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Abstract

We have formulated an asymptotic model for implementation in the �nite element method to

calculate di�raction from a planar multilayered structure having a shallow surface-relief grating. The

thin grating layer containing the shallow grating is replaced by a planar interface with transmission

conditions that di�er from the standard continuity conditions. The parameters de�ning the shallow

surface-relief grating are thereby removed from the geometry to the transmission conditions, thereby

speeding up �nite-element calculations as a very �ne mesh is not needed for the thin grating layer.

This will considerably reduce the computational cost of optimizing the grating shape, since there is

no need to re-mesh at every optimization step.

1 Introduction

A surface-relief grating is a momentum adder or subtractor, by virtue of the Floquet�Bloch theorem
[1, 2, 3]. To the momentum of an incident plane wave, the grating can add (or subtract) discrete amounts
of momentum parallel to the mean plane of the grating, thereby coupling the incident plane wave to
either nonspecularly re�ected/transmitted plane waves that transport energy away from the grating [4]
and/or surface waves whose propagation is guided by the mean plane of the grating [5]. Accordingly,
surface-relief gratings are used to re�ect or transmit light in nonspecular directions [4, 6] and launch
surface waves for optical sensing of analytes [7] as well as to harvest solar energy [8, 9], among other
applications.

The discrete amounts of momentum that can be added or subtracted depend on the period L of the
grating as well as the free-space wavelength λ0 of the incident light. While the corrugation depth δ of
the grating plays an important role in how the addition or subtraction process occurs without violation
of the principle of conservation of energy, even corrugation depths that are a small fraction of λ0 can be
e�ective in the excitation of surface waves and enhancement of optical absorptance [10, 11].

Optimal design of a surface-relief grating for a speci�c application requires the use of rapid and accu-
rate solvers for the frequency-domain Maxwell equations. The optimization process is computationally
expensive since these equations must be repeatedly solved for a wide range of optical and geometrical
parameters [9, 12]. Several numerical techniques have been formulated to solve the frequency-domain
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Maxwell equations in structures containing surface-relief gratings. These numerical techniques include the
exact modal method [13], the �nite-di�erence time-domain method [14, 15], and the method of moments
[16, 17, 18]. Nowadays, the most commonly used numerical techniques for grating analysis are the rigor-
ous coupled-wave approach (RCWA) [19, 20, 21, 22] and the �nite element method (FEM) [23, 12]. The
electromagnetic �eld phasors are expanded in the RCWA in Fourier series with respect to the direction(s)
of periodicity, whereas space is discretized through a mesh in the FEM. Even though both the RCWA
and the FEM have advantages and disadvantages [25, 24], the FEM is ideally suited for complicated
geometries.

A 1D surface-relief grating is commonly speci�ed as the interface z = g(x) = g(x±L) of two dissimilar
media. The representation of �elds inside the grating layer min

x
{g(x)} < z < max

x
{g(x)} of thickness δ =

max
x
{g(x)}−min

x
{g(x)} > 0 has been a topic of research ever since the time of Rayleigh [26, 27, 28, 29]. An

FEM solver can be computationally expensive when the grating layer is electrically thin (i.e., δ/λ0 � 1),
because an extremely �ne mesh is needed to adequately resolve a thin geometric feature. The same issue
arises even for electrically thin layers that are homogeneous.

One way to treat a surface-relief grating with smooth corrugations is to planarize it using a carefully
devised mapping. Two very di�erent planarization approaches involve (i) transformative optics wherein
the periodically corrugated interface is mapped into a �at interface by a change of spatial variables [30]
and (ii) a series of perturbations [11]. The transformation-optics approach results in spatially dependent
constitutive parameters, but opens the way to a Fourier-series-based solver (such as the RCWA) for
the resulting equations since the interface has been �attened. This approach will not work directly for
sawtooth or rectangular gratings, but does yield a popular numerical technique for grating problems
[31, 32, 33, 34]. In the perturbative method of Nicholls et al. [11], the smooth corrugation is considered
as the deformation of a �at interface via a Taylor series, and the e�ect of this deformation can be
computed by solving a perturbative sequence of boundary-value problems by a Fourier technique. Both s
and p-polarized incident waves have been considered and this approach is attractive because higher-order
correctors can be incorporated.

Recently, Delourme et al. replaced an electrically thin annulus [35] and an electrically thin plate of
�nite extent [36, 37], both periodically nonhomogeneous by a circle and a �nite-sized plane, respectively,
on which they imposed transmission conditions that are di�erent from the standard continuity conditions
for the tangential components of the electric and magnetic �eld phasors on bi-medium interfaces. This
planarization approach has been used by Özdemir et al. [38] for homogeneous and electrically thin regions
of �nite extent, and by Maurel et al. [39] for a periodic array of metallic bumps deposited on the planar
surface of a dielectric material �lling a half space.

Thus the planarization approach initiated by Delourme et al. [35, 36, 37] for regions of �nite extent is
applicable to electrically thin grating layers of in�nite transverse extent, whether involving highly dissi-
pative or weakly dissipative materials. When this (i.e., the third) planarization approach is used, there is
no need of having extremely small elements in the FEM mesh for the grating layer. Moreover, the FEM
mesh can be �xed for all possible geometric changes in the grating layer during an optimization process,
which makes this technique suitable for determining optimal designs. Clearly, the third planarization
approach di�ers from both the transformation-optics approach [30] and the perturbative approach [11].

In this paper, we adapt the third planarization approach to devise an asymptotic model so that
the FEM can be implemented for shallow metallic gratings used as backre�ectors in solar-cell structures
[8, 9, 12]. Whether the incident plane wave is s- or p-polarized, the electrically thin grating layer is replaced
by a planar interface across which certain transmission conditions hold and the Helmholtz equation is
solved using the FEM. The grating interface can have corrugations that are rectangular, sawtooth, or of
other shapes. This method is also applicable for an electrically thin homogeneous layer [38] since that
layer can be conceptualized as a special case of a grating layer.

This paper is organized as follows. The boundary-value problem is set up and the asymptotic model
is formulated in Sec. 2, when the grating geometry is invariant along the y axis, and the wave vector of
the incident plane wave lies wholly in the xz plane. Numerical results to evaluate the performance of the
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FEM incorporating the third planarization approach are presented and discussed in Sec. 3 for both s-
and p-polarization states of the incident plane wave. The chief conclusions are summarized in Sec. 4. In
the appendix we show that our approach can be generalized for application to a large-amplitude smooth
grating perturbed by a thin grating with a smaller period [40].

