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Centro de Investigación en
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Abstract

In this paper we consider an augmented fully-mixed variational formulation that has been recently
proposed for the coupling of the Navier–Stokes equations (with nonlinear viscosity) and the linear
Darcy model, and derive a reliable and efficient residual-based a posteriori error estimator for
the associated mixed finite element scheme. The finite element subspaces employed are piecewise
constants, Raviart–Thomas elements of lowest order, continuous piecewise linear elements, and
piecewise constants for the strain, Cauchy stress, velocity, and vorticity in the fluid, respectively,
whereas Raviart–Thomas elements of lowest order for the velocity, piecewise constants for the
pressure, and continuous piecewise linear elements for the traces, are considered in the porous
medium. The proof of reliability of the estimator relies on a global inf-sup condition, suitable
Helmholtz decompositions in the fluid and the porous medium, the local approximation properties
of the Clément and Raviart–Thomas operators, and a smallness assumption on the data. In turn,
inverse inequalities, the localization technique based on bubble functions, and known results from
previous works, are the main tools yielding the efficiency estimate. Finally, several numerical
results confirming the properties of the estimator and illustrating the performance of the associated
adaptive algorithm are reported.
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methods, efficiency, reliability, a posteriori error analysis.
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1 Introduction

Over the last decades, a wide range of numerical methods capturing the behaviour of a free fluid flow
interacting with a porous medium have been proposed. The reason of such an interest by the nu-
merical analysis community relies on the fact that, in industry, engineering sciences and several other
disciplines, several interesting phenomena can be described under the framework of this kind of inter-
action problems (groundwater flows in karst aquifers, petroleum extraction, filtration of blood through

∗This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project
Anillo ACT1118 (ANANUM), project Fondecyt 1161325, and the Becas-Chile Programme for Chilean students; by Centro
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arterial vessel walls, etc.). One of the most popular models utilized to describe the aforementioned
interaction is the Navier-Stokes/Darcy (or Stokes/Darcy) model, which consists in a set of differential
equations where the Navier-Stokes (or Stokes) problem is coupled with the Darcy model through a
set of coupling equations acting on a common interface given by mass conservation, balance of normal
forces, and the so called Beavers-Joseph-Saffman condition. In [3, 12, 13, 15, 21, 22, 23, 7, 35, 36, 38],
and in the references therein, we can find a large list of contributions devoted to numerically approx-
imate the solution of this interaction problem, including primal and mixed conforming formulations,
as well as nonconforming methods.

In the recent work [12], it has been introduced and analyzed a new augmented-mixed finite element
method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. The formulation
there considers dual-mixed formulations in both domains, and in order to deal with the nonlinear
viscosity, the strain tensor and the vorticity are introduced as auxiliary unknowns. In turn, since
the transmission conditions become essential, they are imposed weakly, which yields the introduction
of the traces of the porous media pressure and the fluid velocity as associated Lagrange multipliers.
Furthermore, since the convective term in the fluid forces the velocity to live in a smaller space than
usual, similarly to [8] and [9], the variational formulation is augmented with suitable Galerkin type
terms arising from the constitutive and equilibrium equations of the Navier–Stokes model, as well
as from the relations defining the strain and vorticity tensors. The resulting augmented variational
system of equations is then suitably ordered so that it exhibits a twofold saddle point structure, which
is similar to the one analyzed in [31] for the Stokes–Darcy coupled problem with nonlinear viscosity.
The formulation is then written equivalently as a fixed point equation, and the well-known Schauder
and Banach theorems, as well as the abstract theory developed in [31], which is based on classical
results on bijective monotone operators, are applied to prove the unique solvability of the continuous
and discrete systems. A feasible choice of finite element subspaces for the formulation introduced
in [12] is given by piecewise constants, Raviart–Thomas spaces of lowest order, continuous piecewise
linear elements, and piecewise constants for the strain, Cauchy stress, velocity, and vorticity in the
fluid, respectively, whereas Raviart–Thomas spaces of lowest order and piecewise constants for the
velocity and pressure, together with continuous piecewise linear elements for the Lagrange multipliers,
can be utilized in the Darcy region. Optimal a priori error estimates were also derived.

Now, it is well known that under the eventual presence of singularities, as well as when dealing with
nonlinear problems, as in the present case, most of the standard Galerkin procedures such as finite
element and mixed finite element methods inevitably lose accuracy, and hence one usually tries to
recover it by applying an adaptive algorithm based on a posteriori error estimates. In this direction,
and particularly for the coupling of fluid flows with porous media flows, we refer to [2, 7, 14, 18, 19, 37,
38, 42, 44, 45, 49] where different contributions addressing this interesting issue, most of them devoted
to the Stokes-Darcy coupled problem, can be found. Up to the authors’ knowledge, the first work
dealing with adaptive algorithms for the Navier-Stokes/Darcy coupling is [42], where an a posteriori
error estimator for a discontinuous Galerkin approximation of this coupled problem with constant
parameters is proposed.

According to the above discussion, and in order to complement the study started in [12] for the
Navier-Stokes/Darcy equations with variable viscosity, in this paper we proceed similarly to [37, 38]
and [7], and develop an a posteriori error analysis for the finite element method studied in [12]. More
precisely, assuming a smallness condition on the data, we derive a reliable and efficient residual-based a
posteriori error estimator for the three dimensional version of the augmented-mixed method introduced
in [12]. The global inf-sup condition, a suitable Helmholtz decomposition recently provided in [27], and
the approximation properties of the Clemént and Raviart-Thomas operators, among others, are the
main tools yielding the reliability. In turn, the efficiency estimate is consequence of standard arguments

2



such as inverse inequalities, the localization technique based on bubble functions, and other known
results to be specified later on in Section 3.4. The rest of this work is organized as follows. In Section
2 we recall from [12, Section 2] the model problem and its continuous and discrete augmented fully-
mixed variational formulations. In Section 3, we derive the a posteriori error estimator. The reliability
analysis is carried out in Section 3.3, whereas in Section 3.4 we provide the efficiency analysis. Finally,
some numerical results confirming the reliability and efficiency of the a posteriori error estimator and
showing the good performance of the associated adaptive algorithm for the fully-mixed finite element
method, are presented in Section 4.

We end this section by introducing some definitions and fixing some notations. Given the vector
fields v = (vi)i=1,n and w = (wi)i=1,n, with n ∈ {2, 3}, we set the gradient, divergence, and tensor
product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n.

Furthermore, for any tensor field τ := (τij)i,j=1,n and ζ := (ζij)i,j=1,n, we define the transpose, the
trace, the tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr (τ )I,

where I is the identity matrix in Rn×n. In what follows, when no confusion arises, | · | will denote the
Euclidean norm in Rn or Rn×n. Additionally, in what follows we utilize standard simplified terminology
for Sobolev spaces and norms. In particular, if O is a domain, Γ is an open or closed Lipschitz curve
(respectively surface in R3), and s ∈ R, we define

Hs(O) := [Hs(O)]n, Hs(O) := [Hs(O)]n×n, and Hs(Γ) := [Hs(Γ)]n.

However, when s = 0 we usually write L2(O),L2(O), and L2(Γ) instead of H0(O),H0(O), and H0(Γ),
respectively. The corresponding norms are denoted by ‖ · ‖s,O for Hs(O), Hs(O) and Hs(O), and
‖ · ‖s,Γ for Hs(Γ) and Hs(Γ). For s ≥ 0, we write | · |s,O for the Hs-seminorm. In addition, we recall
that

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is a standard Hilbert space in the realm of mixed problems (see, e.g. [5, 26, 41]). The space of
matrix valued functions whose rows belong to H(div ;O) will be denoted by H(div ;O). The norms
of H(div ;O) and H(div ;O) are denoted by ‖ · ‖div ,O and ‖ · ‖div ,O, respectively. On the other hand,
the following symbols for the L2(Γ) and L2(Γ) inner products

〈ξ, λ〉Γ :=

∫
Γ
ξλ ∀ξ, λ ∈ L2(Γ), 〈ξ,λ〉Γ :=

∫
Γ
ξ · λ ∀ξ,λ ∈ L2(Γ)

will also be employed for their respective extensions as the duality products H−1/2(Γ)× H1/2(Γ) and
H−1/2(Γ)×H1/2(Γ), respectively. Furthermore, given an integer k ≥ 0 and a set S ⊆ Rn, Pk(S) denotes
the space of polynomial functions defined on S of degree ≤ k. In addition, we set Pk(S) := [Pk(S)]n

and Pk(S) := [Pk(S)]n×n. Finally, throughout the rest of the paper, we employ 0 to denote a generic
null vector (including the null functional and operator), and use C and c, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization parameters, which
may take different values at different places.
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2 The Navier–Stokes/Darcy coupled problem

In this section we recall from [12] the Navier–Stokes/Darcy model, its fully-mixed variational formu-
lation, the associated Galerkin scheme, and the main results concerning the corresponding solvability
analysis.

2.1 The model problem

In order to describe the geometry under consideration we let ΩS and ΩD be bounded and simply
connected open polyhedral domains in Rn, such that ΩS ∩ΩD = ∅ and ∂ΩS ∩ ∂ΩD = Σ 6= ∅. Then, we
let ΓS := ∂ΩS \ Σ, ΓD := ∂ΩD \ Σ, and denote by n the unit normal vector on the boundaries, which
is chosen pointing outward from Ω := ΩS ∪ Σ ∪ ΩD and ΩS (and hence inward to ΩD when seen on
Σ). On Σ we also consider unit tangent vectors, which are given by t = t1 when n = 2 (see Fig. 2.1
below) and by {t1, t2} when n = 3. The problem we are interested in consists of the movement of an
incompressible quasi-Newtonian viscous fluid occupying ΩS which flows towards and from a porous
medium ΩD through Σ, where ΩD is saturated with the same fluid. The mathematical model is defined
by two separate groups of equations and by a set of coupling terms. In ΩS, the governing equations
are those of the Navier–Stokes problem with constant density and variable viscosity, which are written
in the following nonstandard stress-velocity-pressure formulation:

σS = µ(|e(uS)|)e(uS)− (uS ⊗ uS)− pSI in ΩS, div uS = 0 in ΩS,

−divσS = fS in ΩS, uS = 0 on ΓS,
(2.1)

where σS is the nonlinear stress tensor, uS is the velocity, pS is the pressure, µ : R+ → R+ is the

nonlinear kinematic viscosity, e(uS) := 1
2

{
∇uS + (∇uS)t

}
is the strain tensor (or symmetric part of

the velocity gradient) and fS ∈ L2(ΩS) is a known volume force.

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 2.1: Sketch of a 2D geometry of our Navier–Stokes/Darcy model

Furthermore, we assume that µ is of class C1, and that there exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + sµ′(s) ≤ µ2 ∀s ≥ 0, (2.2)

which, according to the results provided in [40, Theorem 3.8], implies Lipschitz continuity of the
nonlinear operator induced by µ. This fact will be used later on in Sections 3.3 and 3.4. In addition, it
is easy to see that the forthcoming analysis also applies to the slightly more general case of a viscosity
function acting on Ω× R+, that is µ : Ω× R+ → R. Some examples of nonlinear µ are the following:

µ(s) := 2 +
1

1 + s
and µ(s) := α0 + α1(1 + s2)(β−2)/2, (2.3)
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where α0, α1 > 0 and β ∈ [1, 2]. The first example is basically academic but the second one corresponds
to a particular case of the well-known Carreau law in fluid mechanics. It is easy to see that they both
satisfy (2.2) with (µ1, µ2) = (2, 3) and (µ1, µ2) = (α0, α0 + α1), respectively.

