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Abstract. We study approximation properties of weighted L2-orthogonal

projectors onto spaces of polynomials of bounded degree in the Euclidean unit

ball, where the weight is of the generalized Gegenbauer form x 7→ (1−‖x‖2)α,
α > −1. Said properties are measured in Sobolev-type norms in which the

same weighted L2 norm is used to control all involved weak derivatives. The

method of proof does not rely on any particular basis of orthogonal polynomi-
als, which allows for a streamlined and dimension-independent exposition.

1. Introduction

It has been known since the early eighties [3] that the orthogonal projector SN
mapping L2(−1, 1) onto the space of univariate polynomials of degree less than or
equal to N (equivalently, SN is the operation consisting in truncating the Fourier–
Legendre series of its argument at degree N) satisfies the bound

(1) (∀u ∈ Hl(−1, 1)) ‖u− SN (u)‖H1(−1,1) ≤ CN
3/2−l ‖u‖Hl(−1,1) ,

where C > 0 depends only on l and H1(−1, 1) and Hl(−1, 1) denote standard
Sobolev spaces (see [4, Ch. 5] for a detailed proof of (1) and its Chebyshev weight
and periodic unweighted analogues and [10] for its general Gegenbauer weight ana-
logue). Recently [9] this result was extended to the unit disk for Gegenbauer-type
weights.

The purpose of this work is proving a weighted analogue of (1) in the case of the
unit ball of any dimension. Our main result (Theorem 3.8) is

(2) (∀u ∈ Hl
w(Bd)) ‖u− SN (u)‖Hrw(Bd) ≤ CN

−1/2+2r−l ‖u‖Hlw(Bd) ,

where Bd is the unit ball of Rd, L2
w(Bd) = w−1/2 L2(Bd) with its natural norm,

Hl
w(Bd) and Hr

w(Bd) are corresponding weighted Sobolev spaces, SN is the L2
w(Bd)-

orthogonal projector onto Πd
N , the space of d-variate polynomials of degree less than

or equal to N , and C depends only on the integers 1 ≤ r ≤ l and the weight w,
which in turn is of the Gegenbauer form x 7→ (1− ‖x‖2)α with α > −1.

Our main result has applications in the analysis of polynomial interpolation
operators, themselves important in the analysis of spectral methods (cf. [3] and [4,
Ch. 5]) and in the characterization of approximability spaces relevant to the analysis
of nonlinear iterative methods for the numerical solution of high-dimensional PDE
(cf. [8, Ch. 4]).
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We emphasize that the case r = 0 is explicitly excluded from consideration in (2),
for in that case the provably optimal power on N is −l (cf. Lemma 2.2 below) and
thus this case does not follow the pattern in (2). We also note that if 2r ≥ l + 1/2
in (2), SN (u) need not converge to u in Hr

w(Bd) as N tends to infinity. We further
remark that (2) is not a best or quasi-best approximation result (for those see [4,
Ch. 5], [10], [13, § 4] and [5, § 5]), because in general the orthogonal projection of
Hr
w(Bd) onto Πd

N need not coincide with the restriction of SN to Hr
w(Bd).

In every proof of a particular instance of (2) that we are aware of, an important
role was played by spectral differentiation formulas, which connect the orthogonal
expansion coefficients of a functions and one of its derivatives; e.g., [4, Eq. (2.3.18)]

(∀ k ∈ {0, 1, 2, . . . }) û
(1)
k = (2k + 1)

∞∑
q=0

ûk+1+2q,

where u =
∑∞
k=0 ûk Lk and u′ =

∑∞
k=0 û

(1)
k Lk are the orthogonal expansions of

u ∈ H1(−1, 1) and its weak derivative with respect to the basis (Lk)∞k=0 of Legendre
polynomials. See [4, Eq. (2.4.22)]—the ‘+’ sign there is a typo—, [10, Eq. (2.13)]
and [9, Lem. 3.4] for spectral differentiation formulas for Chebyshev, Gegenbauer
and Zernike orthogonal polynomial expansions. Whereas in one and two dimensions
those ‘named’ bases of orthogonal polynomials are known to satisfy a wealth of
simple identities so as to make spectral differentiation formulas simple to derive,
that might not be the case for known explicit orthogonal polynomial bases L2

w(Bd)
with d ≥ 3 (cf. the example bases in [7, § 5.2]).

