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Abstract

We propose an implicit Newmark method for the time integration of the pressure-stress formulation
of a fluid-structure interaction problem. The space Galerkin discretization is based on the Arnold-
Falk-Winther mixed finite element method with weak symmetry in the solid and the usual Lagrange
finite element method in the acoustic medium. We prove that the resulting fully discrete scheme
is well-posed and uniformly stable with respect to the discretization parameters and Poisson ratio,
and we provide asymptotic error estimates. Finally, we present numerical tests to confirm the
asymptotic error estimates predicted by the theory.
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1 Introduction

Recently, the time-domain fluid-structure interaction problem has been formulated in [13] by consid-
ering the stress tensor and the fluid pressure as primary variables. The resulting variational problem
is symmetric and immune to the locking phenomenon that generally affects displacement based formu-
lations in the nearly incompressible case. Indeed, the convergence analysis presented in [13] revealed
that the space semi-discrete Galerkin scheme based on the Arnold-Falk-Winther mixed finite element
method with weak symmetry in the solid and the Lagrange finite element method in the acoustic
medium is uniformly stable with respect to the space discretization parameter and the Poisson ratio.
We also point out that the method provides a direct approximation of the stress tensor, which is the
variable of interest in many applications. We refer to [13] for more details and for a comparison with
the formulations proposed in [10] and [6].

This paper completes the study given in [13] by carrying out the convergence analysis of an implicit
time integration based on the Newmark trapezoidal rule. Following the steps given in [12, Section
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6], we establish the unconditional stability of the resulting fully discrete method when the mesh
parameters h and ∆t go to 0 and when the Lamé coefficient λ tends to infinity. Finally, we prove
that if the kth−order Arnold-Falk-Winther element and the kth−order Lagrange element (k ≥ 1) are
used in the solid and the fluid domains, respectively, then the error exhibits a combined space-time
asymptotic behaviour given by O(hk) +O((∆t)2).

The rest of the paper is organized as follows. We begin by introducing in Section 2 some basic
notations and properties needed in the forthcoming analysis. In Section 3 and 4 we summarize the
results obtained in [13] which will be required to present our numerical scheme. Then, in Section 5 we
use an implicit Newmark method to obtain a fully discrete version of the problem and carry out its
convergence analysis. Finally, in Section 6 we present numerical results that confirm the theoretical
convergence estimates.

2 Notations and preliminary results

In what follows, I denotes the identity matrix of Rd×d (d = 2, 3), and 0 represents the null vector in
R
d or the null tensor in R

d×d. In addition, given τ := (τij) and σ := (σij) ∈ R
d×d, we define as usual

the transpose tensor τ t := (τji), the trace tr τ :=
∑d

i=1 τii, the deviatoric tensor τ D := τ − 1
d (tr τ ) I,

and the tensor inner product τ : σ :=
∑d

i,j=1 τijσij. We now let Ω be a polyhedral Lipschitz bounded

domain of Rd, with boundary ∂Ω, and denote by D(Ω) the space of infinitely differentiable functions
with compact support in Ω. For s ∈ R, ‖·‖s,Ω stands indistinctly for the norm of the Hilbertian

Sobolev spaces Hs(Ω), Hs(Ω)d or [Hs(Ω)]d×d, with the convention H0(Ω) := L2(Ω). We also denote by
(·, ·)0,Ω the inner product in L2(Ω), L2(Ω)d or [L2(Ω)]d×d. We notice that the orthogonal decomposition
[L2(Ω)]d×d = [L2(Ω)]d×d

sym ⊕ [L2(Ω)]d×d
skew holds true with

[L2(Ω)]d×d
sym

:=
{
τ ∈ [L2(Ω)]d×d; τ = τ t

}
and [L2(Ω)]d×d

skew
:=

{
τ ∈ [L2(Ω)]d×d; τ = −τ t

}
.

We introduce the Hilbert space

H(div,Ω) :=
{
τ ∈ [L2(Ω)]d×d; div τ ∈ L2(Ω)d

}
,

whose norm is given by ‖τ‖2H(div,Ω) := ‖τ‖20,Ω + ‖div τ‖20,Ω. In turn, given p ∈ [1,+∞], T > 0 and
a separable Hilbert space V with norm ‖·‖V , we let Lp((0, T );V ) be the space of classes of functions
f : (0, T ) → V that are Bochner-measurable and such that ‖f‖Lp((0,T );V ) < ∞, with

‖f‖pLp((0,T );V ) :=

∫ T

0
‖f(t)‖pV dt (1 ≤ p < ∞) and ‖f‖L∞((0,T );V ) := ess sup

[0,T ]
‖f(t)‖V .

For any k ∈ N, we consider the space Ck((0, T );V ) of all functions f with (strong) derivatives f (j)

in C0((0, T );V ) for all 1 ≤ j ≤ k, where C0((0, T );V ) stands for the Banach space consisting of all
continuous functions f : [0, T ] → V . We will use also denote ḟ and f̈ the first and second derivatives
with respect to the variable t. Furthermore, we will use the Sobolev space

W1,p((0, T );V ) :=
{
f : ∃g ∈ Lp((0, T );V ) and ∃f0 ∈ V such that

f(t) = f0 +

∫ t

0
g(s) ds ∀ t ∈ [0, T ]

}
.
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Figure 3.1: Fluid and solid domains

With the convention that W0,p((0, T );V ) = Lp((0, T );V ), the space Wk,p((0, T );V ) is defined recur-
sively for all k ∈ N, that is

Wk,p((0, T );V ) :=

{
f : ∃g ∈ Wk−1,p((0, T );V ) and ∃f0 ∈ V

such that f(t) = f0 +

∫ t

0
g(s) ds ∀ t ∈ [0, T ]

}
.

Throughout this paper we use C (with or without subscripts) to denote generic constants independent
of the parameters indicated at each instance. We point out that these constants may take different
values at different places.

3 Stress-pressure variational formulation of the model problem

We consider a solid body represented by a connected polyhedral Lipschitz domain ΩS whose boundary
is given by two connected components Σ and Γ. The cavity ΩF delimited by the inner boundary Σ
is filled with an homogeneous, inviscid and compressible fluid (see Figure 3.1). Our objective is to
compute the linear oscillations that take place in the fluid-solid domain Ω := ΩS ∪ Σ ∪ ΩF, under the
action of a given loading f : (0, T ] × ΩS → R

n prescribed in the solid domain. We assume that the
solid is fixed at a nonempty part ΓD of the external boundary Γ := ∂Ω and impose a traction-free
boundary condition on its complement ΓN := Γ \ΓD. We denote n the outward unit normal vector to
Γ ∪ Σ and select on Σ the orientation that points outward to ΩF. More precisely, the mathematical
model associated to the physical phenomenon under interest is given by the set of equations

ρSü− div Cε(u) = f in ΩS × (0, T ], (3.1)

c−2p̈−∆p = 0 in ΩF × (0, T ], (3.2)

Cε(u)n + pn = 0 on Σ× (0, T ], (3.3)

∂p

∂n
+ ρFü · n = 0 on Σ× (0, T ], (3.4)

u = 0 on ΓD × (0, T ], (3.5)

Cε(u)n = 0 on ΓN × (0, T ], (3.6)
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with the corresponding initial conditions. Here, p is the fluid pressure, C : R
d×d → R

d×d is the Hooke
operator given by

Cτ := λ (tr τ ) I + 2µτ ∀ τ ∈ R
d×d ,

ε(u) is the linearized strain tensor, which is given, in terms of the solid displacement field u, by

ε(u) :=
1

2

{
∇u+ (∇u)t

}
,

ρS > 0 is the density of the solid, λ > 0 and µ > 0 are its Lamé coefficients, c > 0 is the acoustic
speed in the fluid, and ρF > 0 is its density.

