Theorem 2.1]):

(4.7) ‖w̃1‖3,Ω + t−1‖w̃2‖2,Ω + t−1‖γ̃‖1,Ω ≤ C‖θ − θh‖0,Ω,

where w̃1 is the solution of the Kirchhoff limit problem and w̃2 := w̃− w̃1. Let (w̃1
I , γ̃I) ∈Xh be the

interpolant of (w̃1, γ̃) given by Propositions 4.4 and 4.5, respectively. Therefore, the above regularity
result yield immediately:

‖w̃1 − w̃1
I‖1,Ω + h‖w̃1 − w̃1

I‖2,Ω + t−1h‖γ̃ − γ̃I‖0,Ω ≤ h2‖θ − θh‖0,Ω,(4.8)

‖w̃2‖2,Ω + ‖γ̃ − γ̃I‖1,Ω ≤ t‖θ − θh‖0,Ω.(4.9)

Next, choosing v := (w − wh) and τ = (γ − γh) in (4.6), so that ∇v + τ = θ − θh, and then adding
and subtracting the term ∇w̃1

I + γ̃I , we obtain

‖θ − θh‖
2
0,Ω = a(θ − θh,∇w̃ + γ̃ −∇w̃1

I + γ̃I) + a(θ − θh,∇w̃
1
I + γ̃I)

+ b(γ − γh, γ̃ − γ̃I) + b(γ − γh, γ̃I)

≤ |||w − wh,γ − γh||| |||w̃ − w̃1
I , γ̃ − γ̃I |||+

∣∣a(θ − θh,∇w̃
1
I + γ̃I) + b(γ − γh, γ̃I)

∣∣ ,(4.10)

where we have used that the bilinear forms are bounded uniformly in t with respect to the ||| · ||| norm.
Now, we bound each term on the right hand side above. For the first term we have, using (4.8) and
(4.9),

|||w̃ − w̃1
I , γ̃ − γ̃I |||

2 ≤ C
(
‖w̃ − w̃1

I‖
2
2,Ω + t−2‖γ̃ − γ̃I‖

2
0,Ω + ‖γ̃ − γ̃I‖

2
1,Ω

)

≤ C
(
‖w̃1 − w̃1

I‖
2
2,Ω + ‖w̃2‖22,Ω + t−2‖γ̃ − γ̃I‖

2
0,Ω + ‖γ̃ − γ̃I‖

2
1,Ω

)

≤ C(h2 + t2)‖θ − θh‖
2
0,Ω.



A VIRTUAL ELEMENT METHOD FOR REISSNER-MINDLIN PLATES 15

Therefore

(4.11) |||w̃ − w̃1
I , γ̃ − γ̃I ||| ≤ C(h+ t)‖θ − θh‖0,Ω.

For the second term on the right hand of (4.10), since (w̃1
I , γ̃I) ∈X, we have that (see Problems 2.2

and 3.1),
∣∣a(θ − θh,∇w̃

1
I + γ̃I) + b(γ − γh, γ̃I)

∣∣ =
∣∣(g, w̃1

I )0,Ω − a(θh,∇w̃
1
I + γ̃I)− b(γh, γ̃I)

∣∣
=
∣∣(g, w̃1

I)0,Ω −
〈
gh, w̃

1
I

〉
h
+ ah(θh,∇w̃

1
I + γ̃I) + bh(γh, γ̃I)− a(θh,∇w̃

1
I + γ̃I)− b(γh, γ̃I)

∣∣
≤ B1 +B2,(4.12)

where

B1 :=
∣∣∣
(
g, w̃1

I

)
0,Ω
−
〈
gh, w̃

1
I

〉
h

∣∣∣

and

B2 :=
∣∣ah(θh,∇w̃

1
I + γ̃I)− a(θh,∇w̃

1
I + γ̃I) + bh(γh, γ̃I)− b(γhγ̃I)

∣∣ .

We now bound B1 and B2 uniformly in t.

