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Abstract

In this paper we analyze an augmented mixed finite element method for the Navier-Stokes
equations. More precisely, we extend the recent results from [Camaño et al., Mathematics of
Computation, to appear. DOI: 10.1090/mcom/3124] to the case of mixed (Dirichlet and trac-
tion) boundary conditions in different parts of the boundary, and introduce and analyze a new
pseudostress-velocity augmented mixed formulation for the fluid flow problem. The well-posedness
analysis is carried out by means of a fixed-point strategy where the classical Babuška-Brezzi theory
and the Banach’s fixed-point Theorem are employed. Next, adapting to the discrete case the argu-
ments of the continuous analysis, we are able to establish suitable hypotheses on the finite element
subspaces ensuring that the associated Galerkin scheme becomes well-defined. Namely, a feasible
choice of subspaces is given by Raviart-Thomas elements of order k ≥ 0 and continuous piece-
wise polynomials of degree k + 1 for the nonlinear pseudo-stress tensor and velocity, respectively,
yielding optimal convergence rates. In addition, we derive a reliable and efficient residual-based
a posteriori error estimator for our method. The proof of reliability exploits the global inf–sup
condition and the local approximation properties of the Clément interpolant. On the other hand,
the efficiency of the estimator follows from a combination of inverse inequalities and localization
via edge–bubble functions. A set of numerical results is provided to exemplify the performance of
the augmented method with mixed boundary conditions, to confirm the aforementioned properties
of the a posteriori error estimator, and to show the behaviour of the associated adaptive algorithm.

Key words: Navier-Stokes, mixed finite element method, augmented formulation, mixed boundary
conditions, Raviart-Thomas elements, a posteriori error analysis.

Mathematics Subject Classifications (1991): 65N15, 65N30, 76D05, 76M10.

1 Introduction

This paper is concerned with the numerical study of the Navier-Stokes problem with Dirichlet and
traction boundary conditions in different parts of the boundary. Our focus will be on an augmented
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mixed pseudostress-based formulation of this problem.

There exists an abundant recent literature dealing with numerical techniques to approximate the
solution of the Navier-Stokes problem, presenting a rich variety of methods with different features
and, in general, being tested for many fundamental problems and industrial applications. Among this
diversity of strategies, methods based on dual-mixed formulations have gained considerable attention
during the last few decades due to the fact that, on the one hand, they allow to unify the analysis
for Newtonian and non-Newtonian flows, and on the other hand, they permit to approximate addi-
tional variables of interest as a simple post-processing from the primal unknowns (see for instance
[9, 10, 7, 21, 26, 27, 34] and the references therein). Particularly, the study of dual-mixed methods
based on the introduction of stress or pseudostress tensors has proven remarkable success in key ap-
plication problems, such as Stokes-Darcy, Navier-Stokes/Darcy, and Boussinesq coupled systems (see,
for instance [11, 14, 28, 30]).

In the context of the Navier-Stokes equations, in [7] (see also [6]) the authors introduced and
analyzed a conforming dual-mixed method where the pseudostress, the velocity and the pressure are
the main unknowns of the system. Their formulation allows the utilization of Raviart-Thomas elements
for the pseudostress tensor, yielding quasi-optimal approximations with accuracy O(hk+1−n/6) (n =
2, 3) in the L3−norm. More recently (cf. [9]) a new pseudostress-based mixed method has been
introduced for the Navier-Stokes problem with Dirichlet boundary conditions. Such a method involves
a new pseudostress tensor depending nonlinearly on the velocity through the respective convective
term, whereas pressure is eliminated via the incompressibility condition, and can be recovered as a
simple postprocess of the pseudostress tensor. The formulation from [9] results in Raviart-Thomas
approximations of pseudostresses exhibiting optimal convergence. Actually, and up to the authors’
knowledge, that is the first Raviart-Thomas-based mixed method for Navier-Stokes providing optimal
convergence for all the unknowns. The key feature behind this optimality is the introduction of residual
terms arising from the constitutive and equilibrium equations. This procedure of augmentation with
residual terms allows to circumvent the necessity of proving inf-sup conditions, and as a result, to relax
the hypotheses on the corresponding discrete subspaces. For more information on this procedure, we
refer the reader to [5, 19, 23, 24] (see also other related approaches in [34, 21]).

The purpose of the present work is to continue the study of pseudostress-based mixed methods for
the incompressible Navier-Stokes equation by extending the work [9] to the case of mixed boundary
conditions, particularly, when dealing with free surface flows or outflow/artificial boundaries (see
e.g. [2, 3, 4, 15]). In this direction, in the literature the only contribution dealing with dual-mixed
formulations and mixed boundary conditions for the Navier-Stokes problem is [20], where the authors
study a strain-velocity-vorticity-pressure formulation for the fluid flow problem. Utilizing the discrete
elements developed in [18] for the Stokes and elasticity problems, the authors provide a quasi-optimal
convergent mixed finite element method.

Here we study a new augmented mixed formulation for the Navier-Stokes equation with mixed
boundary conditions. Similarly to [9], we introduce a pseudostress tensor relating the strain tensor
with the convective term as an auxiliary unknown, which together to the velocity (in H1), constitute
the main unknowns of the system. The pressure is eliminated using the fluid incompressibility, and
can be recovered as a simple postprocess of the pseudostress tensor. Moreover, due to the presence
of the convective term in the system, the velocity is kept in H1, which leads to the incorporation
of Galerkin type terms arising from the constitutive and equilibrium equations. Then, the resulting
augmented variational problem is written equivalently as a saddle-point problem, and utilizing the
classical Babuška-Brezzi theory and the Banach’s fixed point theorem, we prove existence and unique-
ness of solution of the continuous and discrete problems. In addition, by considering any pair of

2



suitable subspaces for the pseudostress tensor and the fluid velocity we derive the corresponding Céa’s
estimate. In particular, the combination of Raviart-Thomas elements of degree k for the pseudostress
tensor, and continuous piecewise polynomial elements of degree k+1 for the velocity, provides optimal
rate of convergence, which is one of the principal advantages of our method. We highlight that, dif-
ferently from previous results related with dual-mixed formulations for elliptic problems dealing with
strain tensors and Neumann-type boundary conditions (see for instance [8, 23]), in this paper we do
not introduce the vorticity (or rotation in the case of the elasticity problem) nor vectorial or scalar
Lagrange multipliers on the boundary as further unknowns to derive our formulation, avoiding hence
the introduction of costly unknowns to the system.

Additionally to the continuous and discrete analyses of this paper, and in order to guarantee optimal
convergence even under the eventual presence of boundary layers and singularities, we derive a reliable
and efficient, residual-based, a posteriori error estimator for our method. For the proof of reliability,
instead of using Helmholtz decomposition (see its application in similar contexts in e.g. [8, 31]), here
we make use of the global inf-sup condition, integration by parts, and the approximation properties
of the Clément interpolator. The above reduces the number of terms composing the error indicator,
makes the analysis simpler, and unifies the analysis for the 2D and 3D cases. In addition, for the proof
of efficiency we employ the localization technique based on edge-bubble or face-bubble functions and
inverse inequalities.

The rest of this paper is organized as follows. In Section 2 we introduce the model problem and
rewrite the equations in terms of the pseudostress tensor and the velocity. In Section 3 we derive the
augmented variational formulation and prove its well-posedness by means of a fixed-point strategy
and the classical Babuška-Brezzi theory. In Section 4 we define the Galerkin scheme and derive
suitable hypotheses on the finite element subspaces ensuring that the discrete scheme becomes well
posed and the corresponding Céa’s estimate holds. We also describe a specific choice of finite element
subspaces, namely Raviart-Thomas of order k and continuous piecewise polynomials of degree k + 1
and derive the corresponding theoretical rate of convergence. In Section 5 we introduce the a posteriori
error estimator and prove its reliability and efficiency. Finally, several numerical examples employing
the spaces introduced in Section 4, illustrating the accuracy of the method, and showing the good
performance of the associated adaptive algorithm are reported in Section 6.

We end this section by recalling some definitions and fixing useful notations. Given the vector fields
v = (vi)i=1,n and w = (wi)i=1,n, with n ∈ {2, 3}, we set the gradient, divergence, and tensor product
operators, by

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=
n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n.

Furthermore, for any tensor fields S := (Sij)i,j=1,n and R := (Rij)i,j=1,n, we define the transpose, the
trace, the tensor inner product, and the deviatoric tensor, respectively, by

St := (Sji)i,j=1,n, tr (S) :=
n∑
i=1

Sii, S : R :=
n∑

i,j=1

SijRij , and Sd := S− 1

n
tr (S)I,

where I is the identity matrix in Rn×n. When no confusion arises, | · | will denote the Euclidean norm
in Rn or Rn×n. Additionally, we will utilize standard simplified terminology for Sobolev spaces and
norms. In particular, if O is a domain, Γ is an open or closed Lipschitz curve (respectively surface in
R3), and r ∈ R, we define

Hr(O) := [Hr(O)]n, Hr(O) := [Hr(O)]n×n, and Hr(Γ) := [Hr(Γ)]n,
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and adopt the usual convention of writing L2(O),L2(O), and L2(Γ) instead of H0(O),H0(O), and
H0(Γ), respectively. The corresponding norms are denoted by ‖ · ‖r,O for Hr(O), Hr(O) and Hr(O),
and ‖ · ‖r,Γ for Hr(Γ) and Hr(Γ). We also write | · |r,O for the Hr-seminorm. In addition, we recall
that

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is a standard Hilbert space (see, e.g. [5, 32]), and the space of matrix valued functions whose rows
belong to H(div ;O) will be denoted by H(div ;O). The norms of H(div ;O) and H(div ;O) are
denoted by ‖ · ‖div ,O and ‖ · ‖div ,O, respectively. Note also that H(div ;O) can be characterized as
the space of matrix valued functions S such that ctS ∈ H(div ;O) for any constant column vector c.
In addition, it is easy to see that there holds:

H(div ;O) = H0(div ;O) ⊕ P0(O) I , (1.1)

where

H0(div ;O) :=

{
S ∈ H(div ;O) :

∫
O

tr S = 0

}
(1.2)

and P0(O) is the space of constant polynomials on O. More precisely, each S ∈ H(div ;O) can be
decomposed uniquely as:

S = S0 + c I , with S0 ∈ H0(div ;O) and c :=
1

n |O|

∫
O

tr S ∈ R . (1.3)

Such a decomposition will be exploited in the subsequent analysis of weak formulations.