An exp(−iωt) dependence on time t is implicit, with ω denoting the angular frequency and i =
√
−1.

The free-space wavenumber, the free-space wavelength, and the intrinsic impedance of the free space are
denoted by k0 = ω

√
ε0µ0, λ0 = 2π/k0, and η0 =

√
µ0/ε0, respectively, with µ0 being the permeability

and ε0 the permittivity of free space. Vectors are in boldface; Cartesian unit vectors are identi�ed as ûx,
ûy and ûz; and the position vector r = xûx + yûy + zûz.

2 Theory

2.1 Boundary-value problem

The solar-cell structure is assumed to occupy the region Φδ = {r ∈ R3 : |x| < ∞, |y| < ∞,−Lm −
δ/2 < z < δ/2 + Ld}. Within this region the relative permittivity εr(x, z) = εr(x ±mL, z), m ∈ Z =
{0,±1,±2, ...} is a function of x ∈ (−∞,∞) with period L and also varies with z ∈ (−Lm−δ/2, δ/2+Ld)
but not with y ∈ (−∞,∞). The half spaces {r ∈ R3 : |x| < ∞, |y| < ∞, z < −Lm − δ/2} and
{r ∈ R3 : |x| < ∞, |y| < ∞, z > δ/2 + Ld} are occupied by air; hence, the relative permittivity
εr(x, z) ≡ 1 in both these half spaces.

Figure 1: Unit cell Ω = Ω+ ∪Ωδ ∪Ω− of the solar-cell structure containing the grating layer of thickness
δ. The region Ω+ lying above the plane Γ+ is occupied by an isotropic dielectric material (shaded green).
The region Ω− lying below the plane Γ− is occupied by an isotropic metal (shaded brown). Interposed
between the planes Γ− and Γ+, the grating layer Ωδ is magni�ed for clarity, but actually δ � L for the
planarization approach applied here.

The unit cell Ω = {r ∈ R3 : 0 < x < L, |y| <∞,−Lm−δ/2 < z < δ/2+Ld} of the solar-cell structure
is shown schematically in Fig. 1, wherein we de�ne the plane Γ = {r ∈ R3 : 0 < x < L, |y| <∞, z = 0}.
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The domain Ω is subdivided into the following three non-overlapping regions

Ω− =
{
r ∈ R3 : 0 < x < L, |y| <∞,

−Lm − δ/2 < z < −δ/2}Ωδ =
{
r ∈ R3 : 0 < x < L, |y| <∞,

−δ/2 < z < δ/2}Ω+ =
{
r ∈ R3 : 0 < x < L, |y| <∞,

δ/2 < z < δ/2 + Ld}

 (1)

separated by the non-intersecting planes

Γ− = {r ∈ R3 : (r + δûz/2) ∈ Γ}
Γ+ = {r ∈ R3 : (r − δûz/2) ∈ Γ}

}
. (2)

The grating layer Ωδ is thus bounded by the planes Γ− and Γ+, with min
x
{g(x)} = −δ/2 and

max
x
{g(x)} = δ/2. Each of these three regions have di�erent dielectric properties: Ω− is occupied

by a homogeneous metal of relative permittivity ε−r , Ω+ is occupied by an isotropic dielectric material
of relative permittivity ε+

r , and Ωδ is occupied by a periodically nonhomogeneous material with relative
permittivity εδr(x, z) = εδr(x± L, z).

The boundary z = δ/2 + Ld of the solar-cell structure is illuminated by an obliquely incident plane
wave whose electric �eld phasor is given by

Einc(r) = [asûy + ap(ûx cos θ + ûz sin θ)] exp {ik0 [x sin θ − (z − δ/2− Ld) cos θ]} , z ≥ δ/2 + Ld,
(3)

where θ is the angle of incidence with respect to the z axis, as is the amplitude of the s-polarized
component, and ap is the amplitude of the p-polarized component. The electric �eld phasors of the
re�ected and transmitted �elds can be stated respectively as

Eref(r) =
∑
n∈Z

(
asr

(n)
s ûy + apr

(n)
p p+

n

)
exp

{
i
[
κ(n)x +α(n) (z − δ/2− Ld)

]}
, z > δ/2 + Ld, (4)

Etr(r) =
∑
n∈Z

(
ast

(n)
s ûy + apt

(n)
p p−n

)
exp

{
i
[
κ(n)x −α(n) (z + Lm + δ/2)

]}
, z < −Lm − δ/2,(5)

where
κ(n) = k0 sin θ + 2πn/L, (6)

α(n) =

{
+
√
k2

0 − (κ(n))2, k2
0 ≥ (κ(n))2

+i
√

(κ(n))2 − k2
0, k2

0 < (κ(n))2 , (7)

and

p±n = ∓α
(n)

k0
ûx +

κ(n)

k0
ûz. (8)

The re�ection coe�cients of order n ∈ Z are denoted by r(n)
s and r(n)

p , and the corresponding trans-
mission coe�cients by t(n)

s and t(n)
p . For an s-polarized incident plane wave, the absorptance is de�ned

as
As = 1−

∑
n∈Z

[(
|r(n)
s |2 + |t(n)

s |2
)
Re(α(n))/α(0)

]
∈ [0, 1]; (9)

for a p-polarized incident plane wave, the absorptance is given by

Ap = 1−
∑
n∈Z

[(
|r(n)
p |2 + |t(n)

p |2
)
Re(α(n))/α(0)

]
∈ [0, 1]. (10)

Both quantities are functions of λ0 and θ.
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2.2 Scalar equations and boundary conditions

The time-harmonic form of the Maxwell curl equations is given by

∇×E(r) = iωµ0H(r),
∇×H(r) = −iωε0εr(x, z)E(r),

}
, r ∈ Ω. (11)

After decoupling the s- and p-polarization states since the �elds do not depend on y, Eqs. (11) reduce to
the Helmholtz equation

