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Abstract

We present a convergence analysis for the space discretization of a time-dependent system of partial
differential equations modeling an elasto-acoustic interaction problem. We use the Arnold-Falk-
Winther mixed finite element method with weak symmetry in the solid and the usual Lagrange
finite element method in the acoustic medium. The error analysis of the resulting global semi-
discrete scheme relies essentially on the mapping properties of an adequate projector. We show
that the method is stable uniformly with respect to the space discretization parameter and the
Poisson modulus and we prove asymptotic error estimates.
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1 Introduction

In this paper, we aim to compute the vibrations of an elastic structure enclosing in its interior an
inviscid compressible fluid. The model problem consists in a scalar-valued equation describing the
propagation of acoustic pressure waves and a vector-valued equation modeling the propagation of
elastic waves. The two systems are coupled through adequate transmission conditions on the contact
boundary. Traditionally, a displacement formulation in the solid is combined with a formulation using
either the acoustic pressure (as in [14]) or the fluid displacement (as in [7]) as main variables in the
fluid domain. The displacement-pressure formulation studied in [14] leads to a non-symmetric weak
formulation involving time derivatives on boundary terms. The displacement-displacement formulation
introduced in [7] is symmetric but it is not adapted to deal with nearly incompressible elastic materials.

More recently, dual-mixed formulations have been considered in the solid for the static elastoacoustic
source problem (see, e.g., [19] and [20]). This approach may be considered as the dual procedure to
the one proposed in [7]. In such a case, the Cauchy stress tensor is used as a main variable in the
solid structure, in combination with the pressure in the fluid domain. The resulting formulation is
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symmetric and delivers direct finite element approximations of the stresses. In addition, it has been
shown that an approximation scheme based on the Lagrange and Arnold-Falk-Winther (AFW) [4]
finite elements in the fluid and solid domains, respectively, provides a stable Galerkin method in the
nearly incompressible case. Moreover, it has been proved in [22] that the former mixed finite element
method provides a spectrally correct approximation of the corresponding eigenproblem. In the present
paper, we use the same Galerkin method for a space discretization of the elastoacoustic problem in
the time domain transient problem and conclude that it provides the same convergence and stability
performances shown in [22] and [20] for the spectral and the static source problems, respectively.
More precisely, we prove the stability of the AFW/Lagrange finite element scheme when the Lamé
coefficient λ tends to infinity and when the mesh size h goes to 0, and then we establish asymptotic
error estimates.

The paper is organized as follows. We begin by introducing in Section 2 some basic notations and
properties needed in the forthcoming analysis. In Section 3 we introduce a mixed formulation of the
time-domain elastoacoustic problem and prove its well-posedness. We also provide conditions on the
initial data that permits to express the displacement field explicitly in terms of the stress tensor. In
Section 4 we introduce a space-discretization of the problem based on the AFW and Lagrange finite
elements. Then, in Section 5 we prepare the convergence analysis of this conforming Galerkin scheme
by introducing an adequate projector and studying its mapping properties and those of its discrete
counterpart. Finally, the convergence analysis of the numerical scheme is performed in Section 6.

2 Notations and preliminary results

We denote by I the identity matrix of Rn×n (n = 2, 3), and 0 represents the null vector in R
n or

the null tensor in R
n×n. Given τ := (τij) and σ := (σij) ∈ R

n×n, we define as usual the transpose
tensor τ t := (τji), the trace tr τ :=

∑n
i=1 τii, the deviatoric tensor τ D := τ − 1

n (tr τ ) I, and the tensor
inner product τ : σ :=

∑n
i,j=1 τijσij . We now let Ω be a polyhedral Lipschitz bounded domain of Rn

(n = 2, 3), with boundary ∂Ω, and denote by D(Ω) the space of indefinitely differentiable functions
with compact support in Ω. For s ∈ R, ‖·‖s,Ω stands indistinctly for the norm of the Hilbertian

Sobolev spaces Hs(Ω), Hs(Ω)n or [Hs(Ω)]n×n, with the convention H0(Ω) := L2(Ω). We also denote
by (·, ·)0,Ω the inner product in L2(Ω), L2(Ω)n or L2(Ω)n×n. We introduce the Hilbert space

H(div,Ω) :=
{
τ ∈ [L2(Ω)]n×n; div τ ∈ L2(Ω)n

}
,

whose norm is given by ‖τ‖2H(div,Ω) := ‖τ‖20,Ω + ‖div τ‖20,Ω. In addition, given p ∈ [1,+∞] and
a separable Hilbert space V with norm ‖·‖V , we let Lp(V ) be the space of classes of functions f :
(0, T ) → V that are Böchner-measurable and such that ‖f‖Lp(V ) < ∞, with

‖f‖pLp(V ) :=

∫ T

0
‖f(t)‖pV dt (1 ≤ p < ∞), ‖f‖L∞(V ) := ess sup

[0,T ]
‖f(t)‖V .

For any k ∈ N, we consider the space Ck(V ) of all functions f with (strong) derivatives
djf

dtj
in C0(V )

for all 1 ≤ j ≤ k, where C0(V ) stands for the Banach space consisting of all continuous functions

f : [0, T ] → V . In what follows, we will use also denote ḟ :=
df

dt
and f̈ :=

d2f

dt2
the first and second

derivatives with respect to the variable t. Furthermore, we will use the Sobolev space

W1,p(V ) :=

{
f : ∃g ∈ Lp(V ) and ∃f0 ∈ V such that f(t) = f0 +

∫ t

0
g(s) ds ∀t ∈ [0, T ]

}
.
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The space Wk,p(V ) is defined recursively for all k ∈ N.

Finally, we need to recall a classical result that will be recurrently used in the following and that
concerns the well-posedness of a variational problem defined in terms of a bilinear form satisfying the
inf-sup condition. Indeed, given two Hilbert spaces

(
S, 〈·, ·〉S

)
and

(
Q, 〈·, ·〉Q

)
and a bounded bilinear

form A : S × Q → R, we let A : S → Q be the bounded linear operator induced by A, that is
〈A(s), q〉Q = A(s, q) ∀ (s, q) ∈ S ×Q, and introduce the null space

N(A) :=
{
s ∈ S : A(s) = 0

}
=

{
s ∈ S : A(s, q) = 0 ∀ q ∈ Q

}

and its polar

N(A)◦ :=
{
χ ∈ S′; χ(s) = 0 ∀ s ∈ N(A)

}
.

In addition, we let RS : S′ → S be the corresponding Riesz operator. Then, we have the following
theorem (cf. [10]).

Theorem 2.1. Assume that there exists κ > 0 such that

‖A∗(q)‖ := sup
06=s∈S

A(s, q)

‖s‖S
≥ κ ‖q‖Q ∀ q ∈ Q . (2.1)

Then, for each ℓ ∈ N(A)◦ there exists a unique q ∈ Q such that A∗(q) = RS(ℓ), that is

A(s, q) = ℓ(s) ∀ s ∈ S .

Proof. It suffices to see that (2.1) establishes, equivalently, that A∗ is injective and has closed range
R(A∗), whence R(A∗) = N(A)⊥ = RS

(
N(A)◦

)
.

Throughout this paper we use C (with or without subscripts) to denote generic constants inde-
pendent of the parameters indicated at each instance. We point out that these constants may take
different values at different places.

3 The model problem

We aim to compute the linear oscillations of a structure Ω := ΩS ∪ Σ ∪ ΩF consisting of a solid
body, represented by a polyhedral Lipschitz domain ΩS, and a cavity ΩF completely filled with an
homogeneous, inviscid and compressible fluid, see Figure 3.1. The fluid-structure interface is given
by Σ := ∂ΩF and the external boundary Γ := ∂Ω of the solid consists of a part ΓD 6= ∅ where the
structure is fixed and a part ΓN on which it is free from tractions. We impose on Σ the orientation
given by the unit normal vector n pointing outward to ΩF. The outward unit normal vector to Γ is
also denoted by n, as shown in Figure 3.1. We assume that the fluid-structure system is subject to a
volume load f : (0, T ] × ΩS → R

n acting on the solid. We can combine the constitutive law

C−1σ = ε(u) in ΩS, (3.1)

and the equation of motion
ρSü = divσ + f in ΩS, (3.2)

to eliminate either the displacement field u in the solid or the Cauchy stress tensor σ from the global
formulation of the fluid-structure problem. Here, ρS > 0 is a constant representing the solid density,
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Figure 3.1: Fluid and solid domains

ε(u) := 1
2

{
∇u+(∇u)t

}
is the linearized strain tensor, and C : R

n×n → R
n×n is the Hooke operator,

which is given in terms of the Lamé coefficients λ and µ by

Cτ := λ (tr τ ) I + 2µτ ∀ τ ∈ R
n×n .

