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Abstract

In this paper we introduce and analyze a virtual element method (VEM) for an augmented mixed
variational formulation of a class of nonlinear Stokes models arising in quasi-Newtonian fluids.
While the original unknowns are given by the pseudostress, the velocity, and the pressure, the
latter is eliminated by using the incompressibility condition, and in order to handle the nonlinearity
involved, the velocity gradient is set as an auxiliary one. In this way, and adding a redundant term
arising from the constitutive equation relating the psdeudostress and the velocity, an augmented
formulation showing a saddle point structure is obtained, whose well-posedness has been established
previously by using known results from nonlinear functional analysis. Then, following the basic
principles and ideas of the mixed-VEM approach, we introduce a Galerkin scheme employing generic
virtual element subspaces and projectors satisfying suitable abstract conditions, and derive the
corresponding solvability analysis, along with the associated a priori error estimates for the virtual
element solution as well as for the fully computable projection of it. Next, we provide two specific
choices of subspaces and local projectors verifying the required hypotheses, one of them yielding an
optimally convergent mixed-VEM for the fully nonlinear problem studied here, and the other one
providing a new approach for the linear version of it, that is for the Stokes problem. In addition,
we are able to apply a second element-by-element postprocessing formula for the pseudostress,
which yields an optimally convergent approximation of it with respect to the broken H(div)-norm.
Finally, several numerical results illustrating the good performance of the method and confirming
the theoretical rates of convergence are reported.
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1 Introduction

A virtual element method (VEM) for a dual-mixed variational formulation of the Stokes problem, in
which the pseudostress and the velocity are the only unknowns, whereas the pressure is computed via
a postprocessing formula, was introduced and analyzed in the recent paper [12]. In fact, following the
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basic principles provided in [9], the approach in [12] firstly introduces the main ingredients of the mixed-
VEM, which includes the virtual finite element subspaces to be employed, the associated interpolation
operators, and the respective approximation properties. Arbitrary polygonal meshes satisfying the
conditions specified in [9] are allowed for the decomposition of the computational domain. Then,
bearing in mind that the main bilinear form involves terms with deviatoric tensors, and aiming to
construct an explicitly calculable discrete version of it, a new local projector onto a suitable polynomial
space, which takes into account the main features of the continuous solution and allows the explicit
integration of the aforementioned terms, is proposed in [12]. Moreover, the uniform boundedness
of the resulting family of projectors and its corresponding approximation properties are established
there. In this way, and applying the classical Babuška-Brezzi theory, the well-posedness of the actual
Galerkin scheme is proved and the associated a priori error estimates for the virtual solution as well
as for the fully computable projection of it are derived.

In connection with the above, we highlight that the derivation of pseudostress-based dual-mixed
finite element methods for problems in continuum mechanics has become a very active research area
in the last decade, mainly because of the need of finding new ways of circumventing the symmetry
requirement of the usual stress-based approach. Here we mean by dual-mixed those methods in which
the main unknown of the resulting saddle point problem lives in either a vectorial H(div) or a tensorial
H(div) space. In particular, one of the most popular approaches is precisely the pseudostress-velocity
formulation employed in [12], which after being introduced first in [14], has been furtherly devel-
oped, among others, in [22] and [23], where the latter deals with the nonlinear model determined by
quasi-Newtonian Stokes flows. Further applications of pseudostress-based dual-mixed formulations to
nonlinear Stokes problems can be found in [15], [21], and [25]. In turn, other applications of this
approach in fluid mechanics are available for instance in [17] and [18], where dual-mixed methods for
the linear and nonlinear versions of the Brinkman problem are studied.

Consequently, the increasing applicability of the aforementioned pseudostress-based approach, to-
gether with the well-known advantages of the recently introduced VEM philosophy (see, e.g. [3], [5],
[6], [7], [9], and the references therein), have motivated us to combine both procedures for numerically
solving boundary value problems in fluid mechanics. Indeed, besides the already described contri-
bution [12] concerning the Stokes problem, we now refer to [13] where we have proposed two mixed
virtual element methods for the two-dimensional Brinkman problem studied in [17]. More precisely,
proceeding as in this latter reference, we first use the equilibrium equation and the incompressibility
condition to eliminate the velocity and the pressure, respectively, thus yielding the pseudostress as the
only unknown of the resulting dual-mixed formulation in [13]. Then, in order to define a calculable
discrete bilinear form, whose continuous version also involves deviatoric tensors (as in [12]), we propose
two different projectors: the particular local one introduced in [12], and the general L2-orthogonal
projection analyzed in [6] (see also [7]). Next, we apply the classical Lax-Milgram Lemma to show
that the resulting mixed virtual element schemes are well-posed, and derive the associated a priori
error estimates for the virtual solutions as well as for the fully computable projections of them. In
addition, following [19] and [20], we propose a second element-by-element postprocessing formula for
the pseudostress, which yields an optimally convergent approximation of this unknown with respect to
the broken H(div)-norm. A very interesting feature of both mixed virtual element methods proposed
in [13] refers to their robustness as the Stokes limit of Brinkman is approached. For further recent
contributions on virtual element methods, though not necessarily connected to the pseudostress-based
approach or to dual-mixed methods, we refer to [1], [4], [8], [11], [16], and [28].

According to the foregoing discussion, and in order to continue developing mixed virtual element
methods in fluid mechanics, we now aim to extend the analysis and results from [12] and [13] to the case
of quasi-Newtonian Stokes flows, for which we consider the nonlinear problem studied in [23] (see also
[24]) as our motivating model. The rest of this work is organized as follows. In Section 2 we introduce
the boundary value problem of interest, recall from [23] its augmented pseudostress-velocity mixed

2



formulation, and state the corresponding well-posedness result. In turn, in Section 3 we first use generic
virtual element subspaces and projectors satisfying suitable abstract conditions to define our associated
Galerkin scheme. Then, we establish the unique solvability of it and derive the corresponding a priori
error estimates for both the virtual element solution and its fully computable projection. We remark
that a nonlinear version of the Babuška-Brezzi theory is required here. Next, two specific choices of
subspaces and local projectors satisfying the aforementioned abstract assumptions are described in
Section 4. However, we remark in advance that only one of them will lead to a fully satisfactory
virtual element scheme for our fully nonlinear problem, whereas the other choice, determined by
the local projector introduced in [12], will provide and alternative mixed-VEM for the linear Stokes
problem. Furthermore, at the end of Section 4 we suggest a second element-by-element postprocessing
formula for this variable, which yields an optimally convergent approximation of it with respect to the
broken H(div)-norm. Finally, in Section 5 we present several numerical results illustrating the good
performance of the method and confirming the theoretical rates of convergence.