We begin with the term B1. First adding and subtracting w̃1 we have

B1 ≤
∣∣(g, w̃1

I − w̃1)0,Ω
∣∣+
∣∣(g, w̃1)0,Ω −

〈
gh, w̃

1
〉
h

∣∣+
∣∣〈gh, w̃1

I − w̃1
〉
h

∣∣
≤ h2‖g‖0,Ω|w̃

1|2,Ω +
∣∣(g, w̃1)0,Ω −

〈
gh, w̃

1
〉
h

∣∣ ,(4.13)

where we have used the Cauchy-Schwarz inequality and Proposition 4.4 to bound the first term; note
moreover that the last term on the right hand side above vanish as a consequence of (3.13) and the
definition of w̃1

I :

∣∣〈gh, w̃1
I − w̃1

〉
h

∣∣ =
∣∣∣∣∣
∑

E∈Th

(
ḡE

NE∑

i=1

(w̃1
I − w̃1)(vi)ω

i
E

)∣∣∣∣∣ = 0.

Now, we bound the second term on the right hand side of (4.13) and we follow similar steps as in
Lemma 4.3 to derive (4.1). In fact, using the definition (3.13), and adding and subtracting gh we
rewrite the term as follows

∣∣(g, w̃1)0,Ω −
〈
gh, w̃

1
〉
h

∣∣ =
∣∣∣∣∣
∑

E∈Th

∫

E

gw̃1 −
∑

E∈Th

(
ḡE

NE∑

i=1

w̃1(vi)ω
i
E

)∣∣∣∣∣

≤

∣∣∣∣∣

∫

E

ḡEw̃
1 −

∑

E∈Th

(
ḡE

NE∑

i=1

w̃1(vi)ω
i
E

)∣∣∣∣∣+
∑

E∈Th

‖g − ḡE‖0,E‖w̃
1 − p‖0,E,

for any p ∈ P0(E). Now, taking p as in Proposition 4.1 and using that g|E ∈ H1(E) and [17, Lemma
4.3.8]. we have that
(4.14)

∣∣(g, w̃1)0,Ω −
〈
gh, w̃

1
〉
h

∣∣ ≤ Ch2‖g‖1,h,Ω‖w̃
1‖1,Ω +

∣∣∣∣∣

∫

E

ḡEw̃
1 −

∑

E∈Th

(
ḡE

NE∑

i=1

w̃1(vi)ω
i
E

)∣∣∣∣∣ = B1
1 +B2

1 .

In what follows we will manipulate the terms B2
1 : adding and subtracting p1 ∈ P1(E), and the fact

that (3.13) is exact for linear functions, we have

(4.15)

B2
1 ≤

∣∣∣∣∣
∑

E∈Th

∫

E

ḡE(w̃
1 − p1)

∣∣∣∣∣+
∣∣∣∣∣
∑

E∈Th

(
ḡE

(
NE∑

i=1

(w̃1 − p1)(vi)ω
i
E

))∣∣∣∣∣

≤ ‖g‖0,Ω

(∑

E∈Th

‖w̃1 − p1‖
2
0,E

)1/2

+ ‖g‖0,Ω

(∑

E∈Th

h2
E‖w̃

1 − p1‖
2
∞,E

)1/2

.
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By polynomial approximation results on star-shaped polygons we now have

(4.16)
‖w̃1 − p1‖0,E ≤ Ch2

E |w̃
1|2,E ,

‖w̃1 − p1‖∞,E ≤ ChE |w̃
1|2,E ,

where the first bound follows from Proposition 4.1 and the second one can be derived, for instance,
using the following brief guidelines. Let B be the ball with the same center appearing in A2, but
radius hE . It clearly holds E ⊂ B. One can then extend the function w̃1 to a function (still denoted
by w̃1) in H2(B) with a uniform bound ‖w̃1‖2,B ≤ C‖w̃1‖2,E (see for instance [40], where we use also
that due to A2 all the elements E of the mesh family are uniformly Lipshitz continuous). Then, the
result follows from the analogous known result on balls and some very simple calculations. Hence,
from (4.15) and (4.16), we obtain

(4.17) B2
1 ≤ Ch2‖g‖0,Ω|w̃

1|2,Ω.

Finally, from (4.13), (4.14) and (4.17) we have the following bound for the term B1:

B1 ≤Ch2‖g‖1,h,Ω‖w̃
1‖2,Ω ≤ Ch2‖g‖1,h,Ω‖θ − θh‖0,Ω ≤ C(h+ t)h‖g‖1,h,Ω‖θ − θh‖0,Ω.