In what follows we eliminate the displacement u and maintain the stress tensor σ as a main variable,
which leads to the following dual mixed formulation in the solid,

C−1σ̈ − ρS
−1ε (divσ + f) = 0 in ΩS × (0, T ], (3.3)

σ = σt in ΩS × (0, T ], (3.4)

ρS
−1(divσ + f) = 0 on ΓD × (0, T ], (3.5)

σn = 0 on ΓN × (0, T ] (3.6)

σn+ pn = 0 on Σ× (0, T ]. (3.7)

We notice that the transmission condition (3.7) represents an equilibrium of forces on the contact
boundary Σ where the fluid pressure p is acting here as a prescribed normal stress. The model
problem is described in the fluid domain ΩF in terms of the pressure,

c−2p̈−∆p = 0 in ΩF × (0, T ], (3.8)

∂p

∂n
+

ρF
ρS

(divσ + f) · n = 0 on Σ× (0, T ]. (3.9)

Here, c > 0 is the acoustic speed and ρF stands for the (constant) fluid density. Equation (3.9)
corresponds to the so-called wall slipping condition, which expresses the matching of the normal
components of the fluid and solid displacements on the transmission boundary Σ. Summing up, our
model problem is given by the system (3.3)-(3.9) and the initial conditions

(σ(0), p(0)) = (σ0, p0) and (σ̇(0), ṗ(0)) = (σ1, p1). (3.10)

Now, we consider the orthogonal decomposition [L2(ΩS)]
n×n = [L2(ΩS)]

n×n
sym

⊕ [L2(ΩS)]
n×n
skew , where

[L2(ΩS)]
n×n
sym :=

{
τ ∈ [L2(ΩS)]

n×n; τ = τ t
}
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and
[L2(ΩS)]

n×n
skew :=

{
τ ∈ [L2(ΩS)]

n×n; τ = −τ t
}
,

and introduce the closed subspaces of H(div,ΩS) given by

W :=
{
τ ∈ H(div,ΩS); τn = 0 on ΓN

}

and its symmetric counterpart
W sym := W ∩ [L2(ΩS)]

n×n
sym

.

On the other hand, since the equation (3.7) is an essential transmission condition that must be
explicitly satisfied by the solution pair (σ, p), we need to consider the energy space

X :=
{
(τ , q) ∈ W ×H1(ΩF); τn+ qn = 0 on Σ

}
,

which is a closed subspace of H(div,ΩS)×H1(ΩF) when endowed with the Hilbertian norm

‖(τ , q)‖2 := ‖τ‖2H(div,ΩS)
+ ‖q‖21,ΩF

.

We notice that the density of H(div,ΩS) × H1(ΩF) in H := [L2(ΩS)]
n×n × L2(ΩF) proves that the

space X
sym :=

{
(τ , q) ∈ X; τ = τ t

}
is also densely embedded in H

sym := [L2(ΩS)]
n×n
sym

× L2(ΩF). We
may then construct the dual (Xsym)′ of Xsym pivotal to H

sym, in such a way that the identification
〈
(f , g), (τ , q)

〉
(Xsym)′,Xsym

=
(
(f , g), (τ , q)

)
H

∀(τ , q) ∈ X
sym

holds true for all (f , g) ∈ Hsym →֒ (Xsym)′. Here, 〈·, ·〉(Xsym)′,Xsym represents the duality pairing between
(Xsym)′ and X

sym and (·, ·)H is the natural inner product in H whose norm is given by

‖(τ , q)‖20 := ‖τ‖20,ΩS
+ ‖q‖20,ΩF

.

Next, given f ∈ L1(L2(ΩS)
n), (σ0, p0) ∈ X

sym and (σ1, p1) ∈ H
sym, it is straightforward to show that

the variational formulation of (3.3)-(3.10) is given by:

Find (σ, p) ∈ L∞(Xsym) ∩W1,∞ (Hsym) such that
(
(σ̈, p̈)(t), (τ , q)

)
C
+A

(
(σ, p)(t), (τ , q)

)
= −ρ−1

S

(
f(t),div τ

)
0,ΩS

∀(τ , q) ∈ X
sym

(
σ(0), p(0)

)
= (σ0, p0),

(
σ̇(0), ṗ(0)

)
= (σ1, p1),

(3.11)

where (
(σ, p), (τ , q)

)

C
:= (C−1σ, τ )0,ΩS

+
1

ρFc2
(p, q)0,ΩF

(3.12)

and
A
(
(σ, p), (τ , q)

)
:= ρ−1

S (divσ,div τ )0,ΩS
+ ρ−1

F (∇p,∇q)0,ΩF
.

In the forthcoming analysis, we need to keep track of the parameter λ. For this reason, it is
important to notice that

‖(τ , q)‖20,C :=
(
(τ , q), (τ , q)

)
C

=
1

2µ

∥∥τ D
∥∥2
0,ΩS

+
1

n(nλ+ 2µ)
‖tr(τ )‖20,ΩS

+
1

ρFc2
‖q‖20,ΩF

≤ max

{
1

2µ
,

1

ρFc2

}
‖(τ , q)‖20 ∀(τ , q) ∈ H.

(3.13)

In addition, the following result proves that ‖(τ , q)‖20,C + A
(
(τ , q), (τ , q)

)
is a Hilbertian norm on X

that is equivalent to the H(div,ΩS)×H1(ΩF)-norm uniformly in λ.
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Lemma 3.1. There exists a constant α > 0, independent of λ, such that

α ‖(τ , q)‖2 ≤ ‖(τ , q)‖20,C +A
(
(τ , q), (τ , q)

)
≤ C ‖(τ , q)‖2 ∀(τ , q) ∈ X. (3.14)

with C = max
{

1
2µ ,

1
ρS
, 1
ρF
, 1
ρFc2

}
.

Proof. See [22, Lemma 2.1].

Theorem 3.1. Assume that f ∈ W1,1(L2(ΩS)
n). Then, problem (3.11) admits a unique solution

(σ, p) ∈ L∞(Xsym) ∩ W1,∞ (Hsym). Moreover, there exists a constant C > 0, independent of λ, such
that

ess sup
[0,T ]

‖(σ, p)(t)‖ + ess sup
[0,T ]

‖(σ̇, ṗ)(t)‖0,C

≤ C
{
‖f‖W1,1(L2(ΩS))

+ ‖(σ0, p0)‖+ ‖(σ1, p1)‖0

}
.

(3.15)

Proof. We only provide the main ideas of the proof, which makes use of the classical Galerkin procedure
(cf. [13, 23]). More precisely, following the same steps adopted in [15, Lemma 3.2], we first consider
a family of finite dimensional subspaces {Xsym

n }n∈N of Xsym such that

lim
n→∞

inf
(τn,qn)∈X

sym
n

‖(τ , q)− (τn, qn)‖ = 0 ∀(τ , q) ∈ X
sym .

Next, we denote by (σ0,n, p0,n) the (Xsym, ‖·‖)-orthogonal projection of (σ0, p0) onto X
sym
n and by

(σ1,n, p1,n) the (Hsym, ‖·‖0)-orthogonal projection of (σ1, p1) onto X
sym
n . Then, it is easy to show, by

using the classical ODE theory, that the problem:

Find (σn, pn) ∈ C1(Xsym) such that

(
(σ̈n, p̈n)(t), (τ , q)

)
C
+A

(
(σn, pn)(t), (τ , q)

)
= −ρ−1

S

(
f(t),div τ

)
0,ΩS

∀(τ , q) ∈ X
sym ,

(
σn(0), pn(0)

)
= (σ0,n, p0,n),

(
σ̇n(0), ṗn(0)

)
= (σ1,n, p1,n),

(3.16)

admits a unique solution. Furthermore, since (·, ·)C and A(·, ·) are symmetric bilinear forms, taking
formally (τ , q) = (σ̇n(t), ṗn(t)) in (3.16) gives

Ė
(
(σn, pn)

)
(t) = − ρ−1

S

(
f(t),div σ̇n(t)

)
0,ΩS

, (3.17)

where the energy functional E is defined by

E
(
(τ , q)

)
(t) :=

1

2

(
(τ̇ , q̇)(t), (τ̇ , q̇)(t)

)
C
+

1

2
A
(
(τ , q)(t), (τ , q)(t)

)
∀ (τ , q) ∈ W 1,∞(X) . (3.18)

In this way, integrating (3.17) on [0, t] and using the time regularity assumption on f to perform an
integration by parts, we find that

E
(
(σn, pn)

)
(t) = E

(
(σn, pn)

)
(0) +

∫ t

0

(
ḟ(s),divσn(s)

)
0,ΩS

ds

−
(
f(t),divσn(t)

)
0,ΩS

+
(
f(0),divσ0,n

)
0,ΩS

,

from which, employing the Cauchy-Schwarz inequality, the Sobolev embedding W1,1(L2(Ω)n) →֒
C0(L2(Ω)n) (see [24, Lemma 7.1]), and the continuous dependence result for (3.16), we deduce that

ess sup
[0,T ]

E
(
(σn, pn)

)1/2
(t) ≤ C1

{
‖f‖W1,1(L2(ΩS))

+ ‖(σ0,n, p0,n)‖+ ‖(σ1,n, p1,n)‖0

}
. (3.19)
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It follows now easily from the last estimate and (3.18) that

ess sup
[0,T ]

‖(σ̇n, ṗn)(t)‖0,C + ess sup
[0,T ]

(
‖(σn, pn)(t)‖

2
0,C +A

(
(σn, pn)(t), (σn, pn)(t)

))1/2

≤ C2

{
‖f‖W1,1(L2(ΩS))

+ ‖(σ0,n, p0,n)‖+ ‖(σ1,n, p1,n)‖0

}
.

(3.20)

Finally, using (3.14) and the fact that ‖(σ0,n, p0,n)‖ and ‖(σ1,n, p1,n)‖0 are bounded by ‖(σ0, p0)‖ and
‖(σ1, p1)‖0, respectively, yield

ess sup
[0,T ]

‖(σn, pn)(t)‖ + ess sup
[0,T ]

‖(σ̇n, ṗn)(t)‖0,C

≤ C3

{
‖f‖W1,1(L2(ΩS))

+ ‖(σ0, p0)‖+ ‖(σ1, p1)‖0

}
.