∇ • [B(x, z)∇u(x, z)] + k2
0b(x, z)u(x, z) = 0, r ∈ Ω, (12)

where
u(x, z) = Ey(x, z), B(x, z) = 1, b(x, z) = εr(x, z), (13)

for the s polarization state, and

u(x, z) = −η0Hy(x, z), B(x, z) = 1
εr(x,z) , b(x, z) = 1, (14)

for the p polarization state.
The solution u(x, z) is denoted by u+(x, z) and u−(x, z), respectively, for z > δ/2 + Ld and z <

−Lm − δ/2. Equations (3)�(5) lead to the expansions

u+(x, z) = aq exp
{
i
[
κ(0)x− α(0) (z − δ/2− Ld)

]}
+ aq

∑
n∈Z

r(n)
q exp

{
i
[
κ(n)x+ α(n) (z − δ/2− Ld)

]}
,

z > δ/2 + Ld, (15)

u−(x, z) = aq
∑
n∈Z

t(n)
q exp

{
i
[
κ(n)x− α(n) (z + Lm + δ/2)

]}
, z < −Lm − δ/2, (16)

where q ∈ {p, s}.
The functions u(x, z) and u−(x, z) must be appropriately matched using standard continuity condi-

tions on the plane z = −Lm − δ/2, and the functions u(x, z) and u+(x, z) match in the same way on the
plane z = δ/2 + Ld. Hence, with ρ > 0, we have to enforce the conditions

u−(x, z)|z=−Lm−δ/2−ρ = u(x, z)|z=−Lm−δ/2+ρ
∂u−(x,z)

∂z

∣∣
z=−Lm−δ/2−ρ

= B(x, z)∂u(x,z)
∂z

∣∣
z=−Lm−δ/2+ρ

u+(x, z)|z=δ/2+Ld+ρ = u(x, z)|z=δ/2+Ld−ρ
∂u+(x,z)

∂z

∣∣
z=δ/2+Ld+ρ

= B(x, z)∂u(x,z)
∂z

∣∣
z=δ/2+Ld−ρ

 ,

x ∈ [0, L], (17)

in the limit ρ→ 0. In addition, u(x, z) satis�es the quasi-periodicity conditions

u(x, z)
∣∣
x=L

= exp(iκ(0)L)u(x, z)
∣∣
x=0

ûΓ
• ∇u(x, z)

∣∣
x=L

= exp(iκ(0)L)ûΓ
• ∇u(x, z)

∣∣
x=0

}
,

z ∈ (−Lm − δ/2, δ/2 + Ld), (18)

where the unit vector ûΓ = ûz is normal to the plane Γ.

2.3 Asymptotic model

Equations (12)�(18) constitute the full model which we approximate by an asymptotic model (valid in
the limit when δ → 0) where Ωδ is replaced by the plane Γ. In the asymptotic model, the approximation
of the �elds must satisfy certain approximate transmission conditions (ATCs) across Γ.
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There is no unique way to prescribe the ATCs. For instance, Maurel et al. [39] used an approach
similar to the one analyzed by Delourme et al. [35, 36, 37] where each term of the power series in the
asymptotic expansions is written as a Taylor series around z = 0 (i.e., the plane Γ). Then, both �elds
are matched in a suitable overlapping region. Undertaking this approach, Maurel et al. derived ATCs
correct to order δ, with the coe�cients (usually called interface parameters) in the ATCs determined by
solving the partial di�erential equations satis�ed by the �elds in the asymptotic expansions. The solution
of these equations might be costly, depending on the corrugation shape. However, in particular cases
such as the rectangular corrugations considered by Maurel et al. [39], the interface parameters can be
approximately determined.

Özdemir et al. [38] proposed another way to de�ne the ATCs, provided the thin layer Ωδ is occupied
by a homogeneous material, i.e., when εδr(x, z) depends on neither x nor z. In this work we generalize
their approach to our setting wherein εδr(x, z) = εδr(x± L, z) as follows.

Although u(x, z) is represented by Eqs. (15) and (16), respectively, for z > δ/2+Ld and z < −Lm−δ/2,
respectively, we need to represent u(x, z) in Ω as well. This is done by adopting separate representations
in the three parts of Ω; thus,

u(x, z) =

 u−δ (x, z)
uδ(x, z)
u+
δ (x, z)

, r ∈

 Ω−

Ωδ

Ω+
. (19)

Concurrently, we de�ne

B(x, z) =

 B−(x, z)
Bδ(x, z)
B+(x, z)

, b(x, z) =

 b−(x, z)
bδ(x, z)
b+(x, z)

, r ∈

 Ω−

Ωδ

Ω+
. (20)

Equation (12) then devolves into the three partial di�erential equations

∇ •
[
B±(x, z)∇u±δ (x, z)

]
+ k2

0b
±(x, z)u±δ (x, z) = 0, r ∈ Ω±, (21)

and
∇ •

[
Bδ(x, z)∇uδ(x, z)

]
+ k2

0b
δ(x, z)uδ(x, z) = 0, r ∈ Ωδ. (22)

With ρ > 0, Eqs. (21) and (22) must be solved subject to the continuity conditions

u−δ (x, z)|z=−δ/2−ρ = uδ(x, z)|z=−δ/2+ρ

B−(x, z)
∂u−

δ (x,z)

∂z

∣∣
z=−δ/2−ρ = Bδ(x, z)∂u

δ(x,z)
∂z

∣∣
z=−δ/2+ρ

u+
δ (x, z)|z=δ/2+ρ = uδ(x, z)|z=δ/2−ρ
B+(x, z)

∂u+
δ (x,z)

∂z

∣∣
z=δ/2+ρ

= Bδ(x, z)∂u
δ(x,z)
∂z

∣∣
z=δ/2−ρ

 ,

x ∈ [0, L], (23)

in the limit ρ→ 0.
In our asymptotic model, the domain Ωδ is replaced by the plane Γ. Hence, the functions Bδ(x, z)

and bδ(x, z) must be approximated by functions that can only depend on x. Therefore, we average the
relative permittivity over z ∈ (−δ/2, δ/2) as

εr(x) =
1

δ

∫ δ/2

−δ/2
εr(x, z)dz (24)

and set

Bδ(x) =


1(
εr(x)

)−1
, bδ(x) =

{
εr(x)
1

, pol. state =

{
s
p
. (25)
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Next, we scale the solution in Ωδ with respect to the thickness of the grating layer by changing the
variable z to ξ = z/δ. This scaling de�nes the domain