Notations

We end the present section with several useful notations to be used below. We begin by mentioning
that, given a non-null space H, we set H := H2 and H := H2×2. In addition, standard terminology will
be adopted for Sobolev spaces Hs(Ω), s ∈ R, with norm ‖ · ‖s,Ω and seminorm | · |s,Ω. In particular,
we usually write L2(Ω) instead of H0(Ω). In turn, H1/2(Γ) is the space of traces of functions of H1(Ω),
H−1/2(Γ) denotes its dual, and 〈·, ·〉Γ stands for the duality pairing between them or between H−1/2(Γ)
and H1/2(Γ). Then, letting div be the usual divergence operator div acting along the rows of a given
tensor, we recall that the spaces

H(div; Ω) :=
{
τ ∈ L2(Ω) : div(τ) ∈ L2(Ω)

}
,

and
H(div; Ω) :=

{
τ ∈ L2(Ω) : div(τ ) ∈ L2(Ω)

}
,

equipped with the usual norms

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ)‖20,Ω ∀ τ ∈ H(div; Ω) ,

and
‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H(div; Ω) ,

are Hilbert spaces. Furthermore, given τ := (τij), ζ := (ζij) ∈ R2×2, we write as usual

τ t := (τji) , tr(τ ) :=
2∑
i=1

τii , τ d := τ − 1

2
tr(τ ) I , and τ : ζ :=

2∑
i,j=1

τijζij ,

where I is the identity matrix of R2×2. Finally, in what follows we employ 0 to denote a generic null
vector, null tensor or null operator, and use C, with or without subscripts, bars, tildes or hats, to
denote generic constants independent of the discretization parameters, which may take different values
at different places.

2 The nonlinear Stokes problem and its mixed formulation

2.1 The model problem

Given a bounded and simply connected polygonal domain Ω in R2 with boundary Γ, we are interested
in determining the velocity u, the pseudostress tensor σ and the pressure p of a quasi-Newtonian

3



Stokes flow occupying Ω, under the action of external forces. More precisely, given a volume force
f ∈ L2(Ω) and a Dirichlet datum g ∈ H1/2(Γ), we seek a tensor field σ, a vector field u, and a scalar
field p such that

σ = 2µ(|∇u|)∇u− p I in Ω , div(σ) = −f in Ω ,

div(u) = 0 in Ω , u = g on Γ ,

∫
Ω
p = 0 ,

(2.1)

where µ : R+ → R+ is the nonlinear kinematic viscosity function of the fluid, and | · | is the euclidean
norm of R2×2. As required by the incompressibility condition, we assume that g satisfies the compat-
ibility condition

∫
Γ g ·n = 0, where n stands for the unit outward normal at Γ. The kind of nonlinear

Stokes problem given by (2.1) appears in the modeling of a large class of non-Newtonian fluids (see
e.g. [2, 26, 27, 29]). In particular, the Ladyzhenskaya law for fluids with large stresses (see [26]), also
known as power law, is given by µ(t) := κ0 + κ1t

β−2 ∀ t ∈ R+, with κ0 ≥ 0, κ1 > 0 and β > 1, and
the Carreau law for viscoplastic flows (see e.g. [27, 29]) reads µ(t) := κ0 +κ1(1 + t2)(β−2)/2 ∀ t ∈ R+,
with κ0 ≥ 0, κ1 > 0 and β > 1.

In what follows, we let µij : R2×2 → R be the mapping given by µij(r) := µ(|r|)rij for each
r := (rij) ∈ R2×2 and for each i, j ∈ {1, 2}. Then, throughout this paper we assume that µ is of class
C1 and that there exist γ0, α0 > 0 such that for each r := (rij), s := (sij) ∈ R2×2, there hold

|µij(r)| ≤ γ0|r| , and

∣∣∣∣ ∂

∂rkl
µij(r)

∣∣∣∣ ≤ γ0 ∀ i, j, k, l ∈ {1, 2} , (2.2)

and
2∑

i,j,k,l=1

∂

∂rkl
µij(r)sijskl ≥ α0|s|2 . (2.3)

It is easy to check that the Carreau law satisfies (2.2) and (2.3) for all κ0 > 0 and for all β ∈ [1, 2]. In
particular, with β = 2 we recover the usual linear Stokes model.

2.2 The continuous formulation

We now recall from [23] the augmented mixed variational formulation of (2.1). In fact, we first observe
that, using the incompressibility condition (cf. third equation in (2.1)) to eliminate the pressure, and
introducing the auxiliary unknown t := ∇u for a better handling of the nonlinearity determined by
the kinematic viscosity µ, our model problem (2.1) can be rewritten equivalently as:

σd = 2µ(|t|) t in Ω , div(σ) = −f in Ω ,

t = ∇u in Ω , u = g on Γ ,

∫
Ω

tr(σ) = 0 ,
(2.4)

where the pressure p can be recovered by the postprocessing formula

p = − 1

2
tr(σ) . (2.5)

Next, proceeding as explained in [23], in particular enriching the variational formulation resulting at
first instance with a further testing of the constitutive law relating σ and t (cf. first equation of (2.4)),
which includes its multiplication by a stabilization parameter κ > 0 to be suitably chosen later on, we
arrive at the following saddle point-type nonlinear system: Find ((t,σ),u) ∈ (X ×H)× Y such that

[A(t,σ), (s, τ )] + [B(s, τ ),u] = [F , (s, τ )] ∀ (s, τ ) ∈ X ×H ,

[B(t,σ),v] = [G,v] ∀ v ∈ Y ,
(2.6)
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where

H = H0(div; Ω) :=
{
τ ∈ H(div; Ω) :

∫
Ω

tr(τ ) = 0
}
,

X = L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr(s) = 0

}
, and Y := L2(Ω) .

In turn, A : (X ×H)→ (X ×H)′ ≡ X ′ ×H ′ is the nonlinear operator

[A(r, ζ), (s, τ )] := 2

∫
Ω
µ(|r|) r : s −

∫
Ω

s : ζd +

∫
Ω

r : τ d + κ

∫
Ω

(
ζd − 2µ(|r|) r

)
: τ d , (2.7)

B : (X ×H)→ Y ′ is the linear operator

[B(s, τ ),v] :=

∫
Ω

v · div(τ ) , (2.8)

and the functionals F ∈ (X ×H)′ and G ∈ Y ′ are given by

[F , (s, τ )] := 〈τn,g〉Γ and [G,v] := −
∫

Ω
f · v , (2.9)

for all (r, ζ), (s, τ ) ∈ X ×H and for all v ∈ Y , where [·, ·] stands in each case for the duality pairing
induced by the corresponding operators and functionals.

We remark here that the last expression appearing in the definition of A (cf. (2.7)) rises precisely
from the aforementioned further testing of the nonlinear constitutive law relating σ and t (cf. first
equation of (2.4)), which reduces to

κ

∫
Ω

(
σd − 2µ(|t|) t

)
: τ d = 0 ∀ τ ∈ H . (2.10)

Similarly as in [23], we highlight that the utilization of (2.10) in the derivation of (2.6) has yielded
the aforementioned saddle-point type structure of our problem. Otherwise, the resulting variational
formulation would be given by a twofold saddle point-type nonlinear system, in which case a second
discrete inf-sup condition would need to be satisfied, thus additionally restricting the choice of the vir-
tual element subspaces to be employed below. In other words, incorporating (2.10) into the variational
formulation guarantees more freedom for defining our mixed virtual element scheme.