The stress tensor σ := C ε(u) , which is imposed here as a primary unknown in the solid, is sought
in the Sobolev space

W :=
{
τ ∈ H(div,ΩS); τn = 0 on ΓN

}
,

while the pressure p belongs to H1(ΩF). These two variables are linked through equation (3.3), which
can be interpreted as an implicitly prescribed normal stress on the contact boundary Σ. As we are
dealing with a dual formulation in ΩS, this transmission condition becomes essential, and hence we
could impose it weakly through a suitable Lagrange multiplier (as we did in [14]), or alternatively, we
could incorporate it into the continuous space. Here, we follow [15] and choose the second option by
defining the global space

X :=
{
(τ , q) ∈ W ×H1(ΩF); τn+ qn = 0 on Σ

}
,

which is endowed with the Hilbertian norm ‖(τ , q)‖2 := ‖τ‖2H(div,ΩS)
+ ‖q‖21,ΩF

.

We still have to impose a further restriction in X. Indeed, it is essential to take into account the
conservation of the angular momentum, which is characterized by the symmetry of the stress tensor.
This induces us to consider the closed subspace

X
sym :=

{
(τ , q) ∈ X; τ = τ t

}
.

We point out that, stable mixed finite elements for the linear elastostatic problem have been arduous
to construct because of this symmetry restriction (cf. [1, 2, 3, 5, 7, 9]). One of the prevailing
techniques [1, 3, 7, 9] used to deal with this difficulty consists in imposing weakly the symmetry
through the introduction of a Lagrange multiplier, which turns out to be equal to the rotation r :=
1
2

{
∇u − (∇u)t

}
. Recently, this mixed finite element strategy with reduced symmetry has been

successfully applied to the elasticity eigenproblem [17], to the indefinite elasticity problem [16], to
elastodynamics [4, 12], and to time-domain fluid-structure interaction problems [13]. It is important
to bear in mind that, in what follows, there will be an underlying Lagrange multiplier (corresponding
to the symmetry restriction) that we have chosen to hide for economy in notations. We refer to [12]
(or its preliminary summarized version [11]) for a similar analysis for the elastodynamics in which the
rotation variable is maintained as an active unknown.

We now notice that Xsym is dense in the space

H
sym := [L2(ΩS)]

d×d
sym × L2(ΩF)

endowed with the norm ‖(τ , q)‖20 := ‖τ‖20,ΩS
+ ‖q‖20,ΩF

. This allows us to pose the stress-pressure
variational formulation of the fluid-solid interaction problem in the following terms (see [13, eq.(3.11)]
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for details):

Find (σ, p) ∈ L∞((0, T );Xsym) ∩W1,∞ ((0, T );Hsym) such that
(
(σ̈, p̈)(t), (τ , q)

)
C
+A

(
(σ, p)(t), (τ , q)

)
= −ρ−1

S

(
f(t),div τ

)
0,ΩS

∀(τ , q) ∈ X
sym,

(
σ(0), p(0)

)
= (σ0, p0),

(
σ̇(0), ṗ(0)

)
= (σ1, p1),

(3.7)

where (
(σ, p), (τ , q)

)
C
:= (C−1σ, τ )0,ΩS

+
1

ρFc2
(p, q)0,ΩF

and
A
(
(σ, p), (τ , q)

)
:= ρ−1

S (divσ,div τ )0,ΩS
+ ρ−1

F (∇p,∇q)0,ΩF
.

Here, f ∈ L1((0, T ); L2(ΩS)
d) is a given body force in ΩS and (σ0, p0) ∈ X

sym and (σ1, p1) ∈ H
sym are

prescribed initial data.

The stability of our analysis with respect to λ when this parameter tends to infinity relays essentially
on the following result.

Lemma 3.1. There exist constants c2 ≥ c1 > 0 independent of λ such that

c1 ‖(τ , q)‖2 ≤ ‖(τ , q)‖20,C +A
(
(τ , q), (τ , q)

)
≤ c2 ‖(τ , q)‖2 ∀(τ , q) ∈ X, (3.8)

where ‖(τ , q)‖20,C :=
(
(τ , q), (τ , q)

)
C
.

Proof. The bound from above follows immediately from the fact that

(C−1σ, τ )0,ΩS
=

1

2µ

∫

ΩS

σD : τ D +
1

d(2µ + dλ)

∫

ΩS

(trσ)(tr τ )

is bounded by a constant independent of λ. The left inequality may be found in [17, Lemma 2.1].

The well-posedness of problem (3.7) is established as follows (cf. [13, Theorem 3.1]) .

Theorem 3.1. Assume that f ∈ W1,1((0, T ); L2(ΩS)
d). Then, problem (3.7) admits a unique solution

(σ, p) ∈ C0((0, T );Xsym) ∩ C1((0, T );Hsym). Moreover, there exists a constant C > 0, independent of λ
and T , such that

ess sup
[0,T ]

‖(σ, p)(t)‖ + ess sup
[0,T ]

‖(σ̇, ṗ)(t)‖0,C ≤ C T
{
‖f‖W1,1(L2(ΩS))

+ ‖(σ0, p0)‖+ ‖(σ1, p1)‖0
}
.

Although problem (3.7) is well-posed in the sense of Hadamard, it turns out that a compatibility
condition must be imposed to the initial data (σ0, p0) ∈ X

sym and (σ1, p1) ∈ H
sym in order to remove

non physical components from the solution. These spurious modes are due to the fact that the

seminorm A
(
(τ , q), (τ , q)

)1/2
admits the nontrivial kernel K in X

sym
c given by

K :=
{
(τ , q) ∈ X

sym

c ; div τ = 0
}
,

where X
sym
c := Xc ∩ X

sym, with Xc := {(τ , q) ∈ X; q = constant} . It has been shown in [17] that all
physically relevant eigenfunctions of the eigenproblem associated with the linear evolution problem
(3.7) lie on the orthogonal K⊥ to K in X

sym with respect to the inner product
(
·, ·
)
C
, i.e.,

K
⊥ :=

{
(σ, p) ∈ X

sym;
(
(σ, p), (τ , q)

)
C
= 0 ∀(τ , q) ∈ K

}
,
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and K is the eigenspace associated with an infinite-multiplicity eigenvalue equal to 1. A physically
meaningful solution of problem (3.7) should then belong to K

⊥ for all t ∈ [0, T ]. This property is
simply achieved by imposing the condition at initial time, i.e.,

(σ0, p0) ∈ K
⊥ and (σ1, p1) ∈ K

⊥.

