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Abstract

In an earlier work of us, a new mixed finite element scheme was developed for the Boussinesq
model describing natural convection. Our methodology consisted of a fixed-point strategy for the
variational problem that resulted after introducing a modified pseudostress tensor and the normal
component of the temperature gradient as auxiliary unknowns in the corresponding Navier–Stokes
and advection–diffusion equations defining the model, respectively, along with the incorporation of
parameterized redundant Galerkin terms. The well–posedness of both the continuous and discrete
settings, the convergence of the associated Galerkin scheme, as well as a priori error estimates
of optimal order were stated there. In this work we complement the numerical analysis of our
aforementioned augmented mixed–primal method by carrying out a corresponding a posteriori
error estimation in two and three dimensions. Standard arguments relying on duality techniques,
and suitable Helmholtz decompositions are used to derive a global error indicator and to show
its reliability. A globally efficiency property with respect to the natural norm is further proved
via usual localization techniques of bubble functions. Finally, an adaptive algorithm based on a
reliable, fully local and computable a posteriori error estimator induced by the aforementioned one
is proposed, and its performance and effectiveness are illustrated through a few numerical examples
in two dimensions.
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1 Introduction

Numerical simulation of free convection processes allows to predict and analyze a large variety of
situations in non–isothermal flows, mathematically described by the Boussinesq model. In a region Ω,
steady state and without internal heat generation, the governing equations are given by the system

−µ∆u + (∇u)u + ∇p − ϕ g = 0 , div(u) = 0 in Ω ,

−div(K∇ϕ) + u · ∇ϕ = 0 in Ω ,
(1.1)
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which describes the velocity field u = (ui)1≤i≤n, the pressure p, and the temperature profile ϕ of a
thermally driven flow with associate kinematic viscosity µ and thermal conductivity K = (kij)1≤i,j≤n.
Here, g is the gravitational force per unit mass and, as usual, ∇ stands for the gradient operator of
scalar fields whereas the gradient, the Laplacian, and the divergence operator of the velocity u are
set, respectively, as

∇u :=

(
∂ui
∂xj

)
1≤i,j≤n

, ∆u := div (∇u) =

 n∑
j=1

∂2ui
∂x2

j


1≤i≤n

, and div (u) :=
n∑
j=1

∂uj
∂xj

.

In the underlying fluid flow phenomena, the velocity distribution depends on the temperature through
the buoyancy term ϕ g, and vice versa due to the convective heat transfer in the fluid velocity direction.
We refer to [32, Chapters 13 and 14] for a more physical discussion of this model, its variants, as well
as specific applications including geophysical contexts, and to [24, 26, 25, 29, 30] for some theoretical
findings on existence of strong and/or weak solutions, considering diverse types of boundary conditions
or generalized versions, such as temperature–dependent parameters.

The complexity of this coupled nonlinear problem, in addition to its applicability, has motivated the
devising of numerical methods based on finite elements to approximate the corresponding solutions
[3, 6, 7, 8, 9, 10, 11, 27, 28]. In this same direction, adaptive finite element algorithms have been
also developed for this problem (see [1, 12, 35] and the references therein), which are particularly
advantageous for situations where the convective effects become more important or the solution has a
singular behaviour, for instance. On the one hand, [1] deals with the problem (1.1) in two and three
dimensions with homogeneous Dirichlet conditions for both the velocity and the temperature while in
[35] the problem is set in the plane but a non–homogeneous Dirichlet condition is further considered
for the temperature. Both works propose a convergent, well–posed, primal finite element method,
and extend the general framework of Verfürth in [33, 34] for nonlinear problems to carry out the
corresponding a posteriori error analyses. The effectiveness of the adaptive method proposed by [35]
is demonstrated through numerical examples. On the other hand, the authors propose in [11] a mixed
finite element method in two dimensions for approximating the solution to (1.1) in polygonal domains
with non-slip boundary condition for the velocity and homogeneous mixed boundary condition for
the temperature. Their results show that uniform meshes lead to a slow convergence rate due to the
singular behaviour of the solution near the corner points, but this is circumvented next in a subsequent
work [12] where the same authors derive appropriate refinement rules to restore the quasi–optimality.

The numerical technique that will be considered in this paper is a high–order quasi-optimally
convergent augmented mixed-primal finite element method proposed in an earlier work of us [8] to solve
(1.1) with non–homogeneous Dirichlet boundary conditions for both the velocity and the temperature.
The main features of our approach include:

1. A modified pseudostress tensor, which depends nonlinearly on the velocity, its gradient and the
pressure, is introduced in the fluid equations as a new unknown. The pressure is then eliminated
by its own definition from the system, and can be approximated by a simple post-process.

2. A mixed–primal formulation is considered for the heat equation, and the normal component of
the temperature gradient is additionally introduced as a new unknown on the boundary. This
leads us to weakly impose the corresponding Dirichlet condition for the temperature.

3. In order to place the problem in a suitable mathematical framework so that standard Hilbert
spaces and (finite element) subspaces can be used in our formulations, a set of parameterized
redundant Galerkin terms are included.
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4. The resulting continuous variational problem and the associated discrete scheme are both well–
posed, the latter is convergent, allows high–order approximation, and optimal order error esti-
mates are derived for a suitable family of finite element subspaces.

5. Numerical experiments illustrate the good performance of the scheme and confirm the expected
rate of convergence. In particular, for small values of the viscosity, our results suggested to
increase the approximation order and use smaller mehsizes combined with a continuation tech-
nique in order to preserve the stability of our primal–mixed technique in an relatively affordable
number of iterations (see Tables II and III in [8, Section VI]). However this certainly involves a
very high computational cost, and hence the necessity of deriving suitable adaptive algorithms
becomes fully justified.

According to the foregoing remarks, the aim of the present work is precisely to develop an a posteriori
error analysis and propose the corresponding adaptive algorithm, which is usually of low computational
cost, for improving the accuracy, the stability and the robustness of our augmented mixed–primal
method when being applied to problems in which the overall approximation quality can be deteriorated
by the presence of boundary layers, singularities, or complex geometries. Proceeding similarly to a
previous work for a viscous flow–transport problem [2], we then begin exploiting the fixed–point
strategy in which our scheme is based [9] to obtain preliminary upper bounds for the approximation
error associated to the fluid and heat variables, separately, and show that deriving an a posteriori
error indicator is reduced then to estimating dual–norms of residual–type expressions relative to the
numerical approximation driven by our mixed–primal method. Some ideas from previous a posteriori
analyses of mixed formulations for Stokes, Brinkman, and Navier–Stokes equations [21, 16, 19, 20],
relying on Helmholtz decompositions and classical approximation properties of the usual Raviart–
Thomas and Clement interpolant, are then extended to our setting to derive, define and state a
reliable, residual–based a posteriori error estimator. The corresponding efficiency property is also
shown at global level with respect to the natural norm and it essentially follows from previous results,
and via usual localization techniques of bubble functions. In this latter, the nonlinear convective terms
are controlled by Sobolev embeddings. Although all the analysis is carried out in two dimensions, we
further point out how to extend it to the spatial case. Finally, we propose an adaptive algorithm
based on a reliable, fully–local and fully–computable a posteriori error estimator induced by the
aforementioned one and illustrate its performance and effectiveness through a few examples.

1.1 Outline

This paper is organized as follows. At the end of this section we set some standard notations, definitions
and general assumptions. In Section 2, the mixed strong form of the Boussinesq problem considered
here is recalled, and the continuous and discrete schemes are briefly described. The a posteriori error
analysis of our method, which constitutes the main contribution of this work, is presented in details
in Section 3. Finally, we propose an adaptive algorithm and test its effectiveness with some numerical
examples in Section 4.

1.2 Preliminaries

From now on Ω is assumed to be a bounded domain in Rn (n ∈ {2, 3}), with a polyhedral boundary
Γ with outward unit normal vector ν. For a nonnegative integer m we recall the classical Sobolev
space Wm,p(Ω), equipped with its norm ‖ · ‖m,p,Ω, as the set of all the scalar–valued functions such
that the p-th power of them and their derivatives (in the weak sense) up to order m are Lebesgue
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integrable in Ω. We recall that when p = 2, Wm,2(Ω) =: Hm(Ω) becomes a Hilbert space with norm
‖ · ‖m,Ω and seminorm | · |m,Ω induced by the natural definition of the corresponding inner product in
L2(Ω). Obvious notations and definitions are adopted in any subdomain of Ω. In turn, with γ0 being
the usual trace operator, we let H1/2(Γ) := γ0(H1(Ω)) be the space of traces of functions in H1(Ω),
H−1/2(Γ) its dual, and denote by 〈 · , · 〉Γ the associated dual parity.

In general, given a space of scalar–valued functions M, its corresponding vectorial and tensorial
extensions will be denoted by M and M, respectively. Under this convention, we then denote by
H(div; Ω) the space of square integrable tensor–valued functions with divergence div (acting on each
row) in L2(Ω), and norm ‖ ·‖div,Ω = ‖ ·‖0,Ω +‖div( · )‖div,Ω. In addition, the trace and the deviatoric
part of any tensor field ζ = (ζij)1≤i,j≤n are defined, respectively, as

tr(ζ) :=
n∑
i=1

ζii, and ζd := ζ − 1

n
tr(ζ) I . (1.2)

where I stabds for the identity matrix. Additionally we recall the decomposition

H(div; Ω) = H0(div; Ω) ⊕ cI , (1.3)

where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0

}
. (1.4)

To simplify, we will denote by ‖ · ‖, with no subscripts, the natural norm of either an element or an
operator in any product functional space, and by C any positive constant independent of the mesh
parameters, but that might depend on data and/or stabilization parameters, and take different values
in each occurrence. As for the data, we consider that the viscosity µ is a positive constant, K is a
uniformly positive definite tensor in L∞(Ω), and g ∈ L∞(Ω). Finally, we complete the system (1.1)
with non–homogeneous boundary conditions for the velocity and the temperature, which are denoted
by uD ∈ H1/2(Γ) and ϕD ∈ H1/2(Γ), respectively. In particular, we suppose that uD satisfies the
usual compatibility condition ∫

Γ
uD · ν = 0 . (1.5)

2 The stationary Boussinesq model: Our approach

This section briefly describes the augmented mixed formulation considered in this work for the Boussi-
nesq model. Firstly, in Section 2.1 we recall the strong form of the problem, and then the corresponding
continuous and discrete variational formulations are discussed in Sections 2.2 and 2.3.

2.1 The equivalent strong problem

We consider from [8, Section II] the strong form of the Boussinesq problem: Find (σ,u, ϕ) such that

µ∇u − (u⊗ u)d = σd , −div(σ) − ϕ g = 0 and − div(K∇ϕ) + u · ∇ϕ = 0 in Ω ,

u = uD and ϕ = ϕD on Γ , and

∫
Ω

tr(σ + u⊗ u) = 0 ,

(2.1)
where σ is the modified pseudostress tensor defined as

σ := µ∇u − (u⊗ u) − p I in Ω . (2.2)

4



Note that the original system (1.1) is recovered by eliminating σ from the system (2.1), using that
div(u⊗ u) = (∇u)u when u is divergence–free in Ω, and employing the definition of the deviatoric
operator (see (1.2)), and the fact that the pressure is given in terms of u and σ in accordance to (2.2)
by

p = − 1

n
tr(σ + u⊗ u ) in Ω , (2.3)

which along with the last statement in (2.1) imply that p has zero mean–value in Ω.

2.2 The augmented mixed-primal formulation

The weak form considered here for problem (2.1) essentially relies on three main aspects; details on
its derivation are found in [8, Section III–A]:

1. From (1.3)–(1.4), problem (2.1) is firstly rewritten in a equivalent setting for approximating
the H0(div; Ω)–component, still denoted by σ, of the pseudostress tensor, and for which the
respective constant c in (1.3) is explicitly defined by

c = − 1

n|Ω|

∫
Ω

tr(u⊗ u) .

2. The normal derivative of the temperature is introduced as an additional unknown on the bound-
ary through the Lagrange multiplier λ := −K∇ϕ · ν ∈ H−1/2(Γ), yielding the weak imposition
of the Dirichlet condition for the temperature.