In addition, we now observe that we can write

[A(r, ζ), (s, τ )] := [A(r), s− κτ d] −
∫

Ω
s : ζd +

∫
Ω

r : τ d + κ

∫
Ω
ζd : τ d (2.11)

for each (r, ζ), (s, τ ) ∈ X ×H, where A : X → X ′ is the auxiliary nonlinear operator defined by

[A(r), s] := 2

∫
Ω
µ(|r|) r : s ∀ r, s ∈ X . (2.12)

Furthermore, we know from [23, Lemma 2.1] that the operator A is Lipschitz-continuous and strongly
monotone. More precisely, with the constants γ0 and α0 specified in (2.2) and (2.3), respectively, there
hold

‖A(r)−A(s)‖X′ ≤ 2 γ0 ‖r− s‖0,Ω (2.13)

and
[A(r)−A(s), r− s] ≥ 2α0 ‖r− s‖20,Ω , (2.14)

for each r, s ∈ X.

The well-posedness of the augmented formulation (2.6) is established as follows.
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Theorem 2.1. Assume that the parameter κ defining the operator A (cf. (2.11)) lies in
(

0, α0
γ0

)
, where

γ0 and α0 are the positive constants from (2.2) and (2.3). Then, there exists a unique ((t,σ),u) ∈
(X ×H)× Y solution of (2.6). Moreover, there exists C > 0 such that

‖t‖0,Ω + ‖σ‖div;Ω + ‖u‖0,Ω ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. See [23, Theorem 3.2]

3 The mixed virtual element method: an abstract approach

In this section we introduce and analyze an abstract mixed virtual element method for our continuous
formulation (2.6). The abstract concept employed here refers to the fact that we consider generic
virtual element subspaces and projectors satisfying certain conditions under which we prove the unique
solvability of the discrete scheme and derive the associated a priori error estimates.

3.1 Preliminaries

Let {Th}h>0 be a family of decompositions of Ω in polygonal elements. For each K ∈ Th we denote
its diameter by hK , and define, as usual, h := max{hK : K ∈ Th}. In what follows we assume that
there exists a constant CT > 0 such that for each decomposition Th and for each K ∈ Th there hold:

a) the ratio between the shortest edge and the diameter hK of K is bigger than CT , and

b) K is star-shaped with respect to a ball B of radius CT hK and center xB ∈ K, that is, for each
x0 ∈ B, all the line segments joining x0 with any x ∈ K are contained in K, or, equivalently,
for each x ∈ K, the closed convex hull of {x} ∪ B is contained in K.

As a consequence of the above hypotheses, one can show that each K ∈ Th is simply connected, and
that there exists an integer NT (depending only on CT ), such that the number of edges of each K ∈ Th
is bounded above by NT .

We now let
∏
K∈Th

XK ,
∏
K∈Th

HK , and
∏
K∈Th

Y K be finite dimensional subspaces of
∏
K∈Th

L2(K),∏
K∈Th

H(div;K), and
∏
K∈Th

L2(K), respectively, and define corresponding finite dimensional subspaces

of X, H, and Y as

Xh :=
{

s ∈ X : s|K ∈ XK ∀ K ∈ Th
}
, (3.1)

Hh :=
{
τ ∈ H : τ |K ∈ HK ∀ K ∈ Th

}
, (3.2)

Yh :=
{

v ∈ Y : v|K ∈ Y K ∀ K ∈ Th
}
. (3.3)

In Section 4 below we present particular choices for XK , HK and Y K . In this regard, we remark in
advance that XK and Y K are going to be merely subspaces of certain spaces of polynomials, whereas
that HK will be given by a local virtual element space. Nevertheless, at this moment we simply
assume that the following conditions hold:

(A.1) for each K ∈ Th the elements of XK and Y K are explicitly known in the whole element K.
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(A.2) for each K ∈ Th and for each edge e ∈ ∂K, τn|e and div(τ ) are explicitly known for all
τ ∈ HK .

(A.3) div(HK) ⊆ Y K for each K ∈ Th.

(A.4) for each K ∈ Th there exists a set of unisolvent degrees of freedom {mi,K(v)}nK

i=1 of HK , so
that letting SK : HK ×HK → R be the bilinear form associated to those degrees of freedom,
that is

SK(ζ, τ ) :=
nK∑
i=1

mi,K(ζ)mi,K(τ ) ∀ ζ, τ ∈ HK , (3.4)

there holds
c0 ‖ζ‖20,K ≤ SK(ζ, ζ) ≤ c1 ‖ζ‖20,K ∀ ζ ∈ HK , (3.5)

with constants c0, c1 > 0, depending only on CT .

(A.5) for each K ∈ Th there exists a subspace H̃(K) of H(div;K) and a linear operator ΠK :
H̃(K) −→ HK such that∫

K
v · div

(
ΠK(τ )

)
=

∫
K

v · div(τ ) ∀ τ ∈ H̃(K) , ∀v ∈ Y K . (3.6)

(A.6) there exists a subspace H̃(Ω) of H(div; Ω) satisfying ζ|K ∈ H̃(K) ∀K ∈ Th, ∀ ζ ∈ H̃(Ω), and
such that for each h > 0 the global counterpart Πh of the family

{
ΠK
}
K∈Th

, that is the linear
operator defined by

Πh(ζ)|K := ΠK(ζ|K) ∀ K ∈ Th , ∀ ζ ∈ H̃(Ω) ,

maps H̃(Ω) into Hh.

3.2 The discrete scheme

We now aim to define a Galerkin scheme for our nonlinear problem (2.6). To this end, we first notice
thanks to (A.1) and (A.2) that the linear operator B (cf. (2.8)) and the functionals F and G (cf.
(2.9)) are all explicitly computable for (s, τ ,v) ∈ Xh × Hh × Yh (cf. (3.1), (3.2), and (3.3)). On
the contrary, for each K ∈ Th, the local version AK : (XK × HK) → (XK × HK)′ of the nonlinear
operator A (cf. (2.11)), which is defined for each (r, ζ), (s, τ ) ∈ XK ×HK by

[AK(r, ζ), (s, τ )] := 2

∫
K
µ(|r|)r : (s− κτ d) −

∫
K
ζd : s +

∫
K
τ d : r + κ

∫
K
ζd : τ d , (3.7)

is not explicitly calculable for ζ, τ ∈ HK since in general ζ and τ are not necessarily known on the
whole K ∈ Th. In order to deal with this difficulty, we now consider a suitable space ĤK on which the
elements of HK will be projected later on, and such that the operator AK is computable in XK×ĤK .
More precisely, for each K ∈ Th we let ĤK be a finite dimensional subspace of H(div;K), and assume
that there exists a projection operator Π̂K : H(div;K)→ ĤK satisfying the following properties:

(P.1) for each ζ ∈ HK , Π̂K(ζ) is explicitly calculable.