Furthermore, given an integer k ≥ 0 and a set M ⊆ Rn, Pk(M) denotes the space of polynomials
on M of degree ≤ k. In addition, we set Pk(M) := [Pk(M)]n and Pk(M) := [Pk(M)]n×n. Finally,
throughout the rest of the paper, we employ 0 to denote a generic null vector (including the null
functional and operator), and use C and c, with or without subscripts, bars, tildes or hats, to denote
generic constants independent of the discretization, which may take different values at different places.

2 The model problem

Let Ω ∈ Rn be a bounded domain, n ∈ {2, 3}, with Lipschitz-boundary Γ. The boundary of this
domain is divided into two portions ΓD and ΓN , such that Γ̄D ∪ Γ̄N = Γ and |ΓD| > 0 on which
different types of boundary conditions will be imposed. We consider the flow of an incompressible
fluid with constant viscosity, where the Cauchy stress of the fluid σ can be written as

σ := 2 ν e(u) − pI ,

with u denoting the velocity field, ν the viscosity, p the pressure and e(u) the strain rate

e(u) :=
1

2
(∇u + (∇u)t).

The set of governing equations consists on the incompressible steady–state Navier-Stokes problem
with constant viscosity and mixed boundary conditions, given by

(u · ∇)u − divσ = f in Ω , div u = 0 in Ω ,

u = 0 on ΓD , σn = g on ΓN ,
(2.1)

where f and g are given data living in spaces to be specified next.
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We proceed analogously as in [9] and introduce the nonlinear-pseudostress tensor

T := σ − u⊗ u = 2ν e(u) − pI − u⊗ u, (2.2)

which assembles the Cauchy stress tensor σ with the convective term u⊗u. Note that this tensor rep-
resents the flux associated to the momentum density. Then, we realize that from the incompressibility
condition div u = tr (e(u)) = 0 in Ω, there hold

div (u⊗ u) = (u · ∇)u in Ω and tr (T) = −np− tr (u⊗ u) in Ω. (2.3)

Notice that the first equation above yields a momentum equation written in conservative form

−div T = f in Ω,

whereas the second one allows us to write the pressure in terms of the nonlinear tensor and the velocity
as

p = − 1

n
(tr (T) + tr (u⊗ u)) in Ω. (2.4)

This relation permits us to eliminate the pressure from (2.2), yielding

Td = 2ν e(u)− (u⊗ u)d in Ω. (2.5)

In turn, noticing that e(u) = ∇u − ω(u), with

ω(u) :=
1

2
(∇u− (∇u)t), (2.6)

we have that (2.5) becomes

Td = 2ν∇u − 2ν ω(u) − (u⊗ u)d in Ω. (2.7)

It is then readily seen that (2.1) can be rewritten in terms of T and u as follows

Td = 2 ν∇u − 2 νω(u) − (u⊗ u)d in Ω , −div T = f in Ω ,

T = Tt in Ω, u = 0 on ΓD and Tn + (u⊗ u)n = g on ΓN .
(2.8)

Similarly to [9], in what follows we make use of (2.8) to derive our variational formulation.

3 Continuous problem

In this section we introduce our augmented mixed variational formulation and address its solvability.
We begin by defining the variational problem.

3.1 The augmented mixed variational problem

We now turn to the derivation of the weak formulation of (2.8). We start by multiplying the first
equation of (2.8) by a suitable test function S ∈ H(div ; Ω), and then integrating by parts, employing
the Dirichlet boundary condition u = 0 on ΓD, and using the identities

Td : S = Td : Sd and (ω(u),S)Ω =
1

2
(curl (u), as(S))Ω, (3.1)
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with

curl (v) :=


∂v2

∂x1
− ∂v1

∂x2
in R2,

∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
in R3,

and

as(S) :=

 S21 − S12 in R2,

(S32 − S23, S13 − S31, S21 − S12) in R3,

we readily obtain

(Td,Sd)Ω + 2 ν(u,div S)Ω + ν(curl (u), as(S))Ω +
(
(u⊗ u)d,S)Ω − 2 ν 〈Sn,u〉ΓN

= 0, (3.2)

Above, the symbol 〈·, ·〉ΓN
represents the duality paring of H

−1/2
00 (ΓN ) and H

1/2
00 (ΓN ) with respect to

the L2(Γ) inner product, where

H
1/2
00 (ΓN ) :=

{
v|ΓN

: v ∈ H1
ΓD

(Ω)
}

and H
−1/2
00 (ΓN ) = [H

1/2
00 (ΓN )]′,

with
H1

ΓD
(Ω) :=

{
v ∈ H1(Ω) : v|ΓD

= 0
}
.

In what follows, the norms of H
1/2
00 (ΓN ) and H

−1/2
00 (ΓN ) are denoted by ‖·‖1/2,00,ΓN

and ‖·‖−1/2,00,ΓN
,

respectively. In particular, we observe that if E0 : H1/2(ΓN )→ L2(Γ) is the extension operator defined
by

E0(ψ) :=

{
ψ on ΓN ,
0 on ΓD,

∀ψ ∈ H1/2(ΓN ),

then, the space H
1/2
00 (ΓN ) can be defined equivalently as

H
1/2
00 (ΓN ) :=

{
ψ ∈ H1/2(ΓN ) : E0(ψ) ∈ H1/2(Γ)

}
endowed with the norm ‖ψ‖1/2,00,ΓN

= ‖E0(ψ)‖1/2,Γ, where

‖ξ‖1/2,Γ := inf
{
‖v‖1,Ω : v ∈ H1(Ω) such that v|Γ = ξ

}
.

From the latter, it can be readily seen that

‖v‖1/2,00,ΓN
= ‖v‖1/2,Γ ≤ ‖v‖1,Ω ∀v ∈ H1

ΓD
(Ω). (3.3)

On the other hand, since we are interested in deriving an augmented formulation as the one in [9],
we now multiply the second equation of (2.8) by v ∈ H1

ΓD
(Ω), integrate by parts and utilize and the

boundary condition Tn + (u⊗ u)n = g on ΓN , to deduce

(T,∇v)Ω − 〈g,v〉ΓN
+
〈
(u⊗ u)n,v

〉
ΓN

= (f ,v)Ω ,

which owing to the symmetry of T can be rewritten as

(T, e(v))Ω +
〈
(u⊗ u)n,v

〉
ΓN

= (f ,v)Ω + 〈g,v〉ΓN
.
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But, using the fact that e(v) = ∇v − ω(v), we can rewrite the first term of the latter as (T,∇v)Ω −
(T,ω(v))Ω and then integrating by parts the term (T,∇v)Ω, we get

− (div T,v)Ω + 〈Tn,v〉ΓN
− 1

2
(as(T), curl (v))Ω + 〈u · n,u · v〉ΓN

= (f ,v)Ω + 〈g,v〉ΓN
. (3.4)

Above we have used the identity

〈(u⊗w)n,v〉ΓN
= 〈w · n,u · v〉ΓN

. (3.5)

Finally, in order to ensure the well-posedness of the resulting variational formulation, we proceed
similarly as in [9], and incorporate the following redundant terms arising from the constitutive and
equilibrium equations

κ1 (div T + f ,div S)Ω = 0 , (3.6)

κ2

(
Td − 2 νe(u) + (u⊗ u)d, e(v)

)
Ω

= 0, (3.7)

for all S ∈ H(div ; Ω) and v ∈ H1
ΓD

(Ω), respectively, where κ1 and κ2 are positive parameters to be
specified later.

According to the foregoing reasoning, defining the global space

X := H(div ; Ω)×H1
ΓD

(Ω),

endowed with the norm

‖(S,v)‖2X := ‖S‖2div ,Ω + ‖v‖21,Ω ∀ (S,v) ∈ X,

the forms

A
(
(T,u), (S,v)

)
:= (Td,Sd)Ω + κ1(div T,div S)Ω + 2 ν(u,div S)Ω − 2 ν(div T,v)

+ ν(curl (u), as(S))Ω − ν(as(T), curl (v))

− 2 ν 〈Sn,u〉ΓN
+ 2 ν 〈Tn,v〉ΓN

+ 2 ν κ2 (e(u), e(v))Ω − κ2

(
Td, e(v)

)
Ω
,

Cw

(
(T,u), (S,v)

)
:=

(
(u⊗w)d,S)Ω + 2 ν 〈w · n,u · v〉ΓN

− κ2

(
(u⊗w)d, e(v)

)
Ω
,

(3.8)

for all (T,u), (S,v) ∈ X and w ∈ H1
ΓD

(Ω), and the functional

F(S,v) := 2 ν(f ,v)Ω − κ1(f ,div S)Ω + 2 ν〈g,v〉ΓN
∀ (S,v) ∈ X, (3.9)

multiplying (3.4) by 2ν and summing up the equations (3.2), (3.4), (3.6) and (3.7) we arrive at our

variational problem: Given f ∈ L2(Ω) and g ∈ H
−1/2
00 (ΓN ), find (T,u) ∈ X, such that

A
(
(T,u), (S,v)

)
+ Cu

(
(T,u), (S,v)

