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Abstract

In this paper we consider an augmented fully-mixed variational formulation that has been recently
proposed for the coupling of the Navier—Stokes equations (with nonlinear viscosity) and the linear
Darcy model, and derive a reliable and efficient residual-based a posteriori error estimator for
the associated mixed finite element scheme. The finite element subspaces employed are piecewise
constants, Raviart—-Thomas elements of lowest order, continuous piecewise linear elements, and
piecewise constants for the strain, Cauchy stress, velocity, and vorticity in the fluid, respectively,
whereas Raviart—Thomas elements of lowest order for the velocity, piecewise constants for the
pressure, and continuous piecewise linear elements for the traces, are considered in the porous
medium. The proof of reliability of the estimator relies on a global inf-sup condition, suitable
Helmholtz decompositions in the fluid and the porous medium, the local approximation properties
of the Clément and Raviart—Thomas operators, and a smallness assumption on the data. In turn,
inverse inequalities, the localization technique based on bubble functions, and known results from
previous works, are the main tools yielding the efficiency estimate. Finally, several numerical
results confirming the properties of the estimator and illustrating the performance of the associated
adaptive algorithm are reported.
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1 Introduction

Over the last decades, a wide range of numerical methods capturing the behaviour of a free fluid flow
interacting with a porous medium have been proposed. The reason of such an interest by the nu-
merical analysis community relies on the fact that, in industry, engineering sciences and several other
disciplines, several interesting phenomena can be described under the framework of this kind of inter-
action problems (groundwater flows in karst aquifers, petroleum extraction, filtration of blood through

*This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project
Anillo ACT1118 (ANANUM), project Fondecyt 1161325, and the Becas-Chile Programme for Chilean students; by Centro
de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcién; and by Universidad del Bio-Bio through
DIUBB project 151408 GI/VC.

TCI2MA and Departamento de Ingenierfa Matemética, Universidad de Concepcién, Casilla 160-C, Concepcién, Chile,
email: scaucao@ci2ma.udec.cl.

$CI2MA and Departamento de Ingenieria Matematica, Universidad de Concepcién, Casilla 160-C, Concepcién, Chile,
email: ggatica@ci2ma.udec.cl.

$GIMNAP-Departamento de Matematica, Universidad del Bio-Bio, Casilla 5-C, Concepcién, Chile, and CI?MA,
Universidad de Concepcién, Casilla 160-C, Concepcién, Chile, email: royarzua@ubiobio.cl.



arterial vessel walls, etc.). One of the most popular models utilized to describe the aforementioned
interaction is the Navier-Stokes/Darcy (or Stokes/Darcy) model, which consists in a set of differential
equations where the Navier-Stokes (or Stokes) problem is coupled with the Darcy model through a
set of coupling equations acting on a common interface given by mass conservation, balance of normal
forces, and the so called Beavers-Joseph-Saffman condition. In [3, 12} [13], 15 211, 22}, 23], [7, 35, 36} 38],
and in the references therein, we can find a large list of contributions devoted to numerically approx-
imate the solution of this interaction problem, including primal and mixed conforming formulations,
as well as nonconforming methods.

In the recent work [12], it has been introduced and analyzed a new augmented-mixed finite element
method for the Navier—-Stokes/Darcy coupled problem with nonlinear viscosity. The formulation
there considers dual-mixed formulations in both domains, and in order to deal with the nonlinear
viscosity, the strain tensor and the vorticity are introduced as auxiliary unknowns. In turn, since
the transmission conditions become essential, they are imposed weakly, which yields the introduction
of the traces of the porous media pressure and the fluid velocity as associated Lagrange multipliers.
Furthermore, since the convective term in the fluid forces the velocity to live in a smaller space than
usual, similarly to [§] and [9], the variational formulation is augmented with suitable Galerkin type
terms arising from the constitutive and equilibrium equations of the Navier—Stokes model, as well
as from the relations defining the strain and vorticity tensors. The resulting augmented variational
system of equations is then suitably ordered so that it exhibits a twofold saddle point structure, which
is similar to the one analyzed in [31] for the Stokes-Darcy coupled problem with nonlinear viscosity.
The formulation is then written equivalently as a fixed point equation, and the well-known Schauder
and Banach theorems, as well as the abstract theory developed in [31], which is based on classical
results on bijective monotone operators, are applied to prove the unique solvability of the continuous
and discrete systems. A feasible choice of finite element subspaces for the formulation introduced
in [12] is given by piecewise constants, Raviart—Thomas spaces of lowest order, continuous piecewise
linear elements, and piecewise constants for the strain, Cauchy stress, velocity, and vorticity in the
fluid, respectively, whereas Raviart—Thomas spaces of lowest order and piecewise constants for the
velocity and pressure, together with continuous piecewise linear elements for the Lagrange multipliers,
can be utilized in the Darcy region. Optimal a priori error estimates were also derived.

Now, it is well known that under the eventual presence of singularities, as well as when dealing with
nonlinear problems, as in the present case, most of the standard Galerkin procedures such as finite
element and mixed finite element methods inevitably lose accuracy, and hence one usually tries to
recover it by applying an adaptive algorithm based on a posteriori error estimates. In this direction,
and particularly for the coupling of fluid flows with porous media flows, we refer to [2, [7, 14} 18], 19} 37,
38, 42}, [44], [45] [49] where different contributions addressing this interesting issue, most of them devoted
to the Stokes-Darcy coupled problem, can be found. Up to the authors’ knowledge, the first work
dealing with adaptive algorithms for the Navier-Stokes/Darcy coupling is [42], where an a posteriori
error estimator for a discontinuous Galerkin approximation of this coupled problem with constant
parameters is proposed.

According to the above discussion, and in order to complement the study started in [12] for the
Navier-Stokes/Darcy equations with variable viscosity, in this paper we proceed similarly to [37) [38]
and [7], and develop an a posteriori error analysis for the finite element method studied in [12]. More
precisely, assuming a smallness condition on the data, we derive a reliable and efficient residual-based a
posteriori error estimator for the three dimensional version of the augmented-mixed method introduced
in [12]. The global inf-sup condition, a suitable Helmholtz decomposition recently provided in [27], and
the approximation properties of the Clemént and Raviart-Thomas operators, among others, are the
main tools yielding the reliability. In turn, the efficiency estimate is consequence of standard arguments



such as inverse inequalities, the localization technique based on bubble functions, and other known
results to be specified later on in Section [3.4 The rest of this work is organized as follows. In Section
we recall from [I2, Section 2| the model problem and its continuous and discrete augmented fully-
mixed variational formulations. In Section[3]| we derive the a posteriori error estimator. The reliability
analysis is carried out in Section [3.3] whereas in Section [3.4] we provide the efficiency analysis. Finally,
some numerical results confirming the reliability and efficiency of the a posteriori error estimator and
showing the good performance of the associated adaptive algorithm for the fully-mixed finite element
method, are presented in Section [4

We end this section by introducing some definitions and fixing some notations. Given the vector
fields v = (v;)i=1,n and w = (w;)i=1,n, With n € {2,3}, we set the gradient, divergence, and tensor
product operators, as

ov; " Qv;

Vv = ! , divv:= E —  and vew:= (viw;)i,j=1,n-

856]' il - a’L‘j ’ ’
JJ=1,n ]:1

Furthermore, for any tensor field 7 := (73;)i j=1,n» and ¢ := ({ij)ij=1,n, We define the transpose, the

trace, the tensor inner product, and the deviatoric tensor, respectively, as

n n
1
0= (Tji)ijetn, tr(T):= Z’Tn’, T:(:= Z 7;;Gij, and =7 Etr ()L,
=1 1,j=1
where [ is the identity matrix in R”*". In what follows, when no confusion arises, | - | will denote the
Euclidean norm in R™ or R”*"™. Additionally, in what follows we utilize standard simplified terminology
for Sobolev spaces and norms. In particular, if O is a domain, I" is an open or closed Lipschitz curve

(respectively surface in R?), and s € R, we define
H*(0) := [H*(O)]", H*(0):= [H*(O)]™", and H*(T):= [H*(I")]".

However, when s = 0 we usually write L2(0), L?(0), and L?(T") instead of H°(O), H°(0), and H’(T"),
respectively. The corresponding norms are denoted by || - [|s0 for H*(O), H*(O) and H*(0O), and
| - ||sr for H*(I") and H*(T"). For s > 0, we write | - |50 for the H*-seminorm. In addition, we recall
that

H(div;0) := {w € L*(0) : divw € L*(O0)},

is a standard Hilbert space in the realm of mixed problems (see, e.g. [5], 26, 41]). The space of
matrix valued functions whose rows belong to H(div; O) will be denoted by H(div; Q). The norms
of H(div; O) and H(div ; O) are denoted by || - ||aiv,0 and || - ||giv, 0, respectively. On the other hand,
the following symbols for the L?(I") and L2(T") inner products

(€N :=/F£A VEAELAD), (€M) :=/F£-A vE A € TA(T)

will also be employed for their respective extensions as the duality products H='/2(I") x H/?(T") and
H~Y/2(I') xHY2(I"), respectively. Furthermore, given an integer k > 0 and a set S C R™, P, (S) denotes
the space of polynomial functions defined on S of degree < k. In addition, we set P(S) := [Px(5)]"
and P (S) := [P(S)]"*". Finally, throughout the rest of the paper, we employ 0 to denote a generic
null vector (including the null functional and operator), and use C' and ¢, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization parameters, which
may take different values at different places.



2 The Navier—Stokes/Darcy coupled problem

In this section we recall from [12] the Navier—Stokes/Darcy model, its fully-mixed variational formu-
lation, the associated Galerkin scheme, and the main results concerning the corresponding solvability
analysis.