(3.21)

It is clear from (3.21) that (σ̇n, ṗn)n and (σn, pn)n are uniformly bounded in the spaces L∞(Hsym) and
L∞(Xsym), respectively, and hence, a classical procedure (cf. [15, Lemma 3.2]) shows that the sequence{
(σn, pn)

}
n∈N

converges to a solution (σ, p) ∈ L∞(Xsym) ∩W1,∞(Hsym) of (3.11). Finally, taking the

limit in (3.21) we arrive at the required estimate (3.15), whereas the uniqueness of solution follows
from a standard procedure (cf. [13, 23] or [15, Lemma 3.3]).

At this point we remark that, following [23, Section 11.2.4], it can be shown that the solution (σ, p)
to problem (3.11) is actually in C0(Xsym)∩ C1(Hsym). In turn, it is important to notice that the kernel

of the seminorm A
(
(τ , q), (τ , q)

)1/2
is given by

K :=
{
(τ , ξ) ∈ X

sym

c ; div τ = 0
}
,

where Xsym
c := Xc ∩X

sym with Xc := {(τ , ξ) ∈ X; ξ = constant}. Finally, the orthogonal of K in X
sym

with respect to the inner product
(
·, ·
)
C
is denoted

K
⊥ :=

{
(σ, p) ∈ X

sym;
(
(σ, p), (τ , ξ)

)
C
= 0 ∀(τ , ξ) ∈ K

}
.

On the other hand, the existence of a constant β0 > 0 such that

sup
τ∈W

τn = 0 on Σ

(s, τ )0,ΩS
+ (v,div τ )0,ΩS

‖τ‖H(div,ΩS)

≥ β0

{
‖v‖0,ΩS

+ ‖s‖0,ΩS

}
(3.22)

for all (v, s) ∈ L2(ΩS)
n × [L2(ΩS)]

n×n
skew , constitutes a crucial inf-sup condition in the analysis of the

mixed formulation of the elastostatic problem with reduced symmetry (cf. [4, 8]). Indeed, as we show
next, it plays an essential role in the recovery of the displacement field u from (σ, p). More precisely,
we now introduce the linear operator D : K⊥ → L2(ΩS)

n × [L2(ΩS)]
n×n
skew defined, for any (σ, p) ∈ K

⊥,
by the unique solution (u, r) := D(σ, p) ∈ L2(ΩS)

n × [L2(ΩS)]
n×n
skew of

(div τ ,u)0,ΩS
+ (r, τ )0,ΩS

= −
(
(σ, p), (τ , ξ)

)
C

∀(τ , ξ) ∈ Xc. (3.23)

The operator D is well-defined by virtue of Theorem 2.1 and (3.22). In fact, the functional on the

right hand side of (3.23), that is Xc ∋ (τ , ξ) 7→ −
(
(σ, p), (τ , ξ)

)

C
, belongs to the polar of K in (Xc)

′,

and the inf-sup condition

sup
(τ ,ξ)∈Xc

(s, τ )0,ΩS
+ (div τ ,v)0,ΩS

‖(τ , ξ)‖
≥ β0

{
‖v‖0,ΩS

+ ‖s‖0,ΩS

}
(3.24)
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for all (v, s) ∈ L2(ΩS)
n× [L2(ΩS)]

n×n
skew , is a direct consequence of (3.22). Further properties concerning

the range of D in L2(ΩS)
n × [L2(ΩS)]

n×n
skew are provided by the following Lemma.

Lemma 3.2. Given (σ, p) ∈ X
sym, the following two statements are equivalent:

i) (σ, p) ∈ K
⊥

ii) There exists a unique u ∈ H1(ΩS)
n with u|ΓD

= 0, such that σ = Cε(u),
∫

Σ
u · n+

1

ρFc2

∫

ΩF

p = 0, (3.25)

and D(σ, p) = (u, r), where r =
{
∇u− (∇u)t

}
/2.

Proof. Given (σ, p) ∈ K
⊥, we first let (u, r) := D(σ, p) according to (3.23). Then, for each ϕ ∈

[D(ΩS)]
n×n we have that (τ , 0) ∈ Xc, which replaced into (3.23) yields ∇u = C−1σ + r ∈ L2(ΩS)

n×n.
From this identity and the fact that C−1σ is symmetric (because σ is), we readily deduce that there

hold ε(u) = C−1σ and r =
{
∇u − (∇u)t

}
/2. In turn, testing now (3.23) with (τ , 0) ∈ Xc and

(τ , 1) ∈ X
sym
c , and integrating by parts in both cases, we obtain the boundary condition u|ΓD

= 0

and (3.25), respectively. Conversely, given (σ, p) ∈ X
sym such that ii) holds true, we set the tensor

r =
{
∇u− (∇u)t

}
/2 ∈ [L2(ΩS)]

n×n
skew and observe that C−1σ+ r−∇u = 0. Hence, given (τ , ξ) ∈ Xc,

we test the foregoing equation with τ , integrate by parts in ΩS, and use (3.25), to find

(div τ ,u)0,ΩS
+ (r, τ )0,ΩS

= −(C−1σ, τ )0,ΩS
−

1

ρFc2
(p, ξ)0,ΩF

. (3.26)

Finally, since the left hand side of (3.26) vanishes for (τ , ξ) ∈ K, we conclude from there that (σ, p) ∈
K

⊥ and (u, r) = D(σ, p).

The following result establishes the relation between the solution (σ, p) of (3.11) and the solution
of the displacement-pressure formulation of the fluid-structure interaction problem.

Theorem 3.2. Assume that the initial data of problem (3.11) are such that (σ0, p0), (σ1, p1) ∈ K
⊥,

and let (u0, r0) := D(σ0, p0) and (u1, r1) := D(σ1, p1). If (σ, p) is the solution of (3.11) then the
pair (u, p), with

u(t) :=

∫ t

0

{∫ s

0
ρ−1

(
divσ(z) + f(z)

)
dz

}
ds + u0 + tu1, (3.27)

solves the displacement-pressure formulation of the fluid-structure interaction problem,

ρSü− div Cε(u) = f in ΩS × (0, T ] (3.28)

c−2p̈−∆p = 0 in ΩF × (0, T ] (3.29)

Cε(u)n + pn = 0 in Σ× (0, T ] (3.30)

∂p

∂n
+ ρFü = 0 in Σ× (0, T ] (3.31)

u = 0 on ΓD × (0, T ], (3.32)

Cε(u)n = 0 on ΓN × (0, T ] (3.33)

subject to the initial conditions (u(0), p(0)) = (u0, p0) and (u̇(0), ṗ(0)) = (u1, p1).
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Proof. Integrating the first equation of (3.11) twice with respect to time we deduce that
(
(σ(t), p(t)), (τ , q)

)
C
=

(
(σ0, p0), (τ , q)

)
C
+ t

(
(σ1, p1), (τ , q)

)
C

−

∫ t

0

(∫ s

0
A
(
(σ, p)(z), (τ , q)

)
+ ρ−1

S

(
f(z),div τ

)
0,ΩS

dz

)
ds ,

(3.34)

for all (τ , q) ∈ X
sym. It follows that (σ(t), p(t)) ∈ K

⊥ for all t ∈ [0, T ], and hence Lemma 3.2
ensures the existence of a unique pair (u(t), r(t)) = D(σ(t), p(t)) ∈ L2(ΩS)

n × [L2(ΩS)]
n×n
skew satisfying

u(t) ∈ H1(ΩS)
n σ(t) = Cε(u)(t), u|ΓD

= 0 and

(r(t), τ )0,ΩS
+ (div τ ,u(t))0,ΩS

= −
(
(σ(t), p(t)), (τ , ξ)

)
C

∀(τ , ξ) ∈ Xc. (3.35)

On the other hand, we readily obtain from (3.22) the inf-sup condition

sup
(τ ,q)∈X

(s, τ )0,ΩS

‖(τ , q)‖
≥ β0 ‖s‖0,ΩS

∀s ∈ [L2(ΩS)]
n×n
skew .

In this way, applying Theorem 2.1, we deduce from (3.34) the existence of a unique r̄(t) ∈ [L2(ΩS)]
n×n
skew

satisfying

(r̄(t), τ )0,ΩS
= −

(
(σ(t), p(t)), (τ , q)

)
C
+

(
(σ0, p0), (τ , q)

)
C
+ t

(
(σ1, p1), (τ , q)

)
C

−

∫ t

0

(∫ s

0
A
(
(σ, p)(z), (τ , q)

)
+ ρ−1

S

(
f(z),div τ

)
0,ΩS

dz

)
ds ,

(3.36)

for all (τ , q) ∈ X. Then, replacing (3.35) in (3.36), yields

(r̄(t), τ )0,ΩS
= (r(t), τ )0,ΩS

+ (div τ ,u(t))0,ΩS
+
(
(σ0, p0), (τ , ξ)

)
C

+ t
(
(σ1, p1), (τ , ξ)

)
C
−

∫ t

0

(∫ s

0
A
(
(σ, p)(z), (τ , ξ)

)
+ ρ−1

S

(
f(z),div τ

)
0,ΩS

dz

)
ds

=
(
r(t)− r0 − tr1, τ

)
0,ΩS

+
(
div τ ,u(t)− u0 − tu1

)
0,ΩS

−

∫ t

0

(∫ s

0

(
ρ−1
S divσ(z) + ρ−1

S f(z),div τ
)
0,ΩS

dz

)
ds

(3.37)

for all (τ , ξ) ∈ Xc, from which it follows that
(
u(t)−

∫ t

0

{∫ s

0
ρ−1

(
divσ(z) + f(z)

)
dz

}
ds − u0 − tu1, div τ

)

0,ΩS

+
(
r(t)− r0 − tr1 − r̄(t), τ

)
0,ΩS

= 0 ∀τ ∈ Xc .