Ω̃δ =
{
r̃ = xûx + yûy + ξûz ∈ R3 : 0 < x < L, |y| <∞,

−1/2 < ξ < 1/2} (26)

and allows us to remove the dependences of various quantities on the small parameter δ. After de�ning
the scaled function ũδ (x, ξ) = uδ(x, δξ), and using the chain rule as well as the z-averaged quantities
introduced in Eq. (25), (22) can be rewritten approximately as

∂
∂x

(
Bδ(x)∂ũ

δ(x,ξ)
∂x

)
+ 1

δ2
∂
∂ξ

(
Bδ(x)∂ũ

δ(x,ξ)
∂ξ

)
+ k2

0b
δ(x)ũδ(x, ξ) = 0, r̃ ∈ Ω̃δ. (27)

Let us now assume that ũδ (x, ξ) can be written as the power series

ũδ (x, ξ) =

∞∑
j=0

δj ũδj

(
x,
z

δ

)
. (28)

Then, after inserting the asymptotic expansion on the right side of (28) into (27), equating the terms
having the same powers of δ, and using the convention that ũδ` = 0 for ` < 0, we obtain

∂
∂x

(
Bδ(x)

∂ũδj−2(x,ξ)

∂x

)
+ ∂

∂ξ

(
Bδ(x)

∂ũδj (x,ξ)

∂ξ

)
+ k2

0b
δ(x)ũδj−2(x, ξ) = 0, r̃ ∈ Ω̃δ, j ∈ {0, 1, ....}. (29)

Let us also assume that the solution can be represented in the regions Ω± as a power series with
respect to δ; i.e.,

u±δ (x, z) =

∞∑
j=0

δj ϕ±j (x, z). (30)

As is usual in asymptotic models of this type, the functions ϕ±j are assumed to be at least once di�eren-
tiable with respect to z. In addition, due to the quasi-periodicity conditions in Eqs. (18), it is natural to
assume that ϕ±j are quasi-periodic with respect to x.

After replacing Bδ(x, z) by its averaged value Bδ(x) and uδ(x, z) by ũδ (x, ξ) in Eqs. (23), those
continuity conditions simplify to

u−δ (x, z)|z=− δ2−ρ = ũδ(x, ξ)|ξ=− 1
2 +ρ(

B−(x, z)
∂u−

δ

∂z (x, z)

)∣∣∣∣
z=− δ2−ρ

= 1
δ

(
Bδ(x)∂ũ

δ

∂ξ (x, ξ)

)∣∣∣∣
ξ=− 1

2 +ρ

u+
δ (x, z)|z= δ

2 +ρ = ũδ(x, ξ)|ξ= 1
2−ρ(

B+(x, z)
∂u+

δ

∂z (x, z)

)∣∣∣∣
z= δ

2 +ρ

= 1
δ

(
Bδ(x)∂ũ

δ

∂ξ (x, ξ)

)∣∣∣∣
ξ= 1

2−ρ


,

x ∈ [0, L] (31)

in the limit ρ→ 0. On using Eqs. (28) and (30) in Eqs. (31) and after equating the terms with the same
powers of δ, we �nally obtain the continuity conditions

φ−j (x, z)|z=− δ2−ρ = ũδj(x, ξ)|ξ=− 1
2 +ρ(

B−(x, z)
∂φ−

j−1

∂z (x, z)

)∣∣∣∣
z=− δ2−ρ

=

(
Bδ(x)

∂ũδj
∂ξ (x, ξ)

)∣∣∣∣
ξ=− 1

2 +ρ

φ+
j (x, z)|z= δ

2 +ρ = ũδj(x, ξ)|ξ= 1
2−ρ(

B+(x, z)
∂φ+

j−1

∂z (x, z)

)∣∣∣∣
z= δ

2 +ρ

=

(
Bδ(x)

∂ũδj
∂ξ (x, ξ)

)∣∣∣∣
ξ= 1

2 +ρ


,
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x ∈ [0, L], j ∈ {0, 1, ....}, (32)

in the limit ρ→ 0.
Let

v(x, z) =

{
v−(x, z)
v+(x, z)

, r ∈
{

Ω−

Ω+ (33)

be any function de�ned in Ω− ∪ Ω+. We denote by [v] and 〈v〉, respectively, the jump and mean values
of v de�ned as

[v] (x) = v+(x, z)|z= δ
2 +ρ − v−(x, z)|z=− δ2−ρ

〈v〉 (x) =
1

2

(
v+(x, z)|z= δ

2 +ρ + v−(x, z)|z=− δ2−ρ
)  ,

x ∈ [0, L], (34)

in the limit ρ→ 0.
Using this notation along with Barrow's rule in Eqs. (32), we obtain the relations

Bδ(x)
∂ũδj
∂ξ (x, ξ) =

〈
B
∂ϕj−1

∂z

〉
(x) +

1

2

[∫ ξ

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδj(x, τ)

∂τ

)
dτ −

∫ 1
2

ξ

∂

∂τ

(
Bδ(x)

∂ũδj(x, τ)

∂τ

)
dτ

]

ũδj(x, ξ) = 〈ϕj〉 (x) +
1

2

(∫ ξ

− 1
2

∂ũδj
∂τ

(x, τ) dτ −
∫ 1

2

ξ

∂ũδj
∂τ

(x, τ) dτ

)
[
B
∂ϕj
∂z

]
(x) =

∫ 1
2

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδj+1(x, τ)

∂τ

)
dτ

[ϕj ] (x) =

∫ 1
2

− 1
2

∂ũδj
∂τ

(x, τ)dτ


,

x ∈ [0, L], ξ ∈ [−1/2, 1/2]. (35)

Using these relations, we can write
[
B
∂ϕj
∂z

]
(x) and [ϕj ](x) in terms of

〈
B
∂ϕj−1

∂z

〉
(x) and 〈ϕj−1〉 (x).