(P.2) for each ζ ∈ H(div;K) there holds

‖Π̂K(ζ)‖0,K ≤ ĉ1 ‖ζ‖0,K + ĉ2 hK ‖div(ζ)‖0,K (3.8)

with constants ĉ1 > 0 and ĉ2 ≥ 0, independent of K.
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(P.3) for each ζ ∈ H(div;K) there holds∫
K

(ζ − Π̂K(ζ)) : s = 0 ∀ s ∈ XK . (3.9)

It is worth mentioning at this point that the assumptions (P.2) and (P.3) will be utilized to
establish the solvability analysis and derive the corresponding a priori error estimates of the discrete
scheme to be defined below in (3.12). In turn, two particular choices for the spaces ĤK and associated
projections Π̂K are provided in Section 4 (though only one of them will work for the present nonlinear
model).

Next, having introduced ĤK and Π̂K for each K ∈ Th, we now let AKh : (XK×HK)→ (XK×HK)′

be the computable local discrete nonlinear operator approximating (3.7), which, following [12, eq.
(4.18)], is defined by

[AKh (r, ζ), (s, τ )] := [AK(r, Π̂K(ζ)), (s, Π̂K(τ ))] + κSK
(
ζ − Π̂K(ζ), τ − Π̂K(τ )

)
(3.10)

for all (r, ζ), (s, τ ) ∈ XK ×HK , where SK : HK ×HK → R is the stabilizing bilinear form given in
(3.4), and κ > 0 is the parameter utilized in the augmented equation (2.10). The reason why κ has
been placed here, multiplying SK , is just for sake of convenience in a particular algebraic manipulation
to be explained later on (see below (3.21) and the remark after it). According to the definition (3.10),
we now introduce the global discrete nonlinear operator Ah : (Xh ×Hh)→ (Xh ×Hh)′ as

[Ah(r, ζ), (s, τ )] :=
∑
K∈Th

[AKh (r, ζ), (s, τ )] ∀ (r, ζ), (s, τ ) ∈ Xh ×Hh . (3.11)

In this way, the Galerkin scheme associated with the augmented formulation (2.6) reads: Find
((th,σh),uh) ∈ (Xh ×Hh)× Yh such that

[Ah(th,σh), (sh, τ h)] + [B(sh, τ h),uh] = [F , (sh, τ h)] ∀ (sh, τ h) ∈ Xh ×Hh ,

[B(th,σh),vh] = [G,vh] ∀ vh ∈ Yh .
(3.12)

Moreover, as suggested by (2.5), the postprocessed virtual pressure is given by

ph := −1

2
tr(σh) . (3.13)

3.3 Analysis of the discrete scheme

In this section we develop the solvability analysis for our augmented Galerkin scheme (3.12). For this
purpose, we first notice that the discrete kernel of B (cf. (2.8)), defined by

Vh :=
{

(sh, τ h) ∈ Xh ×Hh : [B(sh, τ h),vh] = 0 ∀ vh ∈ Yh
}
,

reduces to

Vh = Xh ×
{
τ h ∈ Hh :

∫
Ω

vh · div(τ h) = 0 ∀ vh ∈ Yh
}
,

which, thanks to (A.3), becomes

Vh = Xh ×
{
τ h ∈ Hh : div(τ h) = 0

}
. (3.14)
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Furthermore, given the local projector Π̂K introduced in Section 3.2, we denote by Π̂h its global
counterpart, that is, for each ζ ∈ H(div; Ω) we let

Π̂h(ζ)|K := Π̂K(ζ|K) ∀ K ∈ Th .

The following result establishes the Lipschitz-continuity of the discrete nonlinear operator Ah (cf.
(3.11)) on Xh ×Hh.

Lemma 3.1. Let Ah be the nonlinear operator defined by (3.11). Then, there exists a constant γ > 0,
independent of h, such that for all (r, ζ), (s, τ ) ∈ Xh ×Hh there holds

‖Ah(r, ζ)−Ah(s, τ )‖(X×H)′ ≤ γ ‖(r, ζ)− (s, τ )‖X×H . (3.15)

Proof. Given (r, ζ), (s, τ ) ∈ Xh ×Hh, we first recall that

‖Ah(r, ζ)−Ah(s, τ )‖(X×H)′ := sup
(z,ρ)∈X×H

(z,ρ) 6=0

[Ah(r, ζ)−Ah(s, τ ), (z,ρ)]

‖(z,ρ)‖X×H
. (3.16)

In turn, according to the definitions of Ah (cf. (3.11)) and A (cf. (2.12)), we have that

[Ah(r, ζ)−Ah(s, τ ), (z,ρ)] = [A(r)−A(s), z− κ(Π̂h(ρ))d] −
∫

Ω
(Π̂h(ζ − τ ))d : z

+

∫
Ω

(Π̂h(ρ))d : (r− s) + κ

∫
Ω

(Π̂h(ζ − τ ))d : (Π̂h(ρ))d (3.17)

+ κ
∑
K∈Th

SK
(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ρ)

)
for all (z,ρ) ∈ X ×H. Next, employing the Cauchy-Schwarz inequality, in particular the estimate

SK(ζ, τ ) ≤ SK(ζ, ζ)1/2 SK(τ , τ )1/2 ∀ ζ, τ ∈ H(div;K) ∀K ∈ Th ,

which is actually valid not only for SK , but for any positive semi-definite bilinear form, and using
the Lipschitz-continuity of A (cf. (2.13)), and the fact that ‖τ d‖0,Ω ≤ ‖τ‖0,Ω ∀ τ ∈ H(div; Ω), we
readily find that

[Ah(r, ζ)−Ah(s, τ ), (z,ρ)] ≤ 2γ0‖r− s‖0,Ω‖z‖0,Ω + 2γ0κ‖r− s‖0,Ω‖Π̂h(ρ)‖0,Ω

+ ‖Π̂h(ζ − τ )‖0,Ω‖z‖0,Ω + ‖r− s‖0,Ω‖Π̂h(ρ)‖0,Ω + κ‖Π̂h(ζ − τ )‖0,Ω‖Π̂h(ρ)‖0,Ω

+ κ
∑
K∈Th

{
SK
(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)}1/2{
SK
(
(I− Π̂K)(ρ), (I− Π̂K)(ρ)

)}1/2
.

Then, applying the upper bound of (3.5) and reordering terms, we deduce that

[Ah(r, ζ)−Ah(s, τ ), (z,ρ)] ≤ C
{
‖r− s‖0,Ω + ‖Π̂h(ζ − τ )‖0,Ω

+ ‖(I− Π̂h)(ζ − τ )‖0,Ω
}{
‖z‖0,Ω + ‖Π̂h(ρ)‖0,Ω + ‖(I− Π̂h)(ρ)‖0,Ω

}
,

(3.18)

from which, using the boundedness of Π̂h (cf. (3.8) in (P.2)), we arrive at

[Ah(r, ζ)−Ah(s, τ ), (z,ρ)] ≤ γ ‖(r, ζ)− (s, τ )‖X×H ‖(z,ρ)‖X×H ∀ (z,ρ) ∈ X ×H , (3.19)

with a constant γ depending on γ0, κ, c1, ĉ1, and ĉ2. Finally, it is clear that the required inequality
(3.15) follows straightforwardly from (3.16) and (3.19).
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At this point we remark in advance that the intermediate inequality (3.18) will play later on an
important role in the derivation of the a priori error estimates (see Section 3.4). We now proceed with
our analysis by recalling the following technical result.