)
= F(S,v) ∀ (S,v) ∈ X . (3.10)

3.2 Analysis of the continuous problem

In what follows we prove the existence and uniqueness of solution of problem (3.10) by means of a
fixed point strategy and the classical Babuška-Brezzi theory. We begin by introducing the associated
fixed-point operator.
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3.2.1 Fixed-point strategy

In view of the fixed-point strategy to be used in the proof of solvability for problem (3.10), let us
consider (1.1) and decompose the fluid nonlinear–pseudostress as

T = T0 + µ I with T0 ∈ H0(div ; Ω) and µ ∈ R . (3.11)

By doing that, (3.4) becomes

−(div T0,v)Ω + 〈T0n,v〉ΓN
+ µ 〈v · n, 1〉ΓN

−1

2
(as(T0), curl (v))Ω + 〈u · n,u · v〉ΓN

= (f ,v)Ω + 〈g,v〉ΓN
,

and equation (3.2) is rewritten as

(Td
0,S

d)Ω + 2 ν(u,div S)Ω + ν(curl (u), as(S))Ω +
(
(u⊗ u)d,S)Ω − 2 ν〈Sn,u〉ΓN

= 0,

η 〈u · n, 1〉ΓN
= 0,

for all (S, η) ∈ H0(div ; Ω)× R. Consequently, problem (3.10) can be rewritten equivalently as: Find
((T0,u), µ) ∈ X0 × R, such that

A
(
(T0,u), (S,v)

)
+ Cu

(
(T0,u), (S,v)

)
+ B

(
(S,v), µ

)
= F(S,v) ,

B
(
(T0,u), η

)
= 0 ,

(3.12)

for all ((S,v), η) ∈ X0 × R, where

X0 := H0(div ; Ω)×H1
ΓD

(Ω),

and B is the bilinear form defined as

B ((S,v), η) = 2 ν η 〈v · n, 1〉ΓN
∀ ((S,v), η) ∈ X× R. (3.13)

To be more precise, since (1.1) is an orthogonal decomposition, ((T0,u), µ) ∈ X0×R is a solution to
(3.12), if and only if, (T,u) = (T0 + µI,u) ∈ X× R is a solution to (3.10).

Let us now introduce the bounded set

K :=

{
v ∈ H1

ΓD
(Ω) : ‖v‖1,Ω ≤

2‖F|X0‖X′0
αA

}
, (3.14)

and the mapping
J : K→ K, w→ J (w) = u, (3.15)

with u being the second component of ((T0,u), µ) ∈ X0 × R, solution to the linearized version of
problem (3.12):

A
(
(T0,u), (S,v)

)
+ Cw

(
(T0,u), (S,v)

)
+ B

(
(S,v), µ

)
= F

(
S,v

)
,

B
(
(T0,u), η

)
= 0 ,

(3.16)

for all
(
(S,v), η

)
∈ X0 × R. It is easy to see that ((T0,u), µ) ∈ X0 × R is a solution to (3.12), if

and only if, J (u) = u. This step, together with the equivalence between (3.10) and (3.12), imply the
following relations:

J (u) = u ⇔ ((T0,u), µ) ∈ X0 × R satisfies (3.12) ⇔ (T0 + µI,u) ∈ X satisfies (3.10). (3.17)

In this way, in establishing the well-posedness of (3.10), or equivalently (3.12), it suffices to prove that
J has a unique fixed point. Before proceeding with the solvability analysis, we first state the stability
of the involved forms and the well-definiteness of the fixed-point operator J .
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3.2.2 Stability results and well-definiteness of J

In the sequel we make use of the following well known estimates:

Cd‖S‖20,Ω ≤ ‖Sd‖20,Ω + ‖div S‖20,Ω ∀S ∈ H0(div ; Ω), (3.18)

CK1‖v‖21,Ω ≤ ‖e(v)‖20,Ω ≤ CK2‖v‖21,Ω ∀v ∈ H1(Ω), (3.19)

with Cd, CK1 and CK2 only depending on Ω (for (3.18) we refer to Lemma 3.1 in [1] or Chapter IV in
[5], whereas for (3.19) we refer to [32]).

Let us start the discussion by deriving the continuity of the forms involved. First, employing the
right-hand side of (3.19), the continuity of the normal trace and simple computations it can be deduced
that there exists CA > 0, depending only on ν, κ1, κ2 and CK2 , such that

|A
(
(T,u), (S,v)

)
| ≤ CA‖(T,u)‖X‖(S,v)‖X, ∀ (T,u), (S,v) ∈ X. (3.20)

In turn, employing the continuity of the embedding iΓ : H1/2(Γ) → L4(Γ), as well as i : H1(Ω) →
L4(Ω), and the continuity of the trace operator γ0 : H1(Ω)→ L2(Γ), it can be easily proved that there
exists CC > 0, depending only on ‖iΓ‖, ‖i‖, ‖γ0‖ κ2, CK2 and ν, such that

|Cw

(
(T,u), (S,v)

)
| ≤ CC‖w‖1,Ω‖(T,u)‖X‖(S,v)‖X, (3.21)

for all (T,u), (S,v) ∈ X and w ∈ H1
ΓD

(Ω). In fact, from the continuity of i, iΓ, γ0, and the fact that

‖z‖L4(ΓN ) = ‖z‖L4(Γ) and ‖z‖L2(ΓN ) = ‖z‖L2(Γ), for all z ∈ H1
ΓD

(Ω), we obtain

|Cw ((T,u), (S,v)) | ≤ ‖i‖2(1 + κ2
2CK2)1/2‖w‖1,Ω‖(T,u)‖X‖(S,v)‖X

+ 2 ν‖w‖0,Γ‖u‖L4(Γ)‖v‖L4(Γ),

≤ ‖i‖2(1 + κ2
2CK2)1/2‖w‖1,Ω‖(T,u)‖X‖(S,v)‖X

+ 2 ν‖iΓ‖2‖γ0‖‖w‖1,Ω‖u‖1/2,Γ‖v‖1/2,Γ,

which implies the result with CC := ‖i‖2(1 + κ2
2CK2)1/2 + 2 ν‖iΓ‖2‖γ0‖.

Let us now observe also that F|X0 ∈ X′0 and

‖F|X0‖X′0 ≤ (4 ν2 + κ2
1)1/2‖f‖0,Ω + 2 ν ‖g‖−1/2,00,ΓN

. (3.22)

In deed, using estimate (3.3) and the Cauchy-Schwarz inequality, we readily obtain

|F(S,v)| ≤ 2 ν‖f‖0,Ω‖v‖1,Ω + κ1‖f‖0,Ω‖div S‖0,Ω + 2 ν ‖g‖−1/2,00,ΓN
‖v‖1/2,Γ

≤
(

(4 ν2 + κ2
1)1/2‖f‖0,Ω + 2 ν ‖g‖−1/2,00,ΓN

)
‖(S,v)‖X ,

(3.23)

for all (S,v) ∈ X0, which implies (3.22). We continue the discussion by establishing the ellipticity of
the form A on X0.

Lemma 3.1 Assume that κ1 > 0 and 0 < κ2 < 4ν. Then there exists αA > 0, such that

A
(
(S,v), (S,v)

)
≥ αA‖(S,v)‖2X ∀ (S,u) ∈ X0. (3.24)
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Proof. From the definition of A (cf. (3.8)), inequalities (3.18) and (3.19), we have

A
(
(S,v), (S,v)

)
= ‖Sd‖20,Ω + κ1‖div S‖20,Ω + 2κ2ν‖e(v)‖20,Ω − κ2(Sd, e(v))Ω

≥ 1

2
‖Sd‖20,Ω + κ1‖div S‖20,Ω +

(
2κ2ν −

κ2
2

2

)
‖e(v)‖20,Ω

≥ 1

2
min{1, κ1}‖S‖20,Ω +

κ1

2
‖div S‖20,Ω +

κ2

2
(4ν − κ2)CK1‖v‖21,Ω

≥ 1

2
min

{
min{1, κ1}, κ1, κ2 (4ν − κ2)CK1

}
‖(S,v)‖2X,

which implies the result with αA :=
1

2
min

{
min{1, κ1}, κ1, κ2 (4ν − κ2)CK1

}
. �

Finally, we establish the inf-sup condition of the bilinear form B.

Lemma 3.2 There exists β > 0, such that

sup
(S,v)∈X0\{0}

B
(
(S,v), η

)
‖(S,v)‖X

≥ β|η| ∀η ∈ R. (3.25)

Proof. Let v0 ∈ H1
ΓD

(Ω) be a fixed element such that 〈v0 · n, 1〉ΓN
6= 0. Hence, given η ∈ R, it follows

that

sup
(S,v)∈X0\{0}

B
(
(S,v), η

)
‖(S,v)‖X

≥
|B
(
(0,v0), η

)
|

‖(0,v0)‖X
=

2ν 〈v0 · n, 1〉
‖v0‖1,Ω

|η|,

which implies the result with β = 2ν〈v0·n,1〉
‖v0‖1,Ω .