In particular, for j ∈ {0, 1, 2}, we get

[ϕ0](x) = 0[
B ∂ϕ0

∂z

]
(x) = 0

[ϕ1] (x) =

(
Bδ(x)

)−1 〈
B ∂ϕ0

∂z

〉
(x)[

B ∂ϕ1

∂z

]
(x) = −

(
∂
∂x

(
Bδ(x) ∂

∂x

)
+ k2

0b
δ(x)

)
〈ϕ0〉 (x)

[ϕ2] (x) =

(
Bδ(x)

)−1 〈
B ∂ϕ1

∂z

〉
(x)[

B ∂ϕ2

∂z

]
(x) = −

(
∂
∂x

(
Bδ(x) ∂

∂x

)
+ k2

0b
δ
)
〈ϕ1〉 (x)


,

x ∈ [0, L]. (36)

Let us now restrict the summation on the right side of Eq. (30) to j ∈ {0, 1, 2} so that

u±δ (x, z) ≈ u±δ,2(x, z) = ϕ±0 (x, z) + δϕ±1 (x, z) + δ2ϕ±2 (x, z). (37)

Equations (36) then yield

[uδ,2](x) = δ

(
Bδ(x)

)−1 〈
B
∂uδ,2
∂z

〉
(x)− δ3

(
Bδ(x)

)−1 〈
B ∂ϕ2

∂z

〉
(x)[

B
∂uδ,2
∂z

]
(x) = −δ

(
∂
∂x

(
Bδ(x) ∂

∂x

)
+ k2

0b
δ(x)

)
〈uδ,2〉 (x) + δ3

(
∂
∂x

(
Bδ(x) ∂

∂x

)
+ k2

0b
δ(x)

)
〈ϕ2〉 (x).

 ,

8



x ∈ [0, L]. (38)

Neglecting terms of order δ3, we �nally obtain the following transmission conditions for u±δ,2(x, z):

[uδ,2] (x) = δ

(
Bδ(x)

)−1 〈
B
∂uδ,2
∂z

〉
(x)[

B
∂uδ,2
∂z

]
(x) = −δ

(
∂
∂x

(
Bδ(x) ∂

∂x

)
+ k2

0b
δ(x)

)
〈uδ,2〉 (x)

 ,

x ∈ [0, L]. (39a)

The above conditions are called ATCs because they correspond to approximations up to second order
of the transmission conditions satis�ed by u±δ,2. The interface parameters are Bδ(x) and bδ(x). In addition,
according to (21), u±δ,2 satisfy the partial di�erential equations

∇ •

[
B±∇u±δ,2(x, z)

]
+ k2

0b
±(x, z)u±δ,2(x, z) = 0, r ∈ Ω±, (39b)

together with the bottom and top transmission conditions in Eqs. (17) and the quasi-periodic boundary
conditions in Eqs. (18). After solving Eqs. (39) for u±δ,2(x, z), we can approximately determine u±δ (x, z)

in Ω±.
In the asymptotic model thus, δ has been removed from the geometry (i.e., the region Ωδ has been

�attened into the plane Γ) and is now contained in the expansion coe�cients of the solution in Ω±. Since
terms of order δ3 were neglected, the best possible truncation error is likely to be of order δ3. As we show
in Sec. 3, this indeed occurs for grating layers that are homogeneous, but a slower convergence (better
than second order) is observed for nonhomogeneous grating layers possibly due to the replacement of
εr(x, z) by εr(x) in the region Ωδ and to the e�ect of the corrugation in the FEM solution. This issue
would require further investigation and will be addressed elsewhere, since the goal of this paper is to
describe and numerically analyze the behavior of the method. The convergence of the asymptotic model
can be studied following the procedure of Delourme et al. [35, 36].

3 Numerical results

Let us now demonstrate numerically the convergence properties of the asymptotic model. We chose to
solve Eqs. (39) using standard Lagrange FEM with third-degree polynomials, subject to the transmission
conditions in Eqs. (17) across the planes z = δ/2 + Ld and z = −Lm − δ/2, following the procedure
described, for instance, by Solano et al. [24].

Results are presented for three examples. In the �rst two examples we focus on the convergence
of the asymptotic model at the �xed wavelength λ0 = 450 nm. In the third example we examine the
performance of the asymptotic model in the range λ0 ∈ [400, 1000] nm. For all three examples, we �xed
L = 400 nm, Ld = 125 nm, Lm = 50 nm. We also �xed θ = 0 deg, as most solar cells are illuminated
normally to maximize photonic absorption. The material with the relative permittivity ε+

r was taken to
be evaporated silver whereas that with the relative permittivity ε−r was amorphous silicon nitride, both
ε+
r and ε−r being frequency dependent [41]. The chosen value of Lm exceeds the skin depth of silver,
ensuring that transmission into the half space z < Lm − δ/2 is minuscule at best. We chose values of δ
between 0.3906 and 12 nm. Then, the maximum value of δ is 6.67% of the total height Lm + Ld + δ of
the solar-cell structure, and the minimum value of δ is 0.22% of the total height.

Finally, the series on the right sides of Eqs. (15) and (16) have to be truncated so that |n| ≤Mt. This
truncation error is the same for both the full and asymptotic models. Since our goal with the �rst two
examples was to analyze convergence with respect to δ, the value of Mt will have no in�uence. Hence,
we �xed Mt = 3 in order to speed up the calculations. For the third example, we took Mt = 20 as

9



in a previous paper [24] in order to diminish the in�uence of this truncation error when examining the
absorptance spectra.

The domain Ω was discretized into Ne triangular elements, with the length of the largest edge denoted
by h. Let uq,hδ,2 (x, z) andAhq denote the values of u

q
δ,2(x, z) andAq, respectively, delivered by our asymptotic

model for a speci�c choice of h when the polarization state of the incident plane wave is either q = s or
q = p. The errors in our calculations are of two types: (i) those due to the use of the FEM and (ii) those
due to the asymptotic model.

3.1 Example 1: Planar Backre�ector

Let us begin by choosing the backre�ector as planar and the material occupying Ωδ to have the uniform
relative permittivity εδr(x, z) ≡ −1.0976 + 0.3325i. For this problem, the solution uq(x, z), q ∈ {s, p}, of
(12) can be exactly determined everywhere using a textbook approach [42]. For each polarization state,
we computed the relative errors

euq =

(∫
Ω+∪Ω−

|uq − uq,hδ,2 |
2 dx dz

)1/2

(∫
Ω+∪Ω−

|uq|2 dx dz
)1/2

eAq =
|Aq −Ahq |
|Aq|


, q ∈ {s, p} . (40)

Since eus and eup evinced similar trends with respect to changes in h and δ, and so did As and Ap, let
us con�ne our attention to the p-polarization state in the remainder of Sec. 33.1.