3. Redundant Galerkin terms weighted by parameters κi, i ∈ {1, 2, 3}, and which are defined from
the constitutive and the equilibrium relations of the fluid equations and the Dirichlet bound-
ary condition for the velocity (see equations (3.11) in [8]), are incorporated into the resulting
variational problem.

Consequently, the underlying augmented mixed-primal formulation for (2.1) then reads as: Find
(σ, u, ϕ, λ ) ∈ H0(div; Ω) × H1(Ω) × H1(Ω) × H−1/2(Γ) such that

A( (σ,u) , (τ ,v) ) + Bu( (σ,u) , (τ ,v) ) = Fϕ(τ ,v) + FD(τ ,v) ,

a(ϕ, ψ) + b(ψ , λ) = Fu,ϕ(ψ ) ,

b(ϕ , ξ) = G(ξ) ,

(2.4)

for all ( τ , v, ψ, ξ ) ∈ H0(div; Ω) × H1(Ω) × H1(Ω) × H−1/2(Γ), where A, Bw (with a given
w ∈ H1(Ω)), a, and b are the bilinear forms

A((σ,u), (τ ,v)) :=

∫
Ω
σd : ( τ d − κ1∇v ) +

∫
Ω

(µu + κ2 div(σ) ) · div(τ )

−µ
∫

Ω
v · div(σ) + µκ1

∫
Ω
∇u : ∇v + κ3

∫
Γ
u · v ,

(2.5)

Bw( (σ,u) , (τ ,v) ) := −
∫

Ω
(u⊗w)d :

(
κ1∇v − τ d

)
, (2.6)

for all (σ,u), (τ ,v) ∈ H0(div; Ω) × H1(Ω), and

a(ϕ,ψ) :=

∫
Ω
K∇ϕ · ∇ψ and b(ψ, ξ) := 〈 ξ, ψ 〉Γ , (2.7)
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for all ϕ,ψ ∈ H1(Ω) and for all (ψ, ξ) ∈ H1(Ω) × H−1/2(Γ). In turn, Fϕ (with a given ϕ ∈ H1(Ω)) ,
FD, Fu,ϕ (with a given (u, ϕ) ∈ H1(Ω)×H1(Ω)), and G are the bounded linear functionals

Fϕ(τ ,v) :=

∫
Ω
ϕg ·

(
µv − κ2 div(τ )

)
, FD(τ ,v)) := κ3

∫
Γ
uD · v + µ 〈 τν ,uD 〉Γ, (2.8)

Fu,ϕ(ψ) := −
∫

Ω
(u · ∇ϕ )ψ , and G(ξ) := 〈 ξ, ϕD 〉Γ. (2.9)

for all (τ ,v) ∈ H0(div; Ω) × H1(Ω), for all ψ ∈ H1(Ω), and for all ξ ∈ H−1/2(Γ), where κ1, κ2 and
κ3 are positive parameters to be chosen conveniently (see (2.10) below).

The analysis of problem (2.4) is carried out in [8, Section II], and its well-posedness is developed
through a fixed-point strategy based on decoupling the fluid and heat equations and then combining the
classical Banach Theorem with the Lax-Milgram Theorem and the Babǔska-Brezzi Theory. Theorem
3.9 in [8] particularly states that, under small data assumptions and a suitable choice of stabilization
parameters κi , for instance (see equations (3.37) in [8]),

κ1 = µ , κ2 = 1 , and κ3 =
µ2

2
, (2.10)

there exists an r0 > 0 such that for each r ∈ (0, r0) there exists a unique solution (σ,u, ϕ, λ) to (2.4)

with (u, ϕ) ∈ W (r) :=
{

(w, φ) ∈ H1(Ω) × H1(Ω) : ‖(w, φ)‖ ≤ r
}

, and satisfying further the a

priori estimates
‖(σ,u)‖ ≤ cS

{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,ΓD

}
‖(ϕ, λ)‖ ≤ c

S̃

{
r ‖u‖1,Ω + ‖ϕD‖1/2,Γ

}
,

(2.11)

where cS and c
S̃

are positive constants.

2.3 The augmented mixed-primal finite element method

Given a regular family of triangularizations {Th}h>0 of Ω̄, each one of them made of triangles/tetra-

hedras T of diameter hT and meshsize h := max
{
hT : T ∈ Th

}
, we let

Hσh := RTk(Th) ∩ H0(div; Ω) , Hu
h := [Pk+1(Th)]n , and Hϕ

h := Pk+1(Th) (2.12)

be the tensorial Raviart–Thomas space of order k for approximating σ, and the usual Lagrange finite
element spaces of order k + 1 for the velocity components and the temperature, respectively. More
precisely, denoting from now on by Pk(S) the space of polynomials of degree ≤ k on any subset S of

Rn, we set Pk+1(Th) :=
{
v ∈ C(Ω̄) : v|T ∈ Pk+1(T ) ∀T ∈ Th

}
. In turn, as for the unknown on

the boundary, an independent triangulation
{

Γ̃1, Γ̃2, . . . , Γ̃m
}

of Γ (made of triangles in R3 or straight

segments in R2) is also considered. Thus, with h̃ := max
j∈{1,...,m}

|Γ̃j |, the space approximating the

Lagrange multiplier is defined as

Hλ
h̃

:=
{
ξ
h̃
∈ L2(Γ) : ξ

h̃

∣∣∣
Γ̃j

∈ Pk(Γ̃j) ∀ j ∈ { 1, 2, · · · ,m }
}
. (2.13)

The discrete problem based on (2.4) then reads: Find (σh, uh, ϕh, λh̃ ) satisfying

A( (σh,uh) , (τ h,vh) ) + Buh
( (σh,uh) , (τ h,vh) ) = Fϕh

(τ h,vh) + FD(τ h,vh)

a(ϕh, ψh) + b(ψh , λh̃) = Fuh,ϕh
(ψh )

b(ϕh , ξh̃) = G(ξ
h̃
) ,

(2.14)
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for all ( τ h, vh, ψh, ξh̃ ) ∈ Hσh × Hu
h × Hϕ

h × Hλ
h̃
.

The solvability analysis of problem (2.14) follows by adapting the same arguments from the con-
tinuous case (see [8, Section IV], for details). In particular, it is showed there the existence of a
positive constant C0 and a unique solution (σh,uh, ϕh, λh̃ ) to (2.14) with (uh, ϕh) in a discrete ball

Wh(r) ⊆ Hu
h ×Hϕ

h , for all r ∈ (0, r0) and for all h ≤ C0 h̃, which satisfies

‖(σh,uh)‖ ≤ cS
{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,ΓD

}
,

‖(ϕh, λh̃)‖ ≤ c̃
S̃

{
r ‖uh‖1,Ω + ‖ϕD‖1/2,Γ

}
,

(2.15)

where cS is the same constant appearing in (2.11) and c̃
S̃
> 0 is independent of h and h̃.

We also point out that the scheme (2.14) is convergent for any family of finite element spaces
whenever the corresponding ones for approximating the temperature and the Lagrange multiplier are
inf–sup compatible (cf. Theorem 5.5 and hypotheses (H.1)–(H.2) in [8]). Moreover, optimal–error a
priori estimates are achieved when the specific subspaces defined through (2.12)–(2.13) are used (cf.
[8, Theorem 5.6]).

3 A posteriori error estimation

This section provides the main contribution of this work, for which we first confine our analysis to
the case where Ω ⊆ R2. In Section 3.1 we introduce some preliminary notations and define a global
a posteriori error estimator for the augmented primal–mixed scheme (2.14). Next, through Sections
3.1–3.2 we derive this estimator and prove its reliability, whereas in Section 3.3 we establish the
corresponding efficiency estimate. Finally, in Section 3.4 we discuss the main aspects yielding the
extension of our a posteriori analysis to the three–dimensional case.

3.1 The global a posteriori error estimator

We begin by introducing a few useful notations for describing local information on elements and edges.
Let Eh be the set of edges e of Th, whose corresponding diameters are denoted he, and define

Eh(Ω) := { e ∈ Eh : e ⊆ Ω } , and Eh(Γ) := { e ∈ Eh : e ⊆ Γ } .

For each T ∈ Th, we similarly denote

Eh,T (Ω) = { e ⊆ ∂T : e ∈ Eh(Ω) } and Eh,T (Γ) = { e ⊆ ∂T : e ∈ Eh(Γ) } .

We also define unit normal and tangential vectors ν and s, respectively, on each edge e ∈ Eh by

ν := (ν1, ν2)t and s := (−ν2, ν1)t .

Thus, the usual jump operator [[ · ]] across an internal edge e ∈ Eh(Ω) is defined for piecewise continuous
matrix, vector, or scalar-valued functions ζ as

[[ζ]] = ζ
∣∣
T+
− ζ

∣∣
T−

where e = ∂T+ ∩ ∂T− .

In addition, if ψ = (ψ1, ψ2) and ζ = (ζi,j)1≤i,j≤2 are vector–valued and matrix-valued functions,
respectively, we set the differential operators

curl(ψ) :=


∂ψ1

∂x2
− ∂ψ1

∂x1

∂ψ2

∂x2
− ∂ψ2

∂x1

 and curl(ζ) :=


∂ζ12

∂x1
− ∂ζ11

∂x2

∂ζ22

∂x1
− ∂ζ21

∂x2

 .
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We now introduce the global a posteriori error estimator

θ2 :=
∑
T∈Th

θ2
T + ‖ϕD − ϕh‖21/2,Γ , (3.1)

where θT is the local indicator defined for each T ∈ Th by

θ2
T := ‖µ∇uh − σd

h − (uh ⊗ uh)d‖20,T + ‖divσh + ϕh g‖20,T

+ h2
T ‖div(K∇ϕh) − uh · ∇ϕh‖20,T + h2

T ‖curl
{

(σh + uh ⊗ uh)d
}
‖20,T

+
∑

e∈Eh,T (Ω)

he

{
‖[[(σh + uh ⊗ uh)d s]]‖20,e + ‖[[K∇ϕh · ν]]‖20,e

}
+

∑
e∈Eh,T (Γ)

{
‖uD − uh‖20,e + he ‖λh̃ + K∇ϕh · ν‖20,e

}
+

∑
e∈Eh,T (Γ)

he

∥∥∥(σh + uh ⊗ uh)ds − µ
duD
ds

∥∥∥2

0,e
.

(3.2)

From the strong form of the model (cf. (2.1)) and the regularity of the continuous weak solution, the
residual character of each term defining θT becomes clear. In particular, observe in advance that the
last term in the expression (3.2) requires the trace uD to be more regular. This assumption will be
stated and clarified below in Lemmas 3.1 and 3.10. Note further that θ is not fully local due to the last
term in (3.1). However, we show in Section 4 that θ induces another fully computable estimator more
useful for practical purposes since it particularly enables us to define an associate adaptive algorithm.

3.2 Reliability

We aim in this Section to show that θ is a reliable a posteriori error estimator (cf. Theorem 3.1 below),
for which we follow a similar procedure to the one employed in [2, Section 3.2]. More precisely, in
Section 3.2.1 below we derive preliminary estimates for the approximation errors ‖(σ,u) − (σh,uh)‖
and ‖(ϕ, λ) − (ϕh, λh̃)‖, separately, and combine them with a small data assumption to provide a first
upper bound for the total error in terms of the dual norms of residual–type expressions that arise in
our analysis. These latter will be subsequently estimated in Section 3.2.2, and we will have shown
then the following result (see the end of this section).

Theorem 3.1 Let (σ,u, ϕ, λ) and (σh,uh, ϕh, λh̃) be the unique solutions to (2.4) and (2.14), respec-
tively. Then, there exists a positive constant Crel, depending on physical and stabilization parameters,
but independent of h and h̃, such that

‖(σ,u, ϕ, λ) − (σh,uh, ϕh, λh̃)‖ ≤ Crel θ , (3.3)

provided uD ∈ H1(Γ) and the data are small enough (cf. Lemma 3.4).