Note that there is a very simple way of defining such an element v0. In fact, for the two dimensional
case, if x1 and x2 are two points on Γ such that the line [x1, x2] ⊆ ΓN , then we let xm be the midpoint
of [x1, x2] and x3 be a point on Γ, or in the interior of Ω, in such a way two triangles T1 and T2 can be
constructed (see the left panel in Figure 3.1). Then, we let v ∈ H1

ΓN
(Ω) be such that v|Ti ∈ P1(Ti), for

i = 1, 2, v(xm) = 1, v(xi) = 0 for i = 1, 2, 3, and v(x) = 0 for all x ∈ Ω̄−{T1∪T2}, and define v0 = vn,
where n is the normal vector on [x1, x2] (see [28, Lemma 3.6] for a similar approach). Similarly, for
the three dimensional case, given x1, x2, x3 three points on ΓN defining a triangle with barycentric
xm (see the right-hand side of Figure 3.1) and x4 a point in the interior of Ω, or on an opposite piece
of boundary, chosen in such a way below x4 can be formed three tetrahedra T1, T2, T3. Then we
let v ∈ H1

ΓN
(Ω) be such that v|Ti ∈ P1(Ti), for i = 1, 2, 3, v(xm) = 1, v(xi) = 0 for i = 1, 2, 3, 4,

and v(x) = 0 for all x ∈ Ω̄ − {T1 ∪ T2 ∪ T3}, and define v0 = vn, where n is the normal vector on
T1 ∪ T2 ∪ T3. �

We are now in position of establishing the well-definiteness of operator J .

Lemma 3.3 Assume that κ1 > 0 and 0 < κ2 < 4ν. Assume further that the external forces f and g
satisfy

(4ν2 + κ2
1)1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

≤
α2
A

4CC
(3.26)

with αA and CC being the constants in (3.24) and (3.21), respectively. Then, given w ∈ K, there
exists a unique u ∈ K, such that J (w) = u.

Proof. Let w ∈ K. Notice first that, owing to (3.22), (3.26) and the definition of K, it readily follows
that

‖w‖1,Ω ≤
αA

2CC
. (3.27)
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Figure 3.1: Choice of v0 for the two (left) and three (right) dimensional cases.

In turn, from (3.21) and (3.24), there holds

A
(
(S,v), (S,v)

)
+ Cw

(
(S,v), (S,v)

)
≥ A

(
(S,v), (S,v)

)
− |Cw

(
(S,v), (S,v)

)
|,

≥
(
αA − CC‖w‖1,Ω

)
‖(S,v)‖2X ∀(S,v) ∈ X0,

(3.28)

which together to (3.27), implies

A
(
(S,v), (S,v)

)
+ Cw

(
(S,v), (S,v)

)
≥ αA

2
‖(S,v)‖2X (S,v) ∈ X0, (3.29)

that is, the bilinear form A(·, ·) + Cw(·, ·) is elliptic on X0. Therefore, since the bilinear form B
satisfies (3.25), we can apply the classical Babuška-Brezzi theory to deduce that there exists a unique
((T0,u), µ) ∈ X0 × R satisfying (3.16). Moreover, since B((T0,u), µ) = 0, from the first equation of
(3.16) and from (3.29) we easily obtain that

αA

2
‖(T0,u)‖2X ≤ A

(
(T0,u), (T0,u)

)
+ Cw

(
(T0,u), (T0,u)

)
= F(T0,u),

which implies that

‖u‖1,Ω ≤ ‖(T0,u)‖X ≤
2

αA
‖F|X0‖X′0 , (3.30)

and hence u ∈ K. �

3.2.3 The main result

The main result of this section states the unique solvability and stability estimates for problem (3.10).

Theorem 3.4 Let f ∈ L2(Ω) and g ∈ H
−1/2
00 (ΓN ), such that

(4ν2 + κ2
1)1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

<
α2
A

4CC
. (3.31)

Assume that κ1 > 0 and 0 < κ2 < 4ν. Then, there exists a unique (T,u) ∈ X solution to (3.10). In
addition, the solution (T,u) satisfies the estimate

‖(T,u)‖X ≤ 2

(
1

αA
+ n1/2|Ω|1/2

(
1

β
+

CA

βαA

))(
(4ν2 + κ2

1)1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

)
. (3.32)
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Proof. First, let us observe that assumption (3.31) ensures that Lemma 3.3 holds true (see assumption
(3.26)). To prove the well-posedness of (3.10), in what follows we make use of the classical Banach’s
fixed point Theorem and prove equivalently that the mapping J has a unique fixed point in K. To
do that we let z1, z2 and u1, u2 ∈ K, such that u1 = J (z1) and u2 = J (z2). From the definition of
J it follows that

A((Ti,ui), (S,v)) + Czi((Ti,ui), (S,v)) + B
(
(S,v), µi

)
= F(S,v) ∀ (S,v) ∈ X0,

B((Ti,ui), η) = 0 ∀ η ∈ R,
(3.33)

for i = 1, 2, where Ti ∈ H0(div ; Ω) and µi ∈ R are the elements that together to ui constitute the
unique solution of (3.16) with zi. Then, by subtracting equations (3.33) with i = 1, 2, choosing the
test function

(
(S,v), η

)
=
(
(T1−T2,u1−u2), µ1−µ2

)
∈ X0×R, and adding and subtracting suitable

terms, we arrive at

A
(

(T1 −T2,u1 − u2), (T1 −T2,u1 − u2)
)

+ Cz2

(
(T1 −T2,u1 − u2), (T1 −T2,u1 − u2)

)
= −Cz1−z2

(
(T1,u1), (T1 −T2,u1 − u2)

)
,

(3.34)
which together to the ellipticity of A(·, ·) + Cz2(·, ·) on X0 (cf. (3.29)), the continuity of Cz1−z2 (cf.
(3.21)), and the fact that ‖(T1,u1)‖X ≤ 2

αA
‖F|X0‖X′0 (cf. (3.30)), imply

‖u1 − u2‖1,Ω ≤ ‖(T1−T2,u1−u2)‖X ≤
2CC

αA
‖(T1,u1)‖X‖z1 − z2‖1,Ω ≤

4CC‖F|X0‖X′0
α2
A

‖z1 − z2‖1,Ω.

(3.35)
Hence, employing (3.22) and assumption (3.31), from (3.35) we readily obtain that J is a contraction
mapping. In this way, by applying the Banach’s fixed point Theorem we obtain that there exists a
unique u ∈ K such that J (u) = u, or equivalently, there exists a unique (T,u) ∈ X solution to (3.10).

Now, to deduce estimate (3.32) we consider the decomposition T = T0 + µI and recall that
((T0,u), µ) ∈ X0 × R is the unique solution of (3.12) (see (3.17)). Then, we first utilize the fact
that A(·, ·) + Cu(·, ·) is elliptic on X0, and proceed analogously as in the proof of Lemma 3.3 (see
(3.30)), to obtain

‖(T0,u)‖X ≤
2

αA
‖F|X0‖X′0 . (3.36)

Moreover, using (3.22), (3.31) from (3.36) we also obtain

‖u‖1,Ω ≤ ‖(T0,u)‖X ≤
αA

2CC
. (3.37)

In turn, utilizing the inf-sup condition (3.25), the first equation of (3.12), and the continuity of F, A
and Cu, we get

β|µ| ≤ sup
(S,v)∈X0\{0}

B
(
(S,v), µ

)
‖(S,v)‖X

= sup
(S,v)∈X0\{0}

F(S,v)−A
(
(T0,u), (S,v)

)
−Cu

(
(T0,u), (S,v)

)
‖(S,v)‖X

≤ ‖F|X0‖X′0 + CA‖(T0,u)‖X + CC‖u‖1,Ω‖(T0,u)‖X ,

(3.38)

which combined with (3.36) and (3.37) yields

|µ| ≤ 1

β

(
1 +

2CA

αA
+

2CC‖u‖1,Ω
αA

)
‖F|X0‖X′0 ≤

2

β

(
1 +

CA

αA

)
‖F|X0‖X′0 . (3.39)
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Therefore, recalling that ‖I‖2div ,Ω = (n, 1)Ω = n|Ω|, from (3.36) and (3.39) we easily see that

‖(T,u)‖X ≤ ‖(T0,u)‖X + ‖(µI,0)‖X ≤ 2

(
1

αA
+ n1/2|Ω|1/2

(
1

β
+

CA

βαA

))
‖F|X0‖X′0 ,

which together to (3.22) implies (3.32). �

4 The Galerkin scheme

In this section we introduce the discrete version of (3.10) and define assumptions on the associated
finite dimensional spaces ensuring well-posedness. We anticipate that most results here can be deduced
directly, or are simply inherited, from their continuous counterpart, in which case we omit further
details. We will also derive a Céa estimate and suggest adequate choices of finite element spaces.

4.1 Discrete problem

We start by introducing the generic finite dimensional subspaces

Hh(div ; Ω) ⊆ H(div ; Ω), H1
h,D(Ω) ⊆ H1

ΓD
(Ω). (4.1)

Then defining

Hh :=
{
Sh ∈ H(div ; Ω) : ctSh ∈ Hh(div ; Ω) ∀ c ∈ Rn

}
⊆ H(div ; Ω),

H1
h,D := [H1

h,D(Ω)]n ⊆ H1
ΓD

(Ω),

Xh := Hh ×H1
h,D ⊆ X,

(4.2)

our Galerkin scheme reads: Find (Th,uh) ∈ Xh, such that

A
(
(Th,uh), (Sh,vh)

)
+ Cuh

(
(Th,uh), (Sh,vh)

)
= F(Sh,vh) ∀ (Sh,vh) ∈ Xh, (4.3)

with A, C and F defined in (3.8) and (3.9).

In the subsequent sections we prove that under suitable assumptions on the finite dimensional spaces
Hh(div ; Ω) and H1

h,D(Ω), problem (4.3) is well posed. Our approach basically consists of adapting to
the present discrete case the arguments employed in the analysis of the continuous problem, mainly
those from the proofs of Lemmas 3.1, 3.2, and 3.3, and Theorem 3.4.

We begin the derivation of the aforementioned assumptions by observing that, in order to perform
the decomposition (1.1) we need to eliminate multiples of the identity matrix from Hh. This request
is certainly satisfied if we assume that:

(H.0) P0(Ω) ⊆ Hh(div ; Ω).