Thus, the foregoing equation and the inf-sup condition (3.24) imply (3.27) and

r̄(t) = r(t)− r0 − t r1 ∀ t ∈ [0, T ] . (3.38)

Finally, differentiating (3.27) twice with respect to time we obtain the motion equation (3.28), whereas
substituting (3.28) back into (3.9) yields (3.31), which completes the proof.

We end this section remarking that, after differentiating (3.36) twice with respect to time and using
(3.38), we find that
(
(σ̈, p̈)(t), (τ , q)

)
C
+
(
r̈(t), τ

)
0,ΩS

+A
(
(σ, p)(t), (τ , q)

)
= −ρ−1

S

(
f(t),div τ

)
0,ΩS

∀(τ , q) ∈ X . (3.39)

This identity is employed later on in Section 6.
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4 The discrete problem

We consider shape regular affine meshes Th that subdivide the domain Ω̄ = Ω̄S ∪ Ω̄F, into trian-
gles/tetrahedra K of diameter hK . The parameter h := maxK∈Th{hK} represents the mesh size of Th.
In what follows, we assume that each triange/tetrahedron of Th is contained either in Ω̄S or in Ω̄F,
and denote

T S
h :=

{
K ∈ Th; K ⊂ Ω̄S

}
and T F

h :=
{
K ∈ Th; K ⊂ Ω̄F

}
.

Moreover, we let Σh be the triangulation induced by Th on Σ. Next, given an integer m ≥ 0 and a
domain D ⊂ R

d, Pm(D) denotes the space of polynomials of degree at most m on D. The space of
piecewise polynomial functions of degree at most m associated with T ∗

h , ∗ ∈ {S,F}, is denoted by

Pm(T ∗
h ) :=

{
v ∈ L2(Ω∗); v|K ∈ Pm(K), ∀K ∈ T ∗

h

}
.

Similarly, Pm(Σh) :=
{
φ ∈ L2(Σ); φ|T ∈ Pm(T ), ∀T ∈ Σh

}
. In addition, for k ≥ 1, the finite

element spaces

Wh := Pk(T
S
h )n×n ∩W , Qh := Pk−1(T

S
h )n×n ∩ [L2(ΩS)]

n×n
skew , and Uh := Pk−1(T

S
h )n ,

correspond to the kth-order element of the Arnold-Falk-Winther (AFW) family introduced for the
mixed formulation of elastostatic problem with reduced symmetry. It is shown in [3, Theorem 11.9]
that the discrete inf-sup condition

sup
τ∈Wh

τn = 0 on Σ

(τ , s)0,ΩS
+ (div τ,v)0,ΩS

‖τ‖H(div,Ω)

≥ β∗
0

{
‖s‖0,Ω + ‖v‖0,Ω

}
, ∀(s,v) ∈ Qh × Uh (4.1)

holds true for a constant β∗
0 > 0 independent of h. It is important to notice that the weakly symmetric

version

W
sym

h =

{
τ h ∈ Wh;

∫

ΩS

τh : s = 0 ∀s ∈ Qh

}

of Wh is not a subspace of W sym. Moreover, it is generally not possible to construct a basis for the
finite element space W sym

h . Hence, in all what follows, we implicitly assume that a Lagrange multiplier
is needed in order to deal, from the practical point of view, with the weak symmetry constraint defining
W

sym

h . We deliberately have chosen here to hide this additional variable (which is none other than
the discrete counterpart of the rotation r) for economy in notations.

We approximate the pressure in the usual Lagrange finite element space Vh := Pk(T
F
h ) ∩ H1(ΩF).

We recall some well-known approximation properties of the finite element spaces introduced above.
Given s > 0, it is well-known that the usual kth-order Brezzi-Douglas-Marini (BDM) interpolation
operator (see [10]) Πh : [Hs(ΩS)]

n×n ∩W → Wh satisfies for 0 < s ≤ 1/2 the error estimate

‖τ −Πhτ‖0,ΩS
≤ Chs

{
‖τ‖s,ΩS

+ ‖div τ‖0,ΩS

}
∀τ ∈ [Hs(ΩS)]

n×n ∩W . (4.2)

For more regular functions τ ∈ [Hs(ΩS)]
n×n with s > 1/2, it holds

‖τ −Πhτ‖0,ΩS
≤ Chmin{s,k+1} ‖τ‖s,ΩS

, ∀τ ∈ [Hs(ΩS)]
n×n. (4.3)

Moreover, we have the commuting diagram properties

div(Πhτ ) = Uh(div τ ) and (Πhσ)n = πh(σn) (4.4)
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for all τ ∈ Hs(ΩS)
n×n ∩ H(div,ΩS), s > 0, where Uh : L2(ΩS)

n → Uh is the L2(ΩS)
n-orthogonal

projector, πh is the L2(Σ)-orthogonal projector onto Pk(Σh), and πh is the vectorial version of πh.
In addition, we denote by Rh : [L2(ΩS)]

n×n
skew → Qh the orthogonal projector with respect to the

[L2(ΩS)]
n×n-norm, and let Πh : H1(ΩF) → Vh be the operator that, given p ∈ H1(ΩF), is uniquely

characterized by

(∇Πhp,∇q)0,ΩF
= (∇p,∇q)0,ΩF

∀q ∈ Vh and

∫

ΩF

Πhp = 0 . (4.5)

Then, there hold

‖r −Rhr‖0,ΩS
≤ Chmin{s,k} ‖r‖s,ΩS

∀r ∈ [Hs(ΩS)]
n×n ∩ [L2(ΩS)]

n×n
skew , (4.6)

‖v − Uhv‖0,ΩS
≤ Chmin{s,k} ‖v‖s,ΩS

∀v ∈ Hs(ΩS)
n, (4.7)

|p −Πhp|1,ΩF
≤ Chmin{s,k} ‖p‖1+s,ΩF

∀p ∈ H1+s(ΩF), (4.8)

‖ϕ− πhϕ‖0,Σ ≤ Chmin{s,k+1}(
∑

e∈Σh

‖ϕ‖2s,e)
1/2 ∀ϕ ∈

∏

e∈Σh

Hs(e)n . (4.9)

Furthermore, we introduce the discrete energy space

Xh := {(τ , q) ∈ Wh × Vh; τn+ pn = 0 on Σ} ,

and its subspace Xh,c = {(τ , ξ) ∈ Xh; ξ = constant}. We also consider their weakly symmetric
versions

X
sym

h :=
{
(τ , q) ∈ W

sym

h × Vh; τn+ pn = 0 on Σ
}
,

and X
sym

h,c := Xh,c ∩ X
sym

h , respectively. The kernel Kh of the bilinear form A in X
sym

h is given by

Kh :=
{
(τ , ξ) ∈ X

sym

h,c ; div τ = 0
}

.

In turn, we set

K
⊥
h :=

{
(σh, ph) ∈ X

sym

h ;
(
(σh, ph), (τ , ξ)

)

C
= 0 ∀(τ , ξ) ∈ Kh

}
,

and notice that, in general, neither Kh ⊆ K nor K⊥
h ⊆ K

⊥.

According to the above discussions and notations, we consider in what follows the following semi-
discrete Galerkin discretization of (3.11):

Find (σh, ph) ∈ C1(Xsym

h ) such that
(
(σ̈h, p̈h)(t), (τ , q)

)
C
+A

(
(σh, ph)(t), (τ , q)

)
= −ρ−1

S

(
f(t),div τ

)
0,ΩS

∀(τ , q) ∈ X
sym

h

(σh(0), ph(0)) = (σ0,h, p0,h), (σ̇h(0), ṗh(0)) = (σ1,h, p1,h),

(4.10)

where the discrete initial data (σ0,h, p0,h) ∈ K
⊥
h and (σ1,h, p1,h) ∈ K

⊥
h are given approximations of

(σ0, p0) and (σ1, p1), respectively.

We end this section by remarking that, exactly as in [15, Section 5.3], [16], and the proof of Theorem
3.1, the well-posedness of (4.10) also follows from classical ODE theory. We omit further details and
refer to those works or to Theorem 3.1. In turn, similarly as in [15, Section 5], the corresponding
convergence analysis is carried out later on in Section 6 by applying the properties of the continuous
and discrete versions of the auxiliary operator to be introduced in the following section.
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5 An auxiliary operator

As already announced, and in order to facilitate the convergence analysis of the Galerkin scheme
(4.10), in this section we first introduce a suitable auxiliary operator and a discrete approximation of
it, and then we derive the corresponding error estimate between them.