In this work we introduce a streamlined technique to prove (2) which circum-
vents the need for spectral differentiation formulas and actually dispenses with the
usage of bases of orthogonal polynomials altogether, focusing instead on orthogonal
polynomial spaces; that is, spaces of polynomials of a certain degree orthogonal to
all polynomials of lower degree (cf. (3) and the opening remarks of [7, Ch. 3]). In
this way we can settle our main result seamlessly for any dimension.

The outline of this article is as follows. After introducing some general nota-
tion in subsection 1.1 we introduce the relevant weighted L2 and Sobolev spaces,
the associated orthogonal polynomial spaces and some known properties of their
members and their associated projectors in section 2. The core of this work is in
section 3, in which we prove auxiliary results concerning orthogonal polynomial
spaces and their projectors, bound a differentiation-projection commutator, prove
our main result in Theorem 3.8 and an interpolation corollary and wrap up with
some general remarks.

1.1. General notation. We denote by N the set of strictly positive integers and
N0 := {0} ∪ N. Given x = (x1, . . . , xd) ∈ Rd, we denote its Euclidean norm
by ‖x‖. Members of [N0]d will be called multi-indices and for every multi-index
γ ∈ [N0]d, point x ∈ Rd and (strongly or weakly) differentiable enough complex-

valued function f defined on some open set of Rd we shall write |γ| =
∑d
i=1 γi,

xγ =
∏d
i=1 x

γi
i and ∂γf = ∂|γ|f/(∂xγ11 · · · ∂x

γd
d ). As already mentioned, Bd denotes

the unit ball of Rd and Πd
n denotes the space of complex d-variate polynomials of

total degree less than or equal to n; we adopt the convention Πd
n = {0} if n < 0.
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2. Orthogonal polynomials and weighted Sobolev spaces

Given d ∈ N = {1, 2, . . . } and α > −1 let Wα denote the weight function

Bd 3 x 7→ (1 − ‖x‖2)α ∈ R. Note that we omit d from the notation of Wα (and
of L2

α, Hm
α , projαk , etc. below); we do this in order to avoid cluttering and because

all of our arguments are dimension-independent. Let L2
α denote the vector space

of (equivalence classes of) measurable functions f : Bd → C such that W
1/2
α f ∈

L2(Bd). Equipped with its natural inner product 〈f, g〉α :=
∫

Ω
f(x) g(x)Wα(x) dx,

L2
α is a Hilbert space. In the notation of (2), L2

α = L2
w(Bd) with w = Wα. The

restriction on α ensures that C(Bd) is contained in L2
α. If −1 < α ≤ α′ then Wα′ ≤

Wα, whence L2
α is continuously embedded into L2

α′ with the injection operator norm
bounded by 1.

Let us define the space of orthogonal polynomials of degree k with respect to the
weight Wα (cf. [7, Def. 3.1.1])

(3) Vαk :=
{
p ∈ Πd

k | (∀ q ∈ Πd
k−1) 〈p, q〉α = 0

}
.

We note that the convention adopted for the Πd
k implies that Vαk = {0} for k < 0.

As Wα is centrally symmetric, it transpires from [7, Th. 3.3.11] that for all k ∈
N0 = {0, 1, 2, . . . } there holds the following parity relation:

(4) (∀ pk ∈ Vαk ) (∀x ∈ Bd) pk(−x) = (−1)kpk(x).

From [7, Th. 3.2.18],

(5) (∀n ∈ N0) Πd
n =

n⊕
k=0

Vαk and L2
α =

∞⊕
k=0

Vαk .