It is shown in [13, Theorem 2.1] that there exits a linear and bounded operator

D : K⊥ → L2(ΩS)
d × [L2(ΩS)]

d×d
skew

(σ, p) 7→ (u, r) := D(σ, p)

uniquely characterized, for any (σ, p) ∈ K
⊥, by the unique solution (u, r) ∈ L2(ΩS)

d × [L2(ΩS)]
d×d
skew of

(r, τ )0,ΩS
+ (u,div τ )0,ΩS

= −
(
(σ, p), (τ , ξ)

)
C

∀(τ , ξ) ∈ Xc.

Moreover, if (u, r) := D(σ, p), then it can be shown that u is none other than the displacement field,
with u(t) ∈ [H1(ΩS)]

d ∀ t > 0, and r = 1
2

{
∇u − (∇u)t

}
is the rotation. The following result (cf.

[13, Theorem 3.2]) establishes the relation between the solution (σ, p) of problem (3.7) and the weak
solution of the displacement-pressure formulation of the fluid-structure interaction problem.

Theorem 3.2. Assume that the initial data of problem (3.7) are such that (σ0, p0), (σ1, p1) ∈ K
⊥,

and let (u0, r0) := D(σ0, p0) and (u1, r1) := D(σ1, p1). If (σ, p) is the solution of (3.7), then the pair

(u, p), with

u(t) :=

∫ t

0

{∫ s

0
ρ−1
S

(
divσ(z) + f(z)

)
dz

}
ds + u0 + tu1,

solves the displacement-pressure formulation of the fluid-structure interaction problem given by the

equations (3.1)-(3.6) subject to the initial conditions (u(0), p(0)) = (u0, p0) and (u̇(0), ṗ(0)) = (u1, p1).

4 Finite element discretization spaces and technical tools

We consider shape regular affine meshes Th that subdivide the domain Ω̄ = Ω̄S ∪ Ω̄F into trian-
gles/tetrahedra K of diameter hK . The parameter h := maxK∈Th{hK} represents the mesh size of Th.
In what follows, we assume that each triangle/tetrahedron of Th is contained either in Ω̄S or in Ω̄F,
and denote

T S
h :=

{
K ∈ Th; K ⊂ Ω̄S

}
and T F

h :=
{
K ∈ Th; K ⊂ Ω̄F

}
.

Moreover, we let Σh be the triangulation induced by Th on Σ, whose elements (edges or triangles)
are denoted by T . Next, given an integer m ≥ 0 and a domain D ⊆ Rd, Pm(D) denotes the space
of polynomials of degree at most m on D. The space of piecewise polynomial functions of degree at
most m associated with T ∗

h , ∗ ∈ {S,F}, is denoted by

Pm(T ∗
h ) :=

{
v ∈ L2(Ω∗); v|K ∈ Pm(K), ∀K ∈ T ∗

h

}
.

Similarly, Pm(Σh) :=
{
φ ∈ L2(Σ); φ|T ∈ Pm(T ), ∀T ∈ Σh

}
. In addition, for k ≥ 1, the finite

element spaces

Wh := Pk(T S
h )d×d ∩W , Qh := Pk−1(T S

h )d×d ∩ [L2(ΩS)]
d×d
skew

, and Uh := Pk−1(T S
h )d ,

correspond to the kth-order element of the Arnold-Falk-Winther (AFW) family introduced for the
mixed formulation of elastostatic problem with reduced symmetry. It is important to notice that
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W
sym

h :=
{
τ h ∈ Wh;

∫
ΩS
τ h : s = 0 ∀s ∈ Qh

}
, which is the weakly symmetric version of Wh, is

not a subspace of the symmetric tensors of W . The pressure is approximated in the usual Lagrange
finite element space Vh := Pk(T F

h ) ∩H1(ΩF).

Next, we recall some well-known approximation properties of the finite element spaces introduced
above. Given s > 0, it is well-known that the usual kth-order Brezzi-Douglas-Marini (BDM) interpo-
lation operator (see [8]) Πh : [Hs(ΩS)]

d×d ∩W → Wh satisfies for 0 < s ≤ 1/2 the error estimate

‖τ −Πhτ‖0,ΩS
≤ Chs

{
‖τ‖s,ΩS

+ ‖div τ‖0,ΩS

}
∀τ ∈ [Hs(ΩS)]

d×d ∩W .

For more regular functions τ ∈ [Hs(ΩS)]
d×d with s > 1/2, it holds

‖τ −Πhτ‖0,ΩS
≤ Chmin{s,k+1} ‖τ‖s,ΩS

, ∀τ ∈ [Hs(ΩS)]
d×d. (4.1)

Moreover, we have the commuting diagram properties

div(Πhτ ) = Uh(div τ ) and (Πhσ)n = πh(σn) (4.2)

for all τ ∈ Hs(ΩS)
d×d ∩ H(div,ΩS), s > 0, where Uh : L2(ΩS)

d → Uh is the L2(ΩS)
d-orthogonal

projector and πh is the vectorial version of πh, which is the L2(Σ)-orthogonal projector onto Pk(Σh).
In addition, we denote by Rh : [L2(ΩS)]

d×d
skew → Qh the orthogonal projector with respect to the

[L2(ΩS)]
d×d-norm, and let Πh : H1(ΩF) → Vh be the operator that, given p ∈ H1(ΩF), is uniquely

characterized by

(∇Πhp,∇q)0,ΩF
= (∇p,∇q)0,ΩF

∀q ∈ Vh and

∫

ΩF

Πhp = 0 .