2.1 The model problem

In order to describe the geometry under consideration we let g and Qp be bounded and simply
connected open polyhedral domains in R"”, such that Q5N Qp = 0 and Qs NINp = X # (). Then, we
let T's := 0Qs \ %, I'p := 9Qp \ ¥, and denote by n the unit normal vector on the boundaries, which
is chosen pointing outward from 2 := Qg U X U Qp and g (and hence inward to 2p when seen on
Y). On ¥ we also consider unit tangent vectors, which are given by t = t; when n = 2 (see Fig.
below) and by {t;,t2} when n = 3. The problem we are interested in consists of the movement of an
incompressible quasi-Newtonian viscous fluid occupying €l which flows towards and from a porous
medium Qp through X, where Qp is saturated with the same fluid. The mathematical model is defined
by two separate groups of equations and by a set of coupling terms. In (g, the governing equations
are those of the Navier—Stokes problem with constant density and variable viscosity, which are written
in the following nonstandard stress-velocity-pressure formulation:
os = p(le(us)|)e(us) — (us ®@ug) —psl in Qg,  divug=0 in Qs,

(2.1)
—diVO’S:fS in Qs, uS:0 on Fs,

where og is the nonlinear stress tensor, ug is the velocity, pg is the pressure, p : Rt — RT is the
nonlinear kinematic viscosity, e(ug) := %{Vus + (Vug)' ¢ is the strain tensor (or symmetric part of

the velocity gradient) and fs € L2(Qg) is a known volume force.

Figure 2.1: Sketch of a 2D geometry of our Navier—Stokes/Darcy model

Furthermore, we assume that y is of class C', and that there exist constants j1, o > 0, such that
pr < p(s) <ppoand gy < p(s) +sp(s) <pe Vs >0, (2:2)

which, according to the results provided in [40, Theorem 3.8|, implies Lipschitz continuity of the
nonlinear operator induced by . This fact will be used later on in Sections and In addition, it
is easy to see that the forthcoming analysis also applies to the slightly more general case of a viscosity
function acting on € x R™, that is p: Q x RT™ — R. Some examples of nonlinear ; are the following:

u(s) =2+ and  pu(s) == ag + ay (1 4 s2)F=2/2, (2.3)

1+s



where ag, a1 > 0 and 8 € [1,2]. The first example is basically academic but the second one corresponds
to a particular case of the well-known Carreau law in fluid mechanics. It is easy to see that they both

satisfy (2.2) with (p1, p2) = (2,3) and (p1, p2) = (@0, a0 + o), respectively.

Next, we adopt the approach from [12] (see also [33] [34]) and introduce the additional unknowns
ts == e(ug) and pg := 5 (Vug — (Vug)"), where pg is the vorticity (or skew-symmetric part of the
velocity gradient). In this way, we observe that the equations in (2.1]) can be rewritten equivalently as

ts=Vug—ps in Qs, of=p(ts))ts — (us®@ug)? in Qg
1 (2.4)
—diveg=1fs in Qg, ps=-——tr(ocs+(ug®ug)) in Qg, ug=0 on I§.
n

Note that the fourth equation in (2.4]) allows us to eliminate the pressure pg from the system and
compute it as a simple post-process of the solution.

On the other hand, in Qp we consider the linearized Darcy model with homogeneous Neumann
boundary condition on I'p:

uD:—KVpD in QD, diVllD:fD in QD, uD-n:0 on FD, (2.5)

where up and pp denote the velocity and pressure, respectively, fp € L2(Qp) is a source term satisfying
fQD fp =0, and K € [L*°(Qp)]"*™ is a positive definite symmetric tensor describing the permeability
of Qp divided by a constant approximation of the viscosity.

Finally, the transmission conditions are given by

n—1
ug'n = up-n  and Usn+zwl_1(us-tz)tz = —ppn on X, (2.6)
I=1
where {w1,...,wp—1} is a set of positive frictional constants that can be determined experimentally.

The first equation in (2.6)) corresponds to mass conservation on ¥, whereas the second one establishes
the balance of normal forces and a Beavers—Joseph—Saffman law.

2.2 The fully-mixed variational formulation

In this section we introduce the weak formulation derived in [12, Section 2.2] for the coupled problem

given by (2.4)), , and (2.6). To this end, let us first introduce further notations and definitions.
In what follows, given x € {S,D}, u,v € L?(Q), u,v € L2(€,), and o, 7 € L2(€),), we set

(u,v)*::/*uv, (u,v)*::/*u-v, and (a,T)*::/*a:T.

In addition, we let L2, (Qs) and L2, (€2s) be the subspaces of symmetric and skew-symmetric tensors

of L2(Qs), respectively, that is
Lim(Qs) = {rs cL?(Qs): rf= rs}

]Lgkew(QS) = {nS € ]]"’2(98) : fr,% — _nS}
Furthermore, we define the spaces

Hy(div;Qp) := {VD € H(div;Qp): vpn=0 on FD},
LZ (s) = {rs € L2n(Qs): trrs= 0}7

HL (Qs) = {US cH'Y(Qg): ws=0 on rs}, HL (Qs) = [Hh (Qs)]",
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and the space of traces
1/2 1/2 1/2 /51
H' () = {ols: venb (9}, HPE) = HEE)"
Equivalently, if Eog : H/2(X) — L2(8Qs) is the extension operator defined by

P on X

Fastw) ={ § T wweH(m).

we have that
Hy (D) = {¥ e BYA(D):  Eos(y) € H/2(009)}

which is endowed with the norm [|1[|1 /2005 = [[£0,5(¥)]|1/2,00s- In addition, || - [|1/2,00,5 also stands
for the corresponding product norm of H(l]éQ(E). In turn, Haol/ 2(E) and Haol/ 2(2) are the dual spaces
of Hé{f(E) and H(l)(/)Q(E), respectively, with norms denoted in both cases by || - ||_1/2,00,5-

Now, in order to deduce our variational system we need to add two auxiliary unknowns on the
coupling boundary
1/2
Y= —uS|2 S HO(/) (Z) and M\ := pDk; € Hl/Q(Z).

In this way, our variational system will be written in terms of the unknowns t := (tg, og, ug, pg, up),
¢ = (p,\) and pp. Let us recall from [I2] Section 2.3] that, given any constant ¢ € R, the vector
defined by ((tg, o5 —cl,ug, pg,up), (¢, A+ ¢), pp + ¢) also becomes a solution of the problem defined
below. Hence, in order to ensure uniqueness of solution, we will require the Darcy pressure pp to live
in L3(2p), where

L3(@) == {a € L2(2):  (a.1)p =0}
Then, defining the spaces

X = ]L%r (Qs) X H(div ) Qs) X Hll“s (Qs) X L2

skew

(Qs) X Ho(div ; QD),

M :=H}?(S) x H/2(®), X:=XxM, and M :=L3(Qp),

with X, M, X and X x M endowed with the product norms
Iz[lx = [Irslloos + [ITsllaiv.os + [Vsliies + [Imsllogs + v llaiv,op
l#lln = [l /2,008 + €2 e 9)llx = llellx + [lPlm;
1((x; %), qp)lxexna := [I(z, ¥)[Ix + llgplo,0;

as explained in [I2] Section 2.2], we arrive at the following modified variational formulation for (2.4)),
(2.5), and (2.6)): Find ((t,¢),pp) € X x M such that

[A(us)(t, @), (r,9)] + B(r,¥),pp] = [F,(r,9)] V(r,¢)eX,

B (2.7)
[B(t, %), qp] = [G,qp] Vagp € M,
where, given zg € HILS (Qg), the operator A(zg) : X — X' is defined by
[A(zs) (L, ), (r,¥)] := [a(zs)(b), r] + [b(t), ] + [b(r), ] — [c(p), ], (2.8)



with
[a(zs)(t),r] = [a1(t),r] + [a2(zs)(t), 1],
[a1(t), 1] = (u(|ts))ts, rs)s — (rs, 08)s + (ts, 78)s + r1 (0§ — p(lts|)ts, 78)s
+ ko(diveg,div Tg)s + (div T, ug)s — (divog, vs)s

+ (7s,ps)s — (08, Mg)s + rs(e(us) — ts, e(vs))s

1 _ 2.9
+ K4 (Ps — 5(Vus - (Vus)t)ﬂ?s> + (K 'up, vp)p, (29)
S
[as(zs)(t),x] = ((zs @ ug)d, k7 —rg)s,
[b(r), ] = (Tsm,¥)y — (vD1, &)y,
[C(f)ai] = <(P'na £> 1:b n, >‘ Z w[ (P tla tl>2
whereas the operator B : X — M’ and the functionals F : X — R and G : M — R are given by
[B(r, %), qp] :== —(divvp, gp)p, (2.10)
and
[F, (r,9)] := —ro(fs,divTg)s + (fs, vs)s and [G,qp]:= —(fp,9D)D. (2.11)
In all the foregoing terms, [-,:] denotes the duality pairing induced by the corresponding operators

and k;, 7 € {1,...,4}, are positive parameters to be specified below in Theorem

Furthermore, we notice from (2.9 that, owing to the Cauchy—Schwarz and Holder’s inequalities,
and the continuous injection i. of H'(g) into L*(g) (see e.g. [I, Theorem 6.3] or [46, Theorem
1.3.5]), there holds

[[az(zs)(£), ]| < e2(Qs)(x7 + 1) ?[lzs |l 0s [us|1olelx  VEre X, (2.12)

where c2(Qg) := ||ic||>. Additionally, we observe that (2.7) is equivalent to the variational formulation
defined in [12, Section 2.2], in which og is decomposed as g = o + I, with o € Hy(div;Qg) and
[ € R, where

Hop(div ;Qg) := {T € H(div;Qg): (tr7,1)g = 0} .

The following result taken from [I2] establishes the well-posedness of (2.7)).