Let projαk denote the orthogonal projection from L2
α onto Vαk and let Sαn denote the

orthogonal projection from L2
α onto Πd

n. From (5),

(6) (∀n ∈ N0) Sαn =

n∑
k=0

projαk .

We will denote the entrywise application of Sαn to L2
α-valued vectors and higher-

order tensors by Sαn as well (cf. Corollary 3.7 below).
From [7, Eq. (5.2.3) and Th. 8.1.3] and straightforward algebraic manipulation

it is readily computed that the members of Vαk are eigenfunctions of the second
order differential operator p 7→ −W−1

α div (Wα+1∇p)−
∑

1≤i<j≤dD
2
i,jp, where Di,j

denotes the first order angular differential operator xi∂j − xj∂i [6, § 1.8], with
associated eigenvalue k(k + d+ 2α). By integration by parts the following integral
form follows:

(7) (∀ pk ∈ Vαk )
(
∀ q ∈ C1(Bd)

)
〈∇pk,∇q〉[L2

α+1]d +
∑

1≤i<j≤d

〈Di,jpk, Di,jq〉α = k(k + d+ 2α)〈pk, q〉α.

For m ∈ N we introduce the weighted Sobolev space

(8a) Hm
α :=

{
u ∈ L2

α | ‖u‖
2
Hmα

:=
m∑
k=0

|u|2Hkα <∞
}
,
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where the seminorms |·|Hkα are defined by

(8b) |u|2Hkα := ‖∇ku‖2[L2
α]d×···×d =

∑
|γ|=k

(
k
γ

)
‖∂γu‖2α ,

and in turn
(
k
γ

)
= k!/(γ1! · · · γd!) is the number of times the multi-index γ of order

k appears in the k-dimensional array-valued ∇ku. The seminorm (8b) is of course

equivalent to the common choice u 7→
(∑

|γ|=k ‖∂γu‖
2
α

)1/2

. In the notation of (2),

Hm
α = Hm

w (Bd) with w = Wα. Given m ∈ N0 and θ ∈ (0, 1) we define Hm+θ
α by

complex interpolation [1, ¶7.51–52]:

(9) Hm+θ
α :=

[
Hm
α ,H

m+1
α

]
θ
.

Lemma 2.1. Let d ∈ N, α > −1 and m ∈ N0. Then, C∞(Bd) is dense in Hm
α .

Proof. This follows from [12, Rem. 11.12.(iii)] upon the realization that Wα is
bounded from above and below by positive multiples of dist(·, ∂Bd). �

We cite from [9, Cor. 2.7 and Lem. 2.11] the following L2
α bound on the Sαn

projection error and an inverse or Markov-type inequality:

Lemma 2.2. For all α > −1, d ∈ N and l ∈ N0 there exists a positive constant
C = C(α, d, l) such that

(∀n ∈ N0) (∀u ∈ Hl
α) ‖u− Sαn (u)‖α ≤ C(n+ 1)−l ‖u‖Hlα .

Lemma 2.3. For α > −1 and d ∈ N there exists a positive constant C = C(α, d) >
0 such that

(∀n ∈ N0) (∀ pn ∈ Πd
n) ‖∇pn‖[L2

α]d ≤ Cn
2 ‖pn‖L2

α
.

3. Main result

The following proposition collects results concerning relations between spaces of
orthogonal polynomials and their associated projectors not involving differentiation.

Proposition 3.1. Let α > −1 and d ∈ N.
(i) Let pk ∈ Vα+1

k . Then, (1− ‖·‖2)pk ∈ Vαk ⊕ Vαk+2.

(ii) Let qk ∈ Vαk . Then, qk = projα+1
k−2 (qk) + projα+1

k (qk).

(iii) Let u ∈ L2
α. Then, projα+1

k (u) = projα+1
k

(
projαk (u) + projαk+2(u)

)
.