Then, there hold

‖r −Rhr‖0,ΩS
≤ Chmin{s,k} ‖r‖s,ΩS

∀r ∈ [Hs(ΩS)]
d×d ∩ [L2(ΩS)]

d×d
skew , (4.3)

‖v − Uhv‖0,ΩS
≤ Chmin{s,k} ‖v‖s,ΩS

∀v ∈ Hs(ΩS)
d, (4.4)

|p−Πhp|1,ΩF
≤ Chmin{s,k} ‖p‖1+s,ΩF

∀p ∈ H1+s(ΩF), (4.5)

‖ϕ− πhϕ‖0,Σ ≤ Chmin{s,k+1}(
∑

T∈Σh

‖ϕ‖2s,T )1/2 ∀ϕ ∈
∏

T∈Σh

Hs(T )d . (4.6)

We now introduce the discrete energy space Xh := {(τ , q) ∈ Wh × Vh; τn+ qn = 0 on Σ}, and
its subspace Xh,c = {(τ , q) ∈ Xh; q = constant}. We also consider their weakly symmetric versions
X

sym

h :=
{
(τ , q) ∈ W

sym

h × Vh; τn+ qn = 0 on Σ
}
and X

sym

h,c := Xh,c ∩X
sym

h , respectively. The kernel
Kh of the bilinear form A in X

sym

h is given by

Kh :=
{
(τ , q) ∈ X

sym

h,c ; div τ = 0
}
,

and we notice that, in general, neither Kh ⊆ K nor K⊥
h ⊆ K

⊥, with

K
⊥
h :=

{
(σh, ph) ∈ X

sym

h ;
(
(σh, ph), (τ , ξ)

)
C
= 0 ∀(τ , ξ) ∈ Kh

}
.

The projector Ξ and its discrete counterpart Ξh (introduced in [13]) are the key tools in the conver-
gence analysis that we will undertake in the following section. They are characterized by the following
properties.
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Lemma 4.1. There exist a linear operators Ξ : X → X
sym and Ξh : X → X

sym

h such that

‖Ξ(τ , q)‖+ ‖Ξh(τ , q)‖ ≤ C ‖(τ , q)‖ ∀ (τ , q) ∈ X ,

with C > 0, independent of λ and h. Moreover, Ξ̃ := Ξ|Xsym is the (·, ·)C-orthogonal projection of Xsym

onto K
⊥.

Proof. See [13, Section 5].

Lemma 4.2. Assume that (τ , q) ∈ K
⊥ with τ ∈ [Hs(ΩS)]

d×d for some s > 0, and let (v, s) := D(τ , q)
and ψ := v|Σ. Then, there exists a constant C > 0, independent of h and λ, such that

‖(τ , q)− Ξh(τ , q)‖ ≤ C
{
‖τ −Πhτ‖H(div,ΩS)

+ ‖qn− πh(qn)‖0,Σ + ‖s−Rhs‖0,ΩS

+ ‖v − Uhv‖0,ΩS
+ ‖ψ − πhψ‖0,Σ + |q −Πhq|1,ΩF

}
.

Proof. See [13, Lemma 5.8].

5 Time-space discretization

5.1 The fully discrete scheme

Given L ∈ N, we consider a uniform partition of the time interval [0, T ] with step size ∆t := T/L.
Then, for any continuous function φ : [0, T ] → R and for each k ∈ {0, 1, . . . , L} we denote φk := φ(tk),
where tk := k∆t. In addition, we adopt the same notation for vector/tensor valued functions and
introduce the notations

tk+ 1
2
:=

tk+1 + tk
2

, φk+ 1
2 :=

φk+1 + φk

2
, φk− 1

2 :=
φk + φk−1

2
,

and the discrete time derivatives

∂tφ
k :=

φk+1 − φk

∆t
and ∂̄tφ

k :=
φk − φk−1

∆t
,

from which we notice that

∂t∂̄tφ
k =

∂̄tφ
k+1 − ∂̄tφ

k

∆t
=

∂tφ
k − ∂tφ

k−1

∆t
=

φk+1 − 2φk + φk−1

∆t2
.

The Newmark trapezoidal rule applied to the Galerkin space-semidiscretization introduced in [13] for
problem (3.7) reads as follows: For k = 1, . . . , L− 1, find (σk+1

h , pk+1
h ) ∈ X

sym

h such that

(
∂t∂̄t(σ

k
h, p

k
h), (τ , q)

)
C
+ A

((σk+ 1
2

h + σ
k− 1

2

h

2
,
p
k+ 1

2

h + p
k− 1

2

h

2

)
, (τ , q)

)

= − ρ−1
S

(
f(tk),div τ

)
0,ΩS

∀ (τ , q) ∈ X
sym

h .

(5.1)

Moreover, for the sake of simplicity, we assume that the scheme (5.1) is started up with

(σ0
h, p

0
h) := Ξh(σ0, p0) and (σ1

h, p
1
h) := Ξh(σ(t1), p(t1)). (5.2)
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We insist here upon the fact that it is necessary to introduce a Lagrange multiplier in order to
relax the weak symmetry constraint defining W

sym

h . This permits one to deal with the well-known
BDM-finite element basis functions of the space Wh in order to obtain the linear systems of equations
arising from (5.1) at each iteration step.

Now, recalling that (σ, p) stands for the solution of (3.7), we introduce the discrete errors

ekσ,h := σ∗
h(tk)− σk

h ∈ W
sym

h , and ekp,h := p∗h(tk)− pkh ∈ Vh,

where, as in [13], we define (σ∗
h, p

∗
h) := Ξh(σ, p), and observe that (ekσ,h, e

k
p,h) ∈ X

sym

h . Then, thanks

to (5.2), we have e0σ,h = e1σ,h = 0 and e0p,h = e1p,h = 0. In turn, the starting point of our convergence
analysis is the following error equation

(
∂t∂̄t(e

k
σ,h, e

k
p,h), (τ , q)

)
C
+ A

((ek+
1
2

σ,h + e
k− 1

2

σ,h

2
,
e
k+ 1

2

p,h + e
k− 1

2

p,h

2

)
, (τ , q)

)

=
(
(χk

1,σ,χ
k
1,p), (τ , q)

)
C
+ A

(
(χk

2,σ,χ
k
2,p), (τ , q)

)
∀ (τ , q) ∈ X

sym

h ,

(5.3)

where the consistency terms are, for ξ ∈ {σ, p},

χk
1,ξ := ∂t∂̄tξ

∗
h(tk) − ξ̈(tk) and χk

2,ξ :=
ξ∗h(tk+1) + 2ξ∗h(tk) + ξ∗h(tk−1)

4
− ξ(tk) .

By definition of (σ∗
h, p

∗
h), we have that

(div(σ∗
h(tk)− σ(tk)),div τ )0,ΩS

= 0 ∀ (τ , q) ∈ Xh ,

and
(∇(p∗h(tk)− p(tk)),∇q)0,ΩF

= (∇(p(tk)−Πhp(tk)),∇q)0,ΩF
= 0 ∀ (τ , q) ∈ Xh .

Hence, we can substitute in the right hand side of (5.3) the functions χk
2,σ and χk

2,p by

χ̄k
2,ξ := χk

2,ξ − (ξ∗h(tk)− ξ(tk)) =
ξ∗h(tk+1)− 2ξ∗h(tk) + ξ∗h(tk−1)

4
∀ ξ ∈ {σ, p}

without altering the error equation.

5.2 Convergence analysis

We begin by establishing the following stability result.