3.2.1 Preliminary error estimates

Lemma 3.2 There exists a positive constant C > 0, independent of h, such that

‖(σ,u) − (σh,uh)‖ ≤ C
{
‖µ∇uh − (uh ⊗ uh)d − σd

h‖0,Ω + ‖div(σh) + ϕh g‖0,Ω

+ ‖uD − uh‖0,Γ + ‖g‖∞,Ω ‖ϕ− ϕh‖1,Ω + ‖uh‖1,Ω ‖u− uh‖1,Ω +
∥∥Rf

∥∥} , (3.4)
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where Rf : H0(div; Ω) −→ R is the linear and bounded functional defined for each τ ∈ H0(div; Ω) by

Rf(τ ) := Fϕh
(τ ,0) + FD(τ ,0) − A((σh,uh), (τ ,0)) − Buh

((σh,uh), (τ ,0)) , (3.5)

and A, Buh
, Fϕh

and FD are the forms defined according to (2.5)-(2.6) and (2.8).

Proof. Since (u, 0) ∈ W (r), it follows from [8, Lemma 3.3] that the bilinear form
(
A + Bu

)
is

uniformly coercive on H0(div; Ω)×H1(Ω) with a positive constant α(Ω)/2 that depends on physical
and stabilization parameters but is independent of u. As a consequence of it, the following global
inf–sup condition holds

sup
(τ ,v)∈H0(div;Ω)×H1(Ω)

(τ ,v)6=0

(
A + Bu

)
( (ζ,w) , (τ ,v) )

‖(τ ,v)‖
≥ α(Ω)

2
‖(ζ,w)‖

for all (ζ,w) ∈ H0(div; Ω)×H1(Ω). In particular, taking (ζ,w) = (σ,u) − (σh,uh) in the foregoing
inequality, using the first equation of (2.4), and adding and subtracting ϕh and uh in the forms Fϕ
and Bu, respectively, we find that

α(Ω)

2
‖(σ,u) − (σh,uh)‖ ≤ sup

(τ ,v)∈H0(div;Ω)×H1(Ω)
(τ ,v) 6=0

Qf(τ ,v) + Rf(τ ) + Sf(v)

‖(τ ,v)‖
,

which yields

‖(σ,u) − (σh,uh)‖ ≤ C
{
‖Qf‖ + ‖Rf‖ + ‖Sf‖

}
, (3.6)

where Rf ∈ H0(div; Ω)′ is already given by (3.5), whereas Qf ∈
(
H0(div; Ω) × H1(Ω)

)′
and Sf ∈

H1(Ω)′ are defined, respectively, as

Qf(τ ,v) := Fϕ−ϕh
(τ ,v) − Bu−uh

((σh,uh), (τ ,v)) ,

and
Sf(v) := Fϕh

(0,v) + FD(0,v) − A((σh,uh), (0,v)) − Buh
((σh,uh), (0,v)) .

Next, according to the definitions of all the forms involved, and applying Cauchy-Schwarz’s inequality,
we readily obtain

‖Qf‖ ≤ (µ+ κ2) ‖g‖∞,Ω ‖ϕ− ϕh‖1,Ω + (1 + κ1) ‖uh‖1,Ω ‖u− uh‖1,Ω (3.7)

and

‖Sf‖ ≤ κ1 ‖µ∇uh − (uh ⊗ uh)d − σd
h‖0,Ω + µ ‖div(σh) + ϕh g‖0,Ω + κ3 ‖uD − uh‖0,Γ . (3.8)

In this way, replacing (3.7) and (3.8) back into (3.6), we arrive at the required estimate (3.4). �

We remark here that the right-hand side of (3.4) depends on the expression ‖u− uh‖1,Ω, which is
part of the total error that is being estimated. This evident vicious circle will be solved later on by
assuming sufficiently small data.

We now derive an analogous preliminary bound for the error associated to the heat variables.
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Lemma 3.3 There exists a positive constant C > 0, independent of h and h̃, such that

‖(ϕ, λ) − (ϕh, λh̃)‖ ≤ C
{
‖ϕ‖1,Ω ‖u− uh‖1,Ω + ‖uh‖1,Ω ‖ϕ− ϕh‖1,Ω

+ ‖ϕD − ϕh‖1/2,Γ +
∥∥Rh

∥∥} . (3.9)

where Rh : H1(Ω) −→ R is the linear and bounded functional defined as

Rh(ψ) = Fuh,ϕh
(ψ) − a(ϕh, ψ) − b(ψ, λ

h̃
) (3.10)

with a, b and Fuh,ϕh
given by (2.7) and (2.9).

Proof. We proceed similarly to the proof of Lemma 3.2. Indeed, we first observe that the well–
posedness of the heat uncoupled problem (second and third equations in (2.4)) and the corresponding
continuous dependence result (cf. [8, Lemma 3.4]) imply the existence of a positive constant C such
that the following global inf-sup condition holds

sup
(ψ,ξ)∈H1(Ω)×H−1/2(Γ)

(ψ,ξ) 6=0

a(φ, ψ) + b(ψ, η) + b(φ, ξ)

‖(ψ, ξ)‖
≥ C ‖(φ, η)‖ ∀ (ψ, η) ∈ H1(Ω)×H−1/2(Γ) .

Then, applying the foregoing inequality to the error (φ, η) = (ϕ, λ) − (ϕh, λh̃), using the second and
third equations of (2.4), and adding and subtracting uh and ϕh within the definition of the functional
Fu,ϕ, we deduce that

C ‖(ϕ, λ) − (ϕh, λh̃)‖ ≤ sup
(ψ,ξ)∈H1(Ω)×H−1/2(Γ)

(ψ,ξ) 6=0

Qh(ψ) + Rh(ψ) + Sh(ξ)
‖(ψ, ξ)‖

,

which gives

‖(ϕ, λ) − (ϕh, λh̃)‖ ≤ C
{
‖Qh‖ + ‖Rh‖ + ‖Sh‖

}
, (3.11)

where Rh ∈ H1(Ω)′ has already been defined (cf. (3.10)), and Qh ∈ H1(Ω)′ and Sh ∈ H−1/2(Γ)′ are
given, respectively, by

Qh(ψ) := Fu−uh,ϕ(ψ) + Fuh,ϕ−ϕh
(ψ) ,

and
Sh(ξ) := G(ξ) − b(ϕh, ξ) = 〈ξ, ϕD − ϕh〉Γ .

Then, applying Hölder’s inequality, the continuity of the injection H1(Ω) ↪→ L4(Ω) and its vector
version, and the duality pairing between H−1/2(Γ) and H1/2(Γ), we obtain

‖Qh‖ ≤ C
{
‖ϕ‖1,Ω ‖u− uh‖1,Ω + ‖uh‖1,Ω ‖ϕ− ϕh‖1,Ω

}
(3.12)

and
‖Sh‖ ≤ ‖ϕD − ϕh‖1/2,Γ . (3.13)

Finally, replacing (3.12) and (3.13) back into (3.11), we get (3.9) and end the proof. �

With the help of the previous Lemmas we derive now a preliminary upper bound for the total error.
Indeed, from (3.4) and (3.9), we easily find
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‖(σ,u, ϕ, λ) − (σh,uh, ϕh, λh̃)‖ ≤ C
{
‖µ∇uh − (uh ⊗ uh)d − σd

h‖0,Ω

+ ‖divσh + ϕh g‖0,Ω + ‖uD − uh‖0,Γ + ‖ϕD − ϕh‖1/2,Γ +
∥∥Rf

∥∥ +
∥∥Rh

∥∥
+
(
‖g‖∞,Ω + 2 ‖uh‖1,Ω + ‖ϕ‖1,Ω

)
‖(σ,u, ϕ, λ) − (σh,uh, ϕh, λh̃)‖

}
.

Then, using the a priori bounds for uh and ϕ in accordance to (2.11) and (2.15), respectively, we
deduce that the factor multiplying the total error at the right–hand side of the latter expression can
be bounded by data as

‖g‖∞,Ω + 2 ‖uh‖1,Ω + ‖ϕ‖1,Ω

≤ (r + 1) (2 + rcS + c
S̃
)
{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖ϕD‖

}
:= C(g,uD, ϕD) .

(3.14)

In light of this, we immediately state the following result.

Lemma 3.4 Assume that the data is sufficiently small so that the constant C(g,uD, ϕD) given by
(3.14) is such that C(g,uD, ϕD) ≤ 1/2. Then, the total error satisfies

‖(σ,u, ϕ, λ) − (σh,uh, ϕh, λh̃)‖ ≤ C
{
‖µ∇uh − (uh ⊗ uh)d − σd

h‖0,Ω

+ ‖divσh + ϕh g‖0,Ω + ‖uD − uh‖0,Γ + ‖ϕh − ϕD‖1/2,Γ +
∥∥Rf

∥∥ +
∥∥Rh

∥∥} ,
where C depends on µ and κi, i ∈ {1, 2, 3}, but is independent of h and h̃ (cf. Lemmas 3.2 and 3.3),
and Rf and Rh are the linear and bounded functionals defined by (3.5) and (3.10), respectively.

According to this result, and in order to complete the derivation of our a posteriori error estimator
θ, we now need to obtain suitable upper bounds for the norms of the functionals Rf and Rh (note
here that the choice of the superscripts f and h have been motivated by the words fluid and heat).
Incidentally, from the discrete problem (2.14) we first observe that

Rf(τ h) = 0 ∀ τ h ∈ Hσh , and Rh(ψh) = 0 ∀ψh ∈ Hϕ
h ,

which essentially says that these functionals are the corresponding residuals in the spaces H0(div; Ω)
and H1(Ω), respectively, relative to the numerical approximation driven by our augmented mixed–
primal scheme. As a result, we certainly can write∥∥Rf

∥∥ := sup
τ∈H0(div;Ω)

τ 6=0

Rf(τ − τRh )

‖τ‖div,Ω
, and

∥∥Rh
∥∥ := sup

ψ∈H1(Ω)
ψ 6=0

Rh(ψ − ψRh )

‖ψ‖1,Ω
, (3.15)

where τRh ∈ Hσh and ψRh ∈ Hϕ
h are going to be suitably chosen later on.

3.2.2 Estimation of ‖Rf‖ and ‖Rh‖

This section is devoted to the estimation of ‖Rf‖ and ‖Rh‖ by using some techniques from previous
works [2, 21, 18, 16, 19, 20]. In particular, a stable Helmholtz decomposition of the space H0(div; Ω),
the classical properties of the usual Raviart–Thomas interpolator, and the approximation properties
of the Clément interpolation operator will be employed for this purpose. We begin recalling some of
the required properties.
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Lemma 3.5 ([4] Section III.3.3, [14] Section 3.4.4, [31] Lemma 1.130) Given an integer k ≥
0, we let Πk

h : H1(Ω) −→ RTk(Th) be the usual Raviart–Thomas interpolation operator. Then,

i) for each ζ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1, there holds

‖ζ − Πk
h(ζ)‖0,T ≤ C hmT |ζ|m,T ∀T ∈ Th . (3.16a)

ii) for each ζ ∈ H1(Ω) such that div(ζ) ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, there holds

‖div(ζ − Πk
h(ζ))‖0,T ≤ C hmT |div ζ|m,T ∀T ∈ Th . (3.16b)

iii) for each ζ ∈ H1(Ω) there holds

‖ζ ν − Πk
h(ζ)ν‖0,e ≤ C h1/2

e |ζ|1,Te , (3.16c)

where Te is the element of Th having e as an edge.

Lemma 3.6 ([5]) Let Xh =
{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ P1(T ) ∀T ∈ Th

}
, and let Ih : H1(Ω) → Xh be

the usual Clément interpolation operator. Then, there holds

‖v − Ihv‖0,T ≤ C hT |v|1,∆(T ) ∀T ∈ Th , and ‖v − Ihv‖0,e ≤ C h1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh ,

where ∆(T ) and ∆(e) are the unions of all elements intersecting with T and e, respectively.

The following result provides a stable Helmholtz decomposition of the space H0(div; Ω). Its proof
can be found in [21, Lemma 3.7].

Lemma 3.7 For each τ ∈ H0(div; Ω) there exists z ∈ H2(Ω) and φ ∈ H1(Ω) such that

τ = ∇z + curl(φ) in Ω , and ‖z‖2,Ω + ‖φ‖1,Ω ≤ C ‖τ‖div,Ω . (3.17)

As a consequence of Lemma 3.7, we can rewrite Rf as follows.