Next, we adopt the approach from [12] (see also [33, 34]) and introduce the additional unknowns
tS := e(uS) and ρS := 1

2

(
∇uS − (∇uS)t

)
, where ρS is the vorticity (or skew-symmetric part of the

velocity gradient). In this way, we observe that the equations in (2.1) can be rewritten equivalently as

tS = ∇uS − ρS in ΩS, σd
S = µ(|tS|)tS − (uS ⊗ uS)d in ΩS,

−divσS = fS in ΩS, pS = − 1

n
tr (σS + (uS ⊗ uS)) in ΩS, uS = 0 on ΓS.

(2.4)

Note that the fourth equation in (2.4) allows us to eliminate the pressure pS from the system and
compute it as a simple post-process of the solution.

On the other hand, in ΩD we consider the linearized Darcy model with homogeneous Neumann
boundary condition on ΓD:

uD = −K∇pD in ΩD, div uD = fD in ΩD, uD·n = 0 on ΓD, (2.5)

where uD and pD denote the velocity and pressure, respectively, fD ∈ L2(ΩD) is a source term satisfying∫
ΩD

fD = 0, and K ∈ [L∞(ΩD)]n×n is a positive definite symmetric tensor describing the permeability
of ΩD divided by a constant approximation of the viscosity.

Finally, the transmission conditions are given by

uS·n = uD·n and σSn +
n−1∑
l=1

ω−1
l (uS·tl)tl = −pDn on Σ , (2.6)

where {ω1, . . . , ωn−1} is a set of positive frictional constants that can be determined experimentally.
The first equation in (2.6) corresponds to mass conservation on Σ, whereas the second one establishes
the balance of normal forces and a Beavers–Joseph–Saffman law.

2.2 The fully-mixed variational formulation

In this section we introduce the weak formulation derived in [12, Section 2.2] for the coupled problem
given by (2.4), (2.5), and (2.6). To this end, let us first introduce further notations and definitions.
In what follows, given ? ∈ {S,D}, u, v ∈ L2(Ω?), u,v ∈ L2(Ω?), and σ, τ ∈ L2(Ω?), we set

(u, v)? :=

∫
Ω?

uv, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ .

In addition, we let L2
sym(ΩS) and L2

skew(ΩS) be the subspaces of symmetric and skew-symmetric tensors
of L2(ΩS), respectively, that is

L2
sym(ΩS) :=

{
rS ∈ L2(ΩS) : rt

S = rS

}
,

L2
skew(ΩS) :=

{
ηS ∈ L2(ΩS) : ηt

S = −ηS

}
.

Furthermore, we define the spaces

H0(div ; ΩD) :=
{

vD ∈ H(div ; ΩD) : vD·n = 0 on ΓD

}
,

L2
tr (ΩS) :=

{
rS ∈ L2

sym(ΩS) : tr rS = 0
}
,

H1
ΓS

(ΩS) :=
{
vS ∈ H1(ΩS) : vS = 0 on ΓS

}
, H1

ΓS
(ΩS) := [H1

ΓS
(ΩS)]n ,
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and the space of traces

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1

ΓS
(ΩS)

}
, H

1/2
00 (Σ) := [H

1/2
00 (Σ)]n .

Equivalently, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ
0 on ΓS

∀ψ ∈ H1/2(Σ) ,

we have that
H

1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,

which is endowed with the norm ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. In addition, ‖ · ‖1/2,00,Σ also stands

for the corresponding product norm of H
1/2
00 (Σ). In turn, H

−1/2
00 (Σ) and H

−1/2
00 (Σ) are the dual spaces

of H
1/2
00 (Σ) and H

1/2
00 (Σ), respectively, with norms denoted in both cases by ‖ · ‖−1/2,00,Σ.

Now, in order to deduce our variational system we need to add two auxiliary unknowns on the
coupling boundary

ϕ := −uS|Σ ∈ H
1/2
00 (Σ) and λ := pD|Σ ∈ H1/2(Σ) .

In this way, our variational system will be written in terms of the unknowns t := (tS,σS,uS,ρS,uD),
ϕ := (ϕ, λ) and pD. Let us recall from [12, Section 2.3] that, given any constant c ∈ R, the vector
defined by ((tS,σS − cI,uS,ρS,uD), (ϕ, λ+ c), pD + c) also becomes a solution of the problem defined
below. Hence, in order to ensure uniqueness of solution, we will require the Darcy pressure pD to live
in L2

0(ΩD), where

L2
0(ΩD) :=

{
q ∈ L2(ΩD) : (q, 1)D = 0

}
.

Then, defining the spaces

X := L2
tr (ΩS)×H(div ; ΩS)×H1

ΓS
(ΩS)× L2

skew(ΩS)×H0(div ; ΩD),

M := H
1/2
00 (Σ)×H1/2(Σ), X := X×M, and M := L2

0(ΩD),

with X, M, X and X×M endowed with the product norms

‖r‖X := ‖rS‖0,ΩS
+ ‖τ S‖div ,ΩS

+ ‖vS‖1,ΩS
+ ‖ηS‖0,ΩS

+ ‖vD‖div ,ΩD
,

‖ψ‖M := ‖ψ‖1/2,00,Σ + ‖ξ‖1/2,Σ, ‖(r,ψ)‖X := ‖r‖X + ‖ψ‖M,

‖((r,ψ), qD)‖X×M := ‖(r,ψ)‖X + ‖qD‖0,Ω,

as explained in [12, Section 2.2], we arrive at the following modified variational formulation for (2.4),
(2.5), and (2.6): Find ((t,ϕ), pD) ∈ X×M such that

[A(uS)(t,ϕ), (r,ψ)] + [B(r,ψ), pD] = [F, (r,ψ)] ∀ (r,ψ) ∈ X,

[B(t,ϕ), qD] = [G, qD] ∀ qD ∈M,
(2.7)

where, given zS ∈ H1
ΓS

(ΩS), the operator A(zS) : X→ X′ is defined by

[A(zS)(t,ϕ), (r,ψ)] := [a(zS)(t), r] + [b(t),ψ] + [b(r),ϕ]− [c(ϕ),ψ], (2.8)
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with

[a(zS)(t), r] := [a1(t), r] + [a2(zS)(t), r],

[a1(t), r] := (µ(|tS|)tS, rS)S − (rS,σ
d
S)S + (tS, τ

d
S)S + κ1(σd

S − µ(|tS|)tS, τ
d
S)S

+ κ2(divσS,div τ S)S + (div τ S,uS)S − (divσS,vS)S

+ (τ S,ρS)S − (σS,ηS)S + κ3(e(uS)− tS, e(vS))S

+ κ4

(
ρS −

1

2
(∇uS − (∇uS)t),ηS

)
S

+ (K−1uD,vD)D,

[a2(zS)(t), r] := ((zS ⊗ uS)d, κ1τ
d − rS)S,

[b(r),ψ] := 〈τ Sn,ψ〉Σ − 〈vD·n, ξ〉Σ ,

[c(ϕ),ψ] := 〈ϕ·n, ξ〉Σ − 〈ψ·n, λ〉Σ +

n−1∑
l=1

ω−1
l 〈ϕ · tl,ψ · tl〉Σ ,

(2.9)

whereas the operator B : X→M′ and the functionals F : X→ R and G : M→ R are given by

[B(r,ψ), qD] := −(div vD, qD)D, (2.10)

and
[F, (r,ψ)] := −κ2(fS,div τ S)S + (fS,vS)S and [G, qD] := −(fD, qD)D. (2.11)

In all the foregoing terms, [·, ·] denotes the duality pairing induced by the corresponding operators
and κi, i ∈ {1, . . . , 4}, are positive parameters to be specified below in Theorem 2.1.

Furthermore, we notice from (2.9) that, owing to the Cauchy–Schwarz and Hölder’s inequalities,
and the continuous injection ic of H1(ΩS) into L4(ΩS) (see e.g. [1, Theorem 6.3] or [46, Theorem
1.3.5]), there holds

|[a2(zS)(t), r]| ≤ c2(ΩS)(κ2
1 + 1)1/2‖zS‖1,ΩS

‖uS‖1,ΩS
‖r‖X ∀ t, r ∈ X, (2.12)

where c2(ΩS) := ‖ic‖2. Additionally, we observe that (2.7) is equivalent to the variational formulation
defined in [12, Section 2.2], in which σS is decomposed as σS = σ + lI, with σ ∈ H0(div ; ΩS) and
l ∈ R, where

H0(div ; ΩS) :=
{
τ ∈ H(div ; ΩS) : (tr τ , 1)S = 0

}
.

The following result taken from [12] establishes the well-posedness of (2.7).

Theorem 2.1 Assume that

κ1 ∈
(

0,
2δ1µ1

Lµ

)
, κ2 > 0 , κ3 ∈

(
0, 2δ2

(
µ1 −

κ1Lµ
2δ1

))
, and κ4 ∈

(
0, 2δ3CKoκ3

(
1− δ2

2

))
,

with Lµ := max{µ2, 2µ2 − µ1}, CKo the Korn’s constant given by [12, eq. (3.10)], δ1 ∈
(

0,
2

Lµ

)
,

δ2 ∈ (0, 2), and δ3 ∈ (0, 2). In addition, given r ∈ (0, r0), with

r0 :=
α0(Ω)

2c2(ΩS)(κ2
1 + 1)1/2

, (2.13)
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where c2(ΩS) is the constant in (2.12) and α0(Ω) is the strong monotonicity constant of the nonlinear

operator a (see [12, eq. (3.16)]), we let Wr :=
{

zS ∈ H1
ΓS

(ΩS) : ‖zS‖1,ΩS
≤ r
}

, and assume that the

data fS and fD satisfy

cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r , (2.14)

where cT is the positive constant, independent of the data, provided by [12, Lemma 3.6]. Then, the
augmented fully-mixed formulation (2.7) has a unique solution ((t,ϕ), pD) ∈ X ×M with uS ∈ Wr,
which satisfies

‖((t,ϕ), pD)‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (2.15)

Proof. See [12, Theorem 3.11] for details. �

2.3 The fully-mixed finite element method

Here, for clarity of exposition of the a posteriori error estimator to be defined next in Section 3, we
restrict ourselves to the particular case provided in [12, Section 6.2] with k = 0 and introduce a Galerkin
scheme for the 3D version of (2.7). To that end we let T S

h and T D
h be respective triangulations of the

domains ΩS and ΩD, which are formed by shape-regular tetrahedra T of diameter hT , and assume that
they match in Σ so that T S

h ∪T D
h is a triangulation of Ω := ΩS ∪Σ∪ΩD. Then, for each T ∈ T S

h ∪T D
h

we set the local Raviart–Thomas space of lowest order,

RT0(T ) := P0(T ) + P0(T )x ,

where x is a generic vector in R3. We also let Σh be the partition of Σ inherited from T S
h (or T D

h ),
which is formed by triangles e of diameter he, and set hΣ := max{he : e ∈ Σh}. Furthermore, we
introduce the following discrete subspaces

L2
h(Ω?) :=

{
qh ∈ L2(Ω?) : qh|T ∈ P0(T ) ∀T ∈ T ?h

}
, ? ∈ {S,D},

Hh(Ω?) := {τh ∈ H(div ; Ω?) : τh|T ∈ RT0(T ) ∀T ∈ T ?h } , ? ∈ {S,D},

H1
h(ΩS) :=

{
vh ∈ [C(ΩS)]3 : vh|T ∈ P1(T ) ∀T ∈ T S

h

}
,

L2
tr ,h(ΩS) :=

{
rh ∈ L2

tr (ΩS) : rh|T ∈ P0(T ) ∀T ∈ T S
h

}
,

L2
skew,h(ΩS) :=

{
ηh ∈ L2

skew(ΩS) : ηh|T ∈ P0(T ) ∀T ∈ T S
h

}
.