Lemma 5.1. There exists a constant C > 0, independent of λ, h and ∆t, such that for each n ∈ N

there holds

max
n

∥∥(∂tenσ,h, ∂tenp,h)
∥∥
0,C

+ max
n

∥∥∥∥div e
n+ 1

2

σ,h

∥∥∥∥
0,ΩS

+ max
n

∥∥∥∥∇e
n+ 1

2

p,h

∥∥∥∥
0,ΩF

≤ C
{
max
n

∥∥(χn
1,σ,χ

n
1,p)

∥∥
0,C

+ max
n

∥∥div ∂tχ̄
n
2,σ

∥∥
0,ΩS

+ max
n

∥∥∇∂tχ̄
n
2,p

∥∥
0,ΩF

+ max
n

∥∥div χ̄n
2,σ

∥∥
0,ΩS

+ max
n

∥∥∇χ̄n
2,p

∥∥
0,ΩF

}
.

(5.4)
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Proof. Taking (τ , q) = (
ek+1
σ,h − ek−1

σ,h

2∆t
,
ek+1
p,h − ek−1

p,h

2∆t
) in (5.3) and using

ek+1
σ,h − ek−1

σ,h

2∆t
=
e
k+ 1

2

σ,h − ek−
1
2

σ,h

∆t
=

∂te
k
σ,h + ∂te

k−1
σ,h

2
,

and the similar identity for
ek+1
p,h − ek−1

p,h

2∆t
, we find that

1

2∆t

(
(∂te

k
σ,h − ∂te

k−1
σ,h , ∂te

k
p,h − ∂te

k−1
p,h ), (∂te

k
σ,h + ∂te

k−1
σ,h , ∂te

k
p,h + ∂te

k−1
p,h )

)
0,C

+
1

2∆t
A
(
(e

k+ 1
2

σ,h + e
k− 1

2

σ,h , e
k+ 1

2

p,h + e
k− 1

2

p,h ), (e
k+ 1

2

σ,h − ek−
1
2

σ,h , e
k+ 1

2

p,h − e
k− 1

2

p,h )
)

=
(
(χk

1,σ,χ
k
1,p), (

∂te
k
σ,h + ∂te

k−1
σ,h

2
,
∂te

k
p,h + ∂te

k−1
p,h

2
)
)
0,C

+ A
(
(χ̄k

2,σ, χ̄
k
2,p), (

e
k+ 1

2

σ,h − ek−
1
2

σ,h

∆t
,
e
k+ 1

2

p,h − e
k− 1

2

p,h

∆t
)
)
,

which can also be written as

1

2∆t

( ∥∥∥(∂tekσ,h, ∂tekp,h)
∥∥∥
2

0,C
−

∥∥∥(∂tek−1
σ,h , ∂te

k−1
p,h )

∥∥∥
2

0,C

)

+
1

2∆t

{
A
(
(e

k+ 1
2

σ,h , e
k+ 1

2

p,h ), (e
k+ 1

2

σ,h , e
k+ 1

2

p,h )
)
− A

(
(e

k− 1
2

σ,h , e
k− 1

2

p,h ), (e
k− 1

2

σ,h , e
k− 1

2

p,h )
)}

=
(
(χk

1,σ,χ
k
1,p), (

∂te
k
σ,h + ∂te

k−1
σ,h

2
,
∂te

k
p,h + ∂te

k−1
p,h

2
)
)
0,C

+ A
(
(χ̄k

2,σ, χ̄
k
2,p), (

e
k+ 1

2

σ,h − ek−
1
2

σ,h

∆t
,
e
k+ 1

2

p,h − e
k− 1

2

p,h

∆t
)
)
.

In this way, multiplying by 2∆t and summing up the foregoing identity over k = 1, . . . , n, gives

∥∥(∂tenσ,h, ∂tenp,h)
∥∥2
0,C

+ A
(
(e

n+ 1
2

σ,h , e
n+ 1

2

p,h ), (e
n+ 1

2

σ,h , e
n+ 1

2

p,h )
)

= 2∆t
n∑

k=1

(
(χk

1,σ,χ
k
1,p), (

∂te
k
σ,h + ∂te

k−1
σ,h

2
,
∂te

k
p,h + ∂te

k−1
p,h

2
)
)
0,C

+ 2∆t

n∑

k=1

A
(
(χ̄k

2,σ, χ̄
k
2,p), (

e
k+ 1

2

σ,h − ek−
1
2

σ,h

∆t
,
e
k+ 1

2

p,h − e
k− 1

2

p,h

∆t
)
)

= 2∆t
n∑

k=1

(
(χk

1,σ,χ
k
1,p), (

∂te
k
σ,h + ∂te

k−1
σ,h

2
,
∂te

k
p,h + ∂te

k−1
p,h

2
)
)
0,C

− 2∆t
n−1∑

k=1

A
(
(∂tχ̄

k
2,σ, ∂tχ̄

k
2,p), (e

k+ 1
2

σ,h , e
k+ 1

2

p,h )
)
+ 2A

(
(χ̄n

2,σ, χ̄
n
2,p), (e

n+ 1
2

σ,h , e
n+ 1

2

p,h )
)
.

It is now straightforward to deduce from the last identity and the Cauchy-Schwarz inequality, that
there exists a constant C0 > 0, independent of λ, h and ∆t, such that
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max
n

∥∥(∂tenσ,h, ∂tenp,h
∥∥
0,C

+ max
n

√
A
(
(e

n+ 1
2

σ,h , e
n+ 1

2

p,h ), (e
n+ 1

2

σ,h , e
n+ 1

2

p,h )
)

≤ C0

{
∆t

L∑

k=1

∥∥∥(χk
1,σ,χ

k
1,p)

∥∥∥
0,C

+ ∆t

L−1∑

k=1

√
A
(
(∂tχ̄k

2,σ, ∂tχ̄
k
2,p), (∂tχ̄

k
2,σ, ∂tχ̄

k
2,p)

)

+ max
n

√
A
(
(χ̄n

2,σ, χ̄
n
2,p), (χ̄

n
2,σ, χ̄

n
2,p)

)}
,

and the result follows from the lower bound of (3.8).