Theorem 2.1 Assume that

26 L )
K1 € <0, 1N1> , ko>0, kg€ <0, 209 (Ul M ,u)) , and K4 € <0,2(530K0I€3 < 2))
L, 261 2

2
with L, := max{ua, 212 — p1}, Cko the Korn’s constant given by [12, eq. (3.10)], 61 € <0,L>,

n
92 € (0,2), and d3 € (0,2). In addition, given r € (0,79), with

_ a($2)
© 209(Qs) (KT 4 1)1/27

(2.13)
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where co(Qdg) is the constant in (2.12) and ag(Q2) is the strong monotonicity constant of the nonlinear
operator a (see [12, eq. (3.16)]), we let W, = {zs € H%S Q) zs|lh o < 7‘}, and assume that the
data fs and fp satisfy

er {Ifsllogs + I follogn | < 7, (2.14)
where ¢t is the positive constant, independent of the data, provided by [12], Lemma 3.6]. Then, the

augmented fully-mized formulation (2.7) has a unique solution ((t,),pp) € X x M with ug € W,,
which satisfies

(& @) p) s < ox {IEslos + lIfbllo.cn } - (2.15)

Proof. See [12, Theorem 3.11] for details. O

2.3 The fully-mixed finite element method

Here, for clarity of exposition of the a posteriori error estimator to be defined next in Section [3| we
restrict ourselves to the particular case provided in [12] Section 6.2] with £ = 0 and introduce a Galerkin
scheme for the 3D version of . To that end we let 7;;5 and 771D be respective triangulations of the
domains €2g and )p, which are formed by shape-regular tetrahedra T of diameter hr, and assume that
they match in ¥ so that 7;LS U 77? is a triangulation of 2 := Qg U X UQp. Then, for each T € ’T}? U 771D
we set the local Raviart—Thomas space of lowest order,

RT()(T) = Po(T) + Po(T)X,

where x is a generic vector in R3. We also let ), be the partition of ¥ inherited from 7,5 (or T,P),
which is formed by triangles e of diameter h., and set hy := max{h. : e € X}. Furthermore, we
introduce the following discrete subspaces

L7() ={an € L*(%) : qnlr € Po(T) VYT €Ty}, =€{S,D},
H;,(Q) = {m e H(div; ) : 7y|pr € RTo(T) VT € T}, *e€{S,D},
H} (Qs) = {vh, € [C(Q)P: vilr € PL(T) VT € TS},
L3 h(Qs) = {rn € L () : rulr € Po(T) VT € TP},
Liewn(Qs) = {mp € L3, (Qs) : mplr €Po(T) VT € TP}

In turn, in order to define the discrete spaces for the unknowns on the interface ¥, we introduce an
independent triangulation X of X, by triangles € of diameter hg, and define the associated meshsize

hg = max{hg:e € ih} Then, denoting by 9% the polygonal boundary of 3, we define

AS(R) = {¢h €C(D): tnlec Pi(E) YeeSh, ¢n=0 on az} ,
R (2.16)
AD(%) = {5h €C(D): &l Pi(e) Vee zh} .

Employing the above notations, we set
Hp(Qg) = {7s € H(div;Qg) : ¢t € Hy(Qs) VeceR3},
Hh,O(QS) = Hh(Qs) N Ho(div ; Qs),

Hj, 1 (Qs) = H}(2s) N Hy (),
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H; o(p) = Hy(Qp) N Hy(div; Qp),
L3o(@0) = L(2) NL3(O),
ASE) = MG
Then, defining the global spaces, unknowns, and test functions as follows
Xy =L 5 (Qs) x Hpo(Qs) x Hj 1, (Qs) x L, ,(Qs) x Hpo(2p)
My, == AR(D) x AP(S), Xp:=Xp, x My, M, =L} (),
ty = (ts,0, TS s US h, Ps s UDR) € Xpy @, 1= (Pps An) € M,
Ty = (TSh TSk, VS NS s VD) € Xps P, 1= (Y, &n) € My,
pp,n € My, and qp € My,
the Galerkin scheme for problem reads: Find ((t4, ;). pp,n) € X x M, such that
[A(us )t @), (s ®,)] + Blry, ¥, ), pp0] = [F,(ty,9,)] Y(e,,v,) € X,

[B(th, #,), ap,n] = [G.qp,] Vqp,n € Mp.

(2.17)

The following theorem, also taken from [I2], provides the well-posedness of (2.17)), the associated
Céa estimate, and the corresponding theoretical rate of convergence.

Theorem 2.2 Assume that the conditions on k;,i € {1,...,4}, required by Theorem hold. In
addition, given r € (0,79), with ro defined by (2.13), we let

Wzl = {ZS,h S Hllz,l‘s (Qs) : HZS,h 1,9g < 7"},
and assume that the data fs and fp satisfy
er{llfslloos + [ /ollogs } <7 (2.18)

where ét is the positive constant, independent of the data, provided by [12, Lemma 4.2]. Then there
exists a constant Cy > 0 such that, whenever hy < Cohg, there erists a unique ((gh,gh),pD,h) €

Xy, x My, solution to problem (2.17) with us ), € Wl. In addition, there holds

(s 2, Po.0) 1 < ex{lifsllocas + Il follosn | - (2.19)

and there exists Cy > 0, independent of h, hx, and hg, such that

1((t, ), P) = ((th, ;) Pp.1) lxxma < Cadist (((t, @), pp), Xn x Mp).
Assume further that there exists § > 0 such that ts € H°(Qg), og € H(Qg), dives € H (Qg), us €

H!™(Qg), p € HY/?H(%), ps € H(Qs), up € H(Qp), and divup € H (Qp). Then pp € H(Qp),

A€ H1/2+5(E), and there exists Co > 0, independent of h, hx, and hg, such that

I((t; ©), D) = ((th, @) PO x50 < C2 b0 {Htsllzs,ﬂs +llosllsos + lldivos|lsos + llusllisos

+ [lpsllsas + llubllsap + ldivup|lson, + HPDHHmD} -



Proof. We refer the reader to [12, Theorems 4.3, 5.4, and 6.2] for details. U

We end this section by pointing out that the assumption hy < Cphg required in Theorem is
needed to prove the discrete inf-sup condition for the bilinear form b (cf. (2.9)). We omit further
details about this issue and refer the reader to [30, Lemma 7.5] for more details.

3 A residual-based a posteriori error estimator

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the three
dimensional Galerkin scheme . The corresponding a posteriori error analysis for the 2D case
should be quite straightforward. We remark in advance that most of the proofs here make extensive use
of estimates already available in the literature. In particular, we apply results from [27] [25] 34, 37, [39],
among others.

3.1 Preliminaries

We begin by introducing further notations and definitions. First, given T € 7',§ U 7;1D, we let £(T) be
the set of faces of T', and denote by &, the set of all faces of 7;LS U 77LD, subdivided as follows:

En = En(l's) U EL(ID) U ER(Q2s) U ER(Sn) U ER(X),

where &, (Ty) :={e €&, : e CTL} En() :={e €&, : e CQ,}, for x € {S,D}, and the faces of &,(X)
are exactly those forming the previously defined partition Xj, that is E,(X) := {e € &, : e C X}
Also, for each e € &,(Q,) we fix a unit normal n,, and then, given v = (v1,v2,v3)" € L*(Q) and
T 1= (7i)3x3 € L*(Q) such that v|p € C(T) and 7|r € C(T) on each T € Ty, we let [vxn.] and
[Txn.] be the corresponding jumps of the tangential traces across e. In other words, [vxn.] :=
(v|r — v|7r)|exne and [Txn.] := (7|7 — 7|17)|e Xne, respectively, where T and T" are the elements of
T, having e as a common face and

(T11,T12, T13) X e
T X Ne = | (T21,T22,723) X N

(731,732, T33) X D¢
From now on, when no confusion arises, we simple write n instead of n.. In the sequel we will also
make use of the following differential operators:

curl (v) =V x v :=

81)3 81)2 81)1 81)3 8112 81}1
8%2 8.733’ al‘3 8:617 (91’1 8.7:2

and
curl (711, T2, T13)

curl (1) := | curl (721, 22, T23)

curl (731, 32, T33)
In turn, the tangential curl operator curlg : H/2(X) — L(H™'/2(X)), with £(H™'/2(X)) denoting the
tangential vector fields of order —1/2, will also be needed. This operator which can be defined by
curl¢(§) = V&xn for any sufficiently smooth function &, is linear and continuous (see [6, Proposi-

tions 3.4 and 3.6] for details). A tensor version of curlg, say curlg : H/2(X) — £(H!/2(X)), which
is defined component-wise by curlg, will be also utilized.
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Let us now recall the main properties of the Raviart-Thomas interpolator of lowest order (see
[, 26, 41]) and the Clément operator onto the space of continuous piecewise linear functions [17]. We
begin with the aforementioned Raviart-Thomas operator IT}; : H'(Q2,) — Hj,(Q4) (recall the definition
of Hy,(£2) in Section , *x € {S,D}, which is characterized by the identity

/ Zv-n:/v-n V face e of 7. (3.1)
As a consequence of (3.1]), there holds
div (IT;v) = Pj (divv), (3.2)

where P is the L?({,)-orthogonal projector onto the piecewise constant functions on (. A tensor
version of IT7, say ITj : H'(Q.) — Hj (), which is defined row-wise by II}, and a vector version
of Pj, say P}, which is the L2(Q,)-orthogonal projector onto the piecewise constant vectors on €2,
might also be required. The local approximation properties of II} (and hence of IIj) are established
in the following lemma. For the corresponding proof we refer to [5] (see also [20]).

Lemma 3.1 For each x € {S,D} there exist constants c1,c2 > 0, independent of h, such that for all
v € HY() there hold
v —1;vlor < cibrllvive VT €Ty,

and
|v-n—Tv-nfoe < ch?||vliz, Y face e of T;,

where T¢ is a tetrahedron of T;* containing e on its boundary.

In turn, the Clément operator I} : HY(Q,) — H} (Q,), with
() = {v€C(@.): vlr € PI(T) YT eT},

approximates optimally non-smooth functions by continuous piecewise linear functions. The local
approximation properties of this operator are established in the following lemma (see [17]).

Lemma 3.2 For each x € {S,D} there exist constants c3,cq,cs5 > 0, independent of h, such that for
all v € HY() there holds

v —Iivllor < eshr|vllia,my YT €Ty,

and
v — Iivlloe < cahl?([v]l1a, ) Ve € En,

where

AT =0{T" e Ty T'AT #£0} and Aue) =0{T' e Ty T'nez0}.

In what follows, a vector version of IF, say If : H'(€2) — H;} (€2,), which is defined component-wise
by I7, will be needed as well.

For the forthcoming analysis we will also utilize a couple of results providing stable Helmholtz
decompositions for H(div;€g) and Hy(div;Qp). In this regard, we remark in advance that the
decomposition for Hy(div;Qp) will require the boundary I'p to lie in a “convex part” of Qp, which
means that there exists a convex domain containing dp, and whose boundary contains I'n. More
precisely, we have the following lemma.
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Lemma 3.3

a) For each Ts € H(div;Qg) there exist n € H?(Qg) and x € H'(Qs) such that
Ts=Vn+curlx in Qs and [nl20s+ [IX|l1,05 < CslTsllaiv o (3-3)
where Cs is a positive constant independent of all the foregoing variables.

b) Assume that there exists a conver domain = such that Qp C Z and I'p C O=. Then, given
vp € Ho(div; Qp) there exist w € H2(Qp) and B € HILD (Qp) such that

vp=Vw+curlB in Qp and w20, + I8

1,05 < Cpllvpldiv.ops (3.4)

where Cp is a positive constant independent of all the foregoing variables, and
H},(Qp) = {8 € H'(2): Blr, € Po(Tp) }-

Proof. See [27, Theorems 3.1 and 3.2]. O

We end this section with a lemma providing estimates in terms of local quantities for the Haol/ 2(2)
and H™/2(X) norms of functions in particular subspaces of L2(X) and H~1/2(2) N L2(X), respectively.
More precisely, having in mind the definitions of AP(2) and AP(X) (cf. (2:16))), which are subspaces

of Hé{f(Z) and H/ 2(%), respectively, we introduce the orthogonal-type spaces
AE) = AL s =0 V€ AT} (3.5)

and
AL (3 = {A cHV2(D)NLAD): (M&)s =0 V& € A}f(z)} . (3.6)

Then, the announced lemma is stated as follows.