Figure 2: Calculated values of the relative errors eup (identi�ed by blue ◦) and eAp (red � ) versus δ
when h = 2.21 nm for the planar metallic backre�ector of Sec. 33.1. Dashed lines guide the reader's eyes.
Solid black line indicates the δ3 dependence.

First, in order to evaluate the performance of the asymptotic model with respect to the parameter δ,
eup and eAp are plotted versus δ in Fig. 2, for the smallest value of h (= 2.21 nm) in our study. Both eup
and eAp are of order δ3, as expected.

Next, in order to validate our FEM solver, in Fig. 3 we display eup versus h for δ = 0.3906 nm.
Standard FEM theory [43] predicts that the rate of convergence of eup must be of order h

4. In Fig. 3 we
observe exactly this trend, except for the smallest value of h where it seems that the aymptotic-model
error dominates the FEM error and that is why the h4 dependence can not be observed for the smaller
values of h.

10



Table 1: Relative error eup versus δ (nm) and h (nm) for Example 1 (Sec. 33.1). The number Ne of
triangular elements is shown in parentheses for each of the three values of h in the table.

@
@
@@

δ (nm)

h (Ne)
35.36 (224) 17.68 (896) 8.84 (3584)

12.5 4.8053×10−4 4.7755×10−4 4.7750×10−4

6.25 9.6565×10−5 6.9828×10−5 6.9664×10−5

3.125 7.0314×10−5 1.0299×10−5 9.3360×10−6

1.5625 7.0992×10−5 4.4827×10−6 1.1926×10−6

0.7812 7.1811×10−5 4.3592×10−6 2.9804×10−7

0.3906 7.2338×10−5 4.3853×10−6 2.8574×10−7

In Table 1 we display values of the relative error eup while varying δ (from top to bottom) and h (from
left to right). All values of eup are smaller than 0.05%. In the �rst row, we observe that the asymptotic-
model error dominates the FEM error for δ = 12.5 nm, since eup does not signi�cantly decrease as h
decreases. Similar conclusions were found to hold for δ ∈ {6.25, 3.125, 1.5625} nm, i.e., the asymptotic-
model error starts to dominate the FEM error when h < 17.68 nm. On the other hand, when δ is small,
for example 0.3906 nm, the FEM error dominates the asymptotic-model error. In fact, eup decreases 16
times when h is halved, i.e., the rate of convergence is of order h4 as predicted by the standard FEM
theory ([43]). The trends evident in Table 1 for eup are mirrored by those in Table 2 for eAp .

Figure 3: Calculated values (identi�ed by blue ◦) of the relative error eup versus h when δ = 0.3906 nm
for the planar metallic backre�ector of Sec. 33.1. The dashed blue line guides the reader's eyes. The solid
black line indicates the h4 dependence.

3.2 Example 2: Periodic Backre�ector with Rectangular Corrugations

Next, we consider the backre�ector to have rectangular corrugations of height δ and width L1 = ζL, as
shown in Fig. 1. In the unit cell Ω, the grating pro�le is described by the function

g(x) =

 −δ/2, 0 ≤ x < (1− ζ)L/2,
δ/2, (1− ζ)L/2 < x < (1 + ζ)L/2,
−δ/2, (1 + ζ)L/2 < x ≤ L,

(41)
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Table 2: Same as Table 1 but values of the relative error eAp are shown.

@
@
@@

δ (nm)

h (Ne)
35.36 (224) 17.68 (896) 8.84 (3584)

12.5 2.0134×10−3 2.0090×10−3 2.0090×10−3

6.25 3.4851×10−4 3.4305×10−4 3.4307×10−4

3.125 5.5617×10−5 4.9543×10−5 4.9574×10−5

1.5625 1.3120×10−5 7.5367×10−6 6.8810×10−6

0.7812 6.7215×10−6 9.6876×10−7 2.2527×10−7

0.3906 6.7553×10−6 1.0040×10−6 2.6115×10−7

with

εδr(r) =

{
ε+
r

ε−r
, z

{
> g(x)
< g(x)

, r ∈ Ωδ . (42)

Figure 4: Calculated values of the relative errors eŭs (identi�ed by blue +), eŭp (blue ◦), eĂs (red �)
and eĂp (red �) versus δ when h = 8.84 nm for the metallic backre�ector with rectangular corrugations
described in Sec. 33.2. Dashed blue or red lines guide the reader's eyes. Solid-black and dashed-black
lines indicate the δ2 and δ3 dependences, respectively.

As an exact solution u cannot be found for the chosen backre�ector, we designated by ŭ(x, z) the FEM
solution obtained with the smallest value of h (= 2.21 nm) in our study, and by Ă the corresponding
absorptance. Using these results as the reference solution, we determined for ζ = 0.5 the relative errors

eŭq =

(∫
Ω+∪Ω−

|ŭq − uq,hδ,2 |
2 dx dz

)1/2

(∫
Ω+∪Ω−

|ŭq|2 dx dz
)1/2

eĂq =
|Ăq −Ahq |
|Ăq|


, q ∈ {s, p} , (43)

as functions of δ and h. This FEM-reference solution has been validated by comparing it with an RCWA
solution. In fact, we have observed that the FEM-reference and RCWA solutions agree within 3% in
absorptances and within 5% in the �elds.
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Table 3: Relative error eŭs versus δ (nm) and h (nm) for Example 2 (Sec. 33.2). The number Ne of
triangular elements is shown in parentheses for each of the three values of h in the table.

@
@
@@

δ (nm)

h (Ne)
35.36 (224) 17.68 (896) 8.84 (3584)

12.5 8.1484×10−3 8.1583×10−3 8.1610×10−3

6.25 2.2067×10−3 2.2049×10−3 2.2050×10−3

3.125 5.8389×10−4 5.7720×10−4 5.7700×10−4

1.5625 1.6766×10−4 1.4817×10−4 1.4790×10−4

0.7812 8.4321×10−5 3.7952×10−5 3.7471×10−5

0.3906 7.5265×10−5 1.0713×10−5 9.4435×10−6

The relative errors eŭs and eŭp versus δ are presented in Fig. 4 for h = 8.84 nm. Regardless of the
polarization state of the incident plane wave, the convergence rate of eŭq is δ

2. Compared to the data in
Fig. 2 for the planar backre�ector, the shallow rectangular corrugations lower the convergence rate from
δ3 to δ2. However, the convergence rate of the relative error eĂp is of order δ3 for the smallest values of

δ, and that of eĂs is faster than δ
2 but slower than δ3, in Fig. 4.