5.1 The continuous version

In what follows we define an operator Ξ : X → X
sym whose restriction to X

sym coincides with the
(·, ·)C -orthogonal projection of Xsym onto K

⊥. More precisely, given (σ, p) ∈ X, we first let

p̄ = p−
1

ΩF

∫

ΩF

p in ΩF , (5.1)

and then define Ξ(σ, p) := (σ∗, p∗), where

p∗ := p̄ −
ρFc

2

|ΩF|

∫

Σ
u∗ · n in ΩF (5.2)

and the pair (σ∗,u∗) is characterized by the set of equations,

C−1σ∗ = ε(u∗) in ΩS , σ∗ = (σ∗)t in ΩS , divσ∗ = divσ in ΩS

σ∗n = −p∗n on Σ , σ∗n = 0 on ΓN , u∗ = 0 on ΓD .
(5.3)

Note from (5.1) and (5.2) that there holds

∫

Σ
u∗ · n+

1

ρFc2

∫

ΩF

p∗ = 0 . (5.4)

Actually, the constant value given by the second term on the right hand side of (5.2) has been chosen
so that (5.4) holds. Then, motivated by the Neumann boundary condition on Σ, we now consider the
spaces

Y :=
{
τ ∈ W , τn ∈ L2(Σ)n

}
and Ysym := Y ∩W sym ,

both endowed with the graph norm

‖τ‖2Y := ‖τ‖2
H(div,ΩS)

+ ‖τn‖20,Σ . (5.5)

Hence, with these notations at hand, and realizing that the auxiliary unknown ψ∗ := u∗|Σ becomes
the Lagrange multiplier corresponding to the weak imposition of the aforementioned condition on Σ,
we arrive at the following dual-mixed variational formulation of problem (5.3)

Find (σ∗,u∗,ψ∗) ∈ Y sym × L2(ΩS)
n × L2(Σ)n such that

(C−1σ∗, τ )0,ΩS
+ (u∗,div τ )0,ΩS

+ (ψ∗, τn)0,Σ = 0 ∀τ ∈ Ysym

(divσ∗,v)0,ΩS
= (divσ,v)0,ΩS

∀v ∈ L2(ΩS)
n,

(σ∗n,ϕ)0,Σ −
c2ρF
|ΩF|

{∫

Σ
ψ∗ · n

} {∫

Σ
ϕ · n

}
= −(p̄,ϕ · n)0,Σ ∀ϕ ∈ L2(Σ)n .

(5.6)
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A further simplification is obtained by taking ϕ = n in the last equation of (5.6), which yields

∫

Σ
ψ∗ · n =

|ΩF|

ρFc2|Σ|

{
(σ∗n,n)0,Σ +

∫

Σ
p̄

}
. (5.7)

As a consequence of the foregoing identity, and defining the space

Ψ :=
{
ϕ ∈ L2(Σ)n;

∫

Σ
ϕ · n = 0

}
,

we can reformulate (5.6) as follows:

Find (σ∗,u∗,ψ∗
0) ∈ Y sym × L2(ΩS)

n ×Ψ such that

a(σ∗, τ ) + (u∗,div τ )0,ΩS
+ (ψ∗

0, τn)0,Σ = −
|ΩF|

ρFc2|Σ|2

∫

Σ
p̄ (τn,n)0,Σ ∀τ ∈ Y sym ,

(divσ∗,v)0,ΩS
= (divσ,v)0,ΩS

∀v ∈ L2(ΩS)
n ,

(σ∗n,ϕ)0,Σ = −(p̄,ϕ · n)0,Σ ∀ϕ ∈ Ψ ,

(5.8)

where

a(σ∗, τ ) := (C−1σ∗, τ )0,ΩS
+

|ΩF|

ρFc2|Σ|2
(σ∗n,n)0,Σ (τn,n)0,Σ .

More precisely, the following lemma establishes the equivalence between (5.6) and (5.8).

Lemma 5.1. Let (σ∗,u∗,ψ∗) be a solution of (5.6), and let

ψ∗
0 := ψ

∗ −
1

|Σ|

{∫

Σ
ψ∗ · n

}
n . (5.9)

Then (σ∗,u∗,ψ∗
0) is a solution of (5.8). Conversely, let (σ∗,u∗,ψ∗

0) be a solution of (5.8) and let

ψ∗ := ψ∗
0 +

|ΩF|

ρFc2|Σ|2

{
(σ∗n,n)0,Σ +

∫

Σ
p̄

}
n . (5.10)

Then (σ∗,u∗,ψ∗) is solution of (5.6).

Proof. Let (σ∗,u∗,ψ∗) ∈ Ysym × L2(ΩS)
n × L2(Σ)n be a solution of (5.6), and define ψ∗

0 by (5.9),

which belongs to Ψ. Then, replacing ψ∗ by ψ∗
0 +

1

|Σ|

{∫

Σ
ψ∗ · n

}
n in the first equation of (5.6) and

using (5.7), we deduce the first equation of (5.8). In turn, testing the third equation of (5.6) with
ϕ ∈ Ψ, we obtain the third equation of (5.8), and hence (σ∗,u∗,ψ∗

0) becomes a solution of (5.8).
Conversely, let (σ∗,u∗,ψ∗

0) ∈ Y sym ×L2(ΩS)
n×Ψ be a solution of (5.8), and define ψ∗ as indicated in

(5.10) (which is suggested by (5.7) and (5.9)). Then, replacing the resulting expression for ψ∗
0 in the

first equation of (5.8), we arrive at the first equation of (5.6). On the other hand, given ϕ ∈ L2(Σ)n,

we certainly have that ϕ0 := ϕ −
1

|Σ|
(ϕ,n)0,Σn belongs to Ψ. Thus, employing ϕ0 in the third

equation of (5.8), and using from (5.10) that there holds (5.7), we obtain the third equation of (5.6),
from which we conclude that (σ∗,u∗,ψ∗) is solution of (5.6).

Next, in order to prove that problem (5.8) (or equivalently (5.6)) is well-posed, we need to establish
the following inf-sup condition.
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Lemma 5.2. There exists a constant β1 > such that

S(s,v,ϕ) := sup
τ∈Y

(s, τ )0,ΩS
+ (v,div τ )0,ΩS

+ (ϕ, τn)0,Σ
‖τ‖Y

≥ β1

{
‖s‖0,ΩS

+ ‖v‖0,ΩS
+ ‖ϕ‖0,Σ

}
(5.11)

for all (s,v,ϕ) ∈ [L2(ΩS)]
n×n
skew × L2(ΩS)

n ×Ψ.

Proof. Given (s,v,ϕ) ∈ [L2(ΩS)]
n×n
skew × L2(ΩS)

n × Ψ, we first observe, thanks to (3.22), that there
holds

S(s,v,ϕ) ≥ sup
τ∈W

τn = 0 on Σ

(s, τ )0,ΩS
+ (v,div τ )0,ΩS

‖τ‖H(div,ΩS)

≥ C0

{
‖s‖0,ΩS

+ ‖v‖0,ΩS

}
. (5.12)

Next, we let w ∈ H1(ΩS)
n be the unique solution of the (vectorial) Laplace problem

div(∇w) = 0 in ΩS ,
w = 0 on ΓD ,

(∇w)n = 0 on ΓN ,
(∇w)n = ϕ on Σ ,

(5.13)

and define σ̄ := ∇w ∈ Y . It is clear from (5.13) and its associated continuous dependence result that
div σ̄ = 0 in ΩS, σ̄n = ϕ on Σ, and that there exists C1 > 0, independent of ϕ, such that

‖σ̄‖Y ≤ C1 ‖ϕ‖0,Σ .

It follows that

S(s,v,ϕ) ≥
(s, σ̄)0,ΩS

+ (v,div σ̄)0,ΩS
+ (ϕ, σ̄n)0,Σ

‖σ̄‖Y
=

(s, σ̄)0,ΩS
+ ‖ϕ‖20,Σ

‖σ̄‖Y

≥
‖ϕ‖20,Σ
‖σ̄‖Y

− ‖s‖0,ΩS
≥

1

C1
‖ϕ‖0,Σ − ‖s‖0,ΩS

.

(5.14)

In this way, the inf-sup condition (5.11) is now obtained by multiplying (5.14) by C0

2 and adding the
resulting estimate to (5.12).

We are now in a position to show that (5.8) is well posed.

Lemma 5.3. There exists a unique (σ∗,u∗,ψ∗
0) ∈ Y sym × L2(ΩS)

n × Ψ solution of (5.8), and there
exists C > 0, independent of λ and the given (σ, p) ∈ X, such that

‖(σ∗,u∗,ψ∗
0)‖ ≤ C ‖(σ, p)‖ . (5.15)

Proof. We begin by introducing

K :=
{
τ ∈ Y sym; (v,div, τ )0,ΩS

+ (ϕ, τn)0,Σ = 0 ∀(v,ϕ) ∈ L2(ΩS)
n ×Ψ

}
,

which reduces to K =
{
τ ; (τ , ξ) ∈ K

}
. Then, using the estimate (3.14) and the fact that τn = −ξn

on Σ, we find that

a(τ , τ ) = (C−1τ , τ )0,ΩS
+

|ΩF|

ρFc2
ξ2 =

(
(τ , ξ), (τ , ξ)

)
C
+A

(
(τ , ξ), (τ , ξ)

)

≥ α ‖(τ , ξ)‖2 = α
(
‖τ‖2H(div,ΩS)

+ ξ2|ΩF|
)

≥ αmin

{
1,

|ΩF|

|Σ|

}
‖τ‖2Y

(5.16)
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for all τ ∈ K. In this way, thanks to the ellipticity property (5.16) and the inf-sup condition (5.11),
a straightforward application of the well-known Babuška-Brezzi theory implies the well-posedness of
the saddle point problem (5.8) and the continuous dependence estimate (5.15).

As a consequence of the foregoing lemma, the auxiliary operator Ξ given originally by (5.1), (5.2),
and (5.3), is now well defined. Actually, due to the equivalence between (5.6) and (5.8), and the
identity (5.7), we can redefine Ξ as

Ξ(σ, p) := (σ∗, p∗) ∀ (σ, p) ∈ X , (5.17)

where

p∗ := p̄−
1

|Σ|

{
(σ∗n,n)0,Σ +

∫

Σ
p̄

}
, (5.18)

p̄ is given by (5.1), and σ∗ is the first component of (σ∗,u∗,ψ∗
0) ∈ Y sym × L2(ΩS)

n × Ψ, the unique
solution of (5.8). Moreover, we have the following result.