In turn, in order to define the discrete spaces for the unknowns on the interface Σ, we introduce an
independent triangulation Σ̂h of Σ, by triangles ê of diameter hê, and define the associated meshsize
h

Σ̂
:= max{hê : ê ∈ Σ̂h}. Then, denoting by ∂Σ the polygonal boundary of Σ, we define

ΛS
h(Σ) :=

{
ψh ∈ C(Σ) : ψh|ê ∈ P1(ê) ∀ê ∈ Σ̂h, ψh = 0 on ∂Σ

}
,

ΛD
h (Σ) :=

{
ξh ∈ C(Σ) : ξh|ê ∈ P1(ê) ∀ê ∈ Σ̂h

}
.

(2.16)

Employing the above notations, we set

Hh(ΩS) :=
{
τ S ∈ H(div ; ΩS) : ctτ ∈ Hh(ΩS) ∀ c ∈ R3

}
,

Hh,0(ΩS) := Hh(ΩS) ∩H0(div ; ΩS),

H1
h,ΓS

(ΩS) := H1
h(ΩS) ∩H1

ΓS
(ΩS),
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Hh,0(ΩD) := Hh(ΩD) ∩H0(div ; ΩD),

L2
h,0(ΩD) := L2

h(ΩD) ∩ L2
0(ΩD),

ΛS
h(Σ) := [ΛS

h(Σ)]3.

Then, defining the global spaces, unknowns, and test functions as follows

Xh := L2
tr ,h(ΩS)×Hh,0(ΩS)×H1

h,ΓS
(ΩS)× L2

skew,h(ΩS)×Hh,0(ΩD) ,

Mh := ΛS
h(Σ)× ΛD

h (Σ) , Xh := Xh ×Mh, Mh := L2
h,0(ΩD) ,

th := (tS,h,σS,h,uS,h,ρS,h,uD,h) ∈ Xh, ϕ
h

:= (ϕh, λh) ∈Mh,

rh := (rS,h, τ S,h,vS,h,ηS,h,vD,h) ∈ Xh, ψ
h

:= (ψh, ξh) ∈Mh,

pD,h ∈Mh, and qD,h ∈Mh,

the Galerkin scheme for problem (2.7) reads: Find ((th,ϕh), pD,h) ∈ Xh ×Mh such that

[A(uS,h)(th,ϕh), (rh,ψh)] + [B(rh,ψh), pD,h] = [F, (rh,ψh)] ∀(rh,ψh) ∈ Xh,

[B(th,ϕh), qD,h] = [G, qD,h] ∀ qD,h ∈Mh.
(2.17)

The following theorem, also taken from [12], provides the well-posedness of (2.17), the associated
Céa estimate, and the corresponding theoretical rate of convergence.

Theorem 2.2 Assume that the conditions on κi, i ∈ {1, . . . , 4}, required by Theorem 2.1 hold. In
addition, given r ∈ (0, r0), with r0 defined by (2.13), we let

W h
r :=

{
zS,h ∈ H1

h,ΓS
(ΩS) : ‖zS,h‖1,ΩS

≤ r
}
,

and assume that the data fS and fD satisfy

c̃T
{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r, (2.18)

where c̃T is the positive constant, independent of the data, provided by [12, Lemma 4.2]. Then there
exists a constant C0 > 0 such that, whenever hΣ ≤ C0hΣ̂

, there exists a unique ((th,ϕh), pD,h) ∈
Xh ×Mh solution to problem (2.17) with uS,h ∈W h

r . In addition, there holds

‖((th,ϕh), pD,h)‖X×M ≤ c̃T
{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
, (2.19)

and there exists C1 > 0, independent of h, hΣ, and h
Σ̂

, such that

‖((t,ϕ),p)− ((th,ϕh), pD,h)‖X×M ≤ C1dist
(
((t,ϕ), pD),Xh ×Mh

)
.

Assume further that there exists δ > 0 such that tS ∈ Hδ(ΩS), σS ∈ Hδ(ΩS), divσS ∈ Hδ(ΩS), uS ∈
H1+δ(ΩS), ϕ ∈ H1/2+δ(Σ), ρS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), and div uD ∈ Hδ(ΩD). Then pD ∈ H1+δ(ΩD),
λ ∈ H1/2+δ(Σ), and there exists C2 > 0, independent of h, hΣ, and h

Σ̂
, such that

‖((t,ϕ), pD)− ((th,ϕh), pD,h)‖X×M ≤ C2 h
δ
{
‖tS‖δ,ΩS

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖uS‖1+δ,ΩS

+ ‖ρS‖δ,ΩS
+ ‖uD‖δ,ΩD

+ ‖div uD‖δ,ΩD
+ ‖pD‖1+δ,ΩD

}
.
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Proof. We refer the reader to [12, Theorems 4.3, 5.4, and 6.2] for details. �

We end this section by pointing out that the assumption hΣ ≤ C0hΣ̂
required in Theorem 2.2 is

needed to prove the discrete inf-sup condition for the bilinear form b (cf. (2.9)). We omit further
details about this issue and refer the reader to [30, Lemma 7.5] for more details.

3 A residual-based a posteriori error estimator

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the three
dimensional Galerkin scheme (2.17). The corresponding a posteriori error analysis for the 2D case
should be quite straightforward. We remark in advance that most of the proofs here make extensive use
of estimates already available in the literature. In particular, we apply results from [27, 25, 34, 37, 39],
among others.

3.1 Preliminaries

We begin by introducing further notations and definitions. First, given T ∈ T S
h ∪ T D

h , we let E(T ) be
the set of faces of T , and denote by Eh the set of all faces of T S

h ∪ T D
h , subdivided as follows:

Eh = Eh(ΓS) ∪ Eh(ΓD) ∪ Eh(ΩS) ∪ Eh(ΩD) ∪ Eh(Σ),

where Eh(Γ?) := {e ∈ Eh : e ⊆ Γ?}, Eh(Ω?) := {e ∈ Eh : e ⊆ Ω?}, for ? ∈ {S,D}, and the faces of Eh(Σ)
are exactly those forming the previously defined partition Σh, that is Eh(Σ) := {e ∈ Eh : e ⊆ Σ}.
Also, for each e ∈ Eh(Ω?) we fix a unit normal ne, and then, given v = (v1, v2, v3)t ∈ L2(Ω) and
τ := (τij)3×3 ∈ L2(Ω) such that v|T ∈ C(T ) and τ |T ∈ C(T ) on each T ∈ Th, we let Jv×neK and
Jτ×neK be the corresponding jumps of the tangential traces across e. In other words, Jv×neK :=
(v|T − v|T ′)|e×ne and Jτ×neK := (τ |T − τ |T ′)|e×ne, respectively, where T and T ′ are the elements of
T ?h having e as a common face and

τ × ne :=

 (τ11, τ12, τ13)× ne
(τ21, τ22, τ23)× ne
(τ31, τ32, τ33)× ne

 .

From now on, when no confusion arises, we simple write n instead of ne. In the sequel we will also
make use of the following differential operators:

curl (v) = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
and

curl (τ ) :=

 curl (τ11, τ12, τ13)
curl (τ21, τ22, τ23)
curl (τ31, τ32, τ33)

 .

In turn, the tangential curl operator curl s : H1/2(Σ)→ L(H−1/2(Σ)), with L(H−1/2(Σ)) denoting the
tangential vector fields of order −1/2, will also be needed. This operator which can be defined by
curl s(ξ) = ∇ξ×n for any sufficiently smooth function ξ, is linear and continuous (see [6, Proposi-
tions 3.4 and 3.6] for details). A tensor version of curl s, say curl s : H1/2(Σ)→ L(H−1/2(Σ)), which
is defined component-wise by curl s, will be also utilized.
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Let us now recall the main properties of the Raviart-Thomas interpolator of lowest order (see
[5, 26, 41]) and the Clément operator onto the space of continuous piecewise linear functions [17]. We
begin with the aforementioned Raviart–Thomas operator Π?

h : H1(Ω?)→ Hh(Ω?) (recall the definition
of Hh(Ω?) in Section 2.3), ? ∈ {S,D}, which is characterized by the identity∫

e
Π?
hv · n =

∫
e
v · n ∀ face e of T ?h . (3.1)

As a consequence of (3.1), there holds

div (Π?
hv) = P?h(div v), (3.2)

where P?h is the L2(Ω?)-orthogonal projector onto the piecewise constant functions on Ω?. A tensor
version of Π?

h, say Π?
h : H1(Ω?) → Hh(Ω?), which is defined row-wise by Π?

h, and a vector version
of P?h, say P?

h, which is the L2(Ω?)-orthogonal projector onto the piecewise constant vectors on Ω?,
might also be required. The local approximation properties of Π?

h (and hence of Π?
h) are established

in the following lemma. For the corresponding proof we refer to [5] (see also [26]).

Lemma 3.1 For each ? ∈ {S,D} there exist constants c1, c2 > 0, independent of h, such that for all
v ∈ H1(Ω?) there hold

‖v −Π?
hv‖0,T ≤ c1hT ‖v‖1,T ∀T ∈ T ?h ,

and
‖v · n−Π?

hv · n‖0,e ≤ c2h
1/2
e ‖v‖1,Te ∀ face e of T ?h ,

where Te is a tetrahedron of T ?h containing e on its boundary.

In turn, the Clément operator I?h : H1(Ω?)→ H1
h(Ω?), with

H1
h(Ω?) :=

{
v ∈ C(Ω?) : v|T ∈ P1(T ) ∀T ∈ T ?h

}
,

approximates optimally non-smooth functions by continuous piecewise linear functions. The local
approximation properties of this operator are established in the following lemma (see [17]).

Lemma 3.2 For each ? ∈ {S,D} there exist constants c3, c4, c5 > 0, independent of h, such that for
all v ∈ H1(Ω?) there holds

‖v − I?hv‖0,T ≤ c3hT ‖v‖1,∆?(T ) ∀T ∈ T ?h ,

and
‖v − I?hv‖0,e ≤ c4h

1/2
e ‖v‖1,∆?(e) ∀e ∈ Eh,

where
∆?(T ) := ∪

{
T ′ ∈ T ?h : T ′ ∩ T 6= ∅

}
and ∆?(e) := ∪

{
T ′ ∈ T ?h : T ′ ∩ e 6= ∅

}
.

In what follows, a vector version of I?h, say I?h : H1(Ω?)→ H1
h(Ω?), which is defined component-wise

by I?h, will be needed as well.

For the forthcoming analysis we will also utilize a couple of results providing stable Helmholtz
decompositions for H(div ; ΩS) and H0(div ; ΩD). In this regard, we remark in advance that the
decomposition for H0(div ; ΩD) will require the boundary ΓD to lie in a “convex part” of ΩD, which
means that there exists a convex domain containing ΩD, and whose boundary contains ΓD. More
precisely, we have the following lemma.
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Lemma 3.3

a) For each τ S ∈ H(div ; ΩS) there exist η ∈ H2(ΩS) and χ ∈ H1(ΩS) such that

τ S = ∇η + curlχ in ΩS and ‖η‖2,ΩS
+ ‖χ‖1,ΩS

≤ CS‖τ S‖div ,ΩS
, (3.3)

where CS is a positive constant independent of all the foregoing variables.

b) Assume that there exists a convex domain Ξ such that ΩD ⊆ Ξ and ΓD ⊆ ∂Ξ. Then, given
vD ∈ H0(div ; ΩD) there exist w ∈ H2(ΩD) and β ∈ H1

ΓD
(ΩD) such that

vD = ∇w + curlβ in ΩD and ‖w‖2,ΩD
+ ‖β‖1,ΩD

≤ CD‖vD‖div ,ΩD
, (3.4)

where CD is a positive constant independent of all the foregoing variables, and

H1
ΓD

(ΩD) :=
{
β ∈ H1(ΩD) : β|ΓD

∈ P0(ΓD)
}
.