In particular, it follows that I ∈ Hh for all h, and hence there holds the decomposition:

Hh = Hh,0 ⊕ P0(Ω) I with Hh,0 := Hh ∩H0(div ; Ω), (4.4)

and, analogously to the continuous case, problem (4.3) can be rewritten equivalently as: Find(
(Th,0,uh), µh

)
∈ Xh,0 × R, such that

A
(
(Th,0,uh), (Sh,vh)

)
+ Cuh

(
(Th,0,uh), (Sh,vh)

)
+ B

(
(Sh,vh), µh

)
= F(Sh,vh) ,

B
(
(Th,0,uh), ηh

)
= 0 ,

(4.5)
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for all ((Sh,vh), ηh) ∈ Xh,0 × R, where

Xh,0 := Hh,0 ×H1
h,D.

and B is the bilinear form defined in (3.13).

Next, following the same arguments utilized in the proof of Lemma 3.2, we deduce that B satisfies
the discrete version of (3.25), namely,

sup
(Sh,vh)∈Xh,0\{0}

B((Sh,vh), ηh)

‖(Sh,vh)‖X
≥ β̃|ηh| ∀ ηh ∈ R, (4.6)

with β̃ > 0, independent of the discretization parameter h, if and only if, there holds:

(H.1) There exists v̂0 ∈ H1
ΓD

(Ω), such that

v̂0 ∈ H1
h,D ∀h > 0 and 〈v̂0 · n, 1〉ΓN

6= 0. (4.7)

In fact, utilizing (H.1), it is clear that

sup
(Sh,vh)∈Xh,0\{0}

B((Sh,vh), ηh)

‖(Sh,vh)‖X
≥ B((0, v̂0), ηh)

‖v̂0‖1,Ω
= β̃|ηh|,

with β̃ = 〈v̂0·n,1〉
‖v̂0‖1,Ω independent of h.

We now adapt the fixed-point strategy from the continuous case to prove the well-posedness of (4.3).

4.2 Fixed-point strategy and well-posedness analysis

We begin by observing that, since Hh and H1
h,D are subspaces of H(div ; Ω) and H1

ΓD
(Ω), respectively,

the estimates (3.20), (3.21) and (3.23) are inherited, as well as the ellipticity of A on Xh,0.

Analogously to the continuous case, let us introduce the finite dimensional bounded set

Kh :=

{
vh ∈ H1

h,D : ‖vh‖1,Ω ≤
2‖F|Xh,0

‖X′h,0
αA

}
,

where αA > 0 is the constant satisfying (3.24), and define the discrete version of J (cf. (3.15)):

Jh : Kh → Kh, wh → Jh(wh) = uh, (4.8)

with uh ∈ H1
h,D being the second component of ((Th,0,uh), µh) ∈ Xh,0 × R, solution to

A
(
(Th,0,uh), (Sh,vh)

)
+ Cwh

(
(Th,0,uh), (Sh,vh)

)
+ B

(
(Sh,vh), µh

)
= F(Sh,vh) ,

B
(
(Th,0,uh), ηh

)
= 0 ,

(4.9)

for all
(
(Sh,vh), ηh

)
∈ Xh,0 × R. Similarly to the continuous case, the following equivalences hold:

J (uh) = uh ⇔ ((Th,0,uh), µh) ∈ Xh,0 × R satisfies (4.5)⇔ (Th,0 + µhI,uh) ∈ Xh satisfies (4.3).
(4.10)
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Lemma 4.1 Assume that (H.0) and (H.1) hold and that κ1 > 0 and 0 < κ2 < 4ν. Assume further
that the external forces f and g satisfy

(4ν2 + κ2
1)1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

≤
α2
A

4CC
, (4.11)

with αA and CC being the constants in (3.24) and (3.21), respectively. Then, given wh ∈ Kh, there
exists a unique uh ∈ Kh, such that J (wh) = uh.

Proof. Similarly to the proof of Lemma 3.3 it is easy to see that, under hypothesis (4.11), for all
wh ∈ Kh the bilinear form A(·, ·) + Cwh

(·, ·) is elliptic on Xh,0, that is

A((Sh,vh), (Sh,vh)) + Cwh
((Sh,vh), (Sh,vh)) ≥ αA

2
‖(Sh,vh)‖2X, (4.12)

for all (Sh,vh) ∈ Xh,0. Then, recalling that B satisfies (4.6), the result is a direct consequence of the
classical Babuška-Brezzi theory. �

We are now in position of establishing the well-posedness of problem (4.3).

Theorem 4.2 Assume that (H.0) and (H.1) hold and that κ1 > 0 and 0 < κ2 < 4ν. Assume further
that the external forces f and g satisfy

(4ν2 + κ2
1)1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

<
α2
A

4CC
, (4.13)

with αA and CC being the constants in (3.24) and (3.21), respectively. Then, there exists a unique
(Th,uh) ∈ Xh solution to (4.3). In addition, the solution (Th,uh) satisfies the estimate

‖(Th,uh)‖X ≤ 2

(
1

αA
+ n1/2|Ω|1/2

(
1

β̃
+

CA

β̃αA

))(
(4ν2 + κ2

1)1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

)
.

(4.14)

Proof. According to (4.10), it is clear that for proving the existence and uniqueness of solution of
problem (4.3) it suffices to prove that Jh posses a unique fixed-point in Kh. To do that, we proceed
analogously to the proof of Theorem 3.4, that is, we make use of hypothesis (4.13) to deduce that Jh
is a contraction mapping in Kh and apply the well known Banach’s fixed point Theorem to complete
the result. Since that the deduction is straightforward, we omit further details. In turn, by applying
the ellipticity of A(·, ·) + Cwh

(·, ·), with wh = uh, the inf-sup condition (4.6), and proceeding exactly
as in the proof Theorem 3.4, we can obtain

‖uh‖1,Ω ≤ ‖(Th,0,uh)‖X ≤
2

αA
‖F|Xh,0

‖X′h,0 and |µh| ≤
2

β

(
1 +

CA

αA

)
‖F|Xh,0

‖X′h,0 , (4.15)

which together to the fact that

‖F|Xh,0
‖X′h,0 ≤ (4 ν2 + κ2

1)1/2‖f‖0,Ω + 2 ν ‖g‖−1/2,00,ΓN
, (4.16)

yield (4.14). �
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4.3 Céa’s estimate

Theorem 4.3 Assume that hypotheses of Theorem 4.2 hold. Let (T,u) ∈ X and (Th,uh) ∈ Xh

be the unique solutions of the continuous and discrete problems (3.10) and (4.3). Then, there exists
Ccea > 0, independent of h, such that

‖(T,u)− (Th,uh)‖X ≤ Ccea inf
(Sh,vh)∈Xh

‖(T,u)− (Sh,vh)‖X. (4.17)

Proof. Let, µ ∈ R, T0 ∈ H0(div ; Ω) and µh ∈ R, Th,0 ∈ Hh,0, such that T = T0 + µI and
Th = Th,0 + µhI, respectively, and define

φ = (T0,u) ∈ X0, φh = (Th,0,uh) ∈ Xh,0,

eφ = φ− φh and eµ = µ− µh.

According to (4.4), in what follows we equivalently prove that there exists C > 0, independent of h,
such that

‖eφ‖X + |eµ| ≤ C {‖φ−ψh‖X + |µ− ηh|} ∀ψh ∈ Xh,0, ∀ ηh ∈ R. (4.18)

To do that we let,

Kerh(B) := {ψh := (Sh,vh) ∈ Xh,0 : B(ψh, ηh) = 0 ∀ ηh ∈ R},

and recall that the following identity holds

inf
ψh∈Kerh(B)

‖φ − ψh‖X ≤ C‖φ − ψh‖X ∀ψh ∈ Xh,0, (4.19)

with C > 0 independent of h (see [25, estimate (2.89)]).

First, given arbitrary ψ̂h := (Ŝh, v̂h) ∈ Kerh(B) and η̂h ∈ R, let us decompose eφ and eµ into

eφ = ξφ + χφ with ξφ := φ− ψ̂h, χφ := ψ̂h − φh,
eµ = ξµ + χµ with ξµ := µ− η̂h, χµ := η̂h − µh.

(4.20)

In turn, recalling that (φ, µ) ∈ X0 × R and (φh, µh) ∈ Xh,0 × R are solutions of (3.12) and (4.5),
respectively (cf. (3.17), (4.10)), by subtracting the first equations of (3.12) and (4.5), we readily get

A(eφ,ψh) + [Cu(φ,ψh)−Cuh

(
φh,ψh

)
] + B(ψh, eµ) = 0 ∀ψh = (Sh,vh) ∈ Xh,0, (4.21)

which, after straightforward manipulations, yields

A(eφ,ψh) + Cuh
(eφ,ψh) + Cu−uh

(φ,ψh) + B(ψh, eµ) = 0 ∀ψh = (Sh,vh) ∈ Xh,0. (4.22)

In particular, taking ψh = χφ ∈ Kerh(B) in (4.22), and using (4.20), it follows that

A(χφ,χφ) + Cuh
(χφ,χφ) = −A(ξφ,χφ)− Cu−uh

(φ,χφ)− Cuh
(ξφ,χφ),

and then, using the ellipticity of A(·, ·) + Cuh
(·, ·) on Xh,0 (cf. (4.12)), and employing the continuity

of A and Cw, with w = u−uh, and w = uh, (cf. (3.20) and (3.21)), and the fact that ‖u−uh‖1,Ω ≤
‖ξφ‖X + ‖χφ‖X, we obtain

αA

2
‖χφ‖X ≤

(
CA + CC‖uh‖1,Ω + CC‖φ‖X

)
‖ξφ‖X + CC‖φ‖X‖χφ‖X,
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which together to (3.36) and (4.15), imply(αA

2
− CC‖F|X0‖X′0

)
‖χφ‖X ≤

(
CA +

2CC

αA
‖F|Xh,0

‖X′h,0 +
2CC

αA
‖F|X0‖X′0

)
‖ξφ‖X. (4.23)