Lemma 5.4. There exists a constant C > 0, independent of λ, such that

‖Ξ(σ, p)‖ ≤ C ‖(σ, p)‖ ∀(σ, p) ∈ X .

In addition, the operator Ξ̃ := Ξ|Xsym is the (·, ·)C-orthogonal projection in X
sym onto K

⊥.

Proof. The uniform boundedness of Ξ with respect to λ follows directly from the definition of this
operator and (5.15). Furthermore, it is straightforward to see that Ξ̃2 = Ξ̃, and hence we have the
stable and direct splitting,

X
sym = Ξ̃(X) + N(Ξ̃) . (5.19)

On the other hand, it is clear that N(Ξ̃) = K, and the first equation of (5.8) shows that, for any
(σ∗, p∗) = Ξ̃(σ, p), with (σ, p) arbitrary in X, there holds

(
Ξ̃(σ, p), (τ , ξ)

)
C
= 0 ∀(τ , ξ) ∈ K ,

which proves that the decomposition (5.19) is (·, ·)C-orthogonal and Ξ̃(X) = K
⊥.

We now notice from (5.11), taking in particular (v,ϕ) = (0,0), that there also holds

sup
τ∈Y

(r, τ )0,ΩS

‖τ‖Y
≥ β1 ‖r‖0,ΩS

∀ r ∈ [L2(ΩS)]
n×n
skew

.

Hence, bearing in mind that the first equation of (5.8) can be rewritten as

a(σ∗, τ ) + (u∗,div τ )0,ΩS
+ (ψ∗

0, τn)0,Σ +
|ΩF|

ρFc2|Σ|2

∫

Σ
p̄(n, τn)0,Σ = 0 ∀ τ ∈ Y sym ,

and that Y sym is the kernel of the operator induced by the bilinear form A : Y × [L2(ΩS)]
n×n
skew → R

defined by A(τ , r) = (r, τ )0,ΩS
∀ (τ , r) ∈ Y × [L2(ΩS)]

n×n
skew , we can apply Theorem 2.1 to conclude

that there exists a unique r∗ ∈ [L2(ΩS)]
n×n
skew such that

a(σ∗, τ ) + (u∗,div τ )0,ΩS
+ (ψ∗

0, τn)0,Σ +
|ΩF|

ρFc2|Σ|2

∫

Σ
p̄(n, τn)0,Σ = −(r∗, τ ) ∀ τ ∈ Y . (5.20)

The following result provides an explicit connection between the operators D and Ξ.
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Lemma 5.5. Given (σ, p) ∈ X, we let (σ∗,u∗,ψ∗) ∈ Y × L2(ΩS)
n × L2(Σ)n and r∗ ∈ [L2(ΩS)]

n×n
skew be

the unique solutions of (5.6) and (5.20), respectively, and set (σ∗, p∗) := Ξ(σ, p) (cf. (5.17)). Then
there hold

(u∗, r∗) = D(σ∗, p∗) and ψ∗ = u∗|Σ .

Proof. Given (τ , ξ) ∈ Xc, that is τ ∈ W , ξ ∈ R, and τn = − ξn on Σ, it is clear that τ ∈ Y . Then,
recalling the definition of ψ∗

0 (cf. (5.9)), we deduce from (5.20) that

(r∗, τ )0,ΩS
+ (div τ ,u∗)0,ΩS

= − (C−1σ∗, τ )0,ΩS
− (ψ∗, τn)0,Σ ∀ (τ , ξ) ∈ Xc .

Next, from the definition of p∗ (cf. (5.18)), the identity (5.7), and the fact that τn = − ξn on Σ, we
find after minor algebraic manipulations that

(r∗, τ )0,ΩS
+ (div τ ,u∗)0,ΩS

= −
(
(σ∗, p∗), (τ , ξ)

)

C
∀ (τ , ξ) ∈ Xc ,

which, according to the characterization (3.23) of the operator D, yields (u∗, r∗) = D(σ∗, p∗). Finally,
the interpretation ψ∗ = u∗|Σ is obtained by integrating by parts in the first equation of (5.6).

5.2 The discrete version

We now aim to define a discrete version of the operator Ξ. To this end, we introduce the subspace of
Ψ given by Ψh := Pk(Σh)

n ∩ Ψ, recall the definition of the operator Πh (cf. (4.5)), and consider the
following Galerkin approximation of problem (5.8):

Find (σ∗
h,u

∗
h,ψ

∗
0,h) ∈ W

sym

h × Uh ×Ψh such that

a(σ∗
h, τ ) + (u∗

h,div τ )0,ΩS
+ (ψ∗

0,h, τn)0,Σ = −
|ΩF|

ρFc2|Σ|2

∫

Σ
Πhp(n, τn)0,Σ ∀τ ∈ W

sym

h ,

(divσ∗
h,v)0,ΩS

= (divσ,v)0,ΩS
∀v ∈ Uh ,

(σ∗
hn,ϕ)0,Σ = −(Πhp,ϕ · n)0,Σ ∀ϕ ∈ Ψh .

(5.21)

We begin the analysis of (5.21) with the following discrete inf-sup condition.

Lemma 5.6. There exists a constant β∗
1 > 0, independent of h, such that

Sh(s,v,ϕ) := sup
τ∈Wh

(s, τ )0,ΩS
+ (v,div τ )0,ΩS

+ (ϕ, τn)0,Σ
‖τ‖Y

≥ β∗
1

{
‖s‖0,ΩS

+‖v‖0,ΩS
+‖ϕ‖0,Σ

}
(5.22)

for all (s,v,ϕ) ∈ Qh × Uh ×Ψh.

Proof. We proceed very similarly to the proof of Lemma 5.2. In fact, given (s,v,ϕ) ∈ Qh ×Uh ×Ψh,
we first realize, thanks to (4.1), that there exists a constant β∗

0 > 0, independent of h, such that

Sh(s,v,ϕ) ≥ sup
τ∈Wh

τn = 0 on Σ

(s, τ )0,ΩS
+ (v,div τ )0,ΩS

‖τ‖H(div,ΩS)

≥ β∗
0

{
‖s‖0,ΩS

+ ‖v‖0,ΩS

}
. (5.23)

Now, we consider again the solution w of problem (5.13), but with a Neumann data ϕ ∈ Ψh ∈ L2(Σ)n.
Then, classical regularity results for the Poisson problem in polyhedral (polygonal) domains (cf. [12])
ensure the existence of ε ∈ (0, 1), depending on the geometry of ΩS, such that w ∈ H1+ε(ΩS)

n and

‖w‖1+ε,ΩS
≤ C1 ‖ϕ‖0,Σ . (5.24)
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It follows that σ̄ := ∇w belongs to Y ∩Hε(ΩS)
n, and hence Πhσ̄ is meaningful. In addition, by virtue

of (4.4) we have that divΠhσ̄ = 0 in ΩS, (Πhσ̄)n = 0 on ΓN, and (Πhσ̄)n = ϕ on Σ, whereas the
approximation property of Πh (cf. (4.2)) yields the existence of a constant C2 > 0, independent of h,
such that

‖Πhσ̄‖H(div,ΩS)
= ‖Πhσ̄‖0,ΩS

≤ C2 ‖σ̄‖ε,ΩS
.

Combining the foregoing inequality with (5.24) gives

‖Πhσ̄‖Y ≤ C3 ‖ϕ‖0,Σ ,

and therefore, noting that Πhσ̄ ∈ Wh, we find that

Sh(s,v,ϕ) ≥
(s,Πhσ̄)0,ΩS

+ (v,divΠhσ̄)0,ΩS
+ (ϕ,Πhσ̄n)0,Σ

‖Πhσ̄‖Y

=
(s,Πhσ̄)0,ΩS

+ ‖ϕ‖20,Σ
‖Πhσ̄‖Y

≥
‖ϕ‖20,Σ
‖Πhσ̄‖Y

− ‖s‖0,ΩS
≥

1

C3
‖ϕ‖0,Σ − ‖s‖0,ΩS

.

(5.25)

Finally, an adequate combination of (5.23) and (5.25) implies (5.22) and finishes the proof.

The well-posedness of (5.21) is provided next.

Lemma 5.7. There exists a unique (σ∗
h,u

∗
h,ψ

∗
0,h) ∈ W

sym

h × Uh × Ψh solution of (5.21), and there
exists C > 0, independent of λ, h, and the given (σ, p) ∈ X, such that

‖(σ∗
h,u

∗
h,ψ

∗
0,h))‖ ≤ C ‖(σ, p)‖ . (5.26)

Proof. Proceeding analogously as in the proof of Lemma 5.4, we begin by introducing the discrete null
space

Kh :=
{
τ ∈ W

sym

h ; (v,div τ )0,ΩS
+ (ϕ, τn)0,Σ = 0 ∀(v,ϕ) ∈ Uh ×Ψh

}
,

which becomes Kh =
{
τ ; (τ , ξ) ∈ Kh

}
. Then, it is readily seen that (3.14) implies the Y-ellipticity

of a(·, ·) on Kh, with a constant independent of h and λ. In this way, thanks to this result and the
inf-sup condition (5.6), a direct application of the discrete Babuška-Brezzi theory completes the proof
of the lemma.