Lemma 3.8 Given τ ∈ H0(div; Ω), let (z,φ) ∈ H2(Ω)×H1(Ω) be the components of its associated
Helmholtz decomposition (cf. Lemma 3.7). Then there holds

Rf(τ ) = Rf
1(∇z) + Rf

2(curl(φ)) , (3.18)

where

Rf
1(∇z) =

∫
Ω

(
µ∇uh − σd

h − (uh ⊗ uh)d
)

: ∇z

− κ2

∫
Ω

(div(σh) + ϕh g) · div(∇z) + µ〈∇z ν,uD − uh〉Γ ,
(3.19)

and

Rf
2(curl(φ)) := −

∫
Ω

(
σh + (uh ⊗ uh)

)d
: curl(φ) + µ 〈 curl(φ)ν ,uD 〉Γ . (3.20)
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Proof. Replacing τ = ∇z + curl(φ) in the definition of Rf (cf. (3.5)), using there that div curl = 0,
and then integrating by parts the first two terms on the right hand side below, we get

Rf(τ ) = µ 〈 (∇z)ν ,uD 〉Γ − µ

∫
Ω
uh · div(∇z)−

∫
Ω

(
σh + (uh ⊗ uh)

)d
: ∇z

−κ2

∫
Ω

(div(σh) + ϕh g) · div(∇z ) −
∫

Ω

(
σh + (uh ⊗ uh)

)d
: curl(φ) + µ 〈 curl(φ)ν ,uD 〉Γ

=

∫
Ω

(
µ∇uh − σd

h − (uh ⊗ uh)d
)

: ∇z − κ2

∫
Ω

(div(σh) + ϕh g) · div(∇z )

+ µ〈∇z ν,uD − uh〉Γ −
∫

Ω

(
σh + (uh ⊗ uh)

)d
: curl(φ) + µ 〈 curl(φ)ν ,uD 〉Γ ,

which gives (3.18) with Rf
1(∇z) and Rf

2(curl(φ)) defined by (3.19) and (3.20). �

As pointed out at the end of the previous section, (3.15) suggests that estimating ‖Rf‖ requires to
use a suitable discrete element τRh . In turn, the foregoing lemma further says that this estimation can
be performed by bounding the functionalsRf

i , i ∈ {1, 2}. These facts and the Helmholtz decomposition
provided by Lemma 3.7 clearly induce then to define, for each τ ∈ H0(div; Ω),

τRh := Πk
h(∇z) + curl(Ihφ) + c I , where c ∈ R is such that

∫
Ω

tr(τ h) = 0 , (3.21)

Πk
h is the Raviart–Thomas interpolant operator (cf. Lemma 3.5), and Ihφ is the componentwise

Clément interpolant of φ (cf. Lemma 3.6). Observe also from the definition of Rf in (3.5), and the
compatibility condition (1.5) that Rf(c I) = 0, so that according to the identity (3.18), it follows

Rf(τ − τRh ) = Rf
1(∇z −Πk

h(∇z)) + Rf
2(curl(φ− Ihφ)) , (3.22)

which shows that the estimation of ‖Rf‖ (cf. (3.15)) relies now on the well–known approximation
properties of the Raviart-Thomas and Clément interpolants, and this in turn justifies why we propose
to use the Helmholtz decomposition (3.17) and its so-called discrete version (3.21).

Thus, we focus next on estimating Rf
i given by (3.19)–(3.20), separately. Regarding the expression

Rf
1 we have the following result.

Lemma 3.9 There exists a positive constant C, independent of h, such that

∣∣Rf
1(∇z −Πk

h(∇z))
∣∣ ≤ C

{ ∑
T∈Th

h2
T ‖µ∇uh − σd

h − (uh ⊗ uh)d‖20,T

+
∑
T∈Th

‖divσh + ϕh g‖20,T +
∑

e∈Eh(Γ)

he ‖uD − uh‖20,e

}1/2

‖τ‖div,Ω .
(3.23)

Proof. From the Cauchy-Schwarz inequality and the approximation property (3.16a) with m = 1, we
have on one hand that∣∣∣∣∫

T

(
µ∇uh − σd

h − (uh ⊗ uh)d
)

: (∇z − Πk
h(∇z) )

∣∣∣∣
≤ C hT

∥∥µ∇uh − σd
h − (uh ⊗ uh)d

∥∥
0,T
|∇z|1,T .

and from (3.16b) with ζ = ∇z and m = 0, and recalling that div∇z = div τ we also find that∣∣∣κ2

∫
T

(divσh + ϕh g) · div(∇z − Πk
h(∇z) )

∣∣∣ ≤ C κ2 ‖divσh + ϕh g‖0,T ‖div τ‖0,T .
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In turn, thanks to (3.16c) we readily obtain

∣∣µ〈∇z ν − Πk
h(∇z)ν,uD − uh〉Γ

∣∣ ≤ C

{ ∑
e∈Eh(Γ)

he ‖uD − uh‖20,e

}1/2

|∇z|1,Ω .

In this way, combining these upper bounds in the definition of Rf
1 along with the Cauchy-Schwarz

inequality, the regularity of the mesh Th, and the fact that ‖∇z‖1,Ω ≤ ‖z‖2,Ω ≤ C ‖τ‖div,Ω (cf.
(3.17)), yields (3.23) and finishes the proof. �

Now we use similar arguments to those in [21, Lemma 3.9], [18, Lemma 6], [19, Lemma 4.3] and
[20, Lemma 4.3] for estimating Rf

2, which requires an additional regularity of the trace uD.

Lemma 3.10 Assume that uD ∈ H1(Γ). Then, there exists a positive constant C > 0, independent
of h, such that ∣∣Rf

2(curl(φ− Ihφ))
∣∣ ≤ C

{ ∑
T∈Th

h2
T ‖curl

(
(σh + uh ⊗ uh)d

)
‖20,T

+
∑

e∈Eh(Ω)

he ‖ [[(σh + uh ⊗ uh)d s]]‖20,e

+
∑

e∈Eh(Γ)

he

∥∥∥(σh + uh ⊗ uh)d s − µ
duD
ds

∥∥∥2

0,e

}1/2

‖τ‖div,Ω .

(3.24)

Proof. Performing a local integration by parts on each element, and applying an integration–by–parts
formula on the boundary (see [21, Lemma 3.8]), which makes use of the fact that ∇uD ∈ L2(Γ), we
obtain

Rf
2(curl(φ− Ihφ)) = −

∑
T∈Th

∫
T

(
σh + uh ⊗ uh

)d
: curl(φ− Ihφ) + µ〈 curl(φ− Ihφ)ν ,uD 〉Γ

=
∑
T∈Th

{
−
∫
T

curl
(
(σh + uh ⊗ uh)d

)
· (φ− Ihφ) +

∑
e⊆∂T

∫
e
(σh + uh ⊗ uh)d s · (φ− Ihφ)

}
−µ

∑
e∈Eh,T (Γ)

∫
e

duD
ds
· (φ− Ihφ)

= −
∑
T∈Th

∫
T

curl
(
(σh + uh ⊗ uh)d

)
· (φ− Ihφ) +

∑
e∈Eh(Ω)

∫
e

[[(σh + uh ⊗ uh)d s]] · (φ− Ihφ)

+
∑

e∈Eh(Γ)

∫
e

{
(σh + uh ⊗ uh)d s − µ

duD
ds

}
· (φ− Ihφ)

≤
∑
T∈Th

hT ‖curl
(
(σh + uh ⊗ uh)d

)
‖0,T ‖φ‖1,∆(T ) +

{ ∑
e∈Eh(Ω)

h1/2
e

∥∥[[(σh + uh ⊗ uh)d s]]
∥∥

0,e

+
∑

e∈Eh(Γ)

h1/2
e

∥∥∥(σh + uh ⊗ uh)d s − µ
duD
ds

∥∥∥
0,e

}
‖φ‖1,∆(e) ,

where the last statement follows by applying the Cauchy–Schwarz inequality, and using the local
approximation properties of the Clément interpolant from Lemma 3.6. Finally, the estimate (3.24) is
a consequence of the Cauchy-Schwarz inequality, the shape–regularity of the mesh and the fact that
‖φ‖1,Ω ≤ C‖τ‖div,Ω in accordance to (3.17). �

We are in position to state the corresponding estimate for ‖Rf‖.
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Lemma 3.11 There exists a positive constant C > 0, independent of h, such that

‖Rf‖ ≤ C

{ ∑
T∈Th

h2
T ‖µ∇uh − σd

h − (uh ⊗ uh)d‖20,T + κ2
2 ‖divσh + ϕh g‖20,T

+ h2
T ‖curl

(
(σh + uh ⊗ uh)d

)
‖20,T +

∑
e∈Eh(Ω)

he ‖ [[(σh + uh ⊗ uh)d s
)
]]‖20,e

+
∑

e∈Eh(Γ)

he

{∥∥∥(σh + uh ⊗ uh)d s − µ
duD
ds

∥∥∥2

0,e
+ ‖uD − uh‖20,e

}}1/2

.

(3.25)

Proof. It suffices to replace (3.22) into the first expression of (3.15), and then use there the estimates
(3.23) and (3.24). We omit further details. �

At this point it is noteworthy to mention that differently from previous works (see, e.g. [2, 18,
16, 19, 20]), an integration–by–parts formula is employed in Lemma 3.8 to derive the residual term
corresponding to the constitutive relation. The reason for this alternative procedure is elaborated
next. Without integrating by parts, observe that the ∇z–dependent expression involved in (3.22)
becomes

Rf
1(∇z −Πk

h(∇z)) = µ 〈 (∇z − Πk
h(∇z) )ν ,uD 〉Γ − µ

∫
Ω
uh · div(∇z − Πk

h(∇z) )

−
∫

Ω

(
σh + (uh ⊗ uh)

)d
: (∇z − Πk

h(∇z) )

− κ2

∫
Ω

(div(σh) + ϕh g) · div(∇z − Πk
h(∇z) ) .

(3.26)

From the commuting property of the Raviart–Thomas spaces we have that div ◦ Πk
h = Pkh ◦ div,

where Pkh is the orthogonal projection from L2(Ω) onto the polynomials of degree ≤ k (see [14, Lemma
3.7] for instance), thus since div(∇z) = div(τ ) ∈ L2(Ω), we get on the one hand that∫

Ω
uh · div(∇z − Πk

h(∇z) ) =
∑
T∈Th

∫
T
uh · ( div(τ ) − Pkh(div(τ )) ) , (3.27)

and so the second term at the right–hand side of (3.26) would vanish if, and only if, uh
∣∣
T
∈ Pk(T ) for

all T ∈ Th. In turn, under this condition ∇uh
∣∣
T
∈ Pk−1(T ) for all T ∈ Th and uh

∣∣
e
∈ Pk(e) on each

e ∈ Eh, and from the characterization of the Raviart–Thomas projector we also would have∫
e
uh : (∇z − Πk

h(∇z) ) = 0 ∀ e ∈ Eh and

∫
T
∇uh : (∇z − Πk

h(∇z) ) = 0 ∀T ∈ Th . (3.28)

We then could suitably combine these latter expressions with the first and third terms at the right–
hand side of (3.26) so as to get the residuals uD − uh on Γ and µ∇uh − σd

h − (uh ⊗ uh)d in Ω.
However, recall that we approximate the velocity components by Lagrange elements of degree k + 1
(cf. (2.12)) in order to achieve optimal–order a priori error estimates (cf. Section 2.3). Consequently,
this leads us to preserve piecewise polynomials of degree k + 1 for u and to increase the order for the
Raviart–Thomas space instead from k to k + 1 (cf. (2.12)), so that (3.27) and (3.28) hold, with Πk+1

h

and Pk+1
h in place of Πk

h and Pkh , respectively. Nevertheless, Lemma 3.8 shows that this additional
requirement is unnecessary.