Now, we bound the term B2 in (4.12). First, we consider (wΠ,γΠ,γ0) ∈ [L2(Ω)]5 such that
wΠ|E ∈ P2(E), γΠ|E ∈ [P1(E)]2 and γ0|E ∈ [P0(E)]2. Moreover, we consider w̃1

Π ∈ L2(Ω) with
w̃1

Π|E ∈ P2(E) and define θΠ := ∇wΠ+γΠ. Thus, using the consistency property we rewrite the term
as follows

B2 =
∣∣∣
∑

E∈Th

(
aEh (θh,∇w̃

1
I + γ̃I − (∇w̃1

Π + γ̃Π)) + aEh (θh,∇w̃
1
Π + γ̃Π)

)

−
∑

E∈Th

(
aE(θh,∇w̃

1
I + γ̃I − (∇w̃1

Π + γ̃Π)) + aE(θh,∇w̃
1
Π + γ̃Π)

)

+
∑

E∈Th

(
bEh (γh, γ̃I − γ̃0) + bEh (γh, γ̃0)− bE(γh, γ̃I − γ̃0)− bE(γh, γ̃0)

) ∣∣∣

=
∣∣∣
∑

E∈Th

(
aEh (θh − θΠ,∇w̃

1
I + γ̃I − (∇w̃1

Π + γ̃Π))− aE(θh − θΠ,∇w̃
1
I + γ̃I − (∇w̃1

Π + γ̃Π))
)

+
∑

E∈Th

(
bEh (γh − γ0, γ̃I − γ̃0)− bE(γh − γ0, γ̃I − γ̃0)

) ∣∣∣.

Therefore, we have

B2 ≤ C
(
‖θh − θΠ‖1,h,Ω + t−1‖γh − γ0‖0,Ω

)
×

(∑

E∈Th

‖∇w̃1
I −∇w̃

1
Π‖

2
1,E + ‖γ̃I − γ̃Π‖

2
1,E + t−2‖γ̃I − γ̃0‖

2
0,E

)1/2

≤ C
(
‖θh − θΠ‖1,h,Ω + t−1‖γh − γ0‖0,Ω

) (
h|w̃1|3,Ω + ht−1|γ̃|1,Ω + |γ̃|1,Ω

)
,

where we have added and subtracted ∇w̃1 and γ̃ and then we have used Propositions 4.4, 4.1, 4.5 and
4.2, respectively. Finally, using (4.7) and the triangular inequality we have

B2 ≤ C(h+ t)‖θ − θh‖0,Ω
(
|||w − wh,γ − γh|||+ ‖θ − θΠ‖1,h,Ω + t−1‖γ − γ0‖0,Ω

)
.

Hence, (4.4) follows from (4.10), combining the estimate (4.11), with the above bounds for B1 and B2

and the definition of θ. In fact, we obtain that

‖θ − θh‖0,Ω ≤ C(h+ t) (|||w − wh,γ − γh|||+ h‖g‖1,h,Ω + ‖∇w −∇wΠ‖1,h,Ω

+‖γ − γΠ‖1,h,Ω + t−1‖γ − γ0‖0,Ω
)
.
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Finally, bound (4.5) follows from the Poincaré inequality and the triangular inequality we have
that

‖w − wh‖1,Ω ≤ C‖∇w −∇wh‖0,Ω = C‖θ − γ − (θh − γh)‖0,Ω ≤ C(‖θ − θh‖0,Ω + ‖γ − γh‖0,Ω).

The proof is complete.

Finally, we obtain the following result.

Corollary 4.8. Assume that the hypotheses of Theorem 4.6 hold. Moreover, assume that the
domain Ω be either regular, or piecewise regular and convex, that g ∈ H1(E) for all E ∈ Th and that
Γc = Γ. Then, there exists C > 0 independent of h, g and t such that

‖θ − θh‖0,Ω + ‖w − wh‖1,Ω ≤ C(h+ t)h
(
t−1|γ|1,Ω + |θ|2,Ω + |w|3,Ω + ‖g‖1,h,Ω

)
.

Proof. The proof follows directly from Proposition 4.7, combining Theorem 4.6, Propositions 4.1,
4.2 and the fact that ‖γ − γh‖0,Ω ≤ t|||w − wh,γ − γh|||.

Remark 4.3. We note that the shear strain variable in the present paper is given by γ = ∇w − θ

and it is related with the usual scaled shear strain used in other Reissner-Mindlin contributions in the
literature as follows Q = t−2γ. Since t−1γ = tQ is a quantity that is known to be uniformly bounded
in the correct Sobolev norms (see, e.g [5, 20]). Therefore, the factors t−1 appearing in Theorem 4.6
and Corollary 4.8 are not a source of locking.