As a consequence of the foregoing lemma, we now introduce the operator Ξh : X → X
sym

h , which is
defined as the discrete analogue of (5.17), that is

Ξh(σ, p) := (σ∗
h, p

∗
h) ∀ (σ, p) ∈ X , (5.27)

where

p∗h := Πhp−
1

|Σ|

{
(σ∗

hn,n)0,Σ +

∫

Σ
Πhp

}
, (5.28)

and σ∗
h is the first component of the solution (σ∗

h,u
∗
h,ψ

∗
0,h) ∈ W

sym

h × Uh × Ψh of problem (5.21). In
addition, there exists C > 0, independent of λ, h, and the given (σ, p) ∈ X, such that

‖Ξh(σ, p)‖ ≤ C ‖(σ, p)‖ ∀ (σ, p) ∈ X . (5.29)

In the following section we deal with the a priori error estimate for Ξ− Ξh.
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5.3 The associated error estimate

We begin by remarking that our analysis up to now has not required any formulation involving
explicitly the rotation r∗ nor its corresponding discrete version r∗h. Actually, the main novelty of our
approach has been precisely the fact that these complementary unknowns have remained some how
hiden. Nevertheless, for the derivation of the aforementioned error estimate, we now need to introduce
the extended versions of (5.8) and (5.21), which are given, respectively, as follows:

Find (σ∗, r∗,u∗,ψ∗
0) ∈ Y × [L2(ΩS)]

n×n
skew × L2(ΩS)

n ×Ψ such that

a(σ∗, τ ) + (r∗, τ )0,ΩS
(u∗,div τ )0,ΩS

+ (ψ∗
0, τn)0,Σ = −

|ΩF|

ρFc2|Σ|2

∫

Σ
p̄(n, τn)0,Σ ,

(σ∗, s)0,ΩS
= 0 ,

(divσ∗,v)0,ΩS
= (divσ,v)0,ΩS

,

(σ∗n,ϕ)0,Σ = −(p̄,ϕ · n)0,Σ ,

(5.30)

for all (τ , s,v,ϕ) ∈ Y × [L2(ΩS)]
n×n
skew × L2(ΩS)

n ×Ψ, and

Find (σ∗
h, r

∗
h,u

∗
h,ψ

∗
0,h) ∈ Wh ×Qh × Uh ×Ψh such that

a(σ∗
h, τ ) + (r∗h, τ )0,ΩS

+ (u∗
h,div τ )0,ΩS

+ (ψ∗
0,h, τn)0,Σ = −

|ΩF|

ρFc2|Σ|2

∫

Σ
Πhp(n, τn)0,Σ ,

(σ∗
h, s)0,ΩS

= 0 ,

(divσ∗
h,v)0,ΩS

= (divσ,v)0,ΩS
,

(σ∗
hn,ϕ)0,Σ = −(Πhp,ϕ · n)0,Σh ,

(5.31)
for all (τ , s,v,ϕ) ∈ Wh ×Qh × Uh ×Ψh.

Then, we have the following result.

Lemma 5.8. There exists a constant C > 0, independent of h and λ, such that

‖Ξ(σ, p)− Ξh(σ, p)‖ ≤ C
{

inf
τh∈Wh

‖σ∗ − τ h‖Y + inf
sh∈Qh

‖r∗ − sh‖0,ΩS

+ inf
vh∈Uh

‖u∗ − vh‖0,ΩS
+ inf

ϕh∈Ψh

‖ψ∗ −ϕh‖0,Σ + |p−Πhp|1,ΩF

}
.

(5.32)

Proof. A straightforward application of the first Strang lemma to the formulations (5.30) and (5.31)
yields the existence of a constant C1 > 0, independent of h and λ, such that

‖σ∗ − σ∗
h‖Y + ‖u∗ − u∗

h‖0,ΩS
+ ‖ψ∗ −ψ∗

h‖0,Σ ≤ C1

{
inf

τh∈Wh

‖σ∗ − τ h‖Y

+ inf
sh∈Qh

‖r∗ − sh‖0,ΩS
+ inf

vh∈Uh

‖u∗ − vh‖0,ΩS
+ inf

ϕh∈Ψh

‖ψ∗ −ϕh‖0,Σ

+ sup
ϕ∈Ψh

∫

Σ
(p̄−Πhp)ϕ · n

‖ϕ‖0,Σ
+ sup

τ∈Kh

∫

Σ
(p̄−Πhp)(n, τn)0,Σ

‖τ‖Y

}
.

(5.33)
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Then, employing the Cauchy-Schwarz inequality and the trace theorem, we find that

sup
ϕ∈Ψh

∫

Σ
(p−Πhp)ϕ · n

‖ϕ‖0,Σ
≤ C2 |p−Πhp|1,ΩF

and

sup
τ∈Kh

∫

Σ
(p̄−Πhp)(n, τn)0,Σ

‖τ‖Y
≤ C3 |p−Πhp|1,ΩF

,

whereas the definitions of p∗, p∗h, and ‖ · ‖Y (cf. (5.18), (5.28), and (5.5)) yield

‖p∗ − p∗h‖1,ΩF
≤ C4

{
|p −Πhp|1,ΩF

+ ‖σ∗ − σ∗
h‖Y

}
.

In this way, bounding ‖σ∗ − σ∗
h‖Y according to (5.33), and combining this estimate with the last three

inequalities, we arrive at (5.32) and finish the proof.

We end this section with the following corollary of the a priori error estimate provided by Lemma
5.8.

Lemma 5.9. Assume that (σ, p) ∈ K
⊥ with σ ∈ [Hǫ(ΩS)]

n×n for some ε > 0, and let (u, r) := D(σ, p)
and ψ := u|Σ. Then, there exists a constant C > 0, independent of h and λ, such that

‖(σ, p)− Ξh(σ, p)‖ ≤ C
{
‖σ −Πhσ‖H(div,ΩS)

+ ‖pn− πh(pn)‖0,Σ + ‖r −Rhr‖0,ΩS

+ ‖u− Uhu‖0,ΩS
+ ‖ψ − πhϕ‖0,Σ + |p−Πhp|1,ΩF

}
.

Proof. We first recall from Lemma 5.4 that Ξ(σ, p) = (σ, p) for all (σ, p) ∈ K
⊥. Then, it follows from

Lemma 5.5 that (u∗, r∗) := D(σ, p) = (u, r) and ψ∗ = u|Σ = ψ, which combined with (5.32),
gives

‖(σ, p)− Ξh(σ, p)‖ ≤ C
{

inf
τh∈Wh

‖σ − τh‖Y + inf
sh∈Qh

‖r − sh‖0,ΩS

+ inf
vh∈Uh

‖u− vh‖0,ΩS
+ inf

ϕh∈Ψh

‖ψ −ϕh‖0,Σ + |p −Πhp|1,ΩF

}
.

(5.34)

Next, since σ ∈ W ∩ [Hε(ΩS)]
n×n with ε > 0, we can employ the BDM-interpolation operator Πh (cf.

Section 4) to obtain

inf
τh∈Wh

‖σ − τ h‖
2
Y ≤ ‖σ −Πhσ‖

2
Y = ‖σ −Πhσ‖

2
H(div,ΩS)

+ ‖σn− πh(σn)‖
2
0,Σ

≤ ‖σ −Πhσ‖
2
H(div,ΩS)

+ ‖pn− πh(pn)‖
2
0,Σ ,

(5.35)

which, together with (5.34) and the definitions of the projectors Rh and Uh (cf. Section 4), implies
the required estimate and ends the proof.

6 Analysis of the semi-discrete problem

From now on, we assume that the discrete Galerkin problem (4.10) is supplied with the initial data

(σ0,h, p0,h) := Ξh(σ0, p0) and (σ1,h, p1,h) := Ξh(σ1, p1).
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Then, we introduce

eσ,h(t) = σ
∗
h(t)− σh(t) and ep,h(t) = p∗h(t)− ph(t),

where (σ∗
h(t), p

∗
h(t)) = Ξh(σ(t), p(t)), and notice that eσ,h(0) = ėσ,h(0) = 0 and ep,h(0) = ėp,h(0) = 0.

The following lemma establishes an a priori estimate for the error between the solution (σ, p) ∈
C0(Xsym)∩C1(Hsym) of the continuous problem (3.11) and its semi-discrete approximation given by the
solution (σh, ph) ∈ C1(Xsym

h ) of the Galerkin scheme (4.10).

Lemma 6.1. Assume that σ ∈ C2(X ∩H
ǫ(Ω)) for some ǫ > 0, and that p ∈ C2(H1(ΩF)). Then, there

exists a constant C > 0, independent of λ and h, such that

max
[0,T ]

‖(σ, p)(t)− (σh, ph)(t)‖+max
[0,T ]

‖(σ̇, ṗ)(t)− (σ̇h, ṗh)(t)‖0,C

≤ C
{
‖σ −Πhσ‖W2,∞(H(div,ΩS))

+ ‖r −Rhr‖W2,∞([L2(ΩS)]
n×n
skew

) + ‖u− Uhu‖W2,∞(L2(ΩS)n)

+ ‖∇(p−Πhp)‖W2,∞(L2(ΩF)n)
+ ‖ψ − πhψ‖W2,∞(L2(Σ)n) + ‖pn− πh(pn)‖W2,∞(L2(Σ))

}
.

(6.1)

where (u, r) := D(σ, p) and ψ := u|Σ.