We finally focus on estimating ‖Rh‖.
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Lemma 3.12 There exists a positive constant C > 0, independent of h and h̃, such that

‖Rh‖ ≤ C

{ ∑
T∈Th

h2
T ‖div(K∇ϕh) − uh · ∇ϕh‖20,T

+
∑

e∈Eh(Ω)

he ‖ [[K∇ϕh · ν]]‖20,e +
∑

e∈Eh(Γ)

he ‖λh̃ + K∇ϕh · ν‖20,e

}1/2 (3.29)

Proof. It basically follows by defining ψRh = Ihψ in the second expression of (3.15), that is, as the
respective Clemént interpolant of ψ in H1(Ω). Indeed, we first observe from (3.10) and the definitions
of the forms involved, that

Rh(ψ − ψRh ) = −
∫

Ω

(
uh · ∇ϕh

)
(ψ − ψRh ) −

∫
Ω
K∇ϕh · ∇(ψ − ψRh ) − 〈λ

h̃
, ψ − ψRh 〉Γ ,

which, after performing an element–wise integration by parts, becomes

Rh(ψ − ψRh ) =

∫
Ω

(
div(K∇ϕh) − uh · ∇ϕh

)
(ψ − ψRh )

+
∑

e∈Eh(Ω)

∫
e

[[K∇ϕh · ν]] (ψ − ψRh ) −
∑

e∈Eh(Γ)

∫
e

(
λ
h̃

+ K∇ϕh · ν
)

(ψ − ψRh ) .

Next, applying Cauchy-Schwarz’s inequality and the approximation properties of the Clemént inter-
polator (cf. Lemma 3.6), we readily deduce the existence of a constant C > 0, such that

∣∣Rh(ψ − ψRh )
∣∣ ≤ C

{ ∑
T∈Th

h2
T ‖div(K∇ϕh) − uh · ∇ϕh‖20,T

+
∑

e∈Eh(Ω)

he ‖[[K∇ϕh · ν]]‖20,e +
∑

e∈Eh(Γ)

he ‖λh̃ + K∇ϕh · ν‖20,e

}1/2

‖ψ‖1,Ω ,

which, replaced back into (3.15), leads to (3.29) and completes the proof. �

The reliability of the estimator θ (cf. Lemma 3.1) essentially follows from Lemmas 3.4, 3.11 and 3.12.
In this regard, we remark that the terms h2

T ‖µ∇uh − σd
h − (uh⊗uh)d‖20,T and he ‖uD − uh‖20,e from

the estimate (3.25) are not included in the definition of θ2
T since they are dominated by the expressions

‖µ∇uh−σd
h− (uh⊗uh)d‖0,T and ‖uD −uh‖20,e, respectively, which already appear in the preliminary

upper bound (3.4). Hence, an application of the Cauchy-Schwarz inequality immediately gives (3.3),
with Crel > 0, independent of h and h̃, according to the aforementioned lemmas.

3.3 Efficiency

The core of this section is to show the following result.

Theorem 3.13 Let (σ,u, ϕ, λ) and (σh,uh, ϕh, λh̃) be the unique solutions to problems (2.4) and
(2.14), respectively, and assume that K and uD are piecewise polynomials, uD ∈ H1(Γ), the partition
on Γ inherited from Th is quasi-uniform, and each edge of Eh(Γ) is contained in one of the elements
of the independent partition of Γ defining Hλ

h̃
(cf. (2.13)). Then, there exists a positive constant Ceff ,

depending on physical and stabilization parameters, but independent of h and h̃, such that

Ceff θ ≤ ‖(σ,u, ϕ, λ) − (σh,uh, ϕh, λh̃)‖ . (3.30)
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We first notice that if our problem were linear, establishing (3.30) would basically reduce to pre-
viously deriving upper bounds, depending on the local exact errors, for each one of the local terms
defining θ (cf. (3.1)–(3.2)) separately. In the present case, however, and because of the nonlinear
character of our model, the above is only partially achieved (as we show later one), so that we mainly
concentrate on obtaining the global efficiency estimates, as indeed is required by the inequality (3.30).
Whenever some kind of local efficiency estimate is also possible, we make the corresponding remark
below. In this regard, we mention in advance that only one of the local efficiency estimates to be
specified in what follows is expressed in terms of the natural norms for the unknowns involved (cf.
(3.37)). The rest of them arises by using local L4-norms of the error u− uh instead of the expected
local H1-norm.

We begin with the corresponding estimates for

‖ϕh − ϕD‖1/2,Γ , ‖uD − uh‖0,Γ , ‖µ∇uh − σd
h − (uh ⊗ uh)d‖0,Ω and ‖divσh + ϕh g‖0,Ω .

Lemma 3.14 There exists C > 0, independent of h and h̃, such that

‖ϕD − ϕh‖21/2,Γ + ‖uD − uh‖20,Γ ≤ C ‖(u, ϕ) − (uh, ϕh)‖2 , (3.31)

and

‖µ∇uh − σd
h − (uh ⊗ uh)d‖20,Ω + ‖divσh + ϕh g‖20,Ω ≤ C ‖(σ,u, ϕ) − (σh,uh, ϕh)‖2 . (3.32)

Proof. Since ϕ|Γ = ϕD and u|Γ = uD, the trace inequality immediately gives

‖ϕD − ϕh‖21/2,Γ = ‖ϕ− ϕh‖21/2,Γ ≤ C ‖ϕ− ϕh‖21,Ω ,

and
‖uD − uh‖20,Γ = ‖u− uh‖20,Γ ≤ C ‖u− uh‖21,Ω ,

which proves (3.31). In turn, using that µ∇u − σd − (u ⊗ u)d = 0 in Ω, we find by manipulating
terms that

‖µ∇uh − σd
h − (uh ⊗ uh)d‖20,Ω = ‖µ∇(uh − u) + (σ − σh)d + (u+ uh)d ⊗ (u− uh)d‖20,Ω

≤ 4
{
µ2 ‖u− uh‖21,Ω + ‖σ − σh‖2div,Ω + ‖(u+ uh)⊗ (u− uh)‖20,Ω

}
.

(3.33)

Then, by applying Hölder’s inequality, using the continuous injection H1(Ω) ↪→ L4(Ω), and bounding
‖u‖1,Ω and ‖uh‖1,Ω by r (see at the end of Sections 2.2 and 2.3), we find

‖(u+ uh)⊗ (u− uh)‖0,Ω ≤ ‖u+ uh‖L4(Ω) ‖u− uh‖L4(Ω) ≤ C ‖u− uh‖1,Ω , (3.34)

which, replaced back into (3.33), yields

‖µ∇uh − σd
h − (uh ⊗ uh)d‖20,Ω ≤ C

{
‖σ − σh‖2div,Ω + ‖u− uh‖21,Ω

}
. (3.35)

Likewise, since divσ + ϕ g = 0 in Ω, we readily deduce that

‖divσh + ϕh g‖20,Ω = ‖div (σ − σh) + (ϕ− ϕh) g‖20,Ω

≤ 2
(

1 + ‖g‖2∞,Ω
){
‖σ − σh‖2div,Ω + ‖ϕ− ϕh‖21,Ω

}
,

(3.36)
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and hence, the estimate (3.32) follows straightforwardly from (3.35) and (3.36). �

At this point we observe that, proceeding as in (3.33) and (3.34) with T ∈ Th instead of Ω, and
bounding ‖u‖L4(T ) and ‖uh‖L4(T ) by ‖u‖L4(Ω) and ‖uh‖L4(Ω), respectively, and then both by a constant
times r, we arrive at the local estimate

‖µ∇uh − σd
h − (uh ⊗ uh)d‖20,T ≤ C(µ, r)

{
‖u− uh‖21,T + ‖σ − σh‖2div,T + ‖u− uh‖2L4(T )

}
,

where C(µ, r) is a positive constant depending on µ and r. In turn, we readily obtain, analogously to
(3.36), but with T ∈ Th instead of Ω, that

‖divσh + ϕh g‖20,T ≤ 2
(

1 + ‖g‖2∞,T
){
‖σ − σh‖2div,T + ‖ϕ− ϕh‖21,T

}
. (3.37)

Throughout the rest of this section, for each e ∈ Eh(Ω) we let ωe be the union of the two elements
of Th having e as an edge. The following lemma deals with the remaining terms associated only to the
fluid variables.

Lemma 3.15 There exists C > 0, independent of h, such that∑
T∈Th

h2
T ‖curl

(
(σh + uh ⊗ uh)d

)
‖20,T +

∑
e∈Eh(Ω)

he ‖ [[(σh + uh ⊗ uh)d s]]‖20,e

≤ C ‖(σ,u) − (σh,uh)‖2 .
(3.38)

Additionally, if uD is piecewise polynomial, there holds∑
e∈Eh(Γ)

he

∥∥∥(σh + uh ⊗ uh)ds − µ
duD
ds

∥∥∥2

0,e
≤ C ‖(σ,u) − (σh,uh)‖2 . (3.39)

Proof. From [19, Lemmas 4.9 and 4.10] we know that for each piecewise polynomial ζh ∈ L2(Ω), and
for each ζ ∈ L2(Ω) with curl(ζ) = 0 in Ω, there hold

‖curl(ζh)‖0,T ≤ C h−1
T ‖ζ − ζh‖0,T ∀T ∈ Th

and
‖[[ζh s]]‖0,e ≤ C h−1/2

e ‖ζ − ζh‖0,ωe ∀ e ∈ Eh(Ω) .

Hence, applying the foregoing inequalities with ζh := σd
h + (uh ⊗ uh)d and ζ := σd + (u⊗ u)d =

µ∇u (whose curl clearly vanishes), we readily obtain

‖curl
(
(σh + uh ⊗ uh)d

)
‖20,T ≤ Ch−2

T ‖(σ − σh)d + (u+ uh)d ⊗ (u− uh)d‖20,T

≤ Ch−2
T

{
‖σ − σh‖20,T + ‖(u+ uh)⊗ (u− uh)‖20,T

}
,

(3.40)

and also

‖[[(σh + uh ⊗ uh)d s]]‖20,e ≤ Ch−1
e

{
‖σ − σh‖20,ωe

+ ‖(u+ uh)⊗ (u− uh)‖20,ωe

}
. (3.41)

Then, adding on T ∈ Th and e ∈ Eh(Ω), respectively, we find∑
T∈Th

h2
T ‖curl

(
(σh + uh ⊗ uh)d

)
‖20,T +

∑
e∈Eh(Ω)

he ‖[[(σh + uh ⊗ uh)d s]]‖20,e

≤ C
{
‖σ − σh‖2div,Ω + ‖(u+ uh)⊗ (u− uh)‖20,Ω

}
,
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which, together with the estimate (3.34), yields (3.38). Likewise, (3.39) follows from a straightforward

application of [19, Lemma 4.15] with σd
h + (uh⊗uh)d instead of

1

2µ
σd
h, and using that

duD
ds

= ∇us =

σd
h + (uh ⊗ uh)d s on Γ, which gives for each e in Eh(Γ)∥∥∥(σh + uh ⊗ uh)ds − µ

duD
ds

∥∥∥2

0,e
≤ C h−1

e

∥∥∥(σ + u⊗ u)d − (σh + uh ⊗ uh)d
∥∥∥2

0,Te
, (3.42)

where Te is the triangle in Th having e as an edge. The rest of the proof is reduced simply to add on
e ∈ Eh(Γ), to manipulate terms, and to apply again the bound (3.34). �

We point out here that, for simplicity, the derivation of (3.39) in Lemma 3.15 has assumed uD to
be piecewise polynomial. If this is not the case, but uD is sufficiently smooth, then we still could
derive an analogous estimate by using a suitable polynomial approximation of this datum, so that as
a result of it, higher order terms would appear.

Furthermore, from (3.40), (3.41), and (3.42), together with the local version of the first inequality
in (3.34), using again that ‖u‖L4(T ) and ‖uh‖L4(T ) are dominated by a constant times r, we deduce
the local efficiency estimates

h2
T ‖curl

(
(σh + uh ⊗ uh)d

)
‖20,T ≤ C(r)

{
‖σ − σh‖20,T + ‖u− uh‖2L4(T )

}
∀T ∈ Th ,

he ‖[[(σh + uh ⊗ uh)d s]]‖20,e ≤ C(r)
{
‖σ − σh‖20,ωe

+ ‖u− uh‖2L4(ωe)

}
∀ e ∈ Eh(Ω) ,

and

he

∥∥∥(σh + uh ⊗ uh)ds − µ
duD
ds

∥∥∥2

0,e
≤ C(r)

{
‖σ − σh‖20,Te + ‖u− uh‖2L4(Te)

}
∀ e ∈ Eh(Γ) ,

with a constant C(r) depending on r.