Proof. See [27, Theorems 3.1 and 3.2]. �

We end this section with a lemma providing estimates in terms of local quantities for the H
−1/2
00 (Σ)

and H−1/2(Σ) norms of functions in particular subspaces of L2(Σ) and H−1/2(Σ)∩L2(Σ), respectively.
More precisely, having in mind the definitions of ΛS

h(Σ) and ΛD
h (Σ) (cf. (2.16)), which are subspaces

of H
1/2
00 (Σ) and H1/2(Σ), respectively, we introduce the orthogonal-type spaces

ΛS,⊥
h (Σ) :=

{
λ ∈ L2(Σ) : 〈λ, ψh〉Σ = 0 ∀ψh ∈ ΛS

h(Σ)
}

(3.5)

and
ΛD,⊥
h (Σ) :=

{
λ ∈ H−1/2(Σ) ∩ L2(Σ) : 〈λ, ξh〉Σ = 0 ∀ ξh ∈ ΛD

h (Σ)
}
. (3.6)

Then, the announced lemma is stated as follows.

Lemma 3.4 Assume that for each e ∈ Σh there exists ê ∈ Σ̂h such that e ⊆ ê and hê ≤ C1 he,
with a constant C1 > 0 independent of hΣ and h

Σ̂
. Then, there exists C > 0, independent of the

aforementioned meshsizes, such that

‖λ‖2−1/2,00,Σ ≤ C
∑
e∈Σh

he ‖λ‖20,e ∀λ ∈ ΛS,⊥
h (Σ) , (3.7)

and
‖λ‖2−1/2,Σ ≤ C

∑
e∈Σh

he ‖λ‖20,e ∀λ ∈ ΛD,⊥
h (Σ) . (3.8)

Proof. Given λ ∈ ΛS,⊥
h (Σ), we first observe that λ ∈ H

−1/2
00 (Σ) and that

‖λ‖−1/2,00,Σ = sup
ξ∈H

1/2
00 (Σ)
ξ 6=0

〈λ, ξ〉Σ
‖ξ‖1/2,00,Σ

≤ sup
v∈H1

ΓS
(ΩS)

v 6=0

〈λ, v〉Σ
‖v‖1,ΩS

. (3.9)

Next, we let T̂ S
h be a regular triangulation of the domain ΩS which coincides with Σ̂h on Σ, and let

Îh : H1(ΩS)→ Ŷh :=
{
v ∈ C(ΩS) : v|T ∈ P1(T ) ∀T ∈ T̂ S

h

}
12



be the usual Clément operator (see Section 3.1). Then, since Îh(v)|Σ ∈ ΛS
h(Σ) ∀ v ∈ H1

ΓS
(ΩS), it

follows from (3.5), (3.9), and the Cauchy-Schwarz inequality, that

‖λ‖−1/2,00,Σ ≤ sup
v∈H1

ΓS
(ΩS)

v 6=0

〈λ, v − Îh(v)〉Σ
‖v‖1,ΩS

≤ sup
v∈H1

ΓS
(ΩS)

v 6=0

∑
e∈Σh

‖λ‖0,e‖v − Îh(v)‖0,ê

‖v‖1,ΩS

, (3.10)

where we also use that ‖v − Îh(v)‖0,e ≤ ‖v − Îh(v)‖0,ê. In turn, applying the second approximation
property from Lemma 3.2, the estimate hê ≤ C1 he, and the fact that the number of triangles of the
macro-elements ∆(ê) are uniformly bounded, we find that∑

e∈Σh

‖λ‖0,e‖v − Îh(v)‖0,ê ≤
∑
e∈Σh

h
1/2
ê ‖λ‖0,e ‖v‖1,∆(ê)

≤

∑
e∈Σh

hê ‖λ‖20,e


1/2 ∑

e∈Σh

‖v‖21,∆(ê)


1/2

≤ C

∑
e∈Σh

he ‖λ‖20,e


1/2

‖v‖1,ΩS
,

which, replaced back into (3.10), gives (3.7). The proof of (3.8), being similar to that of (3.7), is
omitted. �

3.2 The main result

In what follows we assume that the hypotheses of Theorem 2.1, Theorem 2.2, and Lemma 3.4, hold
and let ~t := ((t,ϕ), pD) ∈ X ×M and ~th := ((th,ϕh), pD,h) ∈ Xh ×Mh be the unique solutions of
problems (2.7) and (2.17), respectively. Then, our global a posteriori error estimator is defined by:

Θ :=

∑
T∈T S

h

Θ2
S,T +

∑
T∈T D

h

Θ2
D,T


1/2

, (3.11)

where the local error indicators Θ2
S,T (with T ∈ T S

h ) and Θ2
D,T (with T ∈ T D

h ) are given by

Θ2
S,T := ‖fS + divσS,h‖20,T +

∥∥fS −PS
h(fS)

∥∥
0,T

+

∥∥∥∥ρS,h −
1

2

(
∇uS,h − (∇uS,h)t

)∥∥∥∥2

0,T

+ ‖e(uS,h)− tS,h‖20,T +
∥∥σS,h − σt

S,h

∥∥2

0,T
+
∥∥∥σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d
∥∥∥2

0,T

+ h2
T

∥∥∇uS,h −
(
tS,h + ρS,h

)∥∥2

0,T
+ h2

T

∥∥curl (tS,h + ρS,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥q(tS,h + ρS,h

)
×n

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓS)

he
∥∥(tS,h + ρS,h

)
×n
∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he
∥∥(tS,h + ρS,h

)
×n + curl sϕh

∥∥2

0,e
+ he ‖ϕh + uS,h‖20,e

}
+

∑
eE(T )∩Eh(Σ)

he

∥∥∥σS,hn−
2∑
l=1

ω−1
l (ϕh · tl)tl + λhn

∥∥∥2

0,e
,

(3.12)
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and

Θ2
D,T := ‖fD − div uD,h‖20,T + h2

T

∥∥K−1uD,h

∥∥2

0,T
+ h2

T

∥∥curl (K−1uD,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩD)

he
∥∥JK−1uD,h×nK

∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓD)

he
∥∥K−1uD,h×n

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥K−1uD,h×n + curl sλh

∥∥∥2

0,e
+ he ‖pD,h − λh‖20,e + he ‖uD,h·n +ϕh·n‖

2
0,e

}
.

(3.13)

The main goal of the present Section 3 is to establish, under suitable assumptions, the existence
of positive constants Crel and Ceff, independent of the meshsizes and the continuous and discrete
solutions, such that

Ceff Θ + h.o.t. ≤ ‖~t−~th‖X×M ≤ Crel Θ , (3.14)

where h.o.t. stands, eventually, for one or several terms of higher order.

The upper and lower bounds in (3.14), which are known as the reliability and efficiency of Θ, are
derived below in Sections 3.3 and 3.4, respectively.

3.3 Reliability of Θ

Proceeding analogously to [12, Section 5.2], we first let P : X × M → (X × M)′ := X′ × M′ and
Ph : Xh ×Mh → (Xh ×Mh)′ := X′h ×M′h be the nonlinear operators suggested by the left hand sides
of (2.7) and (2.17) with the given velocity solutions uS ∈Wr and uS,h ∈W h

r , that is

[P(~s),~r] := [(a1 + a2(uS))(s), r] + [b(s),ψ] + [b(r),φ]− [c(φ),ψ]

+ [B(r,ψ), rD] + [B(s,φ), qD] ,
(3.15)

for all ~s = ((s,φ), rD), ~r = ((r,ψ), qD) ∈ X×M, and

[Ph(~sh),~rh] := [(a1 + a2(uS,h))(sh), rh] + [b(sh),ψ
h
] + [b(rh),φ

h
]− [c(φ

h
),ψ

h
]

+ [B(rh,ψh), rD,h] + [B(sh,φh), qD,h] ,
(3.16)

for all ~sh = ((sh,φh), rD,h), ~rh = ((rh,ψh), qD,h) ∈ Xh ×Mh. Then, setting F := (F,G) ∈ X′ ×M′, it
is clear from (2.7) and (2.17) that P and Ph satisfy

[P(~t),~r] = [F ,~r] ∀~r ∈ X×M (3.17)

and
[Ph(~th),~rh] = [F ,~rh] ∀~rh ∈ Xh ×Mh, (3.18)

respectively. In addition, since µ is assumed to be of class C1 (cf. (2.2)), we find, as explained in
[12, Section 5.2], that a1 (cf. (2.9)) has hemi-continuous first order Gâteaux derivative Da1 : X →
L(X,X′). In this way, the Gâteaux derivative of P at ~s is obtained by replacing [a1(·), ·] in (3.15) by
Da1(~s)(·, ·) (see [12, Lemma 5.3] for details), that is

DP(~s)(~t,~r) := Da1(s)(t, r) + [a2(uS)(t), r] + [b(t),ψ] + [b(r),ϕ]− [c(ϕ),ψ]

+ [B(r,ψ), pD] + [B(t,ϕ), qD] ,
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for all ~t = ((t,ϕ), pD), ~r = ((r,ψ), qD) ∈ X ×M, which, according to [12, Lemma 5.3], becomes a
uniformly bounded (with respect to ~s) bilinear form on (X×M)× (X×M). Moreover, thanks to the
assumptions on κi, i ∈ {1, . . . , 4}, required by Theorem 2.1, recalling that c is positive-semidefinite,
employing the continuous version of [12, Theorem 5.2], and proceeding again as in [12, Section 5.2],
we deduce the existence of a positive constant CP, independent of ~s and the continuous and discrete
solutions, such that the following global inf-sup condition holds

CP ‖~ζ‖X×M ≤ sup
~r∈X×M
~r6=0

DP(~s)(~ζ,~r)

‖~r‖X×M
∀~ζ ∈ X×M . (3.19)

We are now in position of establishing the following preliminary a posteriori error estimate.

Theorem 3.5 Given r ∈ (0, r0), with r0 defined by (2.13), assume that the data fS and fD satisfy

c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ CP r

α0(Ω)
, (3.20)

where c̃T and α0(Ω) are the positive constants, independent of the data, provided by [12, Lemma 4.2
and eq. (3.16)], and CP is given above in (3.19). Then, there holds

‖~t − ~th‖X×M ≤
2

CP
‖R‖(

X×M
)′ , (3.21)

where R : X ×M → R is the residual functional given by R(~r) := [F − Ph(~th),~r] ∀~r ∈ X ×M,
which satisfies

R(~rh) = 0 ∀~rh ∈ Xh ×Mh . (3.22)

Proof. Since ~t and ~th belong to X×M, a straightforward application of the mean value theorem yields
the existence of a convex combination of ~t and ~th, say ~sh ∈ X ×M, such that (see for instance the
proof of [39, Lemma 3.5])

DP(~sh)(~t−~th,~r) = [P(~t)−P(~th),~r] ∀~r ∈ X×M .

Then, using that [P(~t),~r] = [F ,~r] (cf. (3.17)), and adding and subtracting [Ph(~th),~r], it readily
follows from the foregoing identity that

DP(~sh)(~t−~th,~r) = R(~r) + [Ph(~th)−P(~th),~r] ∀~r ∈ X×M . (3.23)

In turn, applying (3.19) with ~s = ~sh and ~ζ = ~t −~th, and employing (3.23), we deduce after minor
algebraic manipulations that

CP ‖~t − ~th‖X×M ≤ ‖R‖(X×M)′ + sup
~r∈X×M
~r6=0

[Ph(~th)−P(~th),~r]

‖~r‖X×M
. (3.24)

Next, according to the definitions of P and Ph (cf. (3.15) - (3.16)), and using the estimates (2.12)
and (2.19), and the definition of r0 (cf. (2.13)), we obtain∣∣∣[Ph(~th)−P(~th),~r]

∣∣∣ =
∣∣∣[a2(uS,h − uS)(th), r]

∣∣∣
≤ c2(ΩS) (κ2

1 + 1)1/2 ‖uS,h‖1,ΩS
‖uS − uS,h‖1,ΩS

‖r‖X

≤ c2(ΩS) (κ2
1 + 1)1/2 ‖~th‖X×M ‖~t−~th‖X×M ‖r‖X

≤ α0(Ω)

2r0
c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
‖~t−~th‖X×M ‖r‖X ,
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which, thanks to the assumption (3.20) and the fact that
r

r0
≤ 1, yields

∣∣∣[Ph(~th)−P(~th),~r]
∣∣∣ ≤ CP

2
‖~t−~th‖X×M ‖r‖X .