The latter, along with assumption (4.13), estimates (3.22), (4.16) and the triangle inequality, imply
that there exists C > 0, independent of h, such that

‖eφ‖X ≤ ‖ξφ‖X + ‖χφ‖X ≤ C1‖ξφ‖X. (4.24)

On the other hand, using the inf-sup condition (4.6) and (4.22), it is easy to see that

β̃|χµ| ≤ sup
ψh∈Xh,0\{0}

B(ψh, χµ)

‖ψh‖X

= sup
ψh∈Xh,0\{0}

−A(eφ,ψh) − Cuh
(eφ,ψh) − Cu−uh

(φ,ψh)−B(ψh, ξµ)

‖ψh‖X

which combined with the continuity of A, B and Cw, with w = uh and w = u − uh, and estimates
(3.36), (4.15) and (4.24), yield

|χµ| ≤ C{‖ξφ‖X + |ξµ|},

which clearly implies
|eµ| ≤ C2{‖ξφ‖X + |ξµ|}. (4.25)

Therefore, from (4.19), (4.24), (4.25) and the fact that ψ̂h ∈ Kerh(B) and η̂h ∈ R are arbitrary we
easily obtain (4.18) and conclude the proof. �

We end this section by observing that, provided the solution (Th,uh) ∈ Xh of problem (4.3), we
can approximate the pressure p and the shear stress σ by using the following post-processing formulas:

ph = − 1

n
(tr (Th) + tr (uh ⊗ uh)) and σh = Th + uh ⊗ uh. (4.26)

The following corollary establishes the approximation result for this post-processing procedure.

Corollary 4.4 Assume that the hypotheses of Theorem 4.2 hold true. Let (T,u) ∈ X and (Th,uh) ∈
Xh be the unique solutions of the continuous and discrete problems (3.10) and (4.3), respectively. Let
ph and σh be given by (4.26). Then there exists Ĉ > 0, independent of h, such that

‖p− ph‖0,Ω + ‖σ − σh‖0,Ω ≤ Ĉ inf
(Sh,vh)∈Xh

‖(T,u)− (Sh,vh)‖X. (4.27)

Proof. Using estimates (3.37), (4.15) and the fact that H1 is continuously embedded into L4, it is not
difficult to see that

‖u⊗ u− uh ⊗ uh‖0,Ω ≤ ‖(u− uh)⊗ u‖0,Ω + ‖uh ⊗ (u− uh)‖0,Ω
≤ C

{
‖(u− uh)‖1,Ω‖u‖1,Ω + ‖(u− uh)‖1,Ω‖uh‖1,Ω

}
≤ Ĉ ‖(u− uh)‖1,Ω.

(4.28)

Then, the result follows from (4.17), (4.28), and equations (2.2), (2.4) and (4.26). �
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4.4 A particular choice of discrete spaces

Let Th be a regular family of triangulations of the polyhedral region Ω by triangles K in R2 or
tetrahedra in R3 of diameter hK such that Ω = ∪{K : K ∈ Th} and define h := max{hK : K ∈ Th}.
For each integer k ≥ 0 and for each K ∈ Th, we define the local Raviart-Thomas space of order k (see,
for instance [5]):

RTk(K) := Pk(K)⊕ Pk(K)x,

where x := (x1, . . . , xn)t is a generic vector of Rn. Then, we specify the discrete spaces in (4.1) by:

Hh(div ; Ω) := {s = (s1, . . . , sn) ∈ H(div ; Ω) : s|K ∈ RTk(K), ∀K ∈ Th} ,

H1
h,D(Ω) :=

{
v ∈ C(Ω̄) : v|K ∈ Pk+1(K), ∀K ∈ Th and v|ΓD

= 0
}
.

(4.29)

It is not difficult to see that these spaces satisfy hypotheses (H.0) and (H.1) (see Section 4.1). In
particular, (H.1) is easy to verify if the sequence of subspaces is nested or if we are able to find a
coarser space where (H.1) holds. Then, v̂0 can be constructed exactly as explained at the end of the
proof of Lemma 3.2. In turn, it is well known that these subspaces satisfy the following approximation
properties (see, e.g. [12], [25], [33]):

For each r > 0 and for each s = (s1, . . . , sn) ∈ Hr(Ω), with div s ∈ Hr(Ω), there exists sh ∈
Hh(div ; Ω), such that

‖s− sh‖div ,Ω ≤ Chmin{r,k+1} {‖s‖r,Ω + ‖div s‖r,Ω} . (4.30)

For each r > 0 and for each v ∈ Hr+1(Ω) ∩H1
ΓD

(Ω) there exists vh ∈ H1
h,D(Ω) such that

‖v − vh‖1,Ω ≤ Chmin{r,k+1}‖v‖r+1,Ω. (4.31)

The theoretical rate of convergence for (4.3) with spaces as in (4.29) is stated in the following result.

Theorem 4.5 Let Xh = Hh × H1
h,D defined in terms of the spaces (4.29). Let (T,u) ∈ X and

(Th,uh) ∈ Xh be the unique solutions of the continuous and discrete problems (3.10) and (4.3),
respectively. In addition to the hypotheses of Theorem 4.2, let us assume that T ∈ Hr(Ω), div T ∈
Hr(Ω), and u ∈ Hr+1(Ω), for some r > 0. Then, there exists Crate > 0, independent of h, such that

‖(T,u)− (Th,uh)‖X ≤ Crateh
min{r,k+1} {‖T‖r,Ω + ‖div T‖r,Ω + ‖u‖r+1,Ω} (4.32)

Proof. The result is a straightforward application of Theorem 4.3, and properties (4.30) and (4.31).
�

We now provide the rate of convergence for the post-processing introduced in (4.26).

Corollary 4.6 There exists C̃ > 0, independent of h, such that

‖p− ph‖0,Ω + ‖σ − σh‖0,Ω + ≤ C̃hmin{r,k+1}
{
‖T‖r,Ω + ‖div T‖r,Ω + ‖u‖r+1,Ω

}
. (4.33)

Proof. The result is a direct application of Theorem 4.5 and Corollary 4.4. �
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5 A posteriori error analysis

In this section we derive a reliable and efficient residual-based a posteriori error estimate for the
Galerkin scheme (4.3), considering the discrete spaces introduced in Section 4.1 and for n = 2 (n = 3).
For each K ∈ Th we let E(K) be the set of edges (faces) of K and we denote by Eh the set of all edges
(faces) of Th, subdivided as follows:

Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN ) ,

where Eh(Ω) := { e ∈ Eh : e ⊆ Ω }, Eh(ΓD) := { e ∈ Eh : e ⊆ ΓD } and Eh(ΓN ) := { e ∈ Eh : e ⊆
ΓN }. In what follows, he stands for the diameter of a given edge (face) e ∈ Eh. Also, we fix a unit
normal vector ne to the edge (face) e (its particular orientation is not relevant). However, when no
confusion arises, we will simply write n instead of ne.

Now, let (T,u) ∈ X and (Th,uh) ∈ Xh be the unique solutions of the continuous and discrete
problems (3.10) and (4.3), respectively. Then, we introduce the global a posteriori error estimator

Θ :=

∑
K∈Th

Θ2
K


1/2

, (5.1)

defined locally (for each K ∈ Th) as

Θ2
K := ‖f + div Th‖20,K + ‖Td

h − 2ν e(uh) + (uh ⊗ uh)d‖20,K

+
∑

e∈E(K)∩Eh(ΓN )

he ‖g − Thn − (uh ⊗ uh)n ‖20,e .
(5.2)

5.1 Reliability of the a posteriori error estimator

The main result of this section is stated as follows

Theorem 5.1 Let (T,u) ∈ X and (Th,uh) ∈ Xh be the unique solutions of the continuous and
discrete problems (3.10) and (4.3), respectively. Assume that g ∈ L2(ΓN ) and that

(4ν2 + κ2
1)1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

≤
Cglob

4CC

(
1

αA
+ n1/2|Ω|1/2

(
1

β̃
+

CA

β̃αA

))−1

(5.3)

with Cglob being the positive constant in (5.5) below. Then, there exists a constant Crel > 0, indepen-
dent of h, such that

‖(T−Th,u− uh)‖X ≤ CrelΘ. (5.4)

We begin the derivation of (5.4) by observing that, since (A + Cu)(·, ·) is elliptic on X0 and B
satisfies the inf-sup condition (3.25), then there exists C > 0, independent of h, such that following
global inf-sup condition holds (see [16, Proposition 2.36])

C(‖(R, z)‖X + |λ|) ≤ sup
((S,v),η)∈(X0×R)\{0}

(A + Cu)((R, z), (S,v)) + B((R, z), η) + B((S,v), λ)

‖(S,v)‖X + |η|
,
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for all ((R, z), λ) ∈ X0 × R, which according to (1.1) is equivalent to

Cglob‖(R, z)‖X ≤ sup
(S,v)∈X\{0}

(A + Cu)((R, z), (S,v))

‖(S,v)‖X
∀ (R, z) ∈ X, (5.5)

with Cglob > 0.

On the other hand, thanks to (3.10) and minor algebraic manipulations, we easily find that

(A + Cu)((T−Th,u− uh), (S,v)) = F(S,v) − (A + Cuh
)((Th,uh), (S,v))

+ Cuh−u((Th,uh), (S,v)) .
(5.6)

In addition, we recall from (3.21) that

|Cuh−u((Th,uh), (S,v))| ≤ CC‖uh − u‖1,Ω‖(Th,uh)‖X‖(S,v)‖X ,

which thanks to (4.14) and (5.3), and the fact that ‖uh − u‖1,Ω ≤ ‖(T−Th,u− uh)‖X, yields

|Cuh−u((Th,uh), (S,v))| ≤
Cglob

2
‖(T−Th,u− uh)‖X‖(S,v)‖X .