(iv) Let u ∈ L2
α. Then,

projα+1
k (u) = projαk (u) + projα+1

k ◦ projαk+2(u)− projα+1
k−2 ◦ projαk (u).

Proof. Given q ∈ Πd
k−1, 〈(1− ‖·‖2)pk, q〉α = 〈pk, q〉α+1 = 0 by definition (3). Also,

by the parity relation (4), (1− ‖·‖2)pk ⊥α Vαk+1. Therefore part (i) stems from the
first equality in (5). An analogous argument accounts for part (ii). Part (iii) comes
from the fact that given pk ∈ Vα+1

k ,

〈projα+1
k (u), pk〉α+1 = 〈u, pk〉α+1 = 〈u, (1− ‖·‖2)pk〉α

(i)
= 〈projαk (u) + projαk+2(u), (1− ‖·‖2)pk〉α = 〈projαk (u) + projαk+2(u), pk〉α+1.

Part (iv) is obtained from adding and subtracting projα+1
k−2 (projαk (u)) to the right

hand side of part (iii) and using part (ii). �
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We will now present another collection of results, this time involving differenti-
ation. To this end we introduce the first order differentiation operator dαj , α > −1
and j ∈ {1, . . . , d}, by

dαj q(x) := −Wα(x)−1 ∂

∂xj
(Wα+1(x) q(x)) = −(1− ‖x‖2) ∂jq(x) + 2(α+ 1)xj q(x).

Proposition 3.2. Let α > −1, d ∈ N and j ∈ {1, . . . , d}.
(i) dαj maps Πd

k into Πd
k+1.

(ii) Given p, q ∈ C1(Bd), 〈∂jp, q〉α+1 = 〈p, dαj q〉α.
(iii) Let rk ∈ Vα+1

k . Then, dαj (rk) ∈ Vαk+1.

(iv) Let pk ∈ Vαk . Then, ∂jpk ∈ Vα+1
k−1 .

(v) Let u ∈ C1(Bd). Then, ∂j projαk (u) = projα+1
k−1 (∂ju).

Proof. Part (i) is straightforward. Part (ii) is obtained by integration by parts and

noticing that no boundary term appears on account of (1− ‖·‖2)α+1 vanishing on
the boundary of Bd.

Given rk ∈ Vα+1
k , by part (i), dαj (rk) ∈ Πd

k+1, and, on account of part (ii), it is

L2
α-orthogonal to Πd

k, whence part (iii). An analogous argument accounts for part
(iv).

Given u ∈ C1(Bd), by part (iv), ∂j projαk (u) ∈ Vα+1
k−1 . Part (v) then comes about

from the fact that for all r ∈ Vα+1
k−1 ,

〈∂j projαk (u), r〉α+1
(ii)
= 〈projαk (u), dαj r〉α

(iii)
= 〈u, dαj r〉α

(ii)
= 〈∂ju, r〉α+1.

�

Remark 3.3 (Shift operators). Part (iii) of Proposition 3.2 means that dαj is a
backward shift/degree raising operator in the sense of [11]. Similarly, by part (iv),
∂j is a forward shift/degree lowering operator (see also (11) below).

Remark 3.4 (Relations with identities satisfied by bases). In the one-dimensional

case (d = 1), Vαk = span({P (α,α)
k }), where the P

(α,α)
k are Jacobi polynomials [14,

Ch. 4]. Then, from the ‘id-shift’ identity (a combination of (6.4.21) and (6.4.23) of
[2]; it must be slightly modified if α = −1/2 and k = 0)
(10)

P
(α,α)
k =

(k + 2α+ 1)(k + 2α+ 2)

(2k + 2α+ 1)(2k + 2α+ 2)
P

(α+1,α+1)
k − k + α

2(2k + 2α+ 1)
P

(α+1,α+1)
k−2 ,

it is possible to furnish alternative proofs of parts (ii) and (iii) of Proposition 3.1
and hence of its part (iv). In that rough sense Proposition 3.1 corresponds to (10).
Similarly [14, Eq. (4.21.7)],

(11) P
(α,α)
k

′
=
k + 2α+ 1

2
P

(α+1,α+1)
k−1 ,

allows for proving part (v) of Proposition 3.2 and so, again in a rough sense, Propo-
sition 3.2 corresponds to (11). Using (10) and explicit formulas for the norms of
Jacobi polynomials (cf. [14, Eq. (4.3.3)]) it is possible to reconstruct Proposition 3.5,
although the necessary computations are not short.