Remark 4.4. We note that in our convergence results, in order to obtain the full convergence
rate in h (independently of the thickness t) we need |w|3,Ω to be bounded uniformly in t. Even in
the presence of regular data, this condition is not always assured due to the presence of layers at the
boundaries of the plate. Such small limitation of the method is related to the adopted formulation and
is, somehow, the drawback related to the advantage of having a method with C1 deflections, that is
therefore able to give (at the limit for vanishing thickness) a Kirchhoff conforming solution. We finally
note that, in practice, this kind of difficulty can be effectively dealt with by an ad-hoc refinement of
the mesh near the boundaries of the plate.

5. Numerical results. We report in this section some numerical examples which have allowed us
to assess the theoretical results proved above. We have implemented in a MATLAB code our method
on arbitrary polygonal meshes, by following the ideas proposed in [8]. To complete the choice of the
VEM, we have to fix the bilinear forms SE(·, ·) and SE

0 (·, ·) satisfying (3.7) and (3.8), respectively.
Proceeding as in [8], a natural choice for SE(·, ·) is given by

SE(γh, τh) :=

2NE∑

i=1

γh(vi)τh(vi) +

NE∑

j=1

(
1

|ej|

∫

ej

γh · t

)(
1

|ej |

∫

ej

τ h · t

)
, γh, τh ∈ VE

h ,

while a choice for SE
0 (·, ·) is given by

SE
0 (γh, τh) :=

h2
E

t2




2NE∑

i=1

γh(vi)τ h(vi) +

NE∑

j=1

(
1

|ej|

∫

ej

γh · t

)(
1

|ej|

∫

ej

τh · t

)
 , γh, τ h ∈ VE

h .

The choices above are standard in the Virtual Element literature, and correspond to a scaled identity
matrix in the space of the degree of freedom values.

To test the convergence properties of the method, we introduce the following discrete L2-like norm:
for any sufficiently regular function v,

‖v‖20,Ω :=
∑

E∈Th

(
|E|

NE∑

i=1

(v(vi))
2

)
,
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with |E| being the area of element E. We also define the relative errors in discrete L2-like norms
(based on the vertex values):

(ew)
2 :=

∑

E∈Th

(
|E|

NE∑

i=1

(w(vi)− wh(vi))
2

)

∑

E∈Th

(
|E|

NE∑

i=1

(w(vi))
2

) ,

and the obvious analogs for e∇w and eθ. Finally, we introduce the relative error in the energy norm

(E)
2
:=
Ah((w − wh,γ − γh), (w − wh,γ − γh))

Ah((w,γ), (w,γ))
,

where Ah(·, ·) corresponds to the discrete bilinear form on the left hand side of Problem 3.1.

5.1. Test 1:. As a test problem we have taken an isotropic and homogeneous plate Ω := (0, 1)2,
clamped on the whole boundary, for which the analytical solution is explicitly known (see [24]).

Choosing the transversal load g as:

g(x, y) =
E

12(1− ν2)

[
12y(y − 1)(5x2 − 5x+ 1)(2y2(y − 1)2 + x(x − 1)(5y2 − 5y + 1)

+12x(x− 1)(5y2 − 5y + 1)(2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1)
]
,

the exact solution of the problem is given by:

w(x, y) =
1

3
x3(x− 1)3y3(y − 1)3

−
2t2

5(1− ν)

[
y3(y − 1)3x(x − 1)(5x2 − 5x+ 1) + x3(x− 1)3y(y − 1)(5y2 − 5y + 1)

]
,

θ(x, y) =

[
y3(y − 1)3x2(x− 1)2(2x− 1)
x3(x− 1)3y2(y − 1)2(2y − 1)

]
.

The shear modulus λ is given by λ :=
5E

12(1 + ν)
(choosing 5/6 as shear correction factor), while the

material constants have been chosen E = 1 and ν = 0.

We have tested the method by using different values of the plate thickness: t = 0.1, t = 0.01 and
t = 0.001. Moreover, we have used different families of meshes (see Figure 5.1):

• T 1
h : triangular meshes;

• T 2
h : trapezoidal meshes which consist of partitions of the domain into N × N congruent

trapezoids, all similar to the trapezoid with vertices (0, 0), (
1

2
, 0), (

1

2
,
2

3
) and (0,

1

3
);

• T 3
h : triangular meshes, considering the middle point of each edge as a new degree of freedom

but moved randomly; note that these meshes contain non-convex elements.