Thus, taking (R, z) = (T−Th,u−uh) in (5.5) and using (5.6) and the previous inequality, we arrive
at

Cglob

2
‖(T−Th,u− uh)‖X ≤ sup

(S,v)∈X\{0}

|R(S,v)|
‖(S,v)‖X

, (5.7)

where R : X→ R is the residual functional defined by

R(S,v) := F(S,v)− (A + Cuh
)((Th,uh), (S,v)) ∀ (S,v) ∈ X.

More precisely, according to (2.6), (3.1), (3.5), (4.3) and the definitions of A, B, Cuh
and F (cf. (3.8),

(3.9)), we find that for any (S,v) ∈ X, there holds

R(S,v) = R1(S) + R2(v) , (5.8)

where
R1(S) := −κ1 (f + div Th, div S)Ω − (Td

h + 2ν ω(uh) + (uh ⊗ uh)d,S)Ω

− 2ν (uh,div S)Ω + 2ν 〈Sn,uh〉ΓN

and
R2(v) := 2ν (f + div Th,v)Ω + κ2 (Td

h − 2ν e(uh) + (uh ⊗ uh)d, e(v))Ω

+ 2ν (Th,ω(v))Ω + 2ν 〈g − Thn − (uh ⊗ uh)n,v〉ΓN
.

(5.9)

Hence, the supremum in (5.7) can be bounded in terms of R1 and R2, which yields

Cglob

2
‖(T−Th,u− uh)‖X ≤ ‖R1‖H(div ;Ω)′ + ‖R2‖H1

ΓD
(Ω)′ . (5.10)

Throughout the rest of this section we provide suitable upper bounds for each one of the terms on
the right hand side of (5.10). We begin with the upper bound of R1.

Lemma 5.2 There holds

‖R1‖H(div ;Ω)′ ≤ κ1‖f + div Th‖0,Ω + ‖Td
h − 2ν e(uh) + (uh ⊗ uh)d‖0,Ω . (5.11)
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Proof. Similarly as in [31, Section 3.3], we integrate by parts (div S,uh)Ω and utilize the fact that
e(uh) = ∇uh − ω(uh), to observe that R1 can be rewritten as follows:

R1(S) = −κ1 (f + div Th,div S)Ω − (Td
h − 2ν e(uh) + (uh ⊗ uh)d,S)Ω . (5.12)

Then (5.11) follows straightforwardly from (5.12) and the Cauchy-Schwarz inequality. �

To derive the estimate for R2 we need to introduce the well-known Clément operator Ih : H1(Ω)→
Yh := {v ∈ C(Ω̄) : v|K ∈ P1(K), ∀K ∈ Th}, which approximate optimally non–smooth functions by
continuous piecewise linear functions. Of this operator, we will only use the following approximation
properties (see [13] for details): There exist constants c1, c2 > 0, independent of h, such that for all
v ∈ H1(Ω) there hold

‖v − Ihv‖0,K ≤ c1hK‖v‖1,∆(K) ∀K ∈ Th, (5.13)

and
‖v − Ihv‖0,e ≤ c h1/2

e ‖v‖1,∆(e) ∀ e ∈ Eh, (5.14)

where

∆(K) := ∪{K ′ ∈ Th : K ′ ∩K 6= ∅} and ∆(e) := ∪{K ′ ∈ Th : K ′ ∩ e 6= ∅}.

The following lemma provides the upper bound for R2.

Lemma 5.3 There exists C > 0, independent of h, such that

‖R2‖H1
ΓD

(Ω)′ ≤ C

∑
K∈Th

Θ̂2
K


1/2

, (5.15)

where, for each K ∈ Th:

Θ̂2
K := h2

K‖f + div Th‖20,K + ‖Td
h − 2ν e(uh) + (uh ⊗ uh)d‖20,K

+
∑

e∈E(K)∩Eh(ΓN )

he ‖g − Thn − (uh ⊗ uh)n ‖20,e .

Proof. Given v ∈ H1
ΓD

(Ω), we set v̂h = Ih(v) ∈ H1
h,D, with Ih being the vector version of Ih,

which is defined componentwise by Ih, and observe from (4.3) with Sh = 0 and the fact that
1
2(as(Th), curl (v̂h))Ω = (Th,ω(v̂h))Ω, that

2ν 〈g − Thn − (uh ⊗ uh)n, v̂h〉ΓN
= −2ν (f + div Th, v̂h)Ω − 2ν (Th,ω(v̂h))Ω

−κ2 (Td
h − 2ν e(uh) + (uh ⊗ uh)d, e(v̂h))Ω.

Then, combining the latter with the definition of R2 (cf. (5.9)), and using the fact that (Th,ω(z))Ω =
(Td

h,ω(z))Ω and (− 2ν e(uh) + (uh ⊗ uh)d,ω(z))Ω = 0 for any z, we observe that R2(v) can be
expressed as follows:

R2(v) = 2ν (f + div Th ,v − v̂h)Ω + κ2 (Td
h − 2ν e(uh) + (uh ⊗ uh)d) , e(v − v̂h)Ω

+ 2ν (Td
h − 2ν e(uh) + (uh ⊗ uh)d) ,ω(v − v̂h))Ω

+ 2ν 〈g − Thn − (uh ⊗ uh)n ,v − v̂h〉ΓN
.

(5.16)
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Therefore, noticing that the boundedness of Ih (cf. [16, Lemma 1.127, pag. 69]) implies

‖e(v − v̂h)‖0,Ω ≤ C‖v‖1,Ω and ‖ω(v − v̂h)‖0,Ω ≤ C‖v‖1,Ω,

using the Cauchy-Schwarz inequality, estimates (5.13) and (5.14) (for the first and last terms in (5.16)),
the fact that the numbers of triangles (tetrahedra) in ∆(K) and ∆(e) are bounded, and recalling that
g ∈ L2(ΓN ), from (5.16) we obtain (5.15), which concludes the proof. �

We finally observe that reliability (cf. (5.4)) is a direct consequence of Lemmas 5.2 and 5.3.

5.2 Efficiency of the a posteriori error estimator

Theorem 5.4 Let (T,u) ∈ X and (Th,u) ∈ Xh be the unique solutions of the continuous and discrete
problems (3.10) and (4.3), respectively, and assume that g is piecewise polynomial. Then, there exists
Ceff > 0, independent of h, such that

CeffΘ ≤ ‖(T−Th,u− uh)‖X . (5.17)

To prove Theorem 5.4, in what follows we make extensive use of the original system of equations
(2.8), which is recovered from the augmented continuous formulation (3.10) by choosing suitable
test functions and integrating by parts backwardly the corresponding equations. We begin with the
estimates of the zero order terms appearing in the definition of ΘK (cf. (5.2)).

Lemma 5.5 There hold

‖f + div Th‖0,K ≤ ‖T−Th‖div ,K ∀K ∈ Th

and
‖Td

h − 2ν e(uh) + (uh ⊗ uh)d‖0,Ω ≤ C1 {‖T−Th‖div ,K + ‖u− uh‖1,Ω} .

where C1 > 0 is independent of h.

Proof. For the first term it suffices to recall that div T = −f in Ω whereas for the second one we use
the relation Td − 2ν e(u) + (u⊗u)d = 0 in Ω, the Cauchy-Schwarz inequality, and estimates (3.19)
and (4.28). �

In order to derive the estimate for the third term appearing in Θ (cf. (5.2)), in what follows we
make use of an inverse inequality and the localization technique based on edge-bubble or face-bubble
functions. To this end, we now introduce further notations and preliminary results. Given K ∈ Th
and e ∈ E(K), we let φe be the usual edge-bubble or face-bubble function (see [36]), which satisfies
φe|K ∈ P2(K), suppφe ⊆ ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}, φe = 0 on ∂K \ e and 0 ≤ φe ≤ 1 in ωe. We
also recall from [37] that, given k ∈ N ∪ {0}, there exists an extension operator L : C(e) → C(K)
satisfying L(p) ∈ Pk(K) and L(p)|e = p ∀ p ∈ Pk(e). A corresponding vector version of L, that is the
componentwise application of L, is denoted by L. Additional properties of φe and L are collected in
the following lemma.

Lemma 5.6 Given k ∈ N ∪ {0}, there exist positive constant c1 and c2, depending only on k and
the shape regularity of the triangulations (minimum angle condition), such that for each K ∈ Th and
e ∈ E(K), there hold

‖q‖20,e ≤ c1‖φ1/2
e q‖20,e ∀ q ∈ Pk(e) (5.18)

and
‖φeL(q)‖20,K ≤ ‖φ1/2

e L(q)‖20,K ≤ c2he‖q‖20,e ∀ q ∈ Pk(e) . (5.19)
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Proof. See Lemma 1.3 in [37]. �

The aforementioned inverse estimate to be utilized next is established now. For its proof we refer
the reader to [12, Theorem 3.2.6].

Lemma 5.7 Let k, l, m ∈ N ∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on k, l
m and the shape regularity of the triangulations, such that for each K ∈ Th there holds

|q|m,K ≤ chl−mT |q|l,K , ∀ q ∈ Pk(K) . (5.20)

Now, we provide the final estimate.

Lemma 5.8 Assume that g is piecewise polynomial. Then, there exists C2 > 0, independent of h,
such that

he ‖g − Thn − (uh ⊗ uh)n ‖20,e ≤ C2

{
‖T−Th‖2div ,Ke

+ h ‖u− uh‖21,Ω
}
, (5.21)

for all e ∈ Eh(ΓN ), where Ke is the triangle of Th having e as an edge.