Lemma 3.4 Assume that for each e € X} there exists € € ih such that e C € and hy < C1 he,
with a constant C1 > 0 independent of hy and hg. Then, there exists C' > 0, independent of the
aforementioned meshsizes, such that

S, L
‘|A“%1/2,00,E <C Z he HAH(QJ,e VA e AT (X)), (3.7)
1SN
and
D, L
NP1 js € C D hellMlge YA € A(E). (3.8)
EEEh

Proof. Given \ € Ai’L(E), we first observe that A € Haol/Q(E) and that

A A
[Al=1/2,005 = sup & < sup A\ v)y ' (3.9)
§€H562(E) H§”1/2,00,E UGH%S(QS) HU’ 1,05
£#0 v£0

Next, we let ﬁs be a regular triangulation of the domain {25 which coincides with i]h on X, and let

T, HY(Qs) = Yy = {v €C(s): vlr € PUT) VT e ﬁs}

12



be the usual Clément operator (see Section . Then, since I,(v)|y, € AS(E) Vv e H%S(Qs), it
follows from (3.5]), , and the Cauchy-Schwarz inequality, that

> Mol = In(v)lloe

Ao — T
Moyoms < sup AU IODS gy, e S e
veH}, (2s) [v veH} (05) lv]|1,04
v#0 v#£0

where we also use that ||v — fh(v)Ho,e < v — fh('U)HO,é- In turn, applying the second approximation
property from Lemma [3.2] the estimate hg < C he, and the fact that the number of triangles of the
macro-elements A(€) are uniformly bounded, we find that

1/2
S Moello = Th@)lloe < > b M loe ol ae

e€Xy e€Xy
1/2 1/2 1/2
< D hel MG Dl ae <O he MR [vll1,0s »
e€Xy eeXy, ecXy,
which, replaced back into (3.10), gives (3.7). The proof of (3.8)), being similar to that of (3.7)), is
omitted. O

3.2 The main result

In what follows we assume that the hypotheses of Theorem 2.1} Theorem [2.2) 2:2] and Lemma [3.4] hold
and let t := ((t ©),pp) € X x M and t), := ((t4. ;). PO, h) € Xh x M}, be the unique solutions of
problems (2.7)) and ([2.17] -, respectively. Then, our global a posteriori error estimator is defined by:

1/2

©:=4¢ > ©3r+ Y Obrp (3.11)

TeTS TeTP

where the local error indicators @%T (with T' € 7,%) and @%’T (with T € T,P) are given by

2

1
OF 1 = |fs + divosullg 7 + [|fs — P3(fs) oz + ’ Psh~ 5 (Vus = (Vus )")

0,T

2 2
+ [le(us ) = tsnlle s + [|osn — osnllor + Hag,h — u([tsnl)tsn + (usp ® us,h)dHO .

+ 1 |[Vuasp = (b5, + ps.) g 0 + 17 leurl (b5 + ps i) g 1

(3.12)
+ > he || [(ts.n + ps ) xn] Hi,e + > hel(tshtpsn) XnHi,e
e€&(T)NER(Ns) ec&(T)NEL(Ts)

+ {he [(ts.n + ps.1) Xn‘i‘%ﬂs@huae—i_h‘@ Hm+us,h\|3,e}
c€E(T)NER(S)

>

eE(T)NE(E)

2
Zwl ®p - tl t + )\hn‘

Y
76
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and

@1237T = ||fp — div uD,h”?),T + h% HK_luD,hH(QLT + h% chrl (K_luD,h)Hi,T

> kel Twpgomlflg 30 he|[K Tap o,
eeé‘(T)ﬂSh(QD) eEE(T)mé’h(FD)

2
+ > {n |+ hellpps =Ml + he [upsn+@pnllf, )
c€&(T)NER(E) “

(3.13)

The main goal of the present Section [3|is to establish, under suitable assumptions, the existence
of positive constants Cre1 and Cess, independent of the meshsizes and the continuous and discrete
solutions, such that

Cots © + hoot. < It —thllxxm < Cra1 ©, (3.14)

where h.o.t. stands, eventually, for one or several terms of higher order.

The upper and lower bounds in (3.14]), which are known as the reliability and efficiency of O, are
derived below in Sections [3.3] and [3.4] respectively.

3.3 Reliability of ©

Proceeding analogously to [12, Section 5.2], we first let P : X x M — (X x M)’ := X' x M’ and
Py, - Xp, x M, — (X, x M) := X}, x M, be the nonlinear operators suggested by the left hand sides
of (2.7) and (2.17)) with the given velocity solutions ug € W, and ug, € W, that is

[P(8),1] := [(a1 + az(us))(s),x] + [b(s), ¥] + [b(r), B] — [c(@), ¥] .15)
+ [B(r,v),rp] + [B(s, @), ],
for all § = (s, ¢),7p), F = ((z, %), qp) € X x M, and
[Pr(8h). Th] = [(a1 + az2(usp))(sp), p] + [b(sp), ¥, ] + [b(xs), @, ] — [c(2,). ¥, ] 5.16)

+ By ¥,), o] + [Blsi: @) ap,n] s

for all §;, = ((sh, th) mo,n)s Th = (T, %,), a0,n) € Xpy X M. Then, setting F := (F, G) € X' x M, it
is clear from and ( - ) that P and P;, satisfy

-,

P(t),7]=[F,f] VFeXxM (3.17)

and
[Py(ty),Th] = [F, 4] VI, € X x M, (3.18)

respectively. In addition, since y is assumed to be of class C! (cf. ), we find, as explained in
[12, Section 5.2], that a; (cf. (2.9)) has hemi-continuous first order Gateaux derivative Da; : X —
L(X,X’). In this way, the Gateaux derivative of P at § is obtained by replacing [a1(-), -] in - 3.15) by
Day(S)(-,-) (see [12, Lemma 5.3] for details), that is

DP(5)(t,F) := Day(s)(t,r) + [az(us)(t),x] + [b(t), 9] + [b(x), @] — [c(¢), ]
+[B(xr,9),pp] + [B(t, ¥), ],
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for all t = ((t,),pp), T = ((r,9),qp) € X x M, which, according to [I2, Lemma 5.3], becomes a
uniformly bounded (with respect to §) bilinear form on (X x M) x (X x M). Moreover, thanks to the
assumptions on k;, @ € {1,...,4}, required by Theorem recalling that c is positive-semidefinite,
employing the continuous version of [12] Theorem 5.2], and proceeding again as in [12, Section 5.2],
we deduce the existence of a positive constant Cp, independent of § and the continuous and discrete

solutions, such that the following global inf-sup condition holds

o DP(S _,71_:
Cp ||C”X><M < sup M
rexxm  |IT]lxxm
740

vieXxM. (3.19)

We are now in position of establishing the following preliminary a posteriori error estimate.

Theorem 3.5 Given r € (0,rg), with ro defined by (2.13)), assume that the data fs and fp satisfy

~ Cpr
< — .
or {Ifslloas + Ifoloen | < 7oy (3.20)

where ér and ap(Q) are the positive constants, independent of the data, provided by [12, Lemma 4.2

and eq. (3.16)], and Cp is given above in (3.19). Then, there holds
I 2
t -t < —|R
1t = talloan < o IR

where R : X x M — R is the residual functional given by R(F) := [F — Pu(ty),f] VFe X x M,
which satisfies

(oxnt) (3.21)

R(fh) =0 th S Xh X Mh. (3.22)

Proof. Since t and t), belong to X x M, a straightforward application of the mean value theorem yields
the existence of a convex combination of t and tp, say S € X x M, such that (see for instance the
proof of [39, Lemma 3.5])

DP(8),)(t — t),,T) = [P(t) — P(t,),f] VreXxM.

Then, using that [P(t),7] = [F,t] (c¢f. (3.17)), and adding and subtracting [Py (t}), ], it readily
follows from the foregoing identity that

DP(8))(t — t,F) = R(F) + [Pu(ty) — P(tn),F] VFeXxM. (3.23)

In turn, applying (3.19) with s = §;, and E = t — t, and employing (3.23)), we deduce after minor
algebraic manipulations that

L P, (ty) — P(ty),T
o = Fallowan < IRl 00 + 5w [Pa(tn) — P(th), (3.24)

/
- XxM) FEXXM (17 5c5em
740

Next, according to the definitions of P and Py, (cf. (3.15) - (3.16))), and using the estimates (2.12])
and (2.19)), and the definition of r¢ (cf. (2.13)), we obtain

1Py (En) — P(E). 7

= ‘[ag(uS,h —ug)(ty), r]

IN

c2(Qs) (k1 + 1)Y2 luspllias llus — usallios [zl

< eo(Qs) (K2 + DY |84 llsnr 1€ — Eallsem [l2llx

()
2’!“0

IN

ér {HfSHO,Qs + HfDHo,QD} 1€ — tallxxm Ixllx
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which, thanks to the assumption (3.20) and the fact that r < 1, yields

To

- - Cp -~ -
[P (E) = P(En). 51| < =7 1€ = Eulhocaa clx

Thus, replacing this estimate back into (3.24]) we arrive at (3.21]). Finally, the fact that R vanishes in
Xy x My, that is (3.22)), follows straightforwardly from (3.18)). (|

According to the upper bound (3.21]) provided by the previous lemma, it only remains now to

estimate ||R|| (x M)/. To this end, we first observe that the functional R can be decomposed as
X

R(F) := Ri(1s) + Ra(vp) + R3(vs) + Ra(ng) + Rs(rs) + Re(gp) + Rr(p) + Rs(§)
for all ¥ = ((r,%),qp) € X x M, where
Ri(7g) := —kao(fs +divegy,divTs)s — ki (agh — p(|ts pl)ts n + (ugp ® us7h)d, T(Sl)s

—(tsh, T8)s — (T8, psp)s — (divTs,ugp)s — (Tsn, @)y

Ra(vs) := (fs +divogp, vs)s — k3(e(ug ) — tsp,e(vs))s,
1
R3(ng) = (osn,Ms)s — Ka (Ps,h —3 (Vus,, — (Vugp)t) aTIs> :
S
Ry(rs) = (0§, — n(ltsnltsn + (usp @ usp)d rs)g,
Rs(vp) := — (K lupp,vp)p + (divvp,ppa)p + (VD0 Ap)y
Re(qp) := —(fp —divup,qp)p,

2
Rr(9h) = —(osmm, ¥y + > w " (b, dtr)y — (hm, Ay,
=1

Rg(&) := (ppm, &)y + (uppn,§)y .