In the two-dimensional case, Vαk = span({P (α)
m,n | m+ n = k}), where each P

(α)
m,n

is a Zernike polynomial [15]. Then, the identities (10) and (11) find appropriate
analogues in [9, Eq. (3.12)] and [15, Eq. (5.3)], respectively.
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Inasmuch as it allows for quantifying a ‘wrong’ (L2
α) norm of a member of a

space of orthogonal polynomials (Vα+1
k ), the following result is distantly related to

[8, Eq. (4.43)] and [9, Prop. 3.12] in the d = 1 and d = 2 cases, respectively.

Proposition 3.5. Let α > −1, d ∈ N and k ∈ N0. Then, for all p, q ∈ Vα+1
k ,

〈p, q〉α =

(
k + d/2

α+ 1
+ 1

)
〈p, q〉α+1.

Proof. We start with the observation that if s is a homogeneous polynomial of
degree k—that is, of the form s(x) =

∑
|γ|=n cγx

γ—, it satisfies x · ∇s(x) = k s(x),

which also goes on to show that the x · ∇ operator exactly preserves the degree of
any d-variate polynomial.

Let p, q ∈ Vα+1
k . As every member of Vα+1

k is a linear combination of ho-
mogeneous polynomials of degree ranging from 0 to k, there exists a homogeneous
polynomial sp of degree k such that p−sp ∈ Πd

k−1 and hence x·∇p−x·∇sp ∈ Πd
k−1.

Thus,

(12) 〈x · ∇p, q〉α+1 = 〈x · ∇sp, q〉α+1 = k〈sp, q〉α+1 = k〈p, q〉α+1.

Using the facts that ∇(1 − ‖x‖2)α+1 = −2(α + 1)(1 − ‖x‖2)αx, div(x) = d, inte-
gration by parts and (12), which of course is still valid if the roles of p and q are
interchanged,

2(α+1)

∫
Bd
p(x)q(x) ‖x‖2 (1−‖x‖2)α dx =

∫
Bd

div
(
p(x)q(x)x

)
(1−‖x‖2)α+1 dx

= (〈x · ∇p, q〉α+1 + 〈p, x · ∇q〉α+1 + d〈p, q〉α+1) = (2k + d)〈p, q〉α+1.

The desired result then follows from the fact that (1−‖x‖2)α = ‖x‖2 (1−‖x‖2)α+

(1− ‖x‖2)α+1. �

Lemma 3.6. Let α > −1, d ∈ N and l ∈ N. Then, there exists C = C(α, d, l) > 0
such that for all u ∈ Hl

α, n ∈ N0 and j ∈ {1, . . . , d},

‖∂jSαn (u)− Sαn (∂ju)‖α ≤ C(n+ 1)3/2−l ‖∂ju‖Hl−1
α

.

Proof. Let us first assume that u ∈ C∞(Bd). Combining part (iv) of Proposition 3.1
and part (v) of Proposition 3.2, we obtain

(13) ∂j projαk+1(u)− projαk (∂ju) = projα+1
k ◦ projαk+2(∂ju)− projα+1

k−2 ◦projαk (∂ju).