Lemma 3.2. There exists cΩ > 0, depending only on Ω, such that

cΩ ‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H .

Proof. See [10, Chapter IV, Proposition 3.1].

The following lemma establishes a sufficient condition on the parameter κ ensuring that for each
(r0, ζ0) ∈ Xh × Hh, the nonlinear operator Ah((r0, ζ0) + ·) is uniformly strongly monotone on the
discrete kernel Vh of B.

Lemma 3.3. Let Ah and B be the operators defined by (3.11) and (2.8), respectively, and let Vh be

the discrete kernel of B (cf. (3.14)). Assume that the parameter κ lies in
(

0, α0

γ2
0

)
, where γ0 and α0

are the positive constants from (2.2) and (2.3). Then, there exists a constant α > 0, independent of
h, such that[

Ah
(
(r0, ζ0) + (r, ζ)

)
−Ah

(
(r0, ζ0) + (s, τ )

)
, (r, ζ)− (s, τ )

]
≥ α ‖(r, ζ)− (s, τ )‖2X×H

for each (r0, ζ0) ∈ Xh ×Hh and for all (r, ζ), (s, τ ) ∈ Vh.

Proof. Given (r0, ζ0) ∈ Xh × Hh and (r, ζ), (s, τ ) ∈ Vh, it follows from the definitions of Ah (cf.
(3.11)) and A (cf. (2.12)) (see also (3.17)) that

[Ah((r0, ζ0) + (r, ζ))−Ah((r0, ζ0) + (s, τ )), (r, ζ)− (s, τ )]

= [A(r0 + r)−A(r0 + s), r− s] − κ [A(r0 + r)−A(r0 + s), (Π̂h(ζ − τ ))d]

+ κ ‖(Π̂h(ζ − τ ))d‖20,Ω + κ
∑
K∈Th

SK
(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)
.

(3.20)

Then, using that

[A(r0 + r)−A(r0 + s), r− s] = [A(r0 + r)−A(r0 + s), (r0 + r)− (r0 + s)] ,

and applying the Lipschitz-continuity (cf. (2.13)) and strong monotonicity (cf. (2.14)) of A, we deduce
from (3.20) that

[Ah((r0, ζ0) + (r, ζ))−Ah((r0, ζ0) + (s, τ )), (r, ζ)− (s, τ )]

≥ 2α0 ‖r− s‖20,Ω − 2 γ0 κ ‖r− s‖0,Ω‖(Π̂h(ζ − τ ))d‖0,Ω

+ κ ‖(Π̂h(ζ − τ ))d‖20,Ω + κ
∑
K∈Th

SK
(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)
≥ 2α0 ‖r− s‖20,Ω − 2γ0κ

{
‖r− s‖20,Ω

2δ
+
δ ‖(Π̂h(ζ − τ ))d‖20,Ω

2

}
+ κ ‖(Π̂h(ζ − τ ))d‖20,Ω + κ

∑
K∈Th

SK
(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)
=

(
2α0 −

γ0κ

δ

)
‖r− s‖20,Ω + κ(1− γ0δ) ‖(Π̂h(ζ − τ ))d‖20,Ω

+ κ
∑
K∈Th

SK
(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)
,
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where δ > 0 is a constant to be suitable chosen. Indeed, we realize now that in order to obtain positive

constants multiplying the first two expressions after the last equal sign, it suffices to choose δ ∈
(

0, 1
γ0

)
and κ ∈

(
0, 2α0δ

γ0

)
. In particular, for δ = 1

2γ0
we require κ ∈

(
0, α0

γ2
0

)
, whence we find that

[Ah((r0, ζ0) + (r, ζ))−Ah((r0, ζ0) + (s, τ )), (r, ζ)− (s, τ )]

≥ 2(α0 − κγ2
0) ‖r− s‖20,Ω +

κ

2
‖(Π̂h(ζ − τ ))d‖20,Ω

+ κ
∑
K∈Th

SK
(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)
≥ 2 (α0 − κγ2

0) ‖r− s‖20,Ω +
κ

2

∑
K∈Th

{
‖(Π̂K(ζ − τ ))d‖20,K

+ SK
(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)}
.

(3.21)

Note that the previous incorporation of κ in the definition (3.10) is only to be able to factorize here
by a multiple of this parameter. Actually, alternatively to bounding below by κ

2 in (3.21), it would
have sufficed to use κ

2 instead of κ in (3.10). We employed the latter just for simplicity. On the other
hand, a simple triangle inequality and the lower estimate in (3.5) imply that

‖(ζ − τ )d‖20,K ≤ 2
{
‖(Π̂K(ζ − τ ))d‖20,K + ‖{(I− Π̂K)(ζ − τ )}d‖20,K

}
≤ 2

{
‖(Π̂K(ζ − τ ))d‖20,K + ‖(I− Π̂K)(ζ − τ )‖20,K

}
≤ 2 max

{
1, c−1

0

}{
‖(Π̂K(ζ − τ ))d‖20,K + SK

(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)}
,

from which, summing over all K ∈ Th and then applying Lemma 3.2 (bearing in mind that ζ − τ is
divergence free), we deduce that

cΩ

2 max
{

1, c−1
0

} ‖ζ − τ‖2div;Ω

≤
∑
K∈Th

{
‖(Π̂K(ζ − τ ))d‖20,K + SK

(
(I− Π̂K)(ζ − τ ), (I− Π̂K)(ζ − τ )

)}
.

In this way, (3.21) and the foregoing inequality complete the proof of the required estimate with the

strong monotonicity constant α := min
{

2(α0 − κγ2
0), κ cΩ

4 max
{

1,c−1
0

}}.

The following lemma provides the discrete inf-sup condition for the linear operator B (cf. (2.8)).

Lemma 3.4. There exists β > 0, independent of h, such that

sup
(sh,τh)∈Xh×Hh

(sh,τh) 6=0

[B(sh, τ h),vh]

‖(sh, τ h)‖X×H
≥ β ‖vh‖0,Ω ∀ vh ∈ Yh .

Proof. We begin by recalling from (2.8) that B does not depend on sh, and hence it suffices to show
the existence of β > 0 such that

sup
τh∈Hh
τh 6=0

∫
Ω

vh · div(τ h)

‖τ h‖div;Ω
≥ β ‖vh‖0,Ω ∀ vh ∈ Yh ,
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which, thanks to (A.5) and (A.6), follows as in the proof of [12, Lemma 5.3]. We omit further
details.

The well-posedness of our Galerkin scheme (3.12) is established as follows.

Theorem 3.1. Assume that the parameter κ defining the operator Ah (cf. (3.11)) lies in
(

0, α0

γ2
0

)
,

where γ0 and α0 are the positive constants from (2.2) and (2.3), respectively. Then, there exists a
unique ((th,σh),uh) ∈ (Xh ×Hh) × Yh solution of (3.12). Moreover, there exists C > 0, depending
on γ (cf. Lemma (3.1)), α (cf. Lemma (3.3)), and β (cf. Lemma (3.4)), such that

‖th‖0,Ω + ‖σh‖div;Ω + ‖uh‖0,Ω ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. Thanks to Lemmas 3.1, 3.3 and 3.4, the proof is a direct application of [23, Theorem 3.1]
(which is a particular case of [30, Proposition 2.3]).