We now aim to bound the expression

Mh(σ, p) := max
n

∥∥∥(σ̇, ṗ)(tn+ 1
2
)− (∂tσ

n
h, ∂tp

n
h)
∥∥∥
0,C

+ max
n

∥∥∥∥divσ(tn+ 1
2
)− divσ

n+ 1
2

h

∥∥∥∥
0,ΩS

+ max
n

∥∥∥∥∇
(
p(tn+ 1

2
)− p

n+ 1
2

h

)∥∥∥∥
0,ΩF

To this end, we first observe thanks to the triangle inequality and the stability estimate (5.4) that

Mh(σ, p) ≤ M̃h(σ, p) + C M̂h(σ, p) , (5.5)

where

M̃h(σ, p) := max
n

∥∥∥(σ̇, ṗ)(tn+ 1
2
)− (∂tσ

∗
h(tn), ∂tp

∗
h(tn))

∥∥∥
0,C

+ max
n

∥∥div
(
σ(tn+ 1

2
)− (σ∗

h)
n+ 1

2

)∥∥
0,ΩS

+ max
n

∥∥∥∇
(
p(tn+ 1

2
)− (p∗h)

n+ 1
2

)∥∥∥
0,ΩF

and
M̂h(σ, p) := max

n

∥∥(χn
1,σ,χ

n
1,p)

∥∥
0,C

+ max
n

∥∥div ∂tχ̄
n
2,σ

∥∥
0,ΩS

+ max
n

∥∥∇∂tχ̄
n
2,p

∥∥
0,ΩF

+ max
n

∥∥div χ̄n
2,σ

∥∥
0,ΩS

+ max
n

∥∥∇χ̄n
2,p

∥∥
0,ΩF

.

The following two lemmas apply Taylor expansions with integral remainder to derive upper bounds
for the terms on the right hand side of (5.5).

Lemma 5.2. Assume that the solution (σ, p) ∈ C0((0, T );Xsym) ∩ C1((0, T );Hsym) to problem (3.7)
satisfies σ ∈ C2((0, T );H(div,ΩS) ∩ Hs(ΩS)

n×n) ∩ C3((0, T );H(div,ΩS)) for some s > 0 and p ∈
C3(H1(ΩF)). Then, there exists a constant C > 0, independent of λ, h and ∆t, such that

M̃h(σ, p) ≤ C
{

‖σ − σ∗
h‖W1,∞((0,T );H(div,ΩS))

+ ‖p− p∗h‖W1,∞((0,T );H1(ΩF))

+ (∆t)2
(
‖σ∗

h‖W3,∞((0,T );H(div,ΩS))
+ ‖p∗h‖W3,∞((0,T );H1(ΩF))

)}
.

(5.6)

Proof. Using Taylor expansions centered at t = tn+ 1
2
gives for each ξ ∈ {σ, p},

ξ(tn+ 1
2
)− (ξ∗h)

n+ 1
2 = ξ(tn+ 1

2
)− ξ∗h(tn+ 1

2
) − 1

2

∫ tn+1

tn

ξ̈∗h(t)
(∆t

2
− |t− tn+ 1

2
|
)
dt (5.7)
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and

ξ̇(tn+ 1
2
)− ∂tξ

∗
h(tn) = ξ̇(tn+ 1

2
)− ξ̇∗h(tn+ 1

2
) − 1

2∆t

∫ tn+1

t
n+1

2

d3ξ∗h(t)

dt3
(tn+1 − t)2 dt

− 1

2∆t

∫ t
n+1

2

tn

d3ξ∗h(t)

dt3
(tn − t)2 dt .

(5.8)

Then, it is not difficult to see that using (5.8) with ξ = σ and ξ = p, and then applying the space
differential operators div and ∇ to ξ = σ and ξ = p, respectively, in (5.7), we arrive at (5.6).

Lemma 5.3. Assume that the solution (σ, p) ∈ C0((0, T );Xsym) ∩ C1((0, T );Hsym) to problem (3.7)
satisfies σ ∈ C2((0, T );H(div,ΩS) ∩ Hs(ΩS)

n×n) ∩ C4((0, T );H(div,ΩS)) for some s > 0 and p ∈
C4(H1(ΩF)). Then, there exists a constant C > 0, independent of λ, h and ∆t, such that

M̂h(σ, p) ≤ C
{

‖σ − σ∗
h‖W2,∞((0,T );H(div,ΩS))

+ ‖p− p∗h‖W2,∞((0,T );H1(ΩF))

+ (∆t)2
(
‖σ∗

h‖W4,∞((0,T );H(div,ΩS))
+ ‖p∗h‖W4,∞((0,T );H1(ΩF))

)}
.

(5.9)

Proof. Using now Taylor expansions centered at t = tn we have for each ξ ∈ {σ, p},

χn
1,ξ = ξ̈∗h(tn)− ξ̈(tn) +

1

6(∆t)2

∫ tn+1

tn−1

d4ξ∗h(t)

dt4
(∆t− |t− tn|)3 dt , (5.10)

χ̄n
2,ξ =

1

4

∫ tn+1

tn−1

ξ̈∗h(t)(∆t− |t− tn|) dt , (5.11)

and

∂tχ̄
n
2,ξ =

ξ∗h(tn+2)− 3ξ∗h(tn+1) + 3ξ∗h(tn)− ξ∗h(tn−1)

4∆t
=

1

8∆t

{∫ tn+2

tn

d3ξ∗h(t)

dt3
(tn+2 − t)2 dt

− 3

∫ tn+1

tn

d3ξ∗h(t)

dt3
(tn+1 − t)2 dt +

∫ tn

tn−1

d3ξ∗h(t)

dt3
(tn−1 − t)2 dt

}
.

(5.12)

In this way, proceeding similarly as for the previous lemma, that is by applying now (5.10), (5.11) and
(5.12), we obtain (5.9) Further details are omitted.

As a consequence of Lemmas 5.2, 5.3, and 4.2, we are able to establish next the required bound for
Mh(σ, p).

Lemma 5.4. Assume that the solution (σ, p) ∈ C0((0, T );Xsym) ∩ C1((0, T );Hsym) to problem (3.7)
satisfies σ ∈ C2((0, T );H(div,ΩS) ∩ Hs(ΩS)

n×n) ∩ C4((0, T );H(div,ΩS)) for some s > 0 and p ∈
C4(H1(ΩF)). Then, there exists a constant C > 0, independent of λ, h and ∆t, such that

Mh(σ, p) ≤ C
{
‖σ −Πhσ‖W2,∞((0,T );H(div,ΩS))

+ ‖pn− πh(pn)‖W2,∞((0,T );L2(Σ)d)

+ ‖r −Rhr‖W2,∞((0,T );[L2(ΩS)]
d×d
skew

) + ‖u− Uhu‖W2,∞((0,T );L2(ΩS)d)

+ ‖ψ − πhψ‖W2,∞((0,T );L2(Σ)d) + ‖∇(p−Πhp)‖W2,∞((0,T );L2(ΩF)d)

+ (∆t)2
(
‖σ‖W4,∞((0,T );H(div,ΩS))

+ ‖p‖W4,∞((0,T );H1(ΩF))

)}
,

(5.13)

where (u, r) = D(σ, p) and ψ = u|Σ.
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Proof. It follows straightforwardly from the initial estimate (5.5) and Lemmas 5.2 and 5.3 that

Mh(σ, p) ≤ C
{

‖σ − σ∗
h‖W2,∞((0,T );H(div,ΩS))

+ ‖p− p∗h‖W2,∞((0,T );H1(ΩF))

+(∆t)2
(
‖σ∗

h‖W4,∞((0,T );H(div,ΩS))
+ ‖p∗h‖W4,∞((0,T );H1(ΩF))

)}
,

(5.14)

On the other hand, the uniform boundedness of Ξh : X → X
sym

h with respect to h and λ, and our
regularity assumptions, imply that there exists a constant C > 0, independent of h and λ, such that

‖σ∗
h‖W4,∞((0,T );H(div,ΩS))

+ ‖p∗h‖W4,∞((0,T );H1(ΩF))

≤ C
{

‖σ‖W4,∞((0,T );H(div,ΩS))
+ ‖p‖W4,∞((0,T );H1(ΩF))

}
.