Thus, replacing this estimate back into (3.24) we arrive at (3.21). Finally, the fact that R vanishes in
Xh ×Mh, that is (3.22), follows straightforwardly from (3.18). �

According to the upper bound (3.21) provided by the previous lemma, it only remains now to
estimate ‖R‖(

X×M
)′ . To this end, we first observe that the functional R can be decomposed as

R(~r) := R1(τ S) + R2(vD) + R3(vS) + R4(ηS) + R5(rS) + R6(qD) + R7(ψ) + R8(ξ)

for all ~r = ((r,ψ), qD) ∈ X×M, where

R1(τ S) := −κ2(fS + divσS,h,div τ S)S − κ1

(
σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d, τ d
S

)
S

−(tS,h, τ
d
S)S − (τ S,ρS,h)S − (div τ S,uS,h)S − 〈τ Sn,ϕh〉Σ ,

R2(vS) := (fS + divσS,h,vS)S − κ3(e(uS,h)− tS,h, e(vS))S,

R3(ηS) := (σS,h,ηS)S − κ4

(
ρS,h −

1

2

(
∇uS,h − (∇uS,h)t

)
,ηS

)
S

,

R4(rS) :=
(
σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d, rS

)
S
,

R5(vD) := −(K−1uD,h,vD)D + (div vD, pD,h)D + 〈vD·n, λh〉Σ ,

R6(qD) := −(fD − div uD,h, qD)D,

R7(ψ) := −〈σS,hn,ψ〉Σ +
2∑
l=1

ω−1
l 〈ϕ·tl,ψ·tl〉Σ − 〈ψ·n, λh〉Σ ,

R8(ξ) := 〈ϕh·n, ξ〉Σ + 〈uD,h·n, ξ〉Σ .

In this way, it follows that

‖R‖(
X×M

)′ ≤ {‖R1‖H(div ;ΩS)′ + ‖R2‖H1
ΓS

(ΩS)′ + ‖R3‖L2
skew(ΩS)′ + ‖R4‖L2

tr (ΩS)′

+ + ‖R5‖H0(div ;ΩD)′ + ‖R6‖L2
0(ΩD)′ + ‖R7‖H−1/2

00 (Σ)
+ ‖R8‖H−1/2(Σ)

}
,

(3.25)

and hence our next purpose is to derive suitable upper bounds for each one of the terms on the
right hand side of (3.25). We start with the following lemma, which is a direct consequence of the
Cauchy–Schwarz inequality.

Lemma 3.6 There exist C2, C3 > 0, independent of the meshsizes, such that

‖R2‖H1
ΓS

(ΩS)′ ≤ C2

∑
T∈T S

h

‖fS + divσS,h‖20,T + ‖e(uS,h)− tS,h‖20,T


1/2

and

‖R3‖L2
skew(ΩS)′ ≤ C3

∑
T∈T S

h

∥∥σS,h − σt
S,h

∥∥2

0,T
+

∥∥∥∥ρS,h −
1

2

(
∇uS,h − (∇uS,h)t

)∥∥∥∥2

0,T


1/2

.
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In addition, there holds

‖R4‖L2
tr (ΩS)′ ≤

∑
T∈T S

h

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T


1/2

and

‖R6‖L2
0(ΩD)′ ≤

 ∑
T∈T D

h

‖fD − div uD,h‖20,T


1/2

.

Next, we derive the upper bounds for R7 and R8, the functionals acting on the interface Σ.

Lemma 3.7 There exist C7, C8 > 0, independent of the meshsizes, such that

‖R7‖H−1/2
00 (Σ)

≤ C7

 ∑
e∈Eh(Σ)

he

∥∥∥σS,hn−
2∑
l=1

ω−1
l (ϕh·tl)tl + λhn

∥∥∥2

0,e


1/2

, (3.26)

and

‖R8‖H−1/2(Σ) ≤ C8

 ∑
e∈Eh(Σ)

he
∥∥uD,h·n +ϕh·n

∥∥2

0,e


1/2

. (3.27)

Proof. It is clear from the definition of R7 that

R7(ψ) = −
〈
σS,hn −

2∑
l=1

ω−1
l (ϕh · tl)tl + λhn,ψ

〉
Σ
∀ψ ∈ H

1/2
00 (Σ) ,

which certainly yields

‖R7‖H−1/2
00 (Σ)

=
∥∥∥σS,hn−

2∑
l=1

ω−1
l (ϕh · tl)tl + λhn

∥∥∥
−1/2,00,Σ

. (3.28)

Then, taking ψh ∈ ΛS
h(Σ) and then (rh,ψh) = (0, (ψh, 0)) ∈ Xh in the first equation of (2.17), we

deduce that 〈
σS,hn −

2∑
l=1

ω−1
l (ϕh · tl)tl + λhn,ψh

〉
Σ

= 0 ∀ψh ∈ ΛS
h(Σ) ,

which says that each component of σS,hn −
∑2

l=1 ω
−1
l (ϕh · tl)tl + λhn belongs to ΛS,⊥

h (Σ) (cf. (3.5)).
In this way, (3.26) follows from (3.28) and a direct component-wise application of (3.7) (cf. Lemma

3.4). In turn, the proof of (3.27) proceeds analogously by noting now that uD,h·n + ϕh·n ∈ ΛD,⊥
h (Σ)

(cf. (3.6)), and then by applying (3.8) (cf. Lemma 3.4). �

Our next goal is to derive the upper bound for R1, for which, given τ S ∈ H(div ; ΩS), we consider
its Helmholtz decomposition provided by part a) of Lemma 3.3. More precisely, we let η ∈ H2(ΩS)
and χ ∈ H1(ΩS) be such that τ S = ∇η + curlχ in ΩS, and

‖η‖2,ΩS
+ ‖χ‖1,ΩS

≤ CS ‖τ S‖div ,ΩS
. (3.29)
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Then, defining τ S,h := ΠS
h(∇η) + curl (IS

hχ) ∈ Hh,0(ΩS) (cf. Section 3.1), which can be seen as a
discrete Helmholtz decomposition of τ S,h, and applying from (3.22) that R1(τ S,h) = 0, we can write

R1(τ S) = R1(τ S − τ S,h) = R1(∇η −ΠS
h(∇η)) + R1(curl (χ− IS

hχ)) .

Consequently, we now require to bound the expressions on the right hand side of the foregoing
equation, which is provided by the following two lemmas.

Lemma 3.8 There exists C > 0, independent of the meshsizes, such that for each η ∈ H2(ΩS) there
holds

|R1(∇η −ΠS
h(∇η))| ≤ C

∑
T∈T S

h

Θ̂2
1,T


1/2

‖η‖2,Ω , (3.30)

where

Θ̂2
1,T = h2

T

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T
+ ‖fS −PS

h(fS)‖20,T

+ h2
T

∥∥∇uS,h − (tS,h + ρS,h)
∥∥2

0,T
+

∑
e∈E(T )∩Eh(Σ)

he ‖ϕh + uS,h‖20,e .
(3.31)

Proof. It follows almost straightforwardly from a slight modification of the proof of [39, Lemma 3.10]
(see also [37, Lemma 3.6]). We omit further details. �

Lemma 3.9 There exists C > 0, independent of the meshsizes, such that for each χ ∈ H1(ΩS) there
holds

|R1(curl (χ− IS
hχ))| ≤ C

∑
T∈T S

h

Θ̂2
2,T


1/2

‖χ‖1,ΩS
, (3.32)

where

Θ̂2
2,T =

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T
+ h2

T

∥∥curl (tS,h + ρS,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥q(tS,h + ρS,h)×n

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓS)

he
∥∥(tS,h + ρS,h)×n

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

he
∥∥(tS,h + ρS,h)×n + curl sϕh

∥∥2

0,e
.

(3.33)

Proof. Given χ ∈ H1(ΩS), we first notice from the definition of R1 that there holds

R1(curl (χ− IS
hχ)) = T̃1(χ) + T̂1(χ) ,

where
T̃1(χ) := −κ1

(
σd

S,h − µ(|tS,h|) tS,h + (uS,h ⊗ uS,h)d, curl (χ− IS
hχ)

)
S
,

and, denoting ζh := tS,h + ρS,h,

T̂1(χ) := − (ζh, curl (χ− IS
hχ))S −

〈
curl (χ− IS

hχ)n,ϕh
〉

Σ
.
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For estimating T̃1(χ) we proceed as in the proof of [39, Lemma 3.9] and apply the boundedness of
IS
h : H1(ΩS) → H1(ΩS) ([24, Lemma 1.127, pag. 69]), as well as the Cauchy-Schwarz and triangle

inequalities, to obtain

|T̃1(χ)| ≤ C

∑
T∈T S

h

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T


1/2

‖χ‖1,ΩS
. (3.34)

Next, for T̂1(χ) we first apply the identities from [41, Chapter I, eq. (2.17) and Theorem 2.11] to
deduce that〈

curl (χ− IS
hχ)n,ϕh

〉
Σ

=
〈
curl sϕh,χ− IS

hχ
〉

Σ
=

∑
e∈Eh(Σ)

∫
e
curl sϕh : (χ− IS

hχ) . (3.35)

Then, analogously to the proof of [39, Lemma 3.9], we integrate by parts
(
ζh, curl (χ − IS

hχ)
)

S
on

each T ∈ T S
h , and add (3.35) to the resulting expression, to obtain

T̂1(χ) = −
∑
T∈T S

h

∫
T

curl ζh : (χ− IS
hχ) −

∑
e∈Eh(ΩS)

∫
e
Jζh×nK : (χ− IS

hχ)

−
∑

e∈Eh(ΓS)

∫
e
ζh×n : (χ− IS

hχ) −
∑

e∈Eh(Σ)

∫
e

(ζh×n + curl sϕh) : (χ− IS
hχ) .

(3.36)

In this way, applying the Cauchy–Schwarz inequality, the approximation properties of the Clément
interpolator IS

h (cf. Lemma 3.2) and the fact that the number of triangles of the macro-elements ∆S(T )
and ∆S(e) are uniformly bounded, we deduce from (3.36) that

|T̂1(χ)| ≤
∑
T∈T S

h

h2
T ‖curl (ζh)‖20,T +

∑
e∈E(T )∩Eh(ΩS)

he ‖Jζh×nK‖20,e

+
∑

e∈E(T )∩Eh(ΓS)

he ‖ζh×n‖20,e +
∑

e∈E(T )∩Eh(Σ)

he ‖ζh×n + curl sϕh‖
2
0,e


1/2

‖χ‖1,ΩS
,

(3.37)

which together with (3.34) implies (3.32) and concludes the proof. �

As a direct consequence of Lemmas 3.8 and 3.9, and the stability estimate (3.29) for the Helmholtz
decomposition, we obtain the following upper bound for ‖R1‖H(div ;ΩS)′ .