Before proceeding with the residual terms related to the heat equation, we first recall the usual
triangle–bubble and edge–bubble functions ψT and ψe defined for each T ∈ Th and e ⊆ ∂T , respectively,
satisfying the properties:

(b.1) ψT ∈ P3(T ) , supp(ψT ) ⊆ T , ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1.

(b.2) ψe ∈ P2(T ) , supp(ψe) ⊆ ωe , ψe = 0 on ∂T \ e , and 0 ≤ ψe ≤ 1.

We then recall the following useful and standard results.

Lemma 3.16 Given an integer k ≥ 0, for each T ∈ Th and e ⊆ ∂T, there exists an extension
operator L : C(e) → C(T ) such that L(p) ∈ Pk(T ) for all p ∈ Pk(e). Moreover, there exist positive
constants c1, c2 and c3, depending only on k and the shape regularity of the triangulation (minimum
angle condition), such that

‖q‖20,T ≤ c1‖ψ1/2
T q‖20,T ∀ q ∈ Pk(T ) (3.43a)

‖p‖20,e ≤ c2‖ψ1/2
e p‖20,e ∀ p ∈ Pk(e) (3.43b)

‖ψe L(p)‖20,T ≤ ‖ψ1/2
e L(p)‖20,T ≤ c3 he‖p‖20,e ∀ p ∈ Pk(e) (3.43c)
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Lemma 3.17 Let k, l,m ∈ N ∪ {0}, such that l ≤ m. Then, there exists c > 0, depending only on k,
l and m and the shape regularity of the triangulation, such that for each T ∈ Th there holds

|q|m,T ≤ chl−mT |q|l,T ∀ q ∈ Pk(T )

We are now ready to derive the final estimates required for stating the efficiency of θ.

Lemma 3.18 Assume that K is piecewise polynomial. Then there exists C > 0, independent of h and
h̃, such that ∑

T∈Th

h2
T ‖div(K∇ϕh) − uh · ∇ϕh ‖20,T ≤ C ‖(u, ϕ) − (uh, ϕh)‖2 . (3.44)

Proof. Given T ∈ Th, we define the local polynomial

χT := div(K∇ϕh) − uh · ∇ϕh
∣∣
T
.

Thus, applying the upper bound (3.43a), and then integrating by parts, using that supp(ψT ) ⊆ T
according to (b.1) above, we find that

‖χT ‖20,T ≤ c1 ‖ψ1/2
T χT ‖20,T = c1

∫
T

(
div(K∇ϕh) − uh · ∇ϕh

)
ψT χT

= c1

{
−
∫
T
K∇ϕh · ∇(ψT χT ) −

∫
T

(
uh · ∇ϕh

)
ψT χT

}
.

(3.45)

Next, from the second equation of (2.4) we have that a(ϕ, ψ) + b(ψ, λ) = Fu,ϕ(ψ) for all ψ ∈ H1(Ω),
so that taking in particular ψ = ψT χT , we get∫

T
K∇ϕ · ∇(ψT χT ) +

∫
T

(
u · ∇ϕ

)
ψT χT = 0 , (3.46)

which, combined with (3.45), and applying Hölder’s inequality, yields

‖χT ‖20,T ≤ c1

{ ∫
T
K∇(ϕ− ϕh) · ∇(ψT χT )

+

∫
T

{
(u− uh) · ∇ϕ + uh · ∇(ϕ− ϕh)

}
ψT χT

}
≤ c1

{
‖K‖∞,T |ϕ− ϕh|1,T |ψT χT |1,T

+
(
‖u− uh‖L4(T ) ‖∇ϕ‖0,T + ‖uh‖L4(T ) ‖∇(ϕ− ϕh)‖0,T

)
‖ψT χT ‖L4(T )

}
≤ c1C

{
‖K‖∞,T |ϕ− ϕh|1,T

+ ‖u− uh‖L4(T ) |ϕ|1,T + ‖uh‖L4(T ) |ϕ− ϕh|1,T
}
|ψT χT |1,T ,

(3.47)

where the last inequality makes use of the estimate

‖ψT χT ‖L4(T ) ≤ ‖ψT χT ‖L4(Ω) ≤ C ‖ψT χT ‖1,Ω ≤ C |ψT χT |1,Ω = C|ψT χT |1,T , (3.48)
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which follows from the continuous injection H1(Ω) ↪→ L4(Ω), the fact that supp(ψT ) ⊆ T , and the
usual Poincaré inequality in Ω. Next, using the inverse inequality provided by Lemma 3.17 with m = 1
and l = 0, we have that

|ψT χT |1,T ≤ c h−1
T ‖ψT χT ‖0,T ≤ c h−1

T ‖χT ‖0,T ,

which, replaced back in (3.47), gives

‖χT ‖20,T ≤ C h−1
T

{(
‖K‖∞,T + ‖uh‖L4(T )

)
|ϕ− ϕh|1,T + |ϕ|1,T ‖u− uh‖L4(T )

}
‖χT ‖0,T

and therefore

h2
T ‖χT ‖20,T ≤ C

{(
‖K‖∞,T + ‖uh‖L4(T )

)2
|ϕ− ϕh|21,T + |ϕ|21,T ‖u− uh‖2L4(T )

}
. (3.49)

Now, bounding ‖K‖∞,T and ‖uh‖L4(T ) by ‖K‖∞,Ω and ‖uh‖L4(Ω), respectively, using the continuous
injection H1(Ω) ↪→ L4(Ω), and recalling from the discrete analysis that ‖uh‖1,Ω ≤ r, we deduce that∑

T∈Th

(
‖K‖∞,T + ‖uh‖L4(T )

)2
|ϕ− ϕh|21,T ≤ C

(
‖K‖2∞,Ω + r2

)
|ϕ− ϕh|21,Ω . (3.50)

In turn, bounding one factor |ϕ|1,T by |ϕ|1,Ω, applying the Cauchy-Schwarz inequality to the re-
maining two factors, employing again the aforementioned continuous injection, and recalling from the
continuous analysis that ‖ϕ‖1,Ω ≤ r, we obtain

∑
T∈Th

|ϕ|21,T ‖u− uh‖2L4(T ) ≤ |ϕ|1,Ω

∑
T∈Th

|ϕ|21,T


1/2 ∑

T∈Th

‖u− uh‖4L4(T )


1/2

= |ϕ|21,Ω ‖u− uh‖2L4(Ω) ≤ C r2 ‖u− uh‖21,Ω .

(3.51)

In this way, bearing in mind the early definition of χT , summing up over all T ∈ Th in (3.49), and
utilizing the estimates (3.50) and (3.51), we arrive at (3.44), which ends the proof. �

It is straightforward to see from (3.49) that the local efficiency estimate associated to the previous
lemma becomes

h2
T ‖div(K∇ϕh) − uh · ∇ϕh‖20,T ≤ C(r,K)

{
|ϕ− ϕh|21,T + ‖u− uh‖2L4(T )

}
, (3.52)

where C(r,K) is a positive constant depending on r and ‖K‖∞,Ω.

Lemma 3.19 Assume that K is piecewise polynomial. Then there exists C > 0, independent of h and
h̃, such that ∑

e∈Eh(Ω)

he ‖ [[K∇ϕh · ν]] ‖20,e ≤ C ‖(u, ϕ) − (uh, ϕh)‖2 . (3.53)

Proof. Given e ∈ Eh(Ω), we first define the polynomial

χe := [[K∇ϕh · ν]] on e ,
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and then apply (3.43b) and integrate by parts, to find

‖χe‖20,e ≤ c2 ‖ψ1/2
e χe‖20,e = c2

∫
e

[[K∇ϕh · ν]]ψeχe

= c2

∫
e

[[K∇ϕh · ν]]ψeL(χe) = c2

∑
T⊆ωe

∫
∂T

K∇ϕh · ν ψeL(χe)

= c2

∑
T⊆ωe

{∫
T
K∇ϕh · ∇(ψeL(χe)) +

∫
T

div(K∇ϕh)ψeL(χe)

}
.

(3.54)

Now, because of the same arguments yielding (3.46), but using ψeL(χe) and ωe in place of ψT χT and
T ∈ Th, respectively, we obtain

∑
T ⊆ωe

{∫
T
K∇ϕ · ∇(ψe L(χe)) +

∫
T

(
u · ∇ϕ

)
ψe L(χe)

}
= 0 . (3.55)

Thus, replacing u · ∇ϕ in the foregoing null equation by the identity

u · ∇ϕ = uh · ∇ϕh − (uh − u) · ∇ϕ − uh · ∇(ϕh − ϕ) , (3.56)

and incorporating the resulting expression into (3.54) , we arrive at

‖χe‖20,e ≤ c2

∑
T⊆ωe

{∫
T
K∇(ϕh − ϕ) · ∇(ψeL(χe))

+

∫
T

{
(uh − u) · ∇ϕ + uh · ∇(ϕh − ϕ)

}
ψeL(χe)

+

∫
T

{
div(K∇ϕh) − uh · ∇ϕh

}
ψeL(χe)

}
.

(3.57)

Next, similarly as for the derivation of (3.47), straightforward applications of the Cauchy-Schwarz and
Hölder inequalities yield

‖χe‖20,e ≤ c2

∑
T⊆ωe

{
‖K‖∞,T |ϕ− ϕh|1,T |ψeL(χe)|1,T

+
(
‖u− uh‖L4(T ) |ϕ|1,T + ‖uh‖L4(T ) |ϕ− ϕh|1,T

)
‖ψeL(χe)‖L4(T )

+ ‖div(K∇ϕh) − uh · ∇ϕh‖0,T ‖ψeL(χe)‖0,T

}
.

In this way, utilizing the inverse estimate from Lemma 3.17, the upper bound (3.43c), and the fact
that ‖ψeL(χe)‖L4(T ) ≤ c |ψeL(χe)|1,ωe , whose proof follows similarly to (3.48), we deduce

‖χe‖20,e ≤ C
∑
T⊆ωe

{
h−1
T ‖K‖∞,T |ϕ− ϕh|1,T

+ h−1
T

(
|ϕ|1,T ‖u− uh‖L4(T ) + ‖uh‖L4(T ) |ϕ− ϕh|1,T

)
+ ‖div(K∇ϕh) − uh · ∇ϕh‖0,T

}
h1/2
e ‖χe‖0,e ,

(3.58)
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from which, simple algebraic manipulations give

he ‖χe‖20,e ≤ C
∑
T⊆ωe

{(
‖K‖∞,T + ‖uh‖L4(T )

)2 |ϕ− ϕh|21,T + |ϕ|21,T ‖u− uh‖2L4(T )

+ h2
T ‖div(K∇ϕh) − uh · ∇ϕh‖20,T

}
.

(3.59)

Finally, summing up over all e ∈ Eh(Ω) in (3.59), noting that∑
e∈Eh(Ω)

∑
T⊆ωe

≤ 3
∑
T∈Th

,

and using the previous estimates (3.50), (3.51), and (3.44), we obtain (3.53), which completes the
proof. �

Here we observe from (3.52) and (3.59) that the local efficiency estimate associated to Lemma 3.19
is given by

he ‖ [[K∇ϕh · ν]] ‖20,e ≤ C̃(r,K)
∑
T⊆ωe

{
|ϕ− ϕh|21,T + ‖u− uh‖2L4(T )

}
∀ e ∈ Eh(Ω)

where C̃(r,K) is another positive constant depending on r and ‖K‖∞,Ω.

The remaining term defining θ and involving the Lagrange multiplier is addressed next.

Lemma 3.20 Assume for simplicity that K is piecewise polynomial, that the partition on Γ inherited
from Th is quasi-uniform, and that each edge of Eh(Γ) is contained in one of the elements of the
independent partition of Γ defining Hλ

h̃
(cf. (2.13)). Then, there exists C > 0, independent of h and

h̃, such that ∑
e∈Eh(Γ)

he ‖λh̃ + K∇ϕh · ν‖20,e ≤ C ‖(u, ϕ, λ) − (uh, ϕh, λh̃)‖2 .