Table 4: Same as Table 3 but values of the relative errors eŭp are shown.

@
@
@@

δ (nm)

h (Ne)
35.36 (224) 17.68 (896) 8.84 (3584)

12.5 4.8796×10−1 4.7586×10−1 4.7932×10−1

6.25 1.6456×10−1 1.5966×10−1 1.5676×10−1

3.125 4.4783×10−2 4.2526×10−2 4.2038×10−2

1.5625 1.6742×10−2 1.4983×10−2 1.4627×10−2

0.7812 6.0305×10−3 5.1347×10−3 4.8565×10−3

0.3906 2.5209×10−3 1.1464×10−3 8.7120×10−4

The solution up(x, z) from the full model [24] contains strong singularities near the corners of the
surface of the metal. Hence, a numerical approximation of the solution will not be as accurate. This issue
a�ects not only the FEM solution up,hδ,2 (x, z), but it also causes a loss of accuracy in the computation of the
reference solution ŭp(x, z). This suggests that the slightly more erratic behavior of the convergence curve
for eŭp than of the convergence curve for eŭs in Fig. 4 is due to the FEM and not to the approximations
introduced by the asymptotic model.

Clearly, eŭs < eŭp in Fig. 4. This also becomes clear from Tables 3 and 4 wherein values of eŭs and
eŭp , respectively, have been stated for several di�erent combinations of δ and h. Whereas eŭs < 1%,
eŭp < 16.5% if δ ≤ 6.25 nm and eŭp < 4.5% if δ ≤ 3.125 nm. Moreover, in both tables, the relative
errors do not decrease with h for the �rst three values of δ, indicating that the asymptotic-model error
dominates the FEM error. For δ ≤ 0.7812 nm, there is a value of h from where the relative error does
not signi�cantly change when h decreases.

In Tables 5 and 6 values of eĂs and eĂprespectively, have been stated for several di�erent combinations
of δ and h, whereas eĂs < 1%, eĂp < 19.5% if δ ≤ 6.25 nm and eŭp < 7.0% if δ ≤ 3.125 nm. These tables
also indicate that eĂs < eĂp , in line with Fig. 4.
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Table 5: Same as Table 3 but values of the relative errors eĂs are shown.

@
@
@@

δ (nm)

h (Ne)
35.36 (224) 17.68 (896) 8.84 (3584)

12.5 2.2388×10−4 1.9706×10−4 1.9077×10−4

6.25 2.7147×10−6 7.6646×10−6 9.5258×10−6

3.125 2.6225×10−6 3.3044×10−6 3.9308×10−6

1.5625 4.4622×10−6 4.5824×10−7 7.6397×10−7

0.7812 4.7835×10−6 2.3190×10−8 2.0315×10−7

0.3906 4.8536×10−6 8.2720×10−8 1.2497×10−7

Table 6: Same as Table 5 but values of the relative errors eĂp are shown.

@
@
@@

δ (nm)

h (Ne)
35.36 (224) 17.68 (896) 8.84 (3584)

12.5 3.9201×10−1 3.8388×10−1 3.9209×10−1

6.25 1.9463×10−1 1.8249×10−1 1.7844×10−1

3.125 6.8556×10−2 5.9692×10−2 5.6689×10−2

1.5625 2.9210×10−2 2.1863×10−2 1.9990×10−2

0.7812 5.9780×10−3 3.7796×10−3 1.9480×10−3

0.3906 3.0921×10−3 8.1344×10−4 2.6633×10−4

3.3 Example 3: Periodic Backre�ector with Sawtooth Corrugations

In the last example, we consider the backre�ector to have sawtooth corrugations described by the function

g(x) =


−δ/2, 0 ≤ x < (1− ζ)L/2,
δ

ζL

(
L

2
− x
)
, (1− ζ)L/2 < x < (1 + ζ)L/2,

−δ/2, (1 + ζ)L/2 < x ≤ L.

(44)

All results provided here were calculated with ζ = 0.5. When δ = 1.5625 nm and the incident light is
s-polarized, the absorptances provided by both the full and asymptotic models agree very well. In fact,
for this case, the relative error between the full and asymptotic models is at most 1% for any wavelength
λ0 ∈ [400, 1000] nm. On the other hand, for the p-polarized incidence case, the relative error was usually
less than 5% but could be as high as 15%.

In Fig. 5 we display the values of absorptances, computed with the asymptotic model, versus the
ratio λ0/L for di�erent values of δ/L, with h = 4.42 nm. These results show that the asymptotic model
predicts the absorptance, including resonances, for a shallow sawtooth grating quite well for incident
wave of either linear polarization state.

4 Conclusions

We have devised an asymptotic model for implementation in the �nite element method to calculate
electromagnetic di�raction and absorption in planar multilayered structures having a shallow surface-
relief grating. Numerical results demonstrate that the model is at least second-order convergent with
respect to the thickness δ of the grating layer. For incident s-polarized light, the relative errors of the
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Figure 5: Absorptances As and Ap versus λ0/L for δ/L = 0.0078 (dashed-blue line), 0.0078 (solid-red
line) and 0.0019 (dashed-black line). The mesh size h of the FEM satis�es h/L = 0.011. Top panel:
s-polarization. Bottom panel: p-polarization.

spatially averaged electric �eld and absorptance are smaller than 1% when δ ≤ 12.5 nm (6.67% of the
total height of the structure, and less than 3% of the free-space wavelength). For incident p-polarized
light, lower values of δ are needed for the relative errors to have similar magnitudes. These results show
that the asymptotic model can be reliably used with FEM to investigate scattering by shallow gratings.

The main advantage of the asymptotic model is that the parameters de�ning the shallow surface-relief
grating are present in the interface parameters and transmission conditions across a planar interface but
not in the geometry. FEM calculations are greatly speeded up thereby, as a very �ne mesh is not needed
for the thin grating layer. This considerably reduces the computational cost of optimizing the grating
parameters (e.g., height and duty cycle), since there is no need to change the domain (and, hence, the
mesh) at every optimization step.