Lemma 3.10 There exists C1 > 0, independent of the meshsizes, such that

‖R1‖H(div ;ΩS)′ ≤ C1

∑
T∈T S

h

Θ̂2
S,T


1/2

,

where

Θ̂2
S,T = Θ̂2

1,T + Θ̂2
2,T − h2

T

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T
,
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that is

Θ̂2
S,T :=

∥∥fS −PS
h(fS)

∥∥2

0,T
+
∥∥∥σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d
∥∥∥2

0,T

+ h2
T

∥∥∇uS,h −
(
tS,h + ρS,h

)∥∥2

0,T
+ h2

T

∥∥curl (tS,h + ρS,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥q(tS,h + ρS,h)×n

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓS)

he
∥∥(tS,h + ρS,h)×n

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he
∥∥(tS,h + ρS,h

)
×n + curl sϕh

∥∥2

0,e
+ he ‖ϕh + uS,h‖20,e

}

Proof. It suffices to see that the first term defining Θ̂2
1,T (cf. (3.31) in Lemma 3.8) is dominated by

the first term defining Θ̂2
2,T (cf. (3.33) in Lemma 3.9), which explains the substraction of the former

in the original definition of Θ̂2
S,T . �

Finally, the corresponding estimate for R5 is given by the following lemma.

Lemma 3.11 Assume that there exists a convex domain Ξ such that ΩD ⊆ Ξ and ΓD ⊆ ∂Ξ. Then
there exists C5 > 0, independent of the meshsizes, such that

‖R5‖H0(div ;ΩD)′ ≤ C5

 ∑
T∈T D

h

Θ̂2
D,T


1/2

,

where
Θ̂2

D,T := h2
T

∥∥K−1uD,h

∥∥2

0,T
+ h2

T

∥∥curl (K−1uD,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩD)

he
∥∥qK−1uD,h×n

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓD)

he
∥∥K−1uD,h×n

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he
∥∥K−1uD,h×n + curl sλh

∥∥2

0,e
+ he ‖pD,h − λh‖20,e

}
.

Proof. The result follows analogously to the proof of Lemmas 3.8, 3.9, and 3.10, taking into account
now the Helmholtz decomposition provided by part b) of Lemma 3.3, the fact that R5(vD,h) = 0
∀vD,h ∈ Hh,0(ΩD) (which also follows from (3.22)), and the analogue of the integration by parts
formula (3.35), which here becomes

〈curlφ · n, λh〉Σ = 〈curl sλh, φ〉Σ ∀φ ∈ H1(ΩD) ,

where curl s is the operator defined in Section 3.1. Additionally we refer to [37, Lemma 3.9] for the
proof of the 2D version of this lemma. We omit further details. �

We end this section by concluding that the reliability of Θ, that is the upper bound in (3.14), is a
straightforward consequence of Lemmas 3.6, 3.7, 3.10, and 3.11.

3.4 Efficiency of Θ

We now aim to establish the lower bound in (3.14). For this purpose, we will make extensive use of the
original system of equations given by (2.4)–(2.5)–(2.6), which is recovered from the augmented-mixed
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continuous formulation (2.7) by choosing suitable test functions and integrating by parts backwardly
the corresponding equations.

We begin the derivation of the efficiency estimates with the following result.

Lemma 3.12 There hold∥∥fS −PS
h(fS)

∥∥
0,T
≤ 2‖σS − σS,h‖div ,T ∀T ∈ T S

h ,

‖fS + divσS,h‖0,T ≤ ‖σS − σS,h‖div ,T ∀T ∈ T S
h ,

‖fD − div uD,h‖0,T ≤ ‖uD − uD,h‖div ,T ∀T ∈ T D
h ,

and there exist constants ci > 0, i ∈ {1, . . . , 4}, independent of the meshsizes, such that

‖σS,h − σt
S,h‖0,T ≤ c1 ‖σS − σS,h‖0,T ∀T ∈ T S

h ,

‖e(uS,h)− tS,h‖0,T ≤ c2

{
‖uS − uS,h‖1,T + ‖tS − tS,h‖0,T

}
∀T ∈ T S

h ,∥∥∥∥ρS,h −
1

2

(
∇uS,h − (∇uS,h)t

)∥∥∥∥
0,T

≤ c3

{
‖ρS − ρS,h‖0,T + ‖uS − uS,h‖1,T

}
∀T ∈ T S

h ,

and∥∥∥∇uS,h −
(
tS,h + ρS,h

) ∥∥∥
0,T
≤ c4

{
‖uS − uS,h‖1,T + ‖tS − tS,h‖0,T + ‖ρS − ρS,h‖0,T

}
∀T ∈ T S

h .

Proof. It suffices to recall that fS = −divσS, fD = div uD, tS = e(uS), ρS = 1
2

(
∇uS − (∇uS)t

)
,

and σS = σt
S. In particular, for the first estimate we refer to [39, Lemma 3.13]. Further details are

omitted. �

Now we turn to provide the corresponding estimates for the rest of terms defining ΘS and ΘD.
To do that, we proceed similarly as in [37], [39], and [28] and apply some known results based on
inverse inequalities (see [16]) and the localization technique (see [48]) based on tetrahedron-bubble
and face-bubble functions. In particular, the following lemma provides local efficiency estimates for
several terms on Σ.

Lemma 3.13 There exist constants ci > 0, i ∈ {5, 6, 7, 8}, independent of the meshsizes, such that

a) he‖pD,h − λh‖20,e ≤ c5

{
‖pD − pD,h‖20,Te + h2

T ‖uD − uD,h‖20,Te + he‖λ− λh‖20,e
}

,

for all e ∈ Eh(Σ), where Te is the tetrahedron of T D
h having e as a face,

b) he‖uD,h·n +ϕh·n‖20,e ≤ c6

{
‖uD − uD,h‖20,Te + h2

T ‖div (uD − uD,h)‖20,Te + he‖ϕ−ϕh‖20,e
}

,

for all e ∈ Eh(Σ), where Te is the tetrahedron of T D
h having e as a face,

c) he

∥∥∥σS,hn−
2∑
l=1

ω−1
l (ϕh · tl)tl + λhn

∥∥∥2

0,e

≤ c7

{
‖σS − σS,h‖20,Te + h2

T ‖div (σS − σS,h)‖20,Te + he‖ϕ−ϕh‖20,e + he‖λ− λh‖20,e
}
,

for all e ∈ Eh(Σ), where Te is the tetrahedron of T S
h having e as a face,
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d) he‖uS,h +ϕh‖20,e ≤ c8

{
‖uS − uS,h‖20,Te + h2

T |uS − uS,h|21,Te + he‖ϕ−ϕh‖20,e
}

,

for all e ∈ Eh(Σ), where Te is the tetrahedron of T S
h having e as a face.

Proof. We notice that all the estimates here can be easily obtained by adapting the proofs of their two-
dimensional counterparts. In fact, the estimate in a) can be easily obtained after a slight modification
of [2, Lemma 4.12], whereas the proofs of b), c), and d) readily follow from [37, Lemmas 3.15, 3.16
and 3.17], respectively. �

The sixth residual expression defining Θ2
S,T (cf. (3.12)), that is the one containing the nonlinear

operator and the convective term, as well as the rest of terms acting on Σ, are estimated now.

Lemma 3.14 There exist ci > 0, i ∈ {9, 10, 11}, independent of the meshsizes, such that

a)
∥∥∥σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d
∥∥∥

0,ΩS

≤ c9

{
‖σS − σS,h‖0,ΩS

+ ‖tS − tS,h‖0,ΩS
+ ‖uS − uS,h‖1,ΩS

}
.

b)
∑

e∈Eh(Σ)

he
∥∥(tS,h + ρS,h

)
×n + curl sϕh

∥∥2

0,e

≤ c10

 ∑
e∈Eh(Σ)

(
‖tS − tS,h‖20,Te + ‖ρS − ρS,h‖20,Te

)
+ ‖ϕ−ϕh‖21/2,Σ

 ,

and

c)
∑

e∈Eh(Σ)

he
∥∥K−1uD,h×n + curl sλh

∥∥2

0,e
≤ c11

 ∑
e∈Eh(Σ)

‖uD − uD,h‖20,Te + ‖λ− λh‖21/2,Σ

 ,

where, given e ∈ Eh(Σ), Te is the tetrahedron of T D
h having e as a face.

Proof. The efficiency estimate a) follows exactly as in the first part of the proof of [39, Theorem
3.12]. Indeed, after introducing the identity σd

S − µ(|tS|)tS + (uS ⊗ uS)d = 0, the rest of the proof
reduces to employ the Lipschitz-continuity of the nonlinear operator induced by µ (cf. [33, Lemma
2.1]), the compact imbedding ic : H1(ΩS) → L4(ΩS), and the fact that ‖uS‖1,ΩS

and ‖uS,h‖1,ΩS
are

both bounded by r, thus obtaining

‖µ(|tS|)tS − µ(|tS,h|)tS,h‖0,ΩS
≤ Lµ ‖tS − tS,h‖0,ΩS

and ∥∥uS ⊗ uS − uS,h ⊗ uS,h

∥∥
0,ΩS

≤
∥∥(uS − uS,h

)
⊗ uS

∥∥
0,ΩS

+
∥∥uS,h ⊗

(
uS − uS,h

)∥∥
0,ΩS

≤ ‖ic‖2
{
‖uS‖1,ΩS

+ ‖uS,h‖1,ΩS

}
‖uS − uS,h‖1,ΩS

≤ 2‖ic‖2 r ‖uS − uS,h‖1,ΩS
.

Further details are omitted. In turn, the proofs of b) and c) follow after a straightforward adaptation
of that of [29, Lemma 20], and recalling from [6, Proposition 3.6] that the operators curl s and curl s
are bounded. �

We observe here that b) and c) are the only non-local efficiency bounds obtained so far. However,
the following lemma shows that local estimates can still be derived for these terms under additional
regularity assumptions on ϕ and λ.
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Lemma 3.15 Assume that ϕ|e ∈ H1(e) and λ|e ∈ H1(e), for each e ∈ Eh(Σ). Then there exist
c12, c13 > 0, independent of the meshsizes, such that for each e ∈ Eh(Σ) there hold

he
∥∥(tS,h + ρS,h

)
×n + curl sϕh

∥∥2

0,e

≤ c12

{
‖tS − tS,h‖20,T + ‖ρS − ρS,h‖20,T + he ‖curl s(ϕ−ϕh)‖20,e

} (3.38)

and

he
∥∥K−1uD,h×n + curl sλh

∥∥2

0,e
≤ c13

{
‖uD − uD,h‖20,Te + he ‖curl s(λ− λh)‖20,e

}
, (3.39)

where Te is the tetrahedron of T S
h (respectively T D

h ) having e as a face.

Proof. The proof of both estimates follow exactly as in the proof of [29, Lemma 21]. We omit further
details. �

Finally, the following lemma provides the corresponding upper bounds for the remaining terms
defining Θ2

S,T and Θ2
D,T . In particular, in order to deal with those involving K−1, we assume from now

on that K−1uD,h is polynomial on each T ∈ T D
h . Otherwise, assuming suitable regularity hypotheses

and proceeding similarly as in [11, Section 6.2], higher order terms are obtained, which explains the
expression h.o.t. in the lower bound of (3.14).

Lemma 3.16 There exist positive constants ci, i ∈ {14, . . . , 20}, independent of the meshsizes, such
that

a) h2
T ‖K−1uD,h‖20,T ≤ c14

{
‖pD − pD,h‖20,T + h2

T ‖uD − uD,h‖20,T
}
∀T ∈ T D

h ,

b) h2
T

∥∥curl (K−1uD,h)
∥∥2

0,T
≤ c15 ‖uD − uD,h‖20,T ∀T ∈ T D

h ,

c) he
∥∥qK−1uD,h×n

y∥∥2

0,e
≤ c16 ‖uD − uD,h‖20,ωe

for all e ∈ Eh(ΩD), where the set ωe is given by ωe := ∪
{
T ′ ∈ T D

h : e ∈ E(T ′)
}

,

d) he
∥∥K−1uD,h×n

∥∥2

0,e
≤ c17 ‖uD − uD,h‖20,Te

for all e ∈ Eh(ΓD), where Te is the tetrahedron of T D
h having e as a face,

e) h2
T

∥∥curl (tS,h + ρS,h)
∥∥2

0,T
≤ c18

{
‖tS − tS,h‖20,T + ‖ρS − ρS,h‖20,T

}
∀T ∈ T S

h ,

f) he
∥∥q(tS,h + ρS,h)×n

y∥∥2

0,e
≤ c19

{
‖tS − tS,h‖20,ωe

+ ‖ρS − ρS,h‖20,ωe

}
for all e ∈ Eh(ΩS), where the set ωe is given by ωe := ∪

{
T ′ ∈ T S

h : e ∈ E(T ′)
}

,

g) he
∥∥(tS,h + ρS,h)×n

∥∥2

0,e
≤ c20

{
‖tS − tS,h‖20,Te + ‖ρS − ρS,h‖20,Te

}
for all e ∈ Eh(ΓS), where Te is the tetrahedron of T S

h having e as a face.