Proof. We begin by defining, for each e ∈ Eh(Γ), the polynomial χe := λ
h̃

+ K∇ϕh · ν on e . Note
here that the assumption on the edges of Eh(Γ) insures that χe is indeed a polynomial (and not a
piecewise polynomial). Then, applying (3.43b), denoting by Te the element of Th whose boundary
edge is e, recalling that the edge-bubble function ψe vanishes on ∂Te \ e, and integrating by parts, we
obtain

‖χe‖20,e ≤ c2 ‖ψ1/2
e χe‖20,e = c2

∫
e
(λ
h̃

+ K∇ϕh · ν)ψeχe

= c2

{
〈λ
h̃
, ψe χe〉e +

∫
∂Te

K∇ϕh · ν ψeL(χe)
}

= c2

{
〈λ
h̃
, ψe χe〉e +

∫
Te

K∇ϕh · ∇(ψeL(χe)) +

∫
Te

div(K∇ϕh)ψeL(χe)
}
,

(3.60)

where 〈·, ·〉e stands for the duality pairing between H
−1/2
00 (e) and H

1/2
00 (e). Next, similarly as in the

proofs of the two previous lemmas (cf. (3.46) and (3.55)), we deduce from the second equation of the
continuous formulation (2.4), by taking now ψ = ψe L(χe), that∫

Te

K∇ϕ · ∇(ψe L(χe)) + 〈λ, ψe χe〉e +

∫
Te

(
u · ∇ϕ

)
ψeL(χe) = 0 ,
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which, subtracted from the right hand side of (3.60), and using again the identity (3.56) (as we did
for obtaining (3.57)), yields

‖χe‖20,e ≤ c2

{
〈λ
h̃
− λ, ψe χe〉e +

∫
Te

K∇
(
ϕh − ϕ

)
· ∇(ψeL(χe))

+

∫
Te

{
(uh − u) · ∇ϕ + uh · ∇(ϕh − ϕ)

}
ψeL(χe)

+

∫
Te

{
div(K∇ϕh) − uh · ∇ϕh

}
ψeL(χe)

}
.

(3.61)

In this way, since the three integrals on the right hand side of the foregoing equation look exactly
as those on the right hand side of (3.57), the rest of the analysis aiming to obtain its corresponding
efficiency estimate follows verbatim as we did for (3.57), thus yielding a bound depending on the error
‖(u, ϕ)−(uh, ϕh)‖, in accordance to (3.58) and (3.53). Hence, it only remains now to get the respective
upper bound for the expression defined in terms of 〈λ

h̃
−λ, ψe χe〉e. To this end, and proceeding as in

the proof of [13, Lemma 5.7], we first notice that∑
e∈Eh(Γ)

he 〈λh̃ − λ, ψe χe〉e = 〈λ
h̃
− λ, ψ̃〉Γ ,

where ψ̃ ∈ H1/2(Γ) is the piecewise polynomial defined as ψ̃|e = he ψe χe for each e ∈ Eh(Γ).
Therefore, applying an inverse inequality to ψ̃ (which makes use of the quasi-uniformity assumption
on Γ), and noting that

‖ψ̃‖0,Γ ≤ h1/2

 ∑
e∈Eh(Γ)

he ‖χe‖20,e


1/2

,

we deduce that∣∣∣∣ ∑
e∈Eh(Γ)

he 〈λh̃ − λ, ψe χe〉e
∣∣∣∣ ≤ ‖λ− λh̃‖−1/2,Γ ‖ψ̃‖1/2,Γ ≤ c h−1/2 ‖λ− λ

h̃
‖−1/2,Γ ‖ψ̃‖0,Γ

≤ c ‖λ− λ
h̃
‖−1/2,Γ

 ∑
e∈Eh(Γ)

he ‖χe‖20,e


1/2

,

from which the corresponding component of the efficiency estimate becomes ‖λ − λ
h̃
‖−1/2,Γ, thus

finishing the proof. �

We end this section by remarking that the efficiency of θ (cf. eq. (3.30) in Theorem 3.13) is now a
straightforward consequence of Lemmas 3.14, 3.15, 3.18, 3.19, and 3.20. In turn, we emphasize that
the resulting positive multiplicative constant, denoted by Ceff, is independent of h and h̃.

3.4 Extension to the three–dimensional setting

In this section we explain how to adapt the a posteriori error analysis carried out so far for n = 2 to
the three-dimensional case. In this way, we assume now that the partition Th is a tetrahedral mesh
of Ω, and we still denote by E (resp. Eh(Ω), Eh(Γ), Eh,T (Ω) and Eh,T (Γ)) the set of all the associated
faces (resp. internal faces, and on the boundary), like in the preliminaries introduced at the beginning
of Section 3.
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Additionally, we define the i-th row of the curl operator and the tangential component of matrix–
valued functions ζ = (ζi,j)1≤i,j≤3, respectively as

[ curl(ζ) ]i = curl(ζi,1, ζi,2, ζi,3), and [ ζ × ν ]i = (ζi,1, ζi,2, ζi,3)× ν , for each i = 1, 2, 3,

where as usual

curl(ψ) =
(∂ψ3

∂x2
− ∂ψ2

∂x3
,
∂ψ1

∂x3
− ∂ψ3

∂x1
,
∂ψ2

∂x1
− ∂ψ1

∂x2

)
∀ψ = (ψ1, ψ2, ψ3) .

Then, the local indicator θT defining θ2 :=
∑
T∈Th

θ2
T + ‖ϕh − ϕD‖21/2,Γ , now reads

θ2
T := ‖µ∇uh − σd

h − (uh ⊗ uh)d‖20,T + ‖divσh + ϕh g‖20,T

+ h2
T ‖div(K∇ϕh) − uh · ∇ϕh‖20,T + h2

T ‖curl
(
(σh + uh ⊗ uh)d

)
‖20,T

+
∑

e∈Eh,T (Ω)

{
he ‖[[(σh + uh ⊗ uh)d × ν]]‖20,e + he ‖[[K∇ϕh · ν]]‖20,e

}
+

∑
e∈Eh,T (Γ)

{
‖uD − uh‖20,e + he‖λh̃ + K∇ϕh · ν‖20,e

}
+

∑
e∈Eh,T (Γ)

he

∥∥∥(σh + uh ⊗ uh)d × ν − µ∇uD × ν
∥∥∥2

0,e
.

(3.62)

The reliability and efficiency of θ follows by slightly adapting the arguments employed for the 2d−case.
For instance, the Helmholtz decomposition of the space H0(div; Ω) required in Section 3.2.2 is guar-
anteed in this case by [15, Theorem 3.1], regardless the domain is convex or not, and all the arguments
remain unchanged except the proof of Lemma 3.10. Here, such as in [17, Lemma 4.4], one needs to
use the identity curl(ζ)ν = div(ζ × ν) for all ζ ∈ H1(Ω), and an integration by parts formula on the
boundary to obtain

µ 〈 curl(φ− Ihφ)ν ,uD 〉Γ =

∫
Γ
(µ∇uD × ν) : (φ− Ihφ) . (3.63)

Also, integrating by parts on each element easily gives

−
∫

Ω

(
σh + uh ⊗ uh

)d
: curl(φ− Ihφ)

= −
∑
T∈Th

∫
T

curl
(
(σh + uh ⊗ uh)d

)
: (φ− Ihφ)

−
∑

e∈Eh(Ω)

∫
e

[[(σh + uh ⊗ uh)d × s]] : (φ− Ihφ)

−
∑

e∈Eh(Γ)

∫
e
(σh + uh ⊗ uh)d × ν : (φ− Ihφ) .

(3.64)

Therefore, combining (3.63)-(3.64) in the expression Rf
2( · ), and using next the Cauchy-Schwarz in-

equality and the approximation properties of the Clement interpolant (cf. (3.6)), one arrives at the
analogous estimate (3.24), with the terms (σh+uh⊗uh)d×ν and (σh + uh⊗uh)d×ν − µ∇uD×ν
appearing in (3.62).

Finally, the efficiency property also follows from the fact that all the Sobolev embeddings used in
Section 3.3 hold for n = 3 as well, and using now in the proof of Lemma 3.15 the corresponding results
from Lemmas 4.8, 4.9 and 4.10 in [17] instead of Lemmas 4.9, 4.10 and 4.15 in [19], respectively.
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4 Numerical Results

Our objective here is to illustrate the properties of the a posteriori error estimator θ (cf. (3.1))
studied in the previous sections via an associated adaptive algorithm. The experiments we report
below are all implemented in the two-dimensional setting using the public domain finite element
software FreeFem++ which provides the automatic adaptation procedure tool adaptmesh [22].

According to the discussion at the end of section 3.1, instead of θ we actually consider the indicator
θ̃ defined as

θ̃
2

:=
∑
T∈Th

θ̃
2

T where θ̃
2

T = θ2
T +

∑
e∈Eh,T (Γ)

‖ϕh − ϕD‖21,e , (4.1)

where θT is given by (3.2). Observe from its own definition that, although the additional assumption
ϕD ∈ H1(Γ) is required now, θ̃ becomes a fully local and computable estimator (in contrast with θ)
and, like in [2, Section 4], an interpolation argument shows that

‖ϕh − ϕh‖21/2,Γ ≤ C ‖ϕh − ϕh‖21,Γ = C
∑

e∈Eh(Γ)

‖ϕh − ϕh‖21,e for some C > 0 ,

which says that θ̃ is in fact induced by θ (cf. (3.1)). Moreover, by proceeding as in section 3.2, we
can also deduce that θ̃ is a reliable estimator, that is, it satisfies the estimation (3.3) with the same
Crel > 0 up to another h, h̃−independent multiplicative constant C. In turn, up to the last term in
(4.1), we find that θ̃ is efficient. However, numerical results below allow us to conjecture that this
indicator actually satisfies both properties.

As usual, the errors and the experimental convergence rates will be computed as

e(σ) := ‖σ − σh‖div;Ω , e(u) := ‖u− uh‖1,Ω ,

e(ϕ) := ‖ϕ− ϕh‖1,Ω , e(λ) := ‖λ− λh‖0,Γ
and

r(σ) :=
−2 log(e(σ)/e′(σ))

log(N/N ′)
, r(u) :=

−2 log(e(u)/e′(u))

log(N/N ′)

r(ϕ) :=
−2 log(e(ϕ)/e′(ϕ))

log(N/N ′)
, r(λ) :=

−2 log(e(λ)/e′(λ))

log(N/N ′)
,

where N and N ′ denote the total degrees of freedom associated to two consecutive triangulations with
errors e and e′. In turn, the total error and the effectivity index associated to the global estimator θ̃
are denoted and defined, respectively, as

e =
{
e(σ)2 + e(u)2 + e(ϕ)2 + e(λ)2

}1/2
, and eff(θ̃) =

e

θ̃
.

Test 1: accuracy assessment.

In our first example we illustrate the performance of the adaptive algorithm by considering a bench-
mark test for the Navier-Stokes equations in the domain Ω := (−1/2, 3/2) × (0, 2) obtained by
Kovasznay [23], which we also tested in our previous work [8] without adaptivity. The solution (u, p)
is given by

u(x1, x2) =

 1− eϑx1 cos(2πx2)

ϑ
2πe

ϑx1 sin(2πx2)

 , and p(x1, x2) = −1
2e

2ϑx1 + p̄ ,
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where ϑ := −8π2

µ−1+
√
µ−2+16π2

and the constant p̄ is such that
∫

Ω p = 0. Note that the pressure p has a

boundary layer at {−1/2} × (0, 2), and the terms at the right-hand sides of the Boussinesq problem
(1.1) are defined so that (u, p, ϕ) is the corresponding exact solution, with ϕ(x1, x2) = x2

1(x2
2 + 1), and

the data µ = 1, K = ex1+x2I ∀ (x1, x2) ∈ Ω, and g = (0,−1)t.