The refinement parameter h used to label each mesh is h = max
E∈Th

hE .
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Fig. 5.1. Sample meshes: T 1

h
(left), T 2

h
(middle) and T 3

h
(right) with h = 0.1189, h = 0.1719 and h = 0.11078,

respectively.

We report in Table 5.1, Table 5.2 and Table 5.3 the relative errors in the discrete L2-norm of w,
∇w and θ, together with the relative errors in the energy norm, for each family of meshes and different
refinement levels. We consider different thickness: t = 1.0e − 01, t = 1.0e − 02 and t = 1.0e − 03,
respectively. We also include in these table the experimental rate of convergence.

Table 5.1

T 1

h
: Computed error in L2-norm with t = 1.0e− 01, t = 1.0e− 02 and t = 1.0e− 03, respectively.

error h = 0.1189 h = 0.05878 h = 0.03142 h = 0.01582 h = 0.008271 Order
ew 1.1084e-01 2.9410e-02 7.4232e-03 1.8414e-03 4.6791e-04 2.0627
e∇w 1.3000e-01 4.1684e-02 1.3215e-02 4.2296e-03 1.5018e-03 1.6872
eθ 8.8733e-02 2.2288e-02 5.4344e-03 1.3314e-03 3.3668e-04 2.1019
E 2.9935e-01 1.2776e-01 5.3946e-02 2.2765e-02 1.0702e-02 1.2625

ew 1.0302e-01 2.6332e-02 6.4931e-03 1.5956e-03 4.0406e-04 2.0898
e∇w 8.9532e-02 2.2548e-02 5.4769e-03 1.3430e-03 3.3972e-04 2.1023
eθ 8.9247e-02 2.2442e-02 5.4452e-03 1.3345e-03 3.3748e-04 2.1036
E 1.7557e-01 8.5496e-02 4.1989e-02 2.0203e-02 1.0289e-02 1.0712

ew 1.0296e-01 2.6311e-02 6.4884e-03 1.5960e-03 4.0430e-04 2.0893
e∇w 8.9262e-02 2.2454e-02 5.4519e-03 1.3385e-03 3.3869e-04 2.1022
eθ 8.9259e-02 2.2453e-02 5.4516e-03 1.3384e-03 3.3866e-04 2.1023
E 1.7332e-01 8.4751e-02 4.1677e-02 1.9984e-02 1.0143e-02 1.0719

Table 5.2

T 2

h
: Computed error in L2-norm with t = 1.0e− 01, t = 1.0e− 02 and t = 1.0e− 03, respectively.

error h = 0.1719 h = 0.0859 h = 0.0430 h = 0.0215 h = 0.0122 Order
ew 3.8903e-01 1.1104e-01 2.9582e-02 7.6148e-03 1.8676e-03 1.9103
e∇w 4.1467e-01 1.3705e-01 4.3810e-02 1.4053e-02 4.6530e-03 1.6097
eθ 3.6466e-01 9.7423e-02 2.4805e-02 6.2472e-03 1.5348e-03 1.9574
E 6.2673e-01 3.1044e-01 1.3447e-01 5.8121e-02 2.5266e-02 1.1580

ew 3.7958e-01 1.0366e-01 2.6508e-02 6.6562e-03 1.6079e-03 1.9554
e∇w 3.6633e-01 9.8309e-02 2.5015e-02 6.2782e-03 1.5342e-03 1.9594
eθ 3.6589e-01 9.8016e-02 2.4903e-02 6.2447e-03 1.5252e-03 1.9611
E 4.1994e-01 1.6745e-01 7.4795e-02 3.6193e-02 1.8249e-02 1.1154

ew 3.7950e-01 1.0361e-01 2.6499e-02 6.6620e-03 1.6120e-03 1.9545
e∇w 3.6591e-01 9.8030e-02 2.4914e-02 6.2538e-03 1.5283e-03 1.9603
eθ 3.6590e-01 9.8027e-02 2.4913e-02 6.2534e-03 1.5282e-03 1.9604
E 4.1544e-01 1.6465e-01 7.3602e-02 3.5478e-02 1.7716e-02 1.1213
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Table 5.3

T 3

h
: Computed error in L2-norm with t = 1.0e− 01, t = 1.0e− 02 and t = 1.0e− 03, respectively.