In this way, it follows that

||R||(XxM)/ < {HRIHH(div;QS)’ + [Rallmy sy + IRsllLy, 0y + [Rallz, sy 5.25)

+ 4 IRsll#g aivsony + IRellLzipy + R7llg1205) + HRsHH—l/z(z)} ;

and hence our next purpose is to derive suitable upper bounds for each one of the terms on the
right hand side of (3.25). We start with the following lemma, which is a direct consequence of the
Cauchy—Schwarz inequality.

Lemma 3.6 There exist Co, C3 > 0, independent of the meshsizes, such that

1/2
. 2 2
IRalluy gy < C2 { D lifs +divosllor + lle(us ) = tsallg
TeTy
and
1/2
t |2 1 t ?
IRslliz ey < C3 3 > llosn—obully,+ ’ psn— 5 (Vusp — (Vusp)')
0T

TeT?
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In addition, there holds

1/2
2
Rallez gy <4 D HUSh \tShI)tSh+(uSh®us,h)dH0T
TeTS ’
and
1/2
. 2
Rsllrzpy < § D Ifo—divup,l
TeT,?

Next, we derive the upper bounds for R7 and Rg, the functionals acting on the interface .

Lemma 3.7 There exist C7, Cg > 0, independent of the meshsizes, such that

1/2
IRellgg-1r2(s) < Cr Zw, (etot+aal| b (3.20)
eesh(Z) ’
and
1/2
2
IRsllsr-1/2¢s < Cs § D ke |luppm+ @yl : (3.27)
eeé’h(E)
Proof. 1t is clear from the definition of Ry that
: 2
R7(1h) = —<as’hn =S w N e )ty + Ahn,¢>2 Vep € HLZ (D),
=1
which certainly yields
2
IRelly 1725 = [|osan =D wi (e )t + Am| . (3.28)

—1/2,00,2
=1 /

Then, taking v, € A5(X) and then (rp, ;) = (0,(¥4,0)) € X, in the first equation of (2.17), we
deduce that

2
(osam = > w (en -6t + Antp) =0 Ve, € AS(E),

which says that each component of g ,n — Zle w; (p - t1)t: + Apn belongs to A,SL’L(Z‘) (cf. (3.5))).
In this way, (3.26) follows from (3.28) and a direct component-wise application of (3.7)) (cf. Lemma
. In turn, the proof of (3.27) proceeds analogously by noting now that up ,-n+ ¢, n € A]}?’L(Z)

(cf. (3.6])), and then by applying (3.8) (cf. Lemma . O

Our next goal is to derive the upper bound for R;, for which, given g € H(div ;(g), we consider
its Helmholtz decomposition provided by part a) of Lemma More precisely, we let n € H2(Qg)
and x € H!(Qg) be such that 7s = Vn + curl x in Qg, and

[Imll2,05 + Ixll0s < Cs lITsllaiv o - (3.29)
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Then, defining 755 = IT;(Vn) + curl (IPx) € Hj 0(Qs) (cf. Section , which can be seen as a
discrete Helmholtz decomposition of 7g p,, and applying from (3.22) that Ry(7s ) = 0, we can write

Ri(rs) = Ri(rs — Ts) = Ri(Vn —II;(Vn)) + Ru(curl (x — I}x)).

Consequently, we now require to bound the expressions on the right hand side of the foregoing
equation, which is provided by the following two lemmas.

Lemma 3.8 There exists C > 0, independent of the meshsizes, such that for each n € H?(Qg) there

holds
1/2

Ry(Vnp — I (Vn)| < C ¢ > 81rp  n
TeTS

2,05 (3.30)

where
@)2 = hZ|ed, — t t + (ugp ®u a” + || £ — P3(f5)]
1,T T ||9S,h (] S,h|) S,h ( S,h S,h) oT fs h( S)HO,T

3.31
+  hF ||[Vugy — (b + Ps,h)HaT + > hellen +usalls. - (331

e€E(T)NER(Y)

Proof. It follows almost straightforwardly from a slight modification of the proof of [39, Lemma 3.10]
(see also [37, Lemma 3.6]). We omit further details. O

Lemma 3.9 There exists C > 0, independent of the meshsizes, such that for each x € H' () there
holds

1/2
Ri(curl (x —Tix)| < C S D> 037 ¢ xlias, (3.32)
TeT?
where
Q2 d a|? 2 2

631 = [odn — nlltsatsn + (asn @usn)?| -+ 0 leur (b5 + ps )l

2 2
+ > hellltsn+pspn]lly, + > hellttsatpsa)xnlly,  (3.33)

ccE(T)NER(Qs) c€&(T)NE(Ts)
2
+ Z he ||(bs,n + pg,p) X1 + cult'lscthQ6 .
ec&(T)NEL(S)

Proof. Given x € H(fg), we first notice from the definition of Ry that there holds

Ri(curl (x — Ix)) = Ti(x) + Ti(x),

where B
Ti(x) == —r1(08, — pnlltsnl) tsn + (usp @ ugp)?, curl (x — Iix))q

and, denoting Cj, := tsn + pPg p,

Ti(x) == — (Cpocurl (x — Iix))s — (curl (x — Bx)n, ¢y, )s, -
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For estimating Tl(x) we proceed as in the proof of [39, Lemma 3.9] and apply the boundedness of
I : HY(Qs) — HY(Qs) ([24, Lemma 1.127, pag. 69]), as well as the Cauchy-Schwarz and triangle
inequalities, to obtain

1/2
2
Tl <C 4 Y [odn—nltsabtsn + uspousa)| b lxlhos.  (339)

TeTS

Next, for T4 (x) we first apply the identities from [41, Chapter I, eq. (2.17) and Theorem 2.11] to
deduce that

(curl (x — Ix)n, en)s = (curlspy, x Ihx>E Z /curls(,oh -x). (3.35)
eeé'h(E)

Then, analogously to the proof of [39, Lemma 3.9], we integrate by parts (Ch,curl (x — I,Slx))s on
each T € 7715, and add (3.35) to the resulting expression, to obtain

Z/curlch B0 - % [l -1

Te TS e€&(Qs)

- Z /Chxn Z /Chxn—l—curlscph) (x — I X) -

eGEh FS eegh

(3.36)

In this way, applying the Cauchy—Schwarz inequality, the approximation properties of the Clément
interpolator I5 (cf. Lemma and the fact that the number of triangles of the macro-elements Ag(7")
and Ag(e) are uniformly bounded, we deduce from (3.36)) that

Tl < >0 b feurl(C)lor + Y. he [[Chxn]lf,

TeTS e€&(T)NERL(Ns)
4 1/2 (3.37)
+ Y. helxmllg, + D> hellGuxmtcurlspylls, o lIxlos
ec&(T)NER(Ts) ecE(T)NER(D)
which together with (3.34]) implies (3.32)) and concludes the proof. O

As a direct consequence of Lemmas and and the stability estimate (3.29)) for the Helmholtz
decomposition, we obtain the following upper bound for ||R1 ||z (aiv ;05 -

Lemma 3.10 There exists C1 > 0, independent of the meshsizes, such that

1/2

[R1llmaiv.0q) < C1 Z O%r ,
TeT?

where
2

©%r = Olr + O57 — hi HUCsl,h — u(ltsn))ts,n + (usn ®US,h)dHDT ,
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that is

-~ 2
OF = ||fs — Pfsl(fs)Hi,T + HO'(Sj,h — p([tsn)tsn + (usp @ US,h)dHO .
+ 17 [ Vuss = (b5 + psp) o, + 1 leurl (6. + ps ) g 1

+ Z he H [[(tsﬁ + pS7h) xn]] H?)’e + Z he H(tS,h + psah)an(Q),e
ec&(T)NERL(Ns) ec&(T)NER(Ts)

+ Z {he H(tS,hﬂLPs,h) Xn"‘%ﬂsﬂoh“g,e_’_he ’\‘Ph+us,h||g,e}
ecE(T)NER(D)

Proof. Tt suffices to see that the first term defining @%T (cf. (3.31) in Lemma is dominated by
the first term defining @%T (cf. (3.33)) in Lemma , which explains the substraction of the former
in the original definition of (:)g T U

Finally, the corresponding estimate for Ry is given by the following lemma.

Lemma 3.11 Assume that there exists a conver domain = such that Qp C Z and I'p C 9=. Then
there exists Cs > 0, independent of the meshsizes, such that

1/2

||R5||Ho(div;QD)’ < C15 Z @2D,T 5
TeTP

where N ) )
@2D,T = h%« HK_luD’hHO,T + h% HCUI‘I (K_luD»h)HO,T

SRD DR [ L VR | S DY [ e

e€€(T)NER(Qp) e€&(T)NER(I'p)
— 2
+ Z {he HK luD,hXH‘i'CllI‘ls)\hHO’e+he||pD,h—>\h||3,€} .
ccE(T)NER(E)

Proof. The result follows analogously to the proof of Lemmas and taking into account
now the Helmholtz decomposition provided by part b) of Lemma the fact that Rs(vpy) = 0
Vvpy € Hpo(2p) (which also follows from ), and the analogue of the integration by parts
formula , which here becomes

(curlp - n, \p)y = (curlghy, ¢)yy, Vo € HY(Qp),

where curl is the operator defined in Section Additionally we refer to [37, Lemma 3.9] for the
proof of the 2D version of this lemma. We omit further details. U

We end this section by concluding that the reliability of ©, that is the upper bound in (3.14]), is a
straightforward consequence of Lemmas and

3.4 Efficiency of ©

We now aim to establish the lower bound in (3.14]). For this purpose, we will make extensive use of the
original system of equations given by (2.4)—(2.5)—(2.6]), which is recovered from the augmented-mixed
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continuous formulation (2.7)) by choosing suitable test functions and integrating by parts backwardly
the corresponding equations.