In Table 1 we present the numerical results reported in [8, Table I, Section VI] by using our
augmented mixed-primal method via quasi–uniform refinements, and the corresponding results that
we have obtained now by adaptivity, both for the finite element families RT0 −P1 − P1 − P0 (k = 0)
and RT1−P2−P2−P1 (k = 1). We notice that in each case the effective indexes eff(θ̃) remain always
bounded and that the errors of the adaptive procedures decrease much faster than those obtained by
the quasi–uniform ones. Particularly, the reduction of the computational cost by adaptivity can be
much better observed in Figure 1 where we plot the total error e versus the degrees of freedom N
for both refinement strategies. In figure 2, we display a refined mesh obtained in the sixth iterative
adaptive procedure with k = 0 when N = 20762, and observe there how the adaptive method is also
able to recognize the region where the pressure has the aforementioned boundary layer.

Finally, in order to study the performance of the adaptive technique with respect to the stabilization
parameters, we now take κ1 = µ/2n (n = 1, · · · , 4), chose κ2 and κ3 optimally (cf. (2.10)), compute
the total errors with a quasi–uniform mesh with N = 44313 and present the corresponding results
in Table 2 (see also [8, Table II]). We observe there that the errors remain bounded around e ≈ 17.
Using adaptive procedures, we now examine, on the one hand, the number of degrees of freedom
required to obtain an approximate total error to 17, summarize them in Table 3 (second row) and
realize that no more than N = 4000 degrees of freedom are needed. On the other hand, we further
compute the corresponding errors obtained with an adapted mesh with N = 33873 (the closer from
below to N = 44313 degrees of freedom), display them in table 3 (third row) and find out in each
case that the error is always lower than e ≈ 6. These results illustrate that the proposed adaptive
algorithm has also improved the accuracy and the robustness of the numerical approximation driven
by our augmented mixed-primal technique with regard to the stabilization parameters.

Test 2: adaptivity in a non-convex domain

Our second example focuses on the case where, under uniform mesh refinement, the convergence rates
are affected by the loss of regularity of the exact solution. We set the problem on the L–shaped domain
Ω = [−1, 1]2 \ [0, 1]2 , with the exact solutions given by

u(x1, x2) =

(
− cos(πx1) sin(πx2)
cos(πx2) sin(πx1)

)
, p(x1, x2) =

1

x2 + 1.1
− 1

3
ln(231)

and ϕ(x1, x2) =
x2

(x1 − 0.15)2 + (x2 − 0.15)2
.

In turn, the data are given by ν = 0.5, K = 0.75I and g = (0,−1)t, and the stabilization parameters
are optimally chosen according to (2.10). Observe that the pressure and the temperature are singular
along x2 = −1.1 and in the point (0.15, 0.15), respectively. In Table 4 we present the convergence
history by quasi–uniform refinements and by adapted meshes according to the indicator θ̃, and using
the lowest family of finite element spaces RT0 − P1 − P1 − P0. As expected, we observe that the
errors decrease faster through the adaptive procedure (see also Figure 3), and that in each case the
effectivity indexes remain bounded. In Figure 4 we display some adapted meshes obtained during the
adaptive refinement and observe that they are concentrated around (0, 0) and the line x2 = −1.1,
which illustrate again how the method is able to identify the regions in which the accuracy of the
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N e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(λ) r(λ) e θ̃ eff(θ̃)

Mixed–primal RT0 −P1 − P1 − P0 scheme with quasi-uniform refinement

806 73.0680 – 39.1463 – 1.3109 – 88.1781 – 121.0308 200.7144 0.6030
2934 44.1852 0.7786 21.5882 0.9213 0.5472 1.3524 45.3437 1.0295 66.8934 120.3119 0.5560

11321 24.3903 0.8801 11.3580 0.9512 0.2581 1.1130 22.1691 1.0599 34.8630 64.0981 0.5439
44313 11.6299 1.0854 5.2548 1.1297 0.1305 0.9995 10.8290 1.0501 16.7377 30.9900 0.5401

177320 5.7070 1.0268 2.5486 1.0436 0.0639 1.0299 5.3797 1.0090 8.2468 15.2465 0.5409
700032 2.8348 1.0191 1.2442 1.0444 0.0318 1.0164 2.6694 1.0297 4.0879 7.5547 0.5411

Mixed–primal RT0 −P1 − P1 − P0 scheme with adaptive refinement according to θ̃

744 75.4832 – 38.5758 – 2.0214 – 4.1769 – 84.8960 168.1490 0.5049
1739 33.7108 1.8989 15.3418 2.1720 0.9529 1.7716 2.1230 1.5942 37.1107 119.6710 0.3101
4058 14.8804 1.9301 8.5433 1.3818 0.9929 -0.1091 2.6746 -0.5451 17.3943 70.3655 0.2472
7279 10.7673 1.1074 6.7981 0.7821 0.9877 0.0353 2.1344 0.7722 12.9491 52.3409 0.2474

12724 7.8346 1.1386 4.7949 1.2501 0.8924 0.3634 1.3313 1.6902 9.3243 37.7500 0.2470
20762 6.1931 0.9604 3.7492 1.0049 0.6927 1.0345 0.8424 1.8695 7.3212 29.6167 0.2472
33873 4.8417 1.0058 3.0095 0.8980 0.5960 0.6149 0.6218 1.2408 5.7655 23.3614 0.2468
53405 3.8966 0.9540 2.4360 0.9287 0.4569 1.1671 0.4782 1.1532 4.6428 18.7966 0.2470
87163 3.0914 0.9450 1.8660 1.0883 0.3499 1.0898 0.3313 1.4985 3.6430 14.7548 0.2469

Mixed–primal RT1 −P2 − P2 − P1 scheme with quasi-uniform refinement

2686 28.7886 – 9.9080 – 0.1358 – 10.0095 – 32.0493 54.5149 0.5879
10078 9.0869 1.7441 3.2510 1.6855 0.0240 2.6214 2.5666 2.0585 9.9864 17.5231 0.5699
39550 2.5644 1.8506 0.8685 1.9309 0.0045 2.4487 0.6438 2.0230 2.7830 4.8849 0.5697

156158 0.5872 2.1468 0.1913 2.2033 0.0009 2.3439 0.1609 2.0194 0.6382 1.1200 0.5698
627578 0.1429 2.0319 0.0442 2.1066 0.0002 2.1626 0.0402 1.9941 0.1549 0.2717 0.5699

Mixed–primal RT1 −P2 − P2 − P1 scheme with adaptive refinement according to θ̃

2493 32.4117 – 10.9303 – 1.0840 – 0.5708 – 34.2270 166.4739 0.2056
5428 5.4016 4.6057 1.9844 4.3857 1.0020 0.2022 0.1402 3.6084 5.8428 30.9143 0.1890

12039 1.6132 3.0342 1.0296 1.6474 0.6655 1.0293 0.1302 0.1869 2.0302 9.8028 0.2071
21884 0.9283 1.8494 0.6120 1.7412 0.4530 1.2848 0.0979 0.9548 1.2046 4.6925 0.2567
36867 0.5456 1.9385 0.3582 1.9539 0.2700 1.8875 0.0602 1.7720 0.7089 1.9685 0.3601
69946 0.2780 2.1976 0.2098 1.7434 0.1503 1.9092 0.0297 2.2985 0.3805 1.0516 0.3618

118901 0.1690 1.8762 0.1278 1.8682 0.0876 2.0350 0.0172 2.0641 0.2299 0.6349 0.3621
202131 0.1002 1.9702 0.0730 2.1107 0.0471 2.3388 0.0098 2.1202 0.1330 0.3671 0.3622

Table 1: Test 1: Convergence history and effectivity indexes for the mixed–primal approximation of
the Boussinesq problem under quasi-uniform, and adaptive refinement according to the indicator θ̃.
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10− 1
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101
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e with quasi-uniform refinement for k = 0

e with adaptive refinement by θ̃ for k = 0

e with quasi-uniform refinement for k = 1

e with adaptive refinement by θ̃ for k = 1

Figure 1: Test 1: Decay of the total error with respect to the number of degrees of freedom using
quasi-uniform and adaptive refinement strategies for both k = 0 and k = 1.

Figure 2: Test 1: Snapshots of an adapted mesh in the sixth iteration refinement (left), and over this
triangulation the approximate velocity magnitude (center) and the postprocessed pressure (left) with
the proposed lowest order mixed-primal method.

κ1 µ µ/2 µ/4 µ/8 µ/16

e 16.7371 16.7381 16.7390 16.7392 16.77391

Table 2: Test 1: κ1 vs. e(σ,u, ϕ, λ) for the mixed RT0 − P1 − P1 − P0 approximation of the
Boussinesq equations with a quasi-uniform mesh with N = 44313 and µ = 1.
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κ1 µ µ/2 µ/4 µ/8 µ/16

Required N by adapted procedures with e ≈ 17 4058 3936 3882 3830 3803

Associated e to an adapted mesh with N = 33873 5.7655 5.6291 5.6321 5.6352 5.6251

Table 3: Test 1: κ1 vs. required number of degrees of freedom N via adaptive procedures for an
error around e ≈ 17 (2nd. row) and κ1 vs. total error obtained via an adapted mesh with N = 33873
(3rd. row) using the RT0 −P1 − P1 − P0 approximation of the Boussinesq equations and µ = 1.

N

 

 

104 106

101

e with quasi-uniform refinement for k = 0

e with adaptive refinement by θ̃ for k = 0

Figure 3: Test 2: Decay of the total error with respect to the number of degrees of freedom using
quasi-uniform and adaptive refinement strategies for k = 0.

numerical approximation is deteriorated. To visualize better the latter statement, we have displayed
in Figure 5 the approximate pressure and the approximate temperature obtained in the 10th adaptive
iteration.
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N e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(λ) r(λ) e θ̃ eff(θ̃)

Mixed–primal RT0 −P1 − P1 − P0 scheme with quasi-uniform refinement

723 14.8755 – 1.8533 – 67.9954 – 8.4392 – 70.1378 76.2146 0.9203
1671 11.8135 0.5502 1.2108 1.0162 57.0961 0.4171 6.0269 0.8037 58.6286 63.3184 0.9255
4287 8.7667 0.6332 0.7247 1.0897 41.6790 0.6681 4.2077 0.7627 42.8045 46.3784 0.9225

13455 6.4965 0.5240 0.4005 1.0371 26.3907 0.7991 2.4929 0.7154 27.2916 28.6658 0.9522
48027 5.1180 0.3749 0.2091 1.0215 14.8104 0.9080 1.4370 0.8659 15.7369 16.5554 0.9517

177459 3.8766 0.4251 0.1071 1.240 7.9018 0.9614 0.7141 1.0701 8.8311 9.2683 0.9528
686823 2.5643 0.6107 0.0541 1.0086 4.0438 0.9900 0.3780 0.9401 4.8035 5.0883 0.9553

2741390 1.5678 0.7109 0.0273 0.9905 2.0174 1.0047 0.1862 1.0233 2.5619 2.6910 0.9520

Mixed–primal RT0 −P1 − P1 − P0 scheme with adaptive refinement according to θ̃

831 13.899 – 1.6294 – 59.5034 – 7.2295 – 61.5531 65.8293 0.9351
1482 12.7555 0.2970 1.4798 0.3329 29.6098 2.4128 3.2038 2.8135 32.4330 35.6381 0.9101
2718 9.9315 0.8252 1.3452 0.3145 12.7939 2.7671 1.5892 2.3120 16.3296 18.3478 0.8900
4164 8.9724 0.4762 1.2689 0.2739 9.3464 1.4721 1.3453 0.7811 13.0873 15.5884 0.8971
6831 6.9905 1.0085 0.8927 1.7165 7.9239 0.6671 0.9929 1.2271 10.6456 11.7306 0.9075

10743 5.9708 0.6907 0.7359 0.5300 5.8156 1.3664 0.8512 1.6803 8.4161 9.2616 0.9087
17763 5.0023 0.7090 0.5847 0.9148 4.6198 0.9156 0.6170 1.2800 6.8620 7.5482 0.9091
27888 4.2234 0.7505 0.4219 1.4471 3.8638 0.7923 0.5160 0.7923 5.7629 6.3419 0.9087
45930 3.0992 1.2407 0.3568 0.6712 2.8701 1.1918 0.3883 1.1395 4.2568 4.7103 0.9037
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