Using (6) to express Sαn in terms of the projαk , using (13), noticing that a telescoping
sum results and using part (ii) of Proposition 3.1 to expand an appearance of
projαn(∂ju) ∈ Vαn ,

(14) ∂jS
α
n (u)− Sαn (∂ju) =

n∑
k=0

∂j projαk (u)−
n∑
k=0

projαk (∂ju)

=

n−1∑
k=0

(
∂j projαk+1(u)− projαk (∂ju)

)
− projαn(∂ju)

= projα+1
n−2 ◦projαn(∂ju) + projα+1

n−1 ◦ projαn+1(∂ju)− projαn(∂ju)

= projα+1
n−1 ◦ projαn+1(∂ju)− projα+1

n ◦ projαn(∂ju).
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Now, by Proposition 3.5, the fact that ‖projα+1
n−1‖L(L2

α+1) ≤ 1 and the fact that

‖·‖α+1 ≤ ‖·‖α in L2
α we have that for all n ≥ 1,

(15)
∥∥projα+1

n−1 ◦projαn+1(∂ju)
∥∥2

α
≤ n+ d/2 + α

α+ 1

∥∥projαn+1(∂ju)
∥∥2

α
.

Of course, if n = 0, our conventions imply that
∥∥projα+1

n−1 ◦ projαn+1(∂ju)
∥∥2

α
= 0.

Analogous arguments show that for all n ∈ N0,

(16)
∥∥projα+1

n ◦ projαn(∂ju)
∥∥2

α
≤ n+ 1 + d/2 + α

α+ 1
‖projαn(∂ju)‖2α .

Taking the squared L2
α norm of both ends of (14), exploiting the L2

α orthogonality
of Vα+1

n−1 and Vα+1
n (a consequence of the parity relation (4)) and the bounds (15)

and (16) we observe that

‖∂jSαn (u)− Sαn (∂ju)‖2α ≤
n+ 1 + d/2 + α

α+ 1

∥∥∂ju− Sαn+2(∂ju)
∥∥2

α
.

As ∂ju ∈ Hl−1
α , we can appeal to Lemma 2.2 to obtain the desired result for

u ∈ C∞(Bd) after realizing that there exists a constant C̃ depending only on α,

d and l such that n+1+d/2+α
α+1 ((n + 3)−(l−1))2 ≤ C̃(n + 1)3−2l for all n ∈ N0. The

general result then follows via the density result in Lemma 2.1. �

Corollary 3.7. Let α > −1, d ∈ N and r, l ∈ N with r ≤ l. Then, there exists
C = C(α, d, l, r) > 0 such that for all u ∈ Hl

α and n ∈ N0,

‖∇rSαn (u)− Sαn (∇ru)‖[L2
α]d×···×d ≤ C(n+ 1)2r−1/2−l ‖u‖Hlα .

Proof. Let us first note that iterating Lemma 2.3 we find that for all r ∈ N there
exists C > 0 depending on α, d and r such that

(17) (∀n ∈ N0) (∀ p ∈ Πd
n) |p|Hrα ≤ Cn

2r ‖p‖L2
α
.

We will now operate by induction on r. Taking the square root of the sum with
respect to j of the square of both sides of the inequality in Lemma 3.6 the case
r = 1 follows almost immediately. Let us suppose now that our desired result holds
for some r ∈ {1, . . . , l} and that r + 1 ≤ l. Then, for all j ∈ {1, . . . , d}, by the
triangle inequality,

‖∇r∂jSαn (u)− Sαn (∇r∂ju)‖[L2
α]d×···×d

≤ |∂jSαn (u)− Sαn (∂ju)|Hrα + ‖∇rSαn (∂ju)− Sαn (∇r∂ju)‖[L2
α]d×···×d .

By (17) and Lemma 3.6 the first term is bounded by an appropriate constant
times n2r(n + 1)3/2−l ‖∂ju‖Hl−1

α
. By the induction hypothesis and the fact that

∂ju ∈ Hl−1
α the second term is bounded by an appropriate constant times (n +

1)2r−1/2−(l−1) ‖∂ju‖Hl−1
α

. Then the desired result in the r + 1 case follows from
summing up with respect to j and standard inequalities connecting vector 1- and
2-norms. �

We are now in a position to state our main result in Theorem 3.8 and the inter-
polation Corollary 3.9. As they are almost completely analogous to Theorem 3.9
and Corollary 3.10 of [9] we only sketch their proofs here.
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Theorem 3.8. Let α > −1, d ∈ N and r, l ∈ N = {1, 2, . . . } with r ≤ l. Then,
there exists C = C(α, d, l, r) > 0 such that for all u ∈ Hl

α and n ∈ N0,

(18) ‖u− Sαn (u)‖Hrα ≤ Cn
2r−1/2−l ‖u‖Hlα .