We begin the derivation of the efficiency estimates with the following result.

Lemma 3.12 There hold
s — Ph(fs

IN

oz < 2llos —ospllav,r YT €T,

Ifs +divoshllyr < llos —ospllav s YT €Ty,
Ifo —divup sy < up —upnlly, 7 YT €T,

and there exist constants ¢; >0, i € {1,...,4}, independent of the meshsizes, such that
losn—o§ullor < allos—osullyy YT €Ty,

le(us) = tsallor < e{llus —usallir + llbs = tsalor } VT € TP,

< 63{||Ps —pspllor + [lus — us,h||1,T} VT € T2,
0,7

1
Psh =5 (Vugy, — (Vugp)t)

|

[Vusn = (6sn+ psi) | < ea{llus = usalliz +lits — tsalox + los = psalor} VYT €T,

and

Proof. It suffices to recall that f§ = —diveyg, fp = divup, ts = e(us), pg = %(Vus — (Vug)t),
and og = of. In particular, for the first estimate we refer to [39, Lemma 3.13]. Further details are
omitted. 0O

Now we turn to provide the corresponding estimates for the rest of terms defining Og and Op.
To do that, we proceed similarly as in [37], [39], and [28] and apply some known results based on
inverse inequalities (see [16]) and the localization technique (see [48]) based on tetrahedron-bubble
and face-bubble functions. In particular, the following lemma provides local efficiency estimates for
several terms on .

Lemma 3.13 There exist constants ¢; > 0, i € {5,6,7,8}, independent of the meshsizes, such that

a) hellpon =Ml < es {lpp = poalliz, + 53 Iup = up sz, + el = Ml }.
for all e € E,(X), where T, is the tetrahedron of 7;LD having e as a face,

b) hellup e+ opml3, < e up —up al g, + Wldiv (up — up )l +hele — @nll. )
for all e € &,(X), where T, is the tetrahedron of ’7le having e as a face,

2
c) he

0,e

2

ogpn — Zwl_l(goh b))t + )\hn‘
=1

< er{llos — o5l g, + 13 Idiv (o5 — o5 2, + helle — ule + hellh = Ml ).

for all e € E,(X), where T, is the tetrahedron ofThS having e as a face,
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Q) hellus +enllhe < cs {lus —usaliz, +hhus = usaiz, + helle - @nld ),
for all e € E,(X), where T, is the tetrahedron ofThS having e as a face.

Proof. We notice that all the estimates here can be easily obtained by adapting the proofs of their two-
dimensional counterparts. In fact, the estimate in a) can be easily obtained after a slight modification
of [2, Lemma 4.12], whereas the proofs of b), ¢), and d) readily follow from [37, Lemmas 3.15, 3.16
and 3.17], respectively. O

The sixth residual expression defining @%T (cf. (3.12)), that is the one containing the nonlinear
operator and the convective term, as well as the rest of terms acting on X, are estimated now.

Lemma 3.14 There exist ¢; > 0, i € {9,10,11}, independent of the meshsizes, such that

a) HU%,h — p(ltsp)tsp + (ugp @ us,h)dH

07QS

< o {Has —osulloos + [[ts — tsulloos + [[us — US,hlll,ﬂs}~

b) Z heH<tS,h+pS,h) Xn—i_CLrlscth?),e
eclL(X)

<ol S (lbs —tsaldn + los — psaln) + e —@nll2os ¢ -

eeé’h(E)

and

C) Z he HKﬁluD,th + Curls)\hHée < c11 Z ||U_D — uD,h]
e€&p (D) e€&p(X)

or + 1A — )\hH%/z,z :

where, given e € E,(X), Te is the tetrahedron of 771D having e as a face.

Proof. The efficiency estimate a) follows exactly as in the first part of the proof of [39, Theorem
3.12]. Indeed, after introducing the identity o8 — pu(|ts|)ts + (us ® ug)? = 0, the rest of the proof
reduces to employ the Lipschitz-continuity of the nonlinear operator induced by u (cf. [33, Lemma
2.1]), the compact imbedding i. : H}(Qg) — L*(Qs), and the fact that |jus||1.0s and ||usp|1,0s are
both bounded by r, thus obtaining

lu([ts])ts — p(|ts.n

Jtsh

0,0s < Ly llts — tsnllo.os

and

lus @ us —usp ®uspllo o, < [[(us —usn) @usllyg, + [usn© (us —usa)lly g

< el {Jluslvos + s los f lus = usalias < 2icl>r fus = usalo;

Further details are omitted. In turn, the proofs of b) and c) follow after a straightforward adaptation
of that of [29, Lemma 20], and recalling from [6, Proposition 3.6] that the operators curls and curlg
are bounded. ]

We observe here that b) and c¢) are the only non-local efficiency bounds obtained so far. However,
the following lemma shows that local estimates can still be derived for these terms under additional
regularity assumptions on ¢ and .
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Lemma 3.15 Assume that |, € H'(e) and N, € H(e), for each e € E,(X). Then there exist
c12, c13 > 0, independent of the meshsizes, such that for each e € E,(X) there hold

2
he || (ts,n + Psp) X0+ %ﬂsﬂohHo’e
, , ) (3.38)
< iz {libs — tsalldr + llos = psallir + he lleurls(o — @), }

and
_ 2
he | K~ upxn + curl M5, < eis {||uD —up |2z + he [leurls(A — )\h)||37€} : (3.39)
where T, is the tetrahedron 0]”7;1S (respectively 7;1D) having e as a face.

Proof. The proof of both estimates follow exactly as in the proof of [29, Lemma 21]. We omit further
details. 0

Finally, the following lemma provides the corresponding upper bounds for the remaining terms
defining G%I and @2D7T. In particular, in order to deal with those involving K~!, we assume from now

on that K_luD,h is polynomial on each T € ED. Otherwise, assuming suitable regularity hypotheses
and proceeding similarly as in [I1), Section 6.2], higher order terms are obtained, which explains the
expression h.o.t. in the lower bound of (3.14)).

Lemma 3.16 There exist positive constants c;, i € {14,...,20}, independent of the meshsizes, such
that

a) WK tap ulls r < e {IIPD — pouli§r + h7lup — uD,hH%,T} VT €Ty,
_ 2
b) h% HCUI‘I (K luDvh)HO,T < c15 HuD — uD,hH%’T VT € TD 5

_ 2
¢) he ||[K™tup pxn][fg . < e llup —up a3,
for all e € E,(Qp), where the set w, is given by we := U{T’ eTP:ec E(T’)},

_ 2
a) he |[Kuppxnl|;, < err Jup —upll3 .
for all e € E,(I'p), where T, is the tetrahedron of 7;LD having e as a face,

A

2
¢) hf [|leurl (s, + psp)|ly 7 < Cls{llts —tsnldr + llos *ps,hll(%,T} VT e T2,

2
0 he||[(tsn + psa)xn]|l5, < o {lits = tsnle, + los = psilie,
for all e € E,(Qg), where the set we is given by w, = U{T’ € 7'hS te€ S(T’)} ,

2
8) e [[(tsn+ psa)xnlls, < cao {libs — tsall, + llos — psalid s, }
for all e € &,(I's), where T, is the tetrahedron 0f771S having e as a face.

Proof. For a) we refer to [10, Lemma 6.3] or alternatively [4, Lemma 4.3] (see also [32, Lemma 4.9]).
In turn, noting that

curl (K~ 'up) = —curl (Vpp) =0 and curl (ts + pg) = curl (Vug) =0,
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we find that the proofs of b) and e) are direct consequences of [28, Lemma 4.9]. Similarly, the proofs of
c), d), f) and g) follow after a straightforward application of [28, Lemma 4.10] (see also [10, Lemma 6.2]
and [4, Lemma 4.4)). O

We end this section by observing that the required efficiency of the a posteriori error estimator ©
(cf. lower bound in (3.14)) is a direct consequence of Lemmas|3.12} [3.14} [3.16 and [3.13] In particular,
the terms he||A — /\h||3,e and hell¢ — ‘Ph”%,e appearing in Lemma [3.13 (items a) — d)), are bounded as
follows:

o helA=Anlge < RlIA=Mllgs < CRIA=AnllF o5,
e€&p (%)

and

> helle = @ullse < hlle -
ceEn(S)

6x < Chllp— S%H%/z,oo,z-

4 Numerical results

We now turn to the implementation of some numerical tests that confirm the predicted reliability
and efficiency of the proposed a posteriori error estimator. For the sake of simplicity, here we restrict
ourselves to the two-dimensional case. To do that we remark that the 2D version of the a posteriori
error indicators ©g and ©p described in (3.12)) and (3.13)) are defined exactly as their 3D counterparts,
considering where appropriate (with v := (v1,v2)" and 7 := (7i;)2x2), v - t and 7t instead of v x n
and T X n,

87'12 811 87’22 821 !
8%‘1 833‘2’ 83?1 8.%'2

rotv:i=— — — and rot'r::<
instead of curlv and curl 7, and ddﬁh and dé\—sh instead of curlgyp; and curlg)y,, respectively, where

d;psh and % stand for the tangential derivatives of ¢, and A, respectively, along X.

Our implementation is based on a FreeFem++ code (see [43]), in conjunction with the direct linear
solver UMFPACK (see [20]). Regarding the implementation of the Newton iterative method, the
iterations are terminated once the relative error of the entire coeflicient vectors between two consecutive
iterates is sufficiently small, i.e.,

|coeff™ 1 — coeff™||,2
|coeff™ ||,z

< tol,

where || - [|;2 is the standard /2-norm in RY, with N denoting the total number of degrees of freedom
defining the finite element subspaces Lfr’h(QS)uHh,o(QS),H}L,FS(QS),szeWﬁ(QS),Hh,o(QD)7A§L(E)7
AP(X), and L2 ,(Qp), and tol is a fixed tolerance to be specified later. As usual, the individual
errors are denoted by:

e(ts) == [ts — tsullons, e(os) :=[los — osnlldiv.as, e(us) = |lus — ug 10,

e(ps) == llps — pspllogs,  e@s) = llps — pspllons, e(up) := [[up — up ulldiv,op;

e(pp) == [lpp —pD,h”O,Qm e(p) == |lp — <Ph||1/2,00,2> e(A) = [|A — )\h||1/2,2,

where ps j, is the postprocessed pressure given by
1 .
PS,h = —itr (US,h + (us7h & us,h)) in Qg.
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In turn, the global error is computed as

e(t) = {e(tS)Q +o(0s)? + e(us)? + e(pg)? + e(up)? + e(pp)? + e(p)? + e()\)g}l/2 |

whereas the effectivity index with respect to © is given by

eff(0) := @.