(5.15)

Finally, combining (5.14) and (5.15) we conclude that

Mh(σ, p) ≤ C
{

‖σ − σ∗
h‖W2,∞((0,T );H(div,ΩS))

+ ‖p− p∗h‖W2,∞((0,T );H1(ΩF))

+ (∆t)2
(
‖σ‖W4,∞((0,T );H(div,ΩS))

+ ‖p‖W4,∞((0,T );H1(ΩF))

)}
,

and the result follows by applying Lemma 4.2 to (σ, p) ∈ K
⊥.

We notice here that while the constant C > 0 appearing in (5.13) is independent of λ, the first error
term on the left-hand side, namely (σ̇, ṗ)(tn+ 1

2
)− (∂tσ

n
h, ∂tp

n
h), is estimated in the λ-dependent norm

‖·‖C . Hence, Lemma 5.4 ensures that only the convergence of the semi-norms

max
n

∥∥∥∥div
(
σ(tn+ 1

2
)− σn+ 1

2

h

)∥∥∥∥
0,ΩS

and max
n

∥∥∥∥∇
(
p(tn+ 1

2
)− p

n+ 1
2

h

)∥∥∥∥
0,ΩF

remain unaltered when λ goes to infinity. We aim now to apply Lemma 3.1 to deduce the same
stability behaviour in the full X-norm. To this end, we first need the following intermediate result.

Lemma 5.5. Under the hypotheses of Lemma 5.4 there exists a constant C > 0, independent of λ, h
and ∆t, such that

max
n

∥∥∥∥(σ, p)(tn+ 1
2
)− (σ

n+ 1
2

h , p
n+ 1

2

h )

∥∥∥∥
0,C

≤ C
{

‖σ −Πhσ‖W2,∞((0,T );H(div,ΩS))
+ ‖∇(p−Πhp)‖W2,∞((0,T );L2(ΩF)d)

+ ‖pn− πh(pn)‖W2,∞((0,T );L2(Σ)d) + ‖u− Uhu‖W2,∞((0,T );L2(ΩS)d)

+ ‖ψ − πhψ‖W2,∞((0,T );L2(Σ)d) + ‖r −Rhr‖W2,∞((0,T );[L2(ΩS)]
d×d
skew

)

+ (∆t)2
(
‖σ‖W4,∞((0,T );H(div,ΩS))

+ ‖p‖W4,∞((0,T );H1(ΩF))

)}
.

(5.16)

Proof. We first notice that for each ξ ∈ {σ, p} there holds

(ξ(tk+ 1
2
)− ξ

k+ 1
2

h )− (ξ(tk− 1
2
)− ξ

k− 1
2

h ) = ξ(tk+ 1
2
)− ξ(tk− 1

2
)− ∆t

2
(ξ̇(tk+ 1

2
) + ξ̇(tk− 1

2
))

+
∆t

2
(ξ̇(tk+ 1

2
)− ∂tξ

k
h) +

∆t

2

(
ξ̇(tk− 1

2
)− ∂tξ

k−1
h

)
.

(5.17)
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Then, using a Taylor expansion centered at t = tk, we find that

ξ(tk+ 1
2
)− ξ(tk− 1

2
)− ∆t

2
(ξ̇(tk+ 1

2
) + ξ̇(tk− 1

2
)) =

1

2

∫ t
k+1

2

tk

d3ξ(t)

dt3
(tk+ 1

2
− t)2 dt

+
1

2

∫ tk

t
k− 1

2

d3ξ(t)

dt3
(tk− 1

2
− t)2 dt − ∆t

2

∫ t
k+1

2

t
k− 1

2

d3ξ(t)

dt3
(
∆t

2
− |t− tk|) dt ∀ ξ ∈ {σ, p} .

(5.18)

Substituting (5.18) in (5.17), and summing the resulting identities over k = 1, . . . , n, we deduce that
there exists a constant C0 > 0, independent of λ, h and ∆t, such that

max
n

∥∥∥∥(σ, p)(tn+ 1
2
)− (σ

n+ 1
2

h , p
n+ 1

2

h )

∥∥∥∥
0,C

≤ C0

{
(∆t)2

(
‖σ‖W3,∞((0,T );L2(ΩS)d×d)

+ ‖p‖W3,∞((0,T );L2(ΩF))

)
+ max

n

∥∥∥(σ̇, ṗ)(tn+ 1
2
)− (∂tσ

n
h, ∂tp

n
h)
∥∥∥
0,C

}
.

Finally, (5.16) is a direct consequence of the foregoing estimate and Lemma 5.4.

We are now in a position to establish the following asymptotic error estimate.

Theorem 5.1. Assume that the solutions (σ, p) to problem (3.7) satisfies the regularity assumptions

(σ, p) ∈ C4((0, T );Xsym) and (u, p) ∈ C2
(
(0, T ); Hk+1(ΩS)

d × Hk+1(ΩF)
)
, for some k ≥ 1, where u

is the displacement associated to (σ, p) through operator D. Then, there exists a constant C > 0,
independent of λ, h and ∆t, such that

max
n

∥∥∥∥
(
σ(tn+ 1

2
)− σn+ 1

2

h , p(tn+ 1
2
)− p

n+ 1
2

h

)∥∥∥∥ ≤ C
{
hk + (∆t)2)

}
.

Proof. We deduce immediately from Lemmas 5.4 and 5.5 that there exists a constant C0 > 0, inde-
pendent of λ, h and ∆t, such that

max
n

∥∥∥∥(σ, p)(tn+ 1
2
)− (σ

n+ 1
2

h , p
n+ 1

2

h )

∥∥∥∥
0,C

+ max
n

∥∥∥∥div
(
σ(tn+ 1

2
)− σn+ 1

2

h

)∥∥∥∥
0,ΩS

+ max
n

∥∥∥∥∇
(
p(tn+ 1

2
)− p

n+ 1
2

h

)∥∥∥∥
0,ΩF

≤ C0

{
‖σ −Πhσ‖W2,∞((0,T );H(div,ΩS))

+ ‖pn− πh(pn)‖W2,∞((0,T );L2(Σ)d) + ‖r −Rhr‖W2,∞((0,T );[L2(ΩS)]
d×d
skew

)

+ ‖u− Uhu‖W2,∞((0,T );L2(ΩS)d)
+ ‖ψ − πhψ‖W2,∞((0,T );L2(Σ)d)

+ ‖∇(p−Πhp)‖W2,∞((0,T );L2(ΩF)d)
+ (∆t)2 ‖σ‖W4,∞((0,T );H(div,ΩS))

+ (∆t)2 ‖p‖W4,∞((0,T );H1(ΩF))

}
,

and the result follows from the norm equivalency provided by Lemma 3.1 and the approximation
properties given by (4.1), (4.2) and (4.3)-(4.6).