error h = 0.1108 h = 0.05943 h = 0.02939 h = 0.01571 h = 0.007911 Order
ew 2.8478e-01 8.7688e-02 2.4214e-02 6.2665e-03 1.5694e-03 2.0614
e∇w 3.1623e-01 1.2017e-01 4.0908e-02 1.3382e-02 4.4467e-03 1.6953
eθ 2.5664e-01 7.4651e-02 1.9137e-02 4.7397e-03 1.1606e-03 2.1426
E 6.3713e-01 3.6532e-01 1.6896e-01 7.6472e-02 3.4702e-02 1.1691

ew 2.6595e-01 7.4074e-02 1.9065e-02 4.7609e-03 1.1608e-03 2.1543
e∇w 2.5677e-01 7.4955e-02 1.9117e-02 4.7777e-03 1.1667e-03 2.1435
eθ 2.5625e-01 7.4605e-02 1.8981e-02 4.7359e-03 1.1552e-03 2.1466
E 3.7935e-01 1.9753e-01 9.5553e-02 4.8323e-02 2.3655e-02 1.1007

ew 2.6642e-01 7.4576e-02 1.9021e-02 4.7417e-03 1.1613e-03 2.1801
e∇w 2.5605e-01 7.4680e-02 1.9071e-02 4.7265e-03 1.1606e-03 2.1689
eθ 2.5605e-01 7.4676e-02 1.9069e-02 4.7261e-03 1.1605e-03 2.1689
E 3.7438e-01 1.9044e-01 9.4471e-02 4.7568e-02 2.3429e-02 1.1081

It can be seen from Tables 5.1, 5.2 and 5.3 that the theoretical predictions of Section 4 are
confirmed. In particular, we can appreciate a rate of convergence O(h) for the energy norm E, that
is equivalent to the ||| · ||| norm. This holds for all the considered meshes and thicknesses, thus also
underlying the locking free nature of the scheme. Moreover, for sufficiently small t we also observe a
clear rate of convergence O(h2) for for ew, e∇w and eθ, in accordance with Corollary 4.8.

5.2. Test 2:. As a second test, we investigate more in deep the locking-free character of the
method, and also take the occasion for a comparison with the limit Kirchhoff model. It is well known
(see [19]) that when t goes to zero the solution of the Reissner-Mindlin model converges to an identical
Kirchhoff-Love solution: Find w0 ∈ H2(Ω) such that

(5.1)
E

12(1− ν2)
∆2w0 = g,

with the corresponding boundary conditions.

We have considered a rectangular plate Ω := (0, a)×(0, b), simply supported on the whole boundary,
and we have chosen the transversal load g as

g(x, y) = sin
(π
a
x
)
sin
(π
b
y
)
.

Then, the analytical solution w0 of problem (5.1) is given by

w0(x, y) =
12(1− ν2)

E

(
π4

(
1

a2
+

1

b2

)2
)−1

sin
(π
a
x
)
sin
(π
b
y
)
.

The material constants have been chosen E = 1 and ν = 0.3. Moreover, we have taken a = 1 and
b = 2, and we have used three different families of meshes (see Figure 5.2):

• T 1
h : triangular meshes;

• T 4
h : hexagonal meshes;

• T 5
h : Voronoi polygonal meshes.
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Fig. 5.2. Sample meshes: T 1

h
(left), T 4

h
(middle) and T 5

h
(right).

Tables 5.4, 5.5 and 5.6 show an analysis for various thicknesses in order to assess the locking-free
nature of the proposed method. We show the relative errors in the discrete L2-norm of the deflection
w for each family of meshes and different refinement levels and considering different thickness: t =
1.0e− 01, t = 1.0e− 02, t = 1.0e− 03, t = 1.0e− 04 and t = 1.0e− 05, respectively.

It can be clearly seen from these tables that the proposed method is locking-free, since even for
corse meshes the solution does not lock but approximates (for small t) the Kirchhoff solution.