Proof. Given e ∈ E(ΓN ), we let Ke be the element of Th having e as an edge or face, and define
ve := g − Thn − (uh ⊗ uh)n on e. Then, we proceed similarly to the proof of [29, Lemma 3.16],
that is, we apply (5.18), recall that φe = 0 on ∂Ke \ e, extend φe L(ve) by zero in Ω \Ke so that the
resulting function belongs to H1(Ω), use that g = Tn + (u ⊗ u)n on ΓN , integrate by parts in Ω,
and make use of (5.19) and (5.20), to arrive at

‖ve‖0,e ≤ Ch1/2
e

{
h−1
Te
‖T−Th‖0,Ke + ‖div (T−Th)‖0,Ke

}
+C‖(u⊗ u)n− (uh ⊗ uh)n‖0,e,

(5.22)

which implies

he ‖ve‖20,e ≤ C
{
‖T−Th‖2div ,Ke

+ he ‖(u⊗ u)n− (uh ⊗ uh)n‖20,e
}
. (5.23)

In turn, using estimates (3.3), (3.37), (4.15) and the fact that H1/2(Γ) is continuously embedded into
L4(Γ), and proceeding similarly as in (4.28), we easily obtain that

‖(u⊗ u)n− (uh ⊗ uh)n‖0,e ≤ ‖(u⊗ u)n− (uh ⊗ uh)n‖0,ΓN
≤ C‖u− uh‖1,Ω .

From this estimate and (5.23) we obtain (5.21), which concludes the proof. �

We conclude by observing that the efficiency of Θ follows straightforwardly from Lemmas 5.5 and 5.8.

6 Numerical results

The subsequent examples serve to test the performance of the proposed scheme, to confirm the con-
vergence rates anticipated by Theorem 4.5, and to illustrate the efficiency and reliability of the a
posteriori error estimators.

Test 1. In the first example we consider n = 2 and manufacture the following exact solutions to (2.8),
defined on the rectangular domain Ω = (0, 3/2)× (0, 1)

u =

(
−2x2(x− 1)2y(y − 1)(2y − 1)
2y2(y − 1)2x(x− 1)(2x− 1)

)
, p = x3 − y4 − 1.54

4
+

1

5
, T = 2νe(u)− u⊗ u− pI.
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Dof h e(T) rate e(u) rate e(p) rate Iter

k = 0

70 0.7071 1.8092 – 0.2599 – 0.4709 – 4
126 0.5017 1.3970 0.7534 0.2258 0.4108 0.3515 0.8519 5
330 0.2931 0.8680 0.8854 0.1546 0.7040 0.2069 0.9861 5

1026 0.1601 0.4868 0.9569 0.0899 0.8970 0.1153 0.9673 5
3570 0.0840 0.2577 0.9857 0.0479 0.9741 0.0608 0.9902 5

13266 0.0430 0.1325 0.9956 0.0246 0.9957 0.0311 1.0015 5
51090 0.0218 0.0671 0.9986 0.0124 0.9996 0.0157 1.0021 5

200466 0.0109 0.0338 0.9995 0.0062 1.0000 0.0079 1.0012 5

k = 1

210 0.7071 0.5802 – 0.1341 – 0.0786 – 5
394 0.5017 0.3287 1.6555 0.0780 1.5796 0.0476 1.4608 5

1078 0.2931 0.1236 1.8195 0.0308 1.7273 0.0185 1.7541 5
3454 0.1601 0.0384 1.9348 0.0098 1.8819 0.0058 1.9043 5

12238 0.0840 0.0107 1.9756 0.0028 1.9441 0.0016 1.9424 5
45934 0.0430 0.0028 1.9900 0.0007 1.9718 0.0004 1.9620 5

177838 0.0218 0.0007 1.9955 0.0002 1.9856 0.0001 1.9774 5
699694 0.0109 0.0001 1.9979 0.0001 1.9926 3.0e-5 1.9876 5

Table 6.1: Test 1: errors, convergence rates, and Picard iteration count for the RTk − Pk+1 ap-
proximation of the Navier-Stokes equations in mixed form. The error history for the post-processed
pressure (projected to the space of discontinuous Pk+2 elements) is also displayed.

These functions satisfy the analyzed regularity and are employed to set up the external load f and the
nonhomogeneous boundary traction g. The fluid viscosity is taken as ν = 1 and the augmentation
constants are set as κ1 = κ2 = 2ν = 2. Following the structure of the linearization used to establish
the solvability of both continuous and discrete problems, here we employ a fixed point algorithm, and
at each Picard iteration the linear systems are solved with the multifrontal direct solver MUMPS. We
proceed to study the accuracy of the finite element schemes of order k ∈ {0, 1} by solving the discrete
problem on a sequence of successively refined triangulations of Ω and computing errors for stress and
velocity in their natural norms. The error history is collected in Table 6.1, which indicates that the
method converges optimally to the exact solutions. The fixed point iterates are terminated when the
residual attains a fixed tolerance of 1e-9, and the table shows that a maximum of five iterations are
required. For reference, we also include in Figure 6.1 the flow patterns obtained with the lowest order
method on a structured mesh with 50438 elements.

Test 2. For our second numerical example we perform the classical test of flow over a backward-facing
step. The problem set up consists of a channel of adimensional length 5 and height 1, expanding
abruptly to a height of 2. Channels shorter than usual can be easily studied since outflow conditions
can be readily incorporated with the present formulation. Recirculating flows are expected just after
the step, whose shape and size depend on the Reynolds number (in this case, Re = DU/ν = 200,
where ν = 0.01 is the kinematic viscosity, D = 2 is twice the inlet height and U = 1/2 is the
mean inlet velocity). A parabolic inflow velocity profile is imposed on the left part of the domain
u = (2x2(1 − x2), 0)T , a zero stress condition is set on the right end of the channel (corresponding
to consider g = 0) and no-slip velocities are set on the remainder of ∂Ω. After constructing a coarse
unstructured triangular mesh, the problem is solved using the proposed mixed finite element scheme,
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Figure 6.1: Test 1: approximate numerical solutions computed with the lowest order method. Velocity
components, post-processed pressure, and total stress components.

the local a posteriori error estimator (5.2) is computed, and elements are marked for refinement
according to the classical maximal error strategy. Then a new mesh is generated and the adaptive
process is repeated seven times. Numerical results obtained in the finest level are portrayed in the first
three rows of Figure 6.2. Well-resolved profiles are obtained for stresses and the velocity components
with streamlines show the presence of the expected reattaching flow behaviour. The last row of the
Figure depicts adaptively refined meshes at intermediate steps of the algorithm. They indicate a
clear clustering of elements near the reentrant corner of the domain, as well as near the zones of high
velocity gradients and stress concentration. For this example we used a Newton method with a fixed
tolerance of 1e-7 and the linear systems were solved with the UMFPACK solver.

Test 3. Next we turn to the testing of the scheme and the adaptive algorithm in a 3D scenario. The
computational domain is defined as Ω = (0, 1)3 \ [0.5, 1]3 and we consider the following exact solutions
of the Navier-Stokes equations (2.8)

u =

 sin2(πx1) sin(πx2) sin(2πx3)
sin(πx1) sin2(πx2) sin(2πx3)

−[sin(2πx1) sin(πx2) + sin(πx1) sin(2πx2)] sin2(πx3)

 ,

T = 2νe(u)− u⊗ u− 1− x2
1 − x2

2 − x2
3

(x1 − 0.55)2 + (x2 − 0.55)2 + (x3 − 0.55)2
I,

which satisfy homogeneous Dirichlet conditions for the velocity on ΓD (the sides lying on the unit
cube (0, 1)3), and which we also employ to specify the forcing term and the non-homogeneous normal
stress condition on ΓN (the remainder of the boundary). Notice that the singularity of the stress near
the reentrant quadrant at (0.55, 0.55, 0.55) anticipates that the convergence will be affected if uniform
refinement is applied. We define the total error and the effectivity index associated to the a posteriori

error estimator as e :=
{

[e(T)]2 +[e(u)]2
}1/2

, and eff(θ) := e θ−1, respectively. Two runs of the error
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Figure 6.2: Test 2: approximate numerical solutions of the backward-facing step benchmark, computed
with a method of order k = 1. Total stress components (top panels), velocity components and
streamlines and post-processed pressure (middle rows), and three snapshots of meshes after one,
three, and five adaptive refinement steps according to the a posteriori error estimator (bottom).

analysis are performed: one with uniform mesh refinement and one under adaptive mesh refinement
based on the equi-distribution of the local error indicators. Table 6.2 shows the obtained error history,
indicating sub-optimal convergence rates and oscillating effectivity indexes for the uniformly refined
meshes, while both the expected optimal convergence and the steady effectivity indexes are restored
under adaptive refinement. We present in Figure 6.3, examples of approximate solutions along with
snapshots of a few adaptive meshes generated following the a posteriori error estimator. Elements are
concentrated near the origin and on regions of high stress, and even with rather coarse meshes, the
produced stress and velocity profiles are well-resolved.
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[10] J. Camaño, G.N. Gatica, R. Oyarzúa and G. Tierra, An augmented mixed finite element method
for the Navier-Stokes equations with variable viscosity. SIAM Journal on Numerical Analysis, vol. 54, 2,
pp. 1069–1092, (2016).
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2016-30 Ernesto Cáceres, Gabriel N. Gatica, Filander A. Sequeira: A mixed vir-
tual element method for the Brinkman problem

2016-31 Ana Alonso-Rodriguez, Jessika Camaño, Rodolfo Rodŕıguez, Alberto
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mates for a virtual elements method for the Steklov eigenvalue problem

2016-33 Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M.
Villada: Numerical solution of a spatio-temporal gender-structured model for han-
tavirus infection in rodents

2016-34 Felipe Lepe, Salim Meddahi, David Mora, Rodolfo Rodŕıguez: Acoustic
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