6 Numerical results

In this section we present several numerical experiments confirming the good performance of the fully
discrete Galerkin scheme (5.1) as applied to a two-dimensional model problem. In all what follows,
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h = ∆t N eh(σ) rh(σ) eh(u) rh(u) eh(p) rh(p)

1/16 7489 8.837e−03 − 8.041e−03 − 9.635e−02 −

1/32 29313 1.929e−03 2.195 1.901e−03 2.081 2.038e−02 2.241
1/64 115969 4.623e−04 2.061 4.688e−04 2.020 4.990e−03 2.030
1/128 461313 1.144e−04 2.014 1.166e−04 2.008 1.257e−03 1.990

Table 6.1: convergence history in the case ΓN = ∅ and λ = µ = 1.0.

given the solution (σn
h, p

n) of (5.1) at a time level n∆t, we postprocess the corresponding displacement
field un

h by solving the auxiliary saddle point problem:

Find σ∗
h ∈ Wh with σ∗

hn = −pnhn on Σ, r∗h ∈ Qh and un
h ∈ Uh such that

(C−1σ∗
h + r

∗
h, τ )0,ΩS

+ (un
h,div τ )0,ΩS

= 0 ∀τ ∈ WΣ
h ,

(div σ∗
h,v)0,ΩS

= (div σn
h,v)0,ΩS

∀v ∈ Uh ,

(σ∗
h, s)0,ΩS

= 0 ∀s ∈ Qh,

(6.1)

where WΣ
h := {τ ∈ Wh; τn = 0, on Σ}.

For each mesh size h, the individual relative errors produced by the fully discrete Galerkin method
(5.1) are measured at the final time step as follows:

eh(σ) :=
‖σ(tL− 1

2
)− σL− 1

2

h ‖H(div,ΩS)

‖σ(tL− 1
2
)‖H(div,ΩS)

, eh(p) :=
‖p(tL− 1

2
)− p

L− 1
2

h ‖1,ΩF

‖p(tL− 1
2
)‖1,ΩF

,

eh(u) :=
‖u(tL− 1

2
)− uL− 1

2

h ‖0,ΩS

‖u(tL− 1
2
)‖0,ΩS

,

where {(σn
h, p

n
h), n = 0, . . . , L} is the solution of (5.1) and (σ, p) is the solution of (3.7). In turn, we

introduce the experimental rates of convergence

rh(σ) :=
log(eh(σ)/eĥ(σ))

log(h/ĥ)
, rh(p) :=

log(eh(p)/eĥ(p))

log(h/ĥ)
,

rh(u) :=
log(eh(u)/eĥ(u))

log(h/ĥ)
,

where eh and êĥ are the errors corresponding to two consecutive triangulations with mesh sizes h and

ĥ, respectively.

h = ∆t N eh(σ) rh(σ) eh(u) rh(u) eh(p) rh(p)

1/16 7489 8.562e−03 − 6.453e−03 − 2.335e−01 −

1/32 29313 1.845e−03 2.214 1.450e−03 2.154 2.657e−02 3.136
1/64 115969 4.412e−04 2.064 3.572e−04 2.021 5.491e−03 2.274
1/128 461313 1.090e−04 2.017 8.905e−05 2.004 1.358e−03 2.016

Table 6.2: convergence history in the case ΓN 6= ∅ and λ = µ = 1.0.

We now describe the main data of the three examples that will be reported in the following. For
each one of them we consider ΩS = (0, 1)2\[0.25, 0.75]2 , ΩF = (0.25, 0.75)2 , T = 1, ρS = 1, and ρF = 1.
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h = ∆t N eh(σ) rh(σ) eh(u) rh(u) eh(p) rh(p)

1/16 7489 9.019e−03 − 3.362e−02 − 1.343e+00 −

1/32 29313 1.946e−03 2.212 2.755e−03 3.609 1.808e−01 2.893
1/64 115969 4.673e−04 2.058 8.749e−04 1.655 2.830e−02 2.675
1/128 461313 1.133e−04 2.044 2.404e−04 1.863 6.590e−03 2.103

Table 6.3: convergence history in the case E = 1.0, ν = 0.49.

In Example 1, we choose Lamé constants λ = µ = 1.0, take ΓD = Γ and select the datum f so that
the exact solution for the displacement and pressure are given, respectively, by

u(x, t) := sin(4πx1) sin(4πx2)

(
sin t
sin t

)
∀x := (x1, x2) ∈ ΩS,∀ t > 0 ,

and
p(x, t) := sin(4πx1) sin(4πx2) sin(4

√
2πt) ∀x := (x1, x2) ∈ ΩF, ∀ t > 0 .

In Example 2, we use again the same displacement and Lamé constants of the first example and choose

f so that the exact solution for the pressure is given by

p(x, t) := sin(x1 − 0.5) sin(x2 − 0.5) sin(
√
2t) ∀x := (x1, x2) ∈ ΩF, ∀ t > 0 .

In addition, in this case we incorporate the traction boundary condition

σn = t̂ on ΓN ,

with ΓN := {x2 = 0, 0 ≤ x1 ≤ 1}.

Finally, in Example 3 we test the locking-free character of the method in the nearly incompressible
case. For this purpose, we consider now Lamé constants corresponding to a Poisson ratio ν = 0.49
and Young modulus E = 1.0, that is

µ =
E

2(1 + ν)
= 0.336 and λ =

νE

(1 + ν)(1− 2ν)
= 16.443 ,

and maintain the displacement, pressure and traction condition of Example 2.

For all the above described examples we consider the AFW elements of order k = 2 for the spatial
discretization in the solid, and the usual second order Lagrange element for the corresponding dis-
cretization in the acoustic medium. Tables 6.1 to 6.3 depict the convergence results obtained by taking
equal time and space discretizations parameters ∆t and h, respectively. The size of the linear systems
solved at each iteration step is indicated by the parameter N . We report on the relative errors and
the convergence orders for these three examples. As predicted by the theoretical results, we observe
that in all cases the quadratic convergence rate of the error is attained in each variable. In addition,
we remark from Example 3 that the method is also robust for nearly incompressible materials, thus
confirming its locking-free character.
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