]
In addition, we define the experimental rates of convergence
1 %) /e (% o

Log(h /1)

where e and ¢ denote errors computed on two consecutive meshes of sizes h and h’, respectively.
However, when the adaptive algorithm is applied (see details below), the expression log(h/h’) appear-
ing in the computation of the above rates is replaced by —% log(N/N'), where N and N’ denote the
corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them we choose K =1,
w1 = 1, and according to [12, eq. (3.26) in Section 3.2], the stabilization parameters are taken as
K1 = ul/LfL, with L, := max{pu, 212 — 11}, k2 = k1, k3 = p1/2, and k4 = Ckopt1/4. Since the Korn
inequality constant is not known when considering mixed boundary conditions, Cxk, is taken here
heuristically as 0.5 (see [12, Section 7] for details). In addition, the tolerance tol is taken as 1E — 6 in
all the examples.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimator O,
whereas Examples 2 and 3 are utilized to illustrate the behaviour of the associated adaptive algorithm,
which applies the following procedure from [47]:

1) Start with a coarse mesh Tj, := ’728 U 771D.

2) Solve the discrete problem ([2.17)) for the current mesh 7p.

4) Check the stopping criterion and decide whether to finish or go to next step.

(1)
(2)
(3) Compute O := O, 1 for each triangle T € T;*, x € {S,D}.
(4)
()

Use blue-green refinement on those 7" € 7;, whose indicator © satisfies

1
O > —ma {@ :TET}
=73 Te?% T 4
(6) Define resulting meshes as current meshes 7> and 7,°, and go to step 2.

In Example 1 we consider the regions (g := {(931,932) : (21— 0.5)2 4 (12— 1)2 < 0.25, 29 > 1} and

Qp := (0,1)2. In this case, we set the nonlinear viscosity to

wu(s) =2+ for s > 0.

1+s

The data fg and fp are chosen so that the exact solution in the tombstone-shaped domain 2 is given
by the smooth functions

ps(x) = cos(mxy) cos(mxe), ug(x) = —curl (sin(7wz)sin(7wzs)),
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for all x := (z1,z2) € (g, and
pp(x) = cos(mxy) cos(mag) Vx := (r1,22) € Qp,

BN
where curl (¢) := (%,—%) for any sufficiently smooth function gq. Notice that this solution

satisfies ug'n = up-n on ¥ and the boundary condition up-n = 0 on I'n. However, the Dirichlet
boundary condition for the Navier—Stokes velocity on I's is non-homogeneous. Then, we need to
modify accordingly the functional F (cf. (2.11])), as follows

[F7 (Ea g)] = _%Q(fSa div TS)S + (fS> VS)S + <Tsna g>1"s v (27 f) € X7

where g := ug|r, € HY2(I's).

In Example 2 we consider the inverted L-shaped domain Q = Qg U Qp, where Qg = (0,1)? and
Qp :=(—1,1) x (—1,0), representing a fluid channel on top of a porous basin. The viscosity follows a
Carreau law with o = 0.5, a3 = 0.5, and g = 1.5, that is

(s) == 0.5+ 0.5(1 + 2~V for s >0,
and the data fg and fp are chosen so that the exact solution is given by
ps(x) = cos(mzy) cos(mzs), ug(x) = curl (z7(z; — 1)%23(z2 — 1)%),
for all x := (z1,22) € (g, and

(1 —1)%23 (22 + 1)
21 4 0.01)2 4 (y — 0.01)2

Vx = (331,%‘2) € QD.

pp(x) = (

Notice that the Darcy velocity and pressure exhibit high gradients near the origin.

Finally, in Example 3 we consider Qp := (—1,0)? and let €25 be the L-shaped domain given by
(—1,1)2 \ Qp, which yields a porous medium partially surrounded by a fluid. The viscosity follows
again a Carreau law (cf. (2.3))) with ag = 0.5, a3 = 0.5, and S = 1, that is

(s) == 0.5+ 0.5(1 + s2) "2 for s >0,

and the data fg and fp are chosen so that the exact solution is given by

1
~100(2? + 23) +0.01°

ps(x) ug(x) = curl (O.l(a:% —1)? sin2(7r:z:1)) ,

for all x := (x1,x2) € Qg, and
pp(x) = cos(mxy) cos(mag) Vx := (r1,22) € Qp.

Note that the fluid pressure pg has high gradients around the origin.

In Table we summarize the convergence history of the fully-mixed finite element method ,
as applied to Example 1, for a sequence of quasi-uniform triangulations of the domain, considering the
finite element spaces introduced in Section [2.3] and solving the nonlinear problem with around five
Newton iterations. We observe there, looking at the corresponding experimental rates of convergence,
that the O(h) predicted by Theorem (here 0 = 1) is attained in all the unknowns. In addition, we
notice that the effectivity index eff(0) remains always in a neighbourhood of 0.98, which illustrates
the reliability and efficiency of © in the case of a regular solution.
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Next, in Tables and we provide the convergence history of the quasi-uniform and
adaptive schemes, as applied to Examples 2 and 3, solving the nonlinear problem with around three
and six Newton iterations, respectively. We observe that the errors of the adaptive procedure decrease
faster than those obtained by the quasi-uniform ones, which is confirmed by the global experimental
rates of convergence provided there. This fact is also illustrated in Figures 4.1 and [4.3] where we display
the total errors e(t, ¢, pp) vs. the number of degrees of freedom N for both refinements. As shown
by the values of r(g,?o, pp), the adaptive method is able to keep the quasi-optimal rate of convergence
O(h) for the total error. Furthermore, the effectivity indexes remain bounded from above and below,
which confirms the reliability and efficiency of © in these cases of non-smooth solutions. Intermediate
meshes obtained with the adaptive refinements are displayed in Figures and Note that the
method is able to recognize the region with high gradients in Examples 2 and 3.

dof hs | elts) | r(ts) | e(os) | r(os) | e(us) | r(us) | e(ps) | r(ps)
854 0.1905 | 0.5866 | — |4.6754 | — [0.9306 | - [1.7056 | -
3195 | 0.0911 | 0.2909 | 1.0633 | 2.4721 | 0.9660 | 0.4707 | 1.0332 | 0.9970 | 0.8139
12543 | 0.0486 | 0.1460 | 1.0085 | 1.2793 | 0.9634 | 0.2381 | 0.9968 | 0.5015 | 1.0050
50188 | 0.0242 | 0.0679 | 1.1031 | 0.6398 | 0.9995 | 0.1142 | 1.0593 | 0.2371 | 1.0804
198838 | 0.0129 | 0.0352 | 0.9553 | 0.3493 | 0.8791 | 0.0580 | 0.9843 | 0.1256 | 0.9231
783886 | 0.0068 | 0.0179 | 0.9822 | 0.1742 | 1.0143 | 0.0294 | 0.9912 | 0.0639 | 0.9862

dof hs hp e(ps) | r(ps) | e(up) | r(up) | e(pp) | r(pp)
854 0.1905 | 0.1901 | 0.6240 - 1.2480 - 0.0619 -

3195 0.0911 | 0.0966 | 0.3409 | 0.9165 | 0.6004 | 1.1092 | 0.0296 | 1.1159
12543 | 0.0486 | 0.0573 | 0.1470 | 1.2302 | 0.3035 | 0.9975 | 0.0150 | 0.9962
50188 | 0.0242 | 0.0259 | 0.0686 | 1.0987 | 0.1516 | 1.0018 | 0.0075 | 1.0023
198838 | 0.0129 | 0.0135 | 0.0364 | 0.9227 | 0.0756 | 1.0106 | 0.0037 | 1.0105
783886 | 0.0068 | 0.0070 | 0.0183 | 1.0003 | 0.0382 | 0.9945 | 0.0019 | 0.9935

=

dof h e(p) r(p) e(A) r(A) e(t) r(t) ) eff (©) | iter
854 1/4 | 1.0668 - 0.2038 — 5.3590 — 5.5271 | 0.9696 | 5
3195 1/8 | 0.5573 | 0.9844 | 0.0980 | 1.1090 | 2.8448 | 0.9600 | 2.9156 | 0.9757

12543 1/16 | 0.2710 | 1.0545 | 0.0479 | 1.0485 | 1.4609 | 0.9746 | 1.4804 | 0.9868
50188 1/32 | 0.1345 | 1.0104 | 0.0243 | 0.9767 | 0.7245 | 1.0116 | 0.7312 | 0.9908
198838 | 1/64 | 0.0675 | 1.0025 | 0.0119 | 1.0336 | 0.3909 | 0.8963 | 0.3938 | 0.9926
783886 | 1/128 | 0.0336 | 1.0168 | 0.0064 | 0.9157 | 0.1956 | 1.0098 | 0.1967 | 0.9940

Ut Ot Ot Ot Ot

Table 4.1: EXAMPLE 1, quasi-uniform scheme.
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dof hs hp e(ts) | e(os) | e(us) | e(ps) | e(ps) | e(up) | e(pp)
588 0.2926 | 0.3297 | 0.2022 | 0.5672 | 0.1893 | 0.3651 | 0.1754 | 39.9583 | 0.4761
1931 0.1964 | 0.1901 | 0.1811 | 0.3955 | 0.2030 | 0.3665 | 0.1092 | 73.9004 | 0.4069
7317 0.0997 | 0.1000 | 0.0724 | 0.1796 | 0.0814 | 0.1344 | 0.0572 | 59.6887 | 0.1433
28860 | 0.0487 | 0.0534 | 0.0172 | 0.0726 | 0.0068 | 0.0425 | 0.0172 | 76.9741 | 0.0140
115506 | 0.0250 | 0.0263 | 0.0084 | 0.0363 | 0.0034 | 0.0206 | 0.0082 | 66.9770 | 0.0055
459154 | 0.0136 | 0.0147 | 0.0042 | 0.0181 | 0.0015 | 0.0106 | 0.0041 | 54.0296 | 0.0028

dof h e(p) e(A) e(t) r(t) ) eff(O) | iter

588 1/2 | 0.2161 | 0.8872 | 39.9782 — 40.2227 | 0.9939 | 4

1931 1/4 | 0.2601 | 1.2136 | 73.9144 - 74.0108 | 0.9987 | 4

7317 1/8 | 0.0931 | 0.6470 | 59.6930 | 0.3208 | 59.7396 | 0.9992 | 4

28860 | 1/16 | 0.0092 | 0.1010 | 76.9742 - 76.9937 | 0.9997 | 3

115506 | 1/32 | 0.0057 | 0.0485 | 66.9770 | 0.2006 | 66.9905 | 0.9998 | 3

459154 | 1/64 | 0.0029 | 0.0320 | 54.0296 | 0.3113 | 54.0370 | 0.9999 | 3

Table 4.2: EXAMPLE 2, quasi-uniform scheme.