3.4 The a priori error estimates

We now aim to provide the corresponding a priori error estimates for the continuous and discrete
formulations (2.6) and (3.12), respectively. To this end, in what follows we let PhX : X → Xh and
PhY : Y → Yh be the orthogonal projectors with respect to the L2(Ω) and L2(Ω) inner products,
respectively. In turn, we recall from (A.6) the definition of the global counterpart Πh of the family
of local operators

{
ΠK
}
K∈Th

(cf. (A.5)), and notice, thanks to (A.3), (3.6), and (A.6) that there
holds

div(Πh(ζ)) = PhY (div(ζ)) in Ω , ∀ ζ ∈ H̃(Ω) . (3.22)

We begin our analysis with the following result.

Theorem 3.2. Let ((t,σ),u) ∈ (X × H) × Y and ((th,σh),uh) ∈ (Xh × Hh) × Yh be the unique
solutions of the continuous and discrete schemes (2.6) and (3.12), respectively, assume that σ ∈ H̃(Ω),
and let ph ∈ L2(Ω) be the postprocessed virtual pressure defined in (3.13). Then, there exists C > 0,
independent of h, such that

‖t− th‖0,Ω + ‖σ − σh‖0,Ω + ‖p− ph‖0,Ω

≤ C
{
‖t− PhX(t)‖0,Ω + ‖σ −Πh(σ)‖0,Ω + ‖σ − Π̂h(σ)‖0,Ω + h ‖f− PhY (f)‖0,Ω

}
,

(3.23)

and there holds
‖div(σ − σh)‖0,Ω = ‖f− PhY (f)‖0,Ω . (3.24)

Proof. We begin by observing, due to the triangle inequality, that

‖t− th‖0,Ω + ‖σ − σh‖0,Ω ≤ ‖t− PhX(t)‖0,Ω + ‖σ −Πh(σ)‖0,Ω + ‖δth‖0,Ω + ‖δσh ‖0,Ω , (3.25)

where (δth, δ
σ
h ) := (PhX(t)−th,Π

h(σ)−σh) ∈ Xh×Hh. Next, employing (3.22), the second equations
of (2.6) and (3.12), and the assumption (A.3), we deduce that

div(Πh(σ)) = PhY (div(σ)) = PhY (−f) = div(σh) ,

which says that (δth, δ
σ
h ) ∈ Vh (cf. (3.14)). Note here that the identity (3.24) follows straightforwardly

from the last equality and the fact that div(σ) = −f. Then, applying the strong monotonicity ofAh (cf.

12



Lemma 3.3) with (r0, ζ0) := (0,0) ∈ Xh ×Hh, (r, ζ) := (PhX(t), δσh ) ∈ Vh, and (s, τ ) := (th,0) ∈ Vh,
and using from the definition of AK (cf. (3.7)) that

AK(r, ζ ± ζ̃) = AK(r, ζ) ± AK(0, ζ̃) ∀ r ∈ XK , ∀ ζ , ζ̃ ∈ HK ,

we find that

α ‖(δth, δσh )‖2X×H ≤ [Ah(PhX(t),Πh(σ)− σh)−Ah(th,0), (δth, δ
σ
h )]

= [Ah(PhX(t),Πh(σ))−Ah(0,σh)−Ah(th,0), (δth, δ
σ
h )]

= [Ah(PhX(t),Πh(σ)), (δth, δ
σ
h )] − [Ah(th,σh), (δth, δ

σ
h )] ,

which, noting from the first equations of (2.6) and (3.12) that

[Ah(th,σh), (sh, τ h)] = [A(t,σ), (sh, τ h)] ∀ (sh, τ h) ∈ Vh ,

in particular for (sh, τ h) = (δth, δ
σ
h ), and adding and subtracting [Ah(PhX(t), Π̂h(σ)), (δth, δ

σ
h )], yields

α ‖(δth, δσh )‖2X×H ≤ [Ah(PhX(t),Πh(σ)), (δth, δ
σ
h )] − [A(t,σ), (δth, δ

σ
h )]

= [Ah(PhX(t),Πh(σ))−Ah(PhX(t), Π̂h(σ)), (δth, δ
σ
h )]

+ [Ah(PhX(t), Π̂h(σ))−A(t,σ), (δth, δ
σ
h )] .

(3.26)

The two expressions on the right-hand side of (3.26) are bounded in what follows. Indeed, employing
(3.18), the boundedness of Π̂h (cf. (3.8)), and the fact that Π̂h is a projection (i.e. Π̂hΠ̂h = Π̂h), we
first deduce that

[Ah(PhX(t),Πh(σ))−Ah(PhX(t), Π̂h(σ)), (δth, δ
σ
h )]

≤ C
{
‖Π̂h{σ −Πh(σ)}‖0,Ω + ‖Πh(σ)− Π̂h{Πh(σ)}‖0,Ω

}
‖(δth, δσh )‖X×H .

(3.27)

At the same time, using the definitions of A (cf. (2.11)) and Ah (cf. (3.11)), it is easy to check that

[Ah(PhX(t), Π̂h(σ))−A(t,σ), (δth, δ
σ
h )] = [A(PhX(t))−A(t), δth]

+

∫
Ω

(σ − Π̂h(σ)) : δth −
∫

Ω
t : δσh +

∫
Ω
PhX(t) : Π̂h(δσh )

− κ

∫
Ω

(
A(PhX(t)− (Π̂h(σ))d

)
: Π̂h(δσh ))d − κ

∫
Ω

(
σd − 2µ(|t|)t

)
: (δσh )d .

(3.28)

On the other hand, it follows from the first identity of (2.2) that ‖2µ(|t|)t‖0,Ω ≤ 4 γ0 ‖t‖0,Ω, which,
along with the fact that tr(2µ(|t|)t) = 0, implies that 2µ(|t|) t ∈ X. Thus, taking the test vector
(s, τ ) := (σd − 2µ(|t|)t,0) ∈ X ×H in the first equation of (2.6), we obtain that

σd − 2µ(|t|) t = 0 in Ω , (3.29)

whence, using additionally from (3.9) that
∫

Ω P
h
X(t) : Π̂h(δσh ) =

∫
Ω P

h
X(t) : δσh , and adding and

subtracting A(t) := 2µ(|t|) t = σd in the remaining term of the last row of (3.28), this latter
equation becomes

[Ah(PhX(t), Π̂h(σ))−A(t,σ), (δth, δ
σ
h )] = [A(PhX(t))−A(t), δth − κ(Π̂h(δσh ))d]

+

∫
Ω

(σ − Π̂h(σ)) : δth −
∫

Ω
(t− PhX(t)) : δσh − κ

∫
Ω

(σ − Π̂h(σ))d : (Π̂h(δσh ))d .
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Now, applying the Cauchy-Schwarz inequality, the Lipschitz-continuity of A (cf. (2.13)), and the
boundedness of Π̂h (cf. (3.8)), we arrive at

[Ah(PhX(t), Π̂h(σ))−A(t,σ), (δth, δ
σ
h )] ≤ C

{
‖t− PhX(t)‖0,Ω + ‖σ − Π̂h(σ)‖0,Ω

}
‖(δth, δσh )‖X×H ,

which, along with (3.26) and (3.27), imply

‖δth‖0,Ω + ‖δσh ‖div;Ω ≤ C
{
‖t− PhX(t)‖0,Ω + ‖σ − Π̂h(σ)‖0,Ω

+ ‖Π̂h{σ −Πh(σ)}‖0,Ω + ‖Πh(σ)− Π̂h{Πh(σ)}‖0,Ω
}
.