Proof. For a) we refer to [10, Lemma 6.3] or alternatively [4, Lemma 4.3] (see also [32, Lemma 4.9]).
In turn, noting that

curl (K−1uD) = −curl (∇pD) = 0 and curl (tS + ρS) = curl (∇uS) = 0 ,
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we find that the proofs of b) and e) are direct consequences of [28, Lemma 4.9]. Similarly, the proofs of
c), d), f) and g) follow after a straightforward application of [28, Lemma 4.10] (see also [10, Lemma 6.2]
and [4, Lemma 4.4]). �

We end this section by observing that the required efficiency of the a posteriori error estimator Θ
(cf. lower bound in (3.14)) is a direct consequence of Lemmas 3.12, 3.14, 3.16, and 3.13. In particular,
the terms he‖λ− λh‖20,e and he‖ϕ−ϕh‖20,e appearing in Lemma 3.13 (items a) – d)), are bounded as
follows: ∑

e∈Eh(Σ)

he ‖λ− λh‖20,e ≤ h ‖λ− λh‖20,Σ ≤ C h ‖λ− λh‖21/2,Σ ,

and ∑
e∈Eh(Σ)

he ‖ϕ−ϕh‖20,e ≤ h ‖ϕ−ϕh‖20,Σ ≤ C h ‖ϕ−ϕh‖21/2,00,Σ .

4 Numerical results

We now turn to the implementation of some numerical tests that confirm the predicted reliability
and efficiency of the proposed a posteriori error estimator. For the sake of simplicity, here we restrict
ourselves to the two-dimensional case. To do that we remark that the 2D version of the a posteriori
error indicators ΘS and ΘD described in (3.12) and (3.13) are defined exactly as their 3D counterparts,
considering where appropriate (with v := (v1, v2)t and τ := (τij)2×2), v · t and τ t instead of v × n
and τ × n,

rot v :=
∂v2

∂x1
− ∂v1

∂x2
, and rot τ :=

(
∂τ12

∂x1
− ∂11

∂x2
,
∂τ22

∂x1
− ∂21

∂x2

)t

,

instead of curl v and curl τ , and
dϕh
ds and dλh

ds instead of curl sϕh and curl sλh, respectively, where
dϕh
ds and dλh

ds stand for the tangential derivatives of ϕh and λh, respectively, along Σ.

Our implementation is based on a FreeFem++ code (see [43]), in conjunction with the direct linear
solver UMFPACK (see [20]). Regarding the implementation of the Newton iterative method, the
iterations are terminated once the relative error of the entire coefficient vectors between two consecutive
iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces L2

tr ,h(ΩS),Hh,0(ΩS),H1
h,ΓS

(ΩS),L2
skew,h(ΩS),Hh,0(ΩD),ΛS

h(Σ),

ΛD
h (Σ), and L2

h,0(ΩD), and tol is a fixed tolerance to be specified later. As usual, the individual
errors are denoted by:

e(tS) := ‖tS − tS,h‖0,ΩS
, e(σS) := ‖σS − σS,h‖div ,ΩS

, e(uS) := ‖uS − uS,h‖1,ΩS
,

e(ρS) := ‖ρS − ρS,h‖0,ΩS
, e(pS) := ‖pS − pS,h‖0,ΩS

, e(uD) := ‖uD − uD,h‖div ,ΩD
,

e(pD) := ‖pD − pD,h‖0,ΩD
, e(ϕ) := ‖ϕ−ϕh‖1/2,00,Σ, e(λ) := ‖λ− λh‖1/2,Σ,

where pS,h is the postprocessed pressure given by

pS,h := −1

2
tr (σS,h + (uS,h ⊗ uS,h)) in ΩS.

24



In turn, the global error is computed as

e(~t) :=
{

e(tS)2 + e(σS)2 + e(uS)2 + e(ρS)2 + e(uD)2 + e(pD)2 + e(ϕ)2 + e(λ)2
}1/2

,

whereas the effectivity index with respect to Θ is given by

eff(Θ) :=
e(~t)

Θ
.

In addition, we define the experimental rates of convergence

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈ {tS,σS,uS,ρS, pS,uD, pD,ϕ, λ,~t} ,

where e and e′ denote errors computed on two consecutive meshes of sizes h and h′, respectively.
However, when the adaptive algorithm is applied (see details below), the expression log(h/h′) appear-
ing in the computation of the above rates is replaced by −1

2 log(N/N ′), where N and N ′ denote the
corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them we choose K = I,
ω1 = 1, and according to [12, eq. (3.26) in Section 3.2], the stabilization parameters are taken as
κ1 = µ1/L

2
µ, with Lµ := max{µ2, 2µ2 − µ1}, κ2 = κ1, κ3 = µ1/2, and κ4 = CKoµ1/4. Since the Korn

inequality constant is not known when considering mixed boundary conditions, CKo is taken here
heuristically as 0.5 (see [12, Section 7] for details). In addition, the tolerance tol is taken as 1E − 6 in
all the examples.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimator Θ,
whereas Examples 2 and 3 are utilized to illustrate the behaviour of the associated adaptive algorithm,
which applies the following procedure from [47]:

(1) Start with a coarse mesh Th := T S
h ∪ T D

h .

(2) Solve the discrete problem (2.17) for the current mesh Th.

(3) Compute ΘT := Θ?,T for each triangle T ∈ T ?h , ? ∈ {S,D}.

(4) Check the stopping criterion and decide whether to finish or go to next step.

(5) Use blue-green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ ≥
1

2
max
T∈Th

{
ΘT : T ∈ Th

}
(6) Define resulting meshes as current meshes T S

h and T D
h , and go to step 2.

In Example 1 we consider the regions ΩS :=
{

(x1, x2) : (x1− 0.5)2 + (x2− 1)2 < 0.25, x2 > 1
}

and

ΩD := (0, 1)2. In this case, we set the nonlinear viscosity to

µ(s) := 2 +
1

1 + s
for s ≥ 0.

The data fS and fD are chosen so that the exact solution in the tombstone-shaped domain Ω is given
by the smooth functions

pS(x) = cos(πx1) cos(πx2), uS(x) = −curl (sin(πx1) sin(πx2)),
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for all x := (x1, x2) ∈ ΩS, and

pD(x) = cos(πx1) cos(πx2) ∀x := (x1, x2) ∈ ΩD,

where curl (q) :=
(
∂q
∂x2

,− ∂q
∂x1

)t
for any sufficiently smooth function q. Notice that this solution

satisfies uS·n = uD·n on Σ and the boundary condition uD·n = 0 on ΓD. However, the Dirichlet
boundary condition for the Navier–Stokes velocity on ΓS is non-homogeneous. Then, we need to
modify accordingly the functional F (cf. (2.11)), as follows

[F, (r,ψ)] := −κ2(fS,div τ S)S + (fS,vS)S + 〈τ Sn,g〉ΓS
∀ (r,ψ) ∈ X,

where g := uS|ΓS
∈ H1/2(ΓS).

In Example 2 we consider the inverted L-shaped domain Ω = ΩS ∪ ΩD, where ΩS = (0, 1)2 and
ΩD := (−1, 1)× (−1, 0), representing a fluid channel on top of a porous basin. The viscosity follows a
Carreau law with α0 = 0.5, α1 = 0.5, and β = 1.5, that is

µ(s) := 0.5 + 0.5(1 + s2)−1/4 for s ≥ 0,

and the data fS and fD are chosen so that the exact solution is given by

pS(x) = cos(πx1) cos(πx2), uS(x) = curl
(
x2

1(x1 − 1)2x2
2(x2 − 1)2

)
,

for all x := (x1, x2) ∈ ΩS, and

pD(x) =
(x2

1 − 1)2x2
2(x2 + 1)2

(x1 + 0.01)2 + (y − 0.01)2
∀x := (x1, x2) ∈ ΩD.

Notice that the Darcy velocity and pressure exhibit high gradients near the origin.

Finally, in Example 3 we consider ΩD := (−1, 0)2 and let ΩS be the L-shaped domain given by
(−1, 1)2 \ ΩD, which yields a porous medium partially surrounded by a fluid. The viscosity follows
again a Carreau law (cf. (2.3)) with α0 = 0.5, α1 = 0.5, and β = 1, that is

µ(s) := 0.5 + 0.5(1 + s2)−1/2 for s ≥ 0,

and the data fS and fD are chosen so that the exact solution is given by

pS(x) =
1

100(x2
1 + x2

2) + 0.01
, uS(x) = curl

(
0.1(x2

2 − 1)2 sin2(πx1)
)
,

for all x := (x1, x2) ∈ ΩS, and

pD(x) = cos(πx1) cos(πx2) ∀x := (x1, x2) ∈ ΩD.

Note that the fluid pressure pS has high gradients around the origin.

In Table 4.1 we summarize the convergence history of the fully-mixed finite element method (2.17),
as applied to Example 1, for a sequence of quasi-uniform triangulations of the domain, considering the
finite element spaces introduced in Section 2.3, and solving the nonlinear problem with around five
Newton iterations. We observe there, looking at the corresponding experimental rates of convergence,
that the O(h) predicted by Theorem 2.2 (here δ = 1) is attained in all the unknowns. In addition, we
notice that the effectivity index eff(Θ) remains always in a neighbourhood of 0.98, which illustrates
the reliability and efficiency of Θ in the case of a regular solution.
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Next, in Tables 4.2, 4.3, 4.4, and 4.5, we provide the convergence history of the quasi-uniform and
adaptive schemes, as applied to Examples 2 and 3, solving the nonlinear problem with around three
and six Newton iterations, respectively. We observe that the errors of the adaptive procedure decrease
faster than those obtained by the quasi-uniform ones, which is confirmed by the global experimental
rates of convergence provided there. This fact is also illustrated in Figures 4.1 and 4.3 where we display
the total errors e(t,ϕ, pD) vs. the number of degrees of freedom N for both refinements. As shown
by the values of r(t,ϕ, pD), the adaptive method is able to keep the quasi-optimal rate of convergence
O(h) for the total error. Furthermore, the effectivity indexes remain bounded from above and below,
which confirms the reliability and efficiency of Θ in these cases of non-smooth solutions. Intermediate
meshes obtained with the adaptive refinements are displayed in Figures 4.2 and 4.4. Note that the
method is able to recognize the region with high gradients in Examples 2 and 3.

dof hS e(tS) r(tS) e(σS) r(σS) e(uS) r(uS) e(ρS) r(ρS)

854 0.1905 0.5866 – 4.6754 – 0.9306 – 1.7056 –
3195 0.0911 0.2909 1.0633 2.4721 0.9660 0.4707 1.0332 0.9970 0.8139
12543 0.0486 0.1460 1.0085 1.2793 0.9634 0.2381 0.9968 0.5015 1.0050
50188 0.0242 0.0679 1.1031 0.6398 0.9995 0.1142 1.0593 0.2371 1.0804
198838 0.0129 0.0352 0.9553 0.3493 0.8791 0.0580 0.9843 0.1256 0.9231
783886 0.0068 0.0179 0.9822 0.1742 1.0143 0.0294 0.9912 0.0639 0.9862

dof hS hD e(pS) r(pS) e(uD) r(uD) e(pD) r(pD)