+

—<O— quasi-uniform refinement

adaptive refinement

Figure 4.1: Example 2, e(t, ¢, pp) vs. N for quasi-uniform/adaptive schemes.



dof e(ts) | e(as) | e(us) | e(ps) | elps) | e(up) | e(pp)
588 0.2022 | 0.5672 | 0.1893 | 0.3651 | 0.1754 | 39.9583 | 0.4761
784 0.1505 | 0.5215 | 0.1347 | 0.2404 | 0.1385 | 65.1904 | 0.1957
1019 0.1031 | 0.4988 | 0.0802 | 0.1297 | 0.1271 | 73.1960 | 0.0295
1431 0.0996 | 0.4973 | 0.0889 | 0.0982 | 0.1536 | 55.1764 | 0.0284
2111 0.0991 | 0.4995 | 0.0891 | 0.0863 | 0.1419 | 29.5771 | 0.0283
3185 0.0994 | 0.5011 | 0.0890 | 0.0805 | 0.1364 | 12.6187 | 0.0282
5555 0.0999 | 0.5028 | 0.0893 | 0.0777 | 0.1493 | 7.1633 | 0.0280
9680 0.0996 | 0.5023 | 0.0887 | 0.0848 | 0.1481 | 5.2107 | 0.0208
17147 | 0.0916 | 0.3984 | 0.0628 | 0.1351 | 0.1290 | 3.8253 | 0.0152
31110 | 0.0691 | 0.3124 | 0.0398 | 0.1078 | 0.0935 | 2.8216 | 0.0124
59678 | 0.0490 | 0.1961 | 0.0197 | 0.0866 | 0.0536 | 2.0190 | 0.0076
112409 | 0.0394 | 0.1672 | 0.0165 | 0.0653 | 0.0484 | 1.4593 | 0.0063
221370 | 0.0245 | 0.1003 | 0.0084 | 0.0389 | 0.0271 | 1.0402 | 0.0038
427000 | 0.0206 | 0.0870 | 0.0068 | 0.0327 | 0.0226 | 0.7425 | 0.0032
dof e(p) e(N) e(t) r(t) ) eff(O) | iter
o988 0.2161 | 0.8872 | 39.9782 - 40.2227 | 0.9939 | 4
784 0.1439 | 0.8114 | 65.1987 - 65.2262 | 0.9996 | 4
1019 0.0634 | 0.1014 | 73.1980 - 73.2245 | 0.9996 | 3
1431 0.0504 | 0.0475 | 55.1790 | 1.6645 | 55.2056 | 0.9995 | 3
2111 0.0444 | 0.0201 | 29.5818 | 3.2070 | 29.6221 | 0.9986 | 3
3185 0.0428 | 0.0155 | 12.6297 | 4.1387 | 12.7177 | 0.9931 | 3
5555 0.0416 | 0.0152 | 7.1828 | 2.0292 | 7.3110 | 0.9825 | 3
9680 0.0459 | 0.0130 | 5.2375 | 1.1374 | 5.3244 | 0.9837 | 3
17147 | 0.0479 | 0.0118 | 3.8503 | 1.0763 | 3.9225 | 0.9816 | 3
31110 | 0.0255 | 0.0060 | 2.8422 | 1.0192 | 2.8947 | 0.9819 | 3
59678 | 0.0217 | 0.0039 | 2.0312 | 1.0314 | 2.0692 | 0.9816 | 3
112409 | 0.0136 | 0.0021 | 1.4710 | 1.0192 | 1.4982 | 0.9818 | 3
221370 | 0.0085 | 0.0012 | 1.0461 | 1.0059 | 1.0651 | 0.9822 | 3
427000 | 0.0072 | 0.0006 | 0.7487 | 1.0184 | 0.7625 | 0.9819 | 3

Table 4.3: EXAMPLE 2, adaptive scheme.
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dof hg hp e(ts) | e(os) | e(us) | e(ps) | e(ps) | e(up) | e(pp)
1037 0.3529 | 0.3019 | 1.2001 | 19.6901 | 2.6722 | 2.8717 | 0.6257 | 2.1914 | 0.1139
3664 0.1947 | 0.1964 | 2.1724 | 58.3515 | 4.5117 | 3.3283 | 1.1404 | 1.2395 | 0.0657
13956 | 0.0960 | 0.1025 | 2.4894 | 114.3013 | 5.8122 | 4.1176 | 1.0524 | 0.6207 | 0.0314
55663 | 0.0520 | 0.0495 | 1.7729 | 94.6633 | 3.2125 | 2.7450 | 0.8685 | 0.3093 | 0.0153
220100 | 0.0293 | 0.0260 | 0.8835 | 51.4952 | 1.0053 | 1.4521 | 0.5310 | 0.1513 | 0.0075
879198 | 0.0145 | 0.0143 | 0.5353 | 33.8233 | 0.3295 | 1.2531 | 0.3642 | 0.0759 | 0.0037
dof h e(p) e(\) e(t) r(t) C) eff (©) | iter
1037 1/2 | 1.3033 | 0.9173 | 20.2949 20.6086 | 0.9848 | 5
3664 1/4 | 2.0423 | 0.6667 | 58.7129 58.7574 1 0.9992 | 5
13956 1/8 | 2.4754 | 0.4053 | 114.5792 114.5746 | 1.0000 | 5
55663 | 1/16 | 1.8369 | 0.2100 | 94.7926 | 0.2741 | 94.7881 | 1.0000 | 5
220100 | 1/32 | 0.7827 | 0.0855 | 51.5392 | 0.8865 | 51.5419 | 0.9999 | 5
879198 | 1/64 | 0.5891 | 0.0577 | 33.8576 | 0.6068 | 33.8559 | 1.0000 | 5

Table 4.4: EXAMPLE 3, quasi-uniform scheme.

Figure 4.2: Example 2, adapted meshes with 588, 1019, 9680, 31110, 112409, and 447000 degrees of

freedom.
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dof e(ts) | e(os) | e(us) | e(ps) | e(ps) | e(up) | e(pp)
1037 1.2001 | 19.6901 | 2.6722 | 2.8717 | 0.6257 | 2.1914 | 0.1139
1579 3.0393 | 98.1488 | 6.1149 | 4.8488 | 1.2574 | 1.9106 | 0.0933
2092 2.0017 | 84.5704 | 2.9416 | 2.9343 | 1.0256 | 1.8860 | 0.0929
2766 0.7046 | 42.4930 | 0.8777 | 1.4751 | 0.3717 | 1.8982 | 0.0936
4748 0.5235 | 16.4829 | 0.7695 | 1.4233 | 0.2375 | 1.9012 | 0.0938
9936 0.4928 | 8.2112 | 0.7622 | 1.4148 | 0.2143 | 1.5623 | 0.0779
18993 | 0.3580 | 5.6827 | 0.5430 | 1.0980 | 0.1401 | 1.0019 | 0.0495
33974 | 0.2681 | 4.2302 | 0.3972 | 0.9634 | 0.1096 | 0.7945 | 0.0395
64472 | 0.1785 | 3.0476 | 0.2581 | 0.7001 | 0.0752 | 0.5697 | 0.0282
122011 | 0.1438 | 2.2169 | 0.2111 | 0.5401 | 0.0643 | 0.4319 | 0.0215
237874 | 0.0928 | 1.5864 | 0.1340 | 0.3908 | 0.0407 | 0.3042 | 0.0151
460024 | 0.0708 | 1.1390 | 0.1038 | 0.3028 | 0.0301 | 0.2232 | 0.0111
915408 | 0.0456 | 0.8086 | 0.0667 | 0.2074 | 0.0201 | 0.1567 | 0.0078

dof e(p) e(N) e(t) r(t) ) eff(©) | iter
1037 1.3033 | 0.9173 | 20.2949 - 20.6086 | 0.9848 | 5
1579 5.6381 | 1.0470 | 98.6908 - 08.8258 | 0.9986 | 5
2092 3.5592 | 0.5382 | 84.7936 | 1.0790 | 84.8825 | 0.9990 | 5
2766 0.6262 | 0.4790 | 42.5832 | 4.9324 | 42.6743 | 0.9979 | 5
4748 0.4162 | 0.4813 | 16.6915 | 3.4667 | 16.9205 | 0.9865 | 5
9936 0.3749 | 0.4612 | 8.5469 | 1.8128 | 8.7791 | 0.9736 | 5
18993 | 0.3330 | 0.2994 | 5.9270 | 1.1300 | 6.1023 | 0.9713 | 5
33974 | 0.2066 | 0.2053 | 4.4464 | 0.9885 | 4.5652 | 0.9740 | 5
64472 | 0.1455 | 0.1665 | 3.2017 | 1.0252 | 3.3074 | 0.9680 | 5
122011 | 0.1153 | 0.1202 | 2.3423 | 0.9799 | 2.4071 | 0.9731 5
237874 | 0.0839 | 0.0852 | 1.6742 | 1.0060 | 1.7299 | 0.9678 | 5
460024 | 0.0552 | 0.0664 | 1.2092 | 0.9865 | 1.2446 | 0.9716 | 5
915408 | 0.0436 | 0.0463 | 0.8556 | 1.0055 | 0.8850 | 0.9668 | 5

Table 4.5: EXAMPLE 3, adaptive scheme.

—&— quasi-uniform refinement
+ - adaptive refinement

PR n n P | n n P | n n P |
10° 10* 10° 10°

Figure 4.3: Example 3, e(t, ¢, pp) vs. N for quasi-uniform/adaptive schemes.
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Figure 4.4: Example 3, adapted meshes with 1037, 2092, 18993, 64472, 237874, and 915408 degrees of

freedom.
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