(3.30)

It remains to bound the last two terms in the foregoing inequality. In fact, adding and subtracting
σ − Π̂h(σ), we get for the second expression

‖Πh(σ)− Π̂h{Πh(σ)}‖0,Ω ≤ ‖σ −Πh(σ)‖0,Ω + ‖σ − Π̂h(σ)‖0,Ω + ‖Π̂h{σ −Πh(σ)}‖0,Ω . (3.31)

In turn, employing once again the boundedness of Π̂h (cf. (3.8)), it follows that

‖Π̂h{σ −Πh(σ)}‖0,Ω ≤ ĉ1 ‖σ −Πh(σ)‖0,Ω + ĉ2 h ‖div(σ −Πh(σ))‖0,Ω ,

which, using (3.22) and the fact that div(σ) = −f, gives

‖Π̂h{σ −Πh(σ)}‖0,Ω ≤ ĉ1 ‖σ −Πh(σ)‖0,Ω + ĉ2 h ‖f− PhY (f)‖0,Ω . (3.32)

In this way, replacing (3.31) and (3.32) into (3.30), and then the resulting estimate back into (3.25),
and finally observing from (2.5) and (3.13) that there holds

‖p− ph‖0,Ω =
1

2
‖tr(σ)− tr(σh)‖0,Ω ≤

1√
2
‖σ − σh‖0,Ω ,

we conclude (3.23) and finish the proof of the theorem.

The a priori error analysis is continued now with the estimate for ‖u− uh‖0,Ω.

Theorem 3.3. Let ((t,σ),u) ∈ (X×H)×Y and ((th,σh),uh) ∈ (Xh×Hh)×Yh be the unique solutions
of the continuous and discrete schemes (2.6) and (3.12), respectively, and assume that σ ∈ H̃(Ω).
Then, there exist C > 0, independent of h, such that

‖u− uh‖0,Ω ≤ C
{
‖t− PhX(t)‖0,Ω + ‖σ −Πh(σ)‖0,Ω

+ ‖σ − Π̂h(σ)‖0,Ω + ‖u− PhY (u)‖0,Ω + h ‖f− PhY (f)‖0,Ω
}
.

(3.33)

Proof. Our starting point is again the triangle inequality, thanks to which we obtain

‖u− uh‖0,Ω ≤ ‖u− PhY (u)‖0,Ω + ‖δuh‖0,Ω , (3.34)

where δuh := PhY (u) − uh ∈ Yh. Next, a straightforward application of the discrete inf-sup condition
for B (cf. Lemma 3.4) gives

‖δuh‖0,Ω ≤
1

β
sup

(sh,τh)∈Xh×Hh

(sh,τh) 6=0

[B(sh, τ h), δuh ]

‖(sh, τ h)‖X×H
, (3.35)
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where, according to the definition of B (cf. (2.8)), and recalling that PhY : L2(Ω) → Yh is the L2(Ω)-
orthogonal projector, and that div(τ h) ∈ Yh (cf. (A.3)), there holds

[B(sh, τ h), δuh ] =

∫
Ω
PhY (u) · div(τ h) −

∫
Ω

uh · div(τ h) = [B(0, τ h),u] − [B(0, τ h),uh] .

Then, applying the first equations of (2.6) and (3.12), and adding and subtracting Ah(th, Π̂
h(σ)), it

follows that

[B(sh, τ h), δuh ] = [Ah(th,σh), (0, τ h)] − [A(t,σ), (0, τ h)]

= [Ah(th,σh)−Ah(th, Π̂
h(σ)), (0, τ h)] + [Ah(th, Π̂

h(σ))−A(t,σ), (0, τ h)] ,
(3.36)

so that we now proceed to bound the two expressions on the right-hand side of (3.36). In fact,
employing the incomplete Lipschitz-continuity estimate (3.18), the fact that clearly

(
I− Π̂h

)
Π̂h(σ) is

the null operator, and the boundedness of Π̂h (cf. (3.8)), we first obtain that∣∣ [Ah(th,σh)−Ah(th, Π̂
h(σ)), (0, τ h)]

∣∣
≤ C

{
‖Π̂h(σ − σh)‖0,Ω + ‖σh − Π̂h(σh)‖0,Ω

}
‖τ h‖div;Ω .

(3.37)

In turn, bearing in mind again the definitions of A (cf. (2.11)) and Ah (cf. (3.11)), and utilizing the
identities (3.9) and (3.29), we find that

[Ah(th, Π̂
h(σ))−A(t,σ), (0, τ h)] = κ[A(t)−A(th), (Π̂h(τ h))d]

−
∫

Ω
(t− th) : τ h − κ

∫
Ω

(σ − Π̂h(σ))d : (Π̂h(τ h))d ,

from which, applying the Cauchy-Schwarz inequality, the Lipschitz-continuity of A (cf. (2.13)), and
the boundedness of Π̂h (cf. (3.8)), we arrive at∣∣ [Ah(th, Π̂

h(σ))−A(t,σ), (0, τ h)]
∣∣ ≤ C

{
‖t− th‖0,Ω + ‖σ − Π̂h(σ)‖0,Ω

}
‖τ h‖div;Ω . (3.38)

Hence, employing (3.37) and (3.38) to derive an upper bound for
∣∣ [B(sh, τ h), δuh ]

∣∣ (cf. (3.36)), and
replacing the resulting estimate back into (3.35), we deduce that

‖δuh‖0,Ω ≤ C
{
‖t− th‖0,Ω + ‖σ − Π̂h(σ)‖0,Ω + ‖Π̂h(σ − σh)‖0,Ω + ‖σh − Π̂h(σh)‖0,Ω

}
. (3.39)

In addition, adding and subtracting σ − Π̂h(σ), we readily obtain that

‖σh − Π̂h(σh)‖0,Ω ≤ ‖σ − σh‖0,Ω + ‖σ − Π̂h(σ)‖0,Ω + ‖Π̂h(σ − σh)‖0,Ω , (3.40)

whereas, using again the boundedness of Π̂h (cf. (3.8)) and (3.24), it follows that

‖Π̂h(σ − σh)‖0,Ω ≤ ĉ1 ‖σ − σh‖0,Ω + ĉ2 h ‖div(σ − σh)‖0,Ω

= ĉ1 ‖σ − σh‖0,Ω + ĉ2 h ‖f− PhY (f)‖0,Ω .
(3.41)

In this way, using (3.40) and (3.41) to control the last two expressions in (3.39), replacing the resulting
estimate back into (3.34), and finally employing (3.23) to bound ‖t−th‖0,Ω + ‖σ−σh‖0,Ω, we conclude
(3.33) and end the proof of the theorem.
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3.5 Computable approximations of σ and p

We now introduce the fully computable approximations of σ and p given by

σ̂h := Π̂h(σh) and p̂h := −1

2
tr(σ̂h) , (3.42)

and establish next the corresponding a priori error estimates.