Proof. Let us first notice that the fact that (σ(t), p(t)) ∈ K
⊥ for all t ∈ [0, T ] guarantes that

(σ∗(t), p∗(t)) := Ξ(σ(t), p(t)) = (σ(t), p(t)) ∀ t ∈ [0, T ]. (6.2)

Moreover, because of the regularity assumptions, it holds that

(diσ∗

dti
(t),

dip∗

dti
(t)

)
:=

diΞ(σ(t), p(t))

dti
= Ξ(

diσ

dti
(t),

dip

dti
(t)) ∀ i ∈ {1, 2} , ∀ t ∈ [0, T ] , (6.3)

and hence, by virtue of Lemma 5.9 and (6.3), there exists C1 > 0, independent of h and λ, such that

‖(σ − σ∗
h, p − p∗h)‖W2,∞(X) = ‖(σ, p)− Ξh(σ, p)‖W2,∞(X)

≤ C1

{
‖σ −Πhσ‖W2,∞(H(div,ΩS))

+ ‖pn− πh(pn)‖W2,∞(L2(Σ)) + ‖r −Rhr‖W2,∞([L2(ΩS)]
n×n
skew

)

+ ‖u− Uhu‖W2,∞(L2(ΩS)n)
+ ‖ψ − πhψ‖W2,∞(L2(Σ)n) + ‖∇(p−Πhp)‖W2,∞(L2(ΩF)n)

}
,

(6.4)
with (u(t), r(t)) := D(σ(t),u(t)) and ψ(t) := u(t)|Σ. Now, adding and substracting (σ̈, p̈), and then
using the identity (3.39) and the first equation of (4.10), we obtain the error equation,

(
(ëσ,h(t), ëp,h(t)), (τ , q)

)
C
+A

(
(eσ,h(t), ep,h(t)), (τ , q)

)

=
(
(σ̈∗

h − σ̈, p̈
∗
h − p̈)(t), (τ , q)

)
C
− (r̈(t), τ )0,ΩS

+A
(
(σ∗

h − σ, p
∗
h − p)(t), (τ , q)

)

=
(
(σ̈∗

h − σ̈
∗, p̈∗h − p̈)(t), (τ , q)

)
C
− (r̈(t), τ )0,ΩS

+A
(
(σ∗

h − σ, p
∗
h − p)(t), (τ , q)

)
(6.5)

for all (τ , q) ∈ X
sym

h , where the first expression of the last equality makes use of the fact that σ = σ∗

(cf. (6.2)). In addition, by virtue of the inclusion div(Wh) ⊂ Uh, it turns out that

(
div(σ∗

h − σ
∗)(t),div τ

)
0,ΩS

= 0 ∀(τ , q) ∈ X
sym

h . (6.6)
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Furthermore, according to the definitions of p∗ and p∗h (cf. (5.18) and (5.28)), there holds

(∇(p∗h − p∗)(t),∇q)0,ΩF
= (∇(p−Πhp)(t),∇q)0,ΩF

= 0 ∀q ∈ Vh, (6.7)

and it is straightforward that

(r̈(t), τ )0,ΩS
= (r̈(t)−Rhr̈(t), τ )0,ΩS

∀(τ , q) ∈ X
sym

h . (6.8)

Next, rewriting (6.5) by taking into account (6.2) and (6.6)-(6.8), we deduce that
(
(ëσ,h(t), ëp,h(t)), (τ , q)

)
C
+A

(
(eσ,h(t), ep,h(t)), (τ , q)

)

=
(
(σ̈∗

h − σ̈, p̈
∗
h − p̈)(t), (τ , q)

)
C
−

(
r̈(t)−Rhr̈(t), τ

)
0,ΩS

∀(τ , q) ∈ X
sym

h .

Moreover, choosing (τ , q) = (ėσ,h, ėp,h)(t) in the foregoing identity, recalling the definition of the
energy functional E (cf. (3.18)), and applying the Cauchy-Schwarz inequality, we find that

Ė
(
(eσ,h, ep,h)

)
(t) ≤ ‖(σ̈ − σ̈∗

h, p̈ − p̈∗h)(t)‖0,C ‖(ėσ,h, ėp,h)(t)‖0,C

+
(
C
(
r̈(t)−Rhr̈(t)

)
, r̈(t)−Rhr̈(t)

)1/2

0,ΩS

(
C−1ėσ,h, ėσ,h

)1/2

0,ΩS

≤
(
‖(σ̈ − σ̈∗

h, p̈ − p̈∗h)(t)‖0,C +
√

2µ ‖r̈(t)−Rhr̈(t)‖0,ΩS

)
‖(ėσ,h, ėp,h)(t)‖0,C

for all (τ , q) ∈ X
sym

h , where we used that Cs = 2µs for all s ∈ [L2(ΩS)]
n×n
skew . Hence, by virtue of the

estimate (3.13), there exists C2 > 0, independent of h and λ, such that

Ė
(
(eσ,h, ep,h)

)
(t)

2
√

E
(
(eσ,h, ep,h)

)
(t)

≤ C2

{
‖(σ̈ − σ̈∗

h, p̈− p̈∗h)(t)‖0 + ‖r̈(t)−Rhr̈(t)‖0,ΩS

}
,

and integrating in time yields

max
[0,T ]

E
(
(eσ,h, ep,h)

)1/2
(t) ≤ C2

∫ T

0

{
‖(σ̈∗

h − σ̈, p̈h − p̈)(t)‖0 + ‖r̈(t)−Rhr̈(t)‖0,ΩS

}
dt. (6.9)

On the other hand, according to the definition of E (cf. (3.18)), it holds

max
[0,T ]

E
(
σ−σh, p−ph)

)1/2
(t) ≤ C3

{
max
[0,T ]

E
(
(eσ,h, ep,h)

)1/2
(t)+max

[0,T ]
E
(
σ−σ∗

h, p−p∗h)
)1/2

(t)

}
, (6.10)

and taking into account (3.14), we deduce that

max
[0,T ]

‖(σ − σh, p− ph)(t)‖ +max
[0,T ]

‖(σ̇ − σ̇h, ṗ − ṗh)(t)‖0,C

≤ C4

{
max
[0,T ]

E
(
(eσ,h, ep,h)

)1/2
(t) + max

[0,T ]
E
(
σ − σ∗

h, p − p∗h)
)1/2

(t)
}
.

(6.11)

Then, combining (6.9) and (6.11) gives

max
[0,T ]

‖(σ − σh, p− ph)(t)‖+max
[0,T ]

‖(σ̇ − σ̇h, ṗ− ṗh)(t)‖0,C

≤ C5

{
‖(σ − σ∗

h, p− p∗h)‖W2,∞(X) +max
[0,T ]

‖r̈(t)−Rhr̈(t)‖0,ΩS

}
,

(6.12)

where C3, C4, and hence C5 > 0, are all constants independent of h and λ. Finally, it is readily seen
that the required estimate (6.1) follows from (6.4) and (6.12).
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As a straightforward consequence of Lemma 6.1 we have the following theorem establishing the
rates of convergence of our semi-discrete scheme (4.10).

Theorem 6.1. Assume that the solution (u, p) to (3.28)-(3.33) satisfies the regularity assumptions
(u, p) ∈ C2

(
H1+s(ΩS)

n × H1+s(ΩF)
)
and div Cε(u) ∈ C2(Hs(ΩS)

n), for some s > 1/2. Then, there
exists a constant C > 0, independent of h and λ, such that

max
[0,T ]

‖(σ − σh, p− ph)(t)‖+max
[0,T ]

‖(σ̇ − σ̇h, ṗ− ṗh)(t)‖0,C ≤ C hmin{k,s}

{
‖σ‖W2,∞([Hs(ΩS)]n×n)

+ ‖divσ‖W2,∞(Hs(ΩS)n)
+ ‖r‖W2,∞([Hs(ΩS)]n×n) + ‖u‖W2,∞(Hs(ΩS)n)

+ ‖p‖W2,∞(H1+s(ΩF))
+ (

∑

e∈Σh

‖ψ‖2W2,∞(Hs(e)n))
1/2 + (

∑

e∈Σh

‖p‖2W2,∞(Hs(e)))
1/2

}
.

Proof. It is clear from the hypotheses that σ = Cε(u) ∈ C2([Hs(ΩS)]
n×n), divσ ∈ C2(Hs(ΩS)

n),
r = (∇u − (∇u)t)/2 ∈ C2([Hs(ΩS)]

n×n), ψ = u|Σ ∈ Hs+1/2(Σ)n, and p|Σ ∈ Hs+1/2(Σ). Hence,
the result follows directly from (6.1) by using the approximation properties given by (4.3), (4.4) and
(4.6)-(4.9).

In addition to the above, and inspired from (3.2), we also propose the following explicit expression
for the semi-discrete displacement field:

uh(t) =

∫ t

0

{ ∫ s

0
ρ−1
S

(
divσh(z) +Uhf(z)

)
dz

}
ds+ u0,h + tu1,h , (6.13)

where u0,h and u1,h are obtained by solving (5.21) with data (divσ0, p0) and (divσ1, p1), respectively.
It is then clear that, under the regularity conditions of Theorem 6.1, there holds

max
[0,T ]

‖(u− uh)(t)‖0,ΩS
= O(hmin{k,s}) .

We end this paper by remarking that in a forthcoming work we show that the analysis given in
[15, Section 6] for the dual-mixed formulation of the elastodynamic equations, can be adapted to deal
with the time discretization, based on the Newmark trapezoidal rule, of our present problem (4.10).
Numerical tests illustrating the good performance of this scheme are in progress.
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2016-16 Luis M. Castro, José González, V́ıctor H. Lachos, Alexandre Patriota:
A confidence set analysis for observed samples: A fuzzy set approach

2016-17 Raimund Bürger, Stefan Diehl, Camilo Mej́ıas: A model of continuous sedi-
mentation with compression and reactions

2016-18 Carlos Garcia, Gabriel N. Gatica, Salim Meddahi: Finite element analysis
of a pressure-stress formulation for the time-domain fluid-structure interaction problem

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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