Appendix

The asymptotic model can be generalized to case of Γ = {r ∈ R3 : 0 < x < L, |y| <∞, z = f(x)} being a
curved surface instead of a plane, with the surfaces Γ± still de�ned through Eqs. (2). The generalization
is useful for application to a large-amplitude smooth grating perturbed by a thin grating with a smaller
period [40].

The domain Ω is subdivided into the following three non-overlapping regions:

Ω− =
{
r ∈ R3 : 0 < x < L, |y| <∞, −Lm + f(x)− δ/2 < z < f(x)− δ/2}

Ωδ =
{
r ∈ R3 : 0 < x < L, |y| <∞, f(x)− δ/2 < z < f(x) + δ/2}

Ω+ =
{
r ∈ R3 : 0 < x < L, |y| <∞, f(x) + δ/2 < z < f(x) + δ/2 + Ld}

 . (45)

Figure 6 shows an example of the unit cell wherein the surfaces Γ and Γ± are non-planar.
Let us suppose that Γ is parameterized as Γ = {(s, f(s)), s ∈ [0, L]}. Then, the curvature of Γ is

de�ned as

C(s) =

[
1 +

(
df(s)

ds

)2
]−3/2

d2f(s)

ds2
∀s ∈ [0, L]. (46)

We observe that the boundary-value problem described in Sec. 2 corresponds to f(x) = 0.
Now, instead of working with the Cartesian coordinate system, we map the point (x, z) to a point (s, ν)

in the curvilinear system inspired by the nonplanar Γ. In order to �nd this mapping, we take (s, f(s)) ∈ Γ,
and denote by ûΓ(s) the normal to Γ at that point. Then, we write (s, f(s)) + νûΓ(s) = (x(s, ν), z(s, ν))
for s ∈ [0, L] and ν ∈ [−δ/2, δ/2]. In this case, r = x(s, ν)ûx + yûy + z(s, ν)ûx ∈ Ωδ and the change of
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Figure 6: Analogous to Fig. 1 but the surfaces Γ, Γ−, and Γ+ are surfaces nonplanar.

variable to scale the domain Ωδ is ξ = ν/δ. In addition, we need u(r± ρûΓ(s)) evaluated at r ∈ Γ in the
limit ρ→ 0. The latter function can be obtained using the operator

D =
∂
∂z −

df(s)
ds

∂
∂s[

1 +
(
df(s)
ds

)2
]1/2

. (47)

We set εr(s) =
1

δ

∫ δ/2

−δ/2
εr(x(s, ν), z(s, ν))dν, and de�ne Bδ(s) and bδ(s) analogously to the quantities

de�ned in Eqs. (25). Hence, writing the di�erential operators in this curvilinear coordinate system and
considering the chain rule for the scaled variable ξ, equation (22) yields

1
A(s,ξ)

∂
∂s

(
Bδ(s)
A(s,ξ)

∂ũδ(s,ξ)
∂s

)
+ δ−2

A(s,ξ)
∂
∂ξ

(
A(s, ξ)Bδ(s)∂ũ

δ(s,ξ)
∂ξ

)
+ k2

0b
δ(s)ũδ(s, ξ) = 0, r̃ ∈ Ω̃δ, (48)

where A(s, ξ) = 1 + δξC(s). Then, for each r̃ ∈ Ω̃δ, the analog of (29) is

∂
∂ξ

(
Bδ(s)

∂ũδj (s,ξ)

∂ξ

)
+

[
3ξC(s) ∂∂ξ

(
Bδ(s)

∂ũδj−1(s,ξ)

∂ξ

)
+C(s)Bδ(s)

∂ũδj−1(s,ξ)

∂ξ

]
+

[
3ξ2C(s)

2 ∂
∂ξ

(
Bδ(s)

∂ũδj−2(s,ξ)

∂ξ

)
+2ξC(s)

2
Bδ(s)

∂ũδj−2(s,ξ)

∂ξ + ∂
∂s

(
Bδ(s)

∂ũδj−2(s,ξ)

∂s

)
+k2

0b
δ(s)ũδj−2(s, ξ)

]
+

[
ξ3C(s)

3 ∂
∂ξ

(
Bδ(s)

∂ũδj−3(s,ξ)

∂ξ

)
+ξ2C(s)

3
Bδ(s)

∂ũδj−3(s,ξ)

∂ξ + ξC(s) ∂∂s

(
Bδ(s)

∂ũδj−3(s,ξ)

∂s

)
−ξC ′(s)Bδ(s)∂ũ

δ
j−3(s,ξ)

∂s + 3ξC(s)k2
0b
δ(s)ũδj−3(s, ξ)

]
+3ξ2C(s)

2
k2

0b
δ(s)ũδj−4(s, ξ) + ξ3C(s)

3
k2

0b
δ(s)ũδj−5(s, ξ) = 0,

r̃ ∈ Ω̃δ, j ∈ {0, 1, ....} .

(49)

Moreover, most of the equations grouped as Eqs. (36) remain unchanged, except for

[BDϕ1] (s) = −
(
∂
∂s

(
Bδ(s) ∂∂s

)
+ k2

0b
δ(s)

)
〈ϕ0〉 (s)− C(s) 〈BDϕ0〉 (s),

[BDϕ2] (s) = −
(
∂
∂s

(
Bδ(s) ∂∂s

)
+ k2

0b
δ(s)

)
〈ϕ1〉 (s)− C(s) 〈BDϕ1〉 (s),

 ,

s ∈ [0, L], (50)
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Finally, the transmission conditions for u±δ,2 become

[uδ,2] (s) = δ

(
Bδ(s)

)−1

〈BDuδ,2〉 (s)

[BDuδ,2] (s) = −δ
(
∂
∂s

(
Bδ(s) ∂∂s

)
+ k2

0b
δ(s)

)
〈uδ,2〉 (s)− δC(s) 〈Duδ,2〉 (s)

 ,

s ∈ [0, L]. (51)

Clearly, Eqs. (27), (36)4, (36)6, and (39a) are simpli�cations for the foregoing equations for planar Γ (i.e.,
C(s) = 0 ∀s ∈ [0, L]).
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