Proof. For every k ∈ {1, . . . , r},

|u− Sαn (u)|2Hkα
≤ 2 ‖∇ku− Sαn (∇ku)‖2[L2

α]d×···×d + 2 ‖Sαn (∇ku)−∇kSαn (u)‖2[L2
α]d×···×d .

We bound the first term using Lemma 2.2 and the second using Corollary 3.7 and
the desired result follows upon summing up with respect to k and taking the square
root. �

Corollary 3.9. Let α > −1, d ∈ N and r, l ≥ 0 with r ≤ l. Then, there exists
C = C(α, d, l, r) > 0 such that for all u ∈ Hl

α and n ∈ N0,

‖u− Sαn (u)‖Hrα ≤ Cn
e(l,r) ‖u‖Hlα where e(l, r) =

{
3/2 r − l if 0 ≤ r ≤ 1,

2 r − 1/2− l if r ≥ 1.

Proof. The desired bound on the operator norm of Tαn,l,r : Hl
α → Hr

α defined by

Tαn,l,r := I−Sαn (with I being the identity operator) holds when r and l are integers
from Lemma 2.2 in the r = 0 case and Theorem 3.8 in the r ∈ N case. The non-
integer cases then follow by using the exact interpolation and reiteration theorems.

�

Remark 3.10 (Real interpolation). Just as it was remarked upon in the d = 2 case
in [9], essentially the same argument used in Corollary 3.9 would work if we used
real instead of complex interpolation to define the weighted Sobolev spaces with
non-integer differentiation parameter in (9).

Remark 3.11 (On the optimality of the main result). There are four parameters
in our main result, Theorem 3.8: The dimension d ∈ N, the weight parameter
α ∈ (−1,∞), the regularity parameter for the function being approximated l ∈ N
and the regularity parameter in which to measure the residual r ∈ {1, . . . , l}. We
are aware of optimality proofs in the cases (d, α, l, r) = (1,−1/2, 1, 1) [3, pp. 76,
78], (d, α, r, r) = (1, 0, 1, 1) [4, p. 285], (d, α, l, r) ∈ {2} × (−1,∞) × N × {1} [9,
Th. 3.13] (the latter can be adapted to (d, α, l, r) ∈ {1} × (−1,∞)× N× {1}). All
those proofs exploit a number of simple identities satisfied by particular bases of
orthogonal polynomials. Notice also that all those parameter regimes have r = 1
(arguably the most important r in Theorem 3.8 because of its connection with
the analysis of weak forms of second order PDE). In [9] numerical experiments
were used to support the conjecture that Theorem 3.8 is also true for (d, α, l, r) ∈
{2} × (−1,∞) × {(l, r) ∈ N × N | r ≤ l}. For general d we do not know of bases
of Vαk satisfying identities (particularly regarding differentiation) simple enough
so as to enable us to completely extend the optimality proofs mentioned above.
Nevertheless, always in the r = 1 case, we managed to generalize the techniques
used in [9] for (α, l) in a certain proper subset of its natural range (−1,∞)×N. The
arguments behind such a partial result being rather involved and out of character
with the rest of this work, we decided against including them here.
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Remark 3.12. We expect our main sequence of results in this section 3 to extend to
a wider class of of reflection invariant weights. If we focused on Gegenbauer-type
weights it was mostly on account of their importance in applications and the ready
availability of Lemma 2.1, Lemma 2.2 and Lemma 2.3.
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