854 0.1905 0.1901 0.6240 – 1.2480 – 0.0619 –
3195 0.0911 0.0966 0.3409 0.9165 0.6004 1.1092 0.0296 1.1159
12543 0.0486 0.0573 0.1470 1.2302 0.3035 0.9975 0.0150 0.9962
50188 0.0242 0.0259 0.0686 1.0987 0.1516 1.0018 0.0075 1.0023
198838 0.0129 0.0135 0.0364 0.9227 0.0756 1.0106 0.0037 1.0105
783886 0.0068 0.0070 0.0183 1.0003 0.0382 0.9945 0.0019 0.9935

dof ĥ e(ϕ) r(ϕ) e(λ) r(λ) e(~t) r(~t) Θ eff(Θ) iter

854 1/4 1.0668 – 0.2038 – 5.3590 – 5.5271 0.9696 5
3195 1/8 0.5573 0.9844 0.0980 1.1090 2.8448 0.9600 2.9156 0.9757 5
12543 1/16 0.2710 1.0545 0.0479 1.0485 1.4609 0.9746 1.4804 0.9868 5
50188 1/32 0.1345 1.0104 0.0243 0.9767 0.7245 1.0116 0.7312 0.9908 5
198838 1/64 0.0675 1.0025 0.0119 1.0336 0.3909 0.8963 0.3938 0.9926 5
783886 1/128 0.0336 1.0168 0.0064 0.9157 0.1956 1.0098 0.1967 0.9940 5

Table 4.1: Example 1, quasi-uniform scheme.
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dof hS hD e(tS) e(σS) e(uS) e(ρS) e(pS) e(uD) e(pD)

588 0.2926 0.3297 0.2022 0.5672 0.1893 0.3651 0.1754 39.9583 0.4761
1931 0.1964 0.1901 0.1811 0.3955 0.2030 0.3665 0.1092 73.9004 0.4069
7317 0.0997 0.1000 0.0724 0.1796 0.0814 0.1344 0.0572 59.6887 0.1433
28860 0.0487 0.0534 0.0172 0.0726 0.0068 0.0425 0.0172 76.9741 0.0140
115506 0.0250 0.0263 0.0084 0.0363 0.0034 0.0206 0.0082 66.9770 0.0055
459154 0.0136 0.0147 0.0042 0.0181 0.0015 0.0106 0.0041 54.0296 0.0028

dof ĥ e(ϕ) e(λ) e(~t) r(~t) Θ eff(Θ) iter

588 1/2 0.2161 0.8872 39.9782 – 40.2227 0.9939 4
1931 1/4 0.2601 1.2136 73.9144 – 74.0108 0.9987 4
7317 1/8 0.0931 0.6470 59.6930 0.3208 59.7396 0.9992 4
28860 1/16 0.0092 0.1010 76.9742 – 76.9937 0.9997 3
115506 1/32 0.0057 0.0485 66.9770 0.2006 66.9905 0.9998 3
459154 1/64 0.0029 0.0320 54.0296 0.3113 54.0370 0.9999 3

Table 4.2: Example 2, quasi-uniform scheme.
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Figure 4.1: Example 2, e(t,ϕ, pD) vs. N for quasi-uniform/adaptive schemes.
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dof e(tS) e(σS) e(uS) e(ρS) e(pS) e(uD) e(pD)

588 0.2022 0.5672 0.1893 0.3651 0.1754 39.9583 0.4761
784 0.1505 0.5215 0.1347 0.2404 0.1385 65.1904 0.1957
1019 0.1031 0.4988 0.0802 0.1297 0.1271 73.1960 0.0295
1431 0.0996 0.4973 0.0889 0.0982 0.1536 55.1764 0.0284
2111 0.0991 0.4995 0.0891 0.0863 0.1419 29.5771 0.0283
3185 0.0994 0.5011 0.0890 0.0805 0.1364 12.6187 0.0282
5555 0.0999 0.5028 0.0893 0.0777 0.1493 7.1633 0.0280
9680 0.0996 0.5023 0.0887 0.0848 0.1481 5.2107 0.0208
17147 0.0916 0.3984 0.0628 0.1351 0.1290 3.8253 0.0152
31110 0.0691 0.3124 0.0398 0.1078 0.0935 2.8216 0.0124
59678 0.0490 0.1961 0.0197 0.0866 0.0536 2.0190 0.0076
112409 0.0394 0.1672 0.0165 0.0653 0.0484 1.4593 0.0063
221370 0.0245 0.1003 0.0084 0.0389 0.0271 1.0402 0.0038
427000 0.0206 0.0870 0.0068 0.0327 0.0226 0.7425 0.0032

dof e(ϕ) e(λ) e(~t) r(~t) Θ eff(Θ) iter

588 0.2161 0.8872 39.9782 – 40.2227 0.9939 4
784 0.1439 0.8114 65.1987 – 65.2262 0.9996 4
1019 0.0634 0.1014 73.1980 – 73.2245 0.9996 3
1431 0.0504 0.0475 55.1790 1.6645 55.2056 0.9995 3
2111 0.0444 0.0201 29.5818 3.2070 29.6221 0.9986 3
3185 0.0428 0.0155 12.6297 4.1387 12.7177 0.9931 3
5555 0.0416 0.0152 7.1828 2.0292 7.3110 0.9825 3
9680 0.0459 0.0130 5.2375 1.1374 5.3244 0.9837 3
17147 0.0479 0.0118 3.8503 1.0763 3.9225 0.9816 3
31110 0.0255 0.0060 2.8422 1.0192 2.8947 0.9819 3
59678 0.0217 0.0039 2.0312 1.0314 2.0692 0.9816 3
112409 0.0136 0.0021 1.4710 1.0192 1.4982 0.9818 3
221370 0.0085 0.0012 1.0461 1.0059 1.0651 0.9822 3
427000 0.0072 0.0006 0.7487 1.0184 0.7625 0.9819 3

Table 4.3: Example 2, adaptive scheme.
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dof hS hD e(tS) e(σS) e(uS) e(ρS) e(pS) e(uD) e(pD)

1037 0.3529 0.3019 1.2001 19.6901 2.6722 2.8717 0.6257 2.1914 0.1139
3664 0.1947 0.1964 2.1724 58.3515 4.5117 3.3283 1.1404 1.2395 0.0657
13956 0.0960 0.1025 2.4894 114.3013 5.8122 4.1176 1.0524 0.6207 0.0314
55663 0.0520 0.0495 1.7729 94.6633 3.2125 2.7450 0.8685 0.3093 0.0153
220100 0.0293 0.0260 0.8835 51.4952 1.0053 1.4521 0.5310 0.1513 0.0075
879198 0.0145 0.0143 0.5353 33.8233 0.3295 1.2531 0.3642 0.0759 0.0037

dof ĥ e(ϕ) e(λ) e(~t) r(~t) Θ eff(Θ) iter

1037 1/2 1.3033 0.9173 20.2949 – 20.6086 0.9848 5
3664 1/4 2.0423 0.6667 58.7129 – 58.7574 0.9992 5
13956 1/8 2.4754 0.4053 114.5792 – 114.5746 1.0000 5
55663 1/16 1.8369 0.2100 94.7926 0.2741 94.7881 1.0000 5
220100 1/32 0.7827 0.0855 51.5392 0.8865 51.5419 0.9999 5
879198 1/64 0.5891 0.0577 33.8576 0.6068 33.8559 1.0000 5

Table 4.4: Example 3, quasi-uniform scheme.

Figure 4.2: Example 2, adapted meshes with 588, 1019, 9680, 31110, 112409, and 447000 degrees of
freedom.
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dof e(tS) e(σS) e(uS) e(ρS) e(pS) e(uD) e(pD)

1037 1.2001 19.6901 2.6722 2.8717 0.6257 2.1914 0.1139
1579 3.0393 98.1488 6.1149 4.8488 1.2574 1.9106 0.0933
2092 2.0017 84.5704 2.9416 2.9343 1.0256 1.8860 0.0929
2766 0.7046 42.4930 0.8777 1.4751 0.3717 1.8982 0.0936
4748 0.5235 16.4829 0.7695 1.4233 0.2375 1.9012 0.0938
9936 0.4928 8.2112 0.7622 1.4148 0.2143 1.5623 0.0779
18993 0.3580 5.6827 0.5430 1.0980 0.1401 1.0019 0.0495
33974 0.2681 4.2302 0.3972 0.9634 0.1096 0.7945 0.0395
64472 0.1785 3.0476 0.2581 0.7001 0.0752 0.5697 0.0282
122011 0.1438 2.2169 0.2111 0.5401 0.0643 0.4319 0.0215
237874 0.0928 1.5864 0.1340 0.3908 0.0407 0.3042 0.0151
460024 0.0708 1.1390 0.1038 0.3028 0.0301 0.2232 0.0111
915408 0.0456 0.8086 0.0667 0.2074 0.0201 0.1567 0.0078

dof e(ϕ) e(λ) e(~t) r(~t) Θ eff(Θ) iter

1037 1.3033 0.9173 20.2949 – 20.6086 0.9848 5
1579 5.6381 1.0470 98.6908 – 98.8258 0.9986 5
2092 3.5592 0.5382 84.7936 1.0790 84.8825 0.9990 5
2766 0.6262 0.4790 42.5832 4.9324 42.6743 0.9979 5
4748 0.4162 0.4813 16.6915 3.4667 16.9205 0.9865 5
9936 0.3749 0.4612 8.5469 1.8128 8.7791 0.9736 5
18993 0.3330 0.2994 5.9270 1.1300 6.1023 0.9713 5
33974 0.2066 0.2053 4.4464 0.9885 4.5652 0.9740 5
64472 0.1455 0.1665 3.2017 1.0252 3.3074 0.9680 5
122011 0.1153 0.1202 2.3423 0.9799 2.4071 0.9731 5
237874 0.0839 0.0852 1.6742 1.0060 1.7299 0.9678 5
460024 0.0552 0.0664 1.2092 0.9865 1.2446 0.9716 5
915408 0.0436 0.0463 0.8556 1.0055 0.8850 0.9668 5

Table 4.5: Example 3, adaptive scheme.
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Figure 4.3: Example 3, e(t,ϕ, pD) vs. N for quasi-uniform/adaptive schemes.
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Figure 4.4: Example 3, adapted meshes with 1037, 2092, 18993, 64472, 237874, and 915408 degrees of
freedom.
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[13] A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier–Stokes flow coupled with
Darcy flow. J. Numer. Math. 16 (2008), no. 4, 249–280.

[14] W. Chen and Y. Wang A posteriori error estimate for the H(div) conforming mixed finite
element for the coupled Darcy-Stokes system. J. Comput. Appl. Math. 255 (2014), 502516.

[15] P. Chidyagwai and B. Rivière, On the solution of the coupled Navier–Stokes and Darcy
equations. Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 47-48, 3806–3820.

[16] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its
Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. xix+530
pp.

[17] P. Clément, Approximation by finite element functions using local regularisation. RAIRO
Modélisation Mathématique et Analyse Numérique 9 (1975), 77–84.

[18] M. Cui and N. Yan, A posteriori error estimate for the Stokes-Darcy system. Math. Methods
Appl. Sci. 34 (2011), no. 9, 1050–1064.

[19] M. Cui and N. Yan, Residual based a posteriori error estimates for convex optimal control
problems governed by Stokes-Darcy equations. Numer. Math. Theory Methods Appl. 5 (2012), no.
4, 602–634.

[20] T. Davis, Algorithm 832: UMFPACK V4.3 - an unsymmetric-pattern multifrontal method. ACM
Trans. Math. Software 30 (2004), no. 2, 196–199.

[21] M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater
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