Table 5.4

Computed error in ew by T 1

h
.

t\h 2.4495e-01 1.2706e-01 6.4686e-02 3.2407e-02 1.6166e-02
1.0e-01 8.6091e-03 4.0902e-02 6.0389e-02 7.1077e-02 7.5623e-02
1.0e-02 4.6875e-02 1.0335e-02 1.7984e-03 7.6646e-04 2.0123e-03
1.0e-03 4.7301e-02 1.0963e-02 2.7190e-03 6.6677e-04 1.3850e-04
1.0e-04 4.7305e-02 1.0969e-02 2.7284e-03 6.8234e-04 1.6637e-04
1.0e-05 4.7305e-02 1.0969e-02 2.7285e-03 6.8250e-04 1.6665e-04

Table 5.5

Computed error in ew by T 4

h
.

t\h 2.7813e-01 1.3086e-01 6.7301e-02 4.4428e-02 3.3163e-02
1.0e-01 8.3939e-02 5.9358e-02 6.2558e-02 6.7150e-02 6.9098e-02
1.0e-02 4.9794e-02 1.0178e-02 4.0223e-03 2.4758e-03 2.0948e-03
1.0e-03 4.9428e-02 9.5752e-03 3.1448e-03 1.3334e-03 7.3806e-04
1.0e-04 4.9424e-02 9.5691e-03 3.1358e-03 1.3211e-03 7.2280e-04
1.0e-05 4.9424e-02 9.5691e-03 3.1357e-03 1.3210e-03 7.2265e-04

Table 5.6

Computed error in ew by T 5

h
.

t\h 4.5918e-01 2.3481e-01 1.2942e-01 8.1744e-02 5.5071e-02
1.0e-01 2.7624e-02 4.0550e-02 4.6180e-02 6.5997e-02 6.9822e-02
1.0e-02 1.2695e-02 3.4544e-03 7.2182e-04 1.1407e-03 1.3932e-03
1.0e-03 1.2768e-02 3.0038e-03 3.8157e-04 6.4829e-05 4.5322e-05
1.0e-04 1.2768e-02 2.9994e-03 3.8727e-04 6.2480e-05 3.2567e-05
1.0e-05 1.2768e-02 2.9993e-03 3.8736e-04 6.2151e-05 3.1927e-05
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vibration problem, CI2MA preprint 2015-44, available from http://www.ci2ma.udec.cl.

[14] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini and S. Scialò, A hybrid mortar virtual element method
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network simulations, Comput. Methods Appl. Mech. Engrg., 280, (2014), pp. 135–156.

[16] S. Bertoluzza, Substructuring preconditioners for the three fields domain decomposition method, Math. Comp.
73, (2004), pp. 659–689.

[17] S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York,
2008.

[18] F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model.
Numer. Anal., 48, (2014), pp. 1227–1240.

[19] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York (1991).
[20] F. Brezzi, M. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin

plates, Math. Models Meth. Appl. Sci., 1, (1991) pp. 125–151.
[21] F. Brezzi and L.D. Marini, Virtual elements for plate bending problems, Comput. Methods Appl. Mech. Engrg.,

253, (2012), pp. 455–462.
[22] E. Caceres and G.N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the

Stokes problem, IMA J. Numer. Anal., DOI:10.1093/imanum/drw002 (2016).
[23] A. Cangiani, E. H. Georgoulis and P. Houston, hp-version discontinuous Galerkin methods on polygonal and

polyhedral meshes, Math. Models Methods Appl. Sci., 24(10), (2014), pp. 2009–2041.
[24] C. Chinosi and C. Lovadina, Numerical analysis of some mixed finite element methods for Reissner-Mindlin

plates, Comput. Mech., 16(1), (1995), pp. 36–44.
[25] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, 2002.
[26] P. G. Ciarlet, Interpolation error estimates for the reduced Hsieh–Clough–Tocher triangle, Math. Comp.,

32(142), (1978), pp. 335–344.
[27] D. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes,

Comput. Methods Appl. Mech. Eng., 283, (2015), pp. 1–21.
[28] R. Echter, B. Oesterle and M. Bischoff, A hierarchic family of isogeometric shell finite elements, Comput.

Methods Appl. Mech. Engrg., 254, (2013) pp. 170–180.
[29] R. Falk, Finite elements for the Reissner-Mindlin plate, D. Boffi and L. Gastaldi, editors, Mixed finite elements,

compatibility conditions, and applications, Springer, Berlin, 2008, pp. 195–232.
[30] A. L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-dimensional linear elasticity

problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 282, (2014), pp. 132–160.
[31] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin,

1986.
[32] Q. Long, P. B. Bornemann and F. Cirak, Shear-flexible subdivision shells, Internat. J. Numer. Methods Engrg.,

90(13), (2012) pp. 1549–1577.



A VIRTUAL ELEMENT METHOD FOR REISSNER-MINDLIN PLATES 23

[33] C. Lovadina, A brief overview of plate finite element methods, Integral methods in science and engineering. Vol.
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