Theorem 3.4. There exists a positive constant C, independent of h, such that

‖σ − σ̂h‖0,Ω + ‖p− p̂h‖0,Ω ≤ C
{
‖t− PhX(t)‖0,Ω + ‖σ −Πh(σ)‖0,Ω

+ ‖σ − Π̂h(σ)‖0,Ω + h ‖f− PhY (f)‖0,Ω
}
.

(3.43)

Proof. We begin by noticing from (2.5) and (3.42) that

‖p− p̂h‖0,Ω =
1

2
‖tr(σ − σ̂h)‖0,Ω ≤

1√
2
‖σ − σ̂h‖0,Ω ,

which certainly yields

‖σ − σ̂h‖0,Ω + ‖p− p̂h‖0,Ω ≤
(

1 +
1√
2

)
‖σ − σ̂h‖0,Ω . (3.44)

Then, adding and substracting σh, we get

‖σ − σ̂h‖0,Ω ≤ ‖σ − σh‖0,Ω + ‖σh − Π̂h(σh)‖0,Ω ,

which, together with (3.40), (3.41), (3.44), and the estimate for ‖σ − σh‖0,Ω provided by (3.23), lead
to (3.43) and complete the proof.

4 A particular mixed-VEM scheme

We now proceed to define particular choices for the local subspaces XK , HK and Y K , which satisfy
(A.1)-(A.5) for each K ∈ Th and (A.6). In addition, polynomial subspaces ĤK of H(div;K),
and associated projectors Π̂K : H(div;K) → ĤK verifying the assumptions (P.1)-(P.3), are also
introduced in what follows.

4.1 A first choice

This choice is motivated by the linear version of our problem (2.1), which was analyzed recently in
[12]. More precisely, given an integer k ≥ 1, we set

XK :=
{
∇curl(q) : q ∈ span{xα : 2 ≤ |α| ≤ k + 2} ⊆ Pk+2(K)

}
,

HK :=
{
τ ∈ H(div;K) ∩H(rot;K) : τn|e ∈ Pk(e) ∀ edge e ∈ ∂K ,

div(τ ) ∈ Pk−1(K) , and rot(τ ) ∈ Pk−1(K)
}
,

Y K := Pk−1(K) ,

(4.1)
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where curl(q) :=
(
∂x2q, −∂x1q

)t
, and rot(τ ) :=

(
∂x1τ12 − ∂x2τ11, ∂x1τ22 − ∂x2τ21

)t
. Then, we notice

from (4.1) that the assumptions (A.1), (A.2), and (A.3) are trivially satisfied. In turn, (A.4) is
established in [12, Lemmas 3.1 and 4.5] (see also [9]), whereas (A.5) and (A.6) follow from the
analysis provided in [12, Section 3.3]. In fact, it suffices to define (cf. [12, eq. (3.12)])

H̃(K) :=
{
τ ∈ H(div;K) : τ ∈ Ls(K) (for some s > 2) , rot(τ ) ∈ L1(K)

}
∀K ∈ Th ,

H̃(Ω) :=
{
τ ∈ H(div; Ω) : τ |K ∈ H̃(K) ∀K ∈ Th

}
,

Πh := Πh
k , and ΠK := ΠK

k ,

where Πh
k and ΠK

k are the global and local interpolation operators whose corresponding degrees of
freedom are given by [12, eq. (3.13)] and [12, eq. (3.16)], respectively. In addition, note that in
this case the identity (3.6) in (A.5) corresponds to [12, eq. (3.14)]. Alternatively, and because of
the continuous imbedding of H1 into L4, we could proceed as in [13, Section 3.4] and, instead of the
foregoing definitions, simply set

H̃(K) := H1(K) ∀K ∈ Th and H̃(Ω) :=
{
τ ∈ H(div; Ω) : τ |K ∈ H1(K) ∀K ∈ Th

}
. (4.2)

Next, following [12, Section 4], we define

ĤK := XK ⊕ Pk(K) I ,

and introduce the local projection Π̂K : H(div;K)→ ĤK defined in terms of the decomposition:

Π̂K(ζ) := ζ̂∇ + qζ I + cζ I ∈ ĤK ∀ ζ ∈ H(div;K) , (4.3)

where the components ζ̂∇ ∈ XK , qζ ∈ P̂k(K) := span{xα : 1 ≤ |α| ≤ k}, and cζ ∈ R are computed
according to the following sequentially connected problems:

• Find ζ̂∇ ∈ XK such that ∫
K
ζ̂∇ : τ =

∫
K
ζ : τ ∀ τ ∈ XK , (4.4)

• Find qζ ∈ P̂k(K) such that∫
K

div(qζ I) · div(q I) =

∫
K

div(ζ − ζ̂∇) · div(q I) ∀ q ∈ P̂k(K) , (4.5)

• Find cζ ∈ R such that ∫
K

tr(Π̂K(ζ)) =

∫
K

tr(ζ) ,

which, establishes that

cζ =
1

2|K|

∫
K

{
tr(ζ) − 2qζ

}
. (4.6)

It is not difficult to check (see [12, Section 4] for details) that Π̂K , defined by (4.3) - (4.6), is in fact a
projector and verifies the properties (P.1), (P.2) and (P.3). In particular, it is shown in [12, Lemma
4.2] that (3.8) in (P.2) is satisfied with ĉ1 = ĉ2 > 0. In addition, it is clear, thanks to the definition
of XK (cf. (4.1)) and the identity (4.4), that there holds (3.9) in (P.3).

Hence, as a straightforward consequence of Theorem 3.1 and the foregoing discussion, we are able
to state the following result.
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Theorem 4.1. Let XK , HK and Y K be those described in (4.1), and let Π̂K as defined by (4.3)

- (4.6). In addition, assume that the parameter κ lies in
(

0, α0

γ2
0

)
, where γ0 and α0 are the positive

constants from (2.2) and (2.3), respectively. Then the Galerkin scheme (3.12) has a unique solution
((th,σh),uh) ∈ (Xh ×Hh)× Yh and there exists a constant C > 0, independent of h, such that

‖th‖0,Ω + ‖σh‖div;Ω + ‖uh‖0,Ω ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Moreover, a direct application now of Theorems 3.2, 3.3, and 3.4 yields the existence of a constant
C > 0, independent of h, such that

‖t− th‖0,Ω + ‖σ − σh‖0,Ω + ‖p− ph‖0,Ω + ‖σ − σ̂h‖0,Ω + ‖p− p̂h‖0,Ω

≤ C
∑
K∈Th

{
‖t− PKk,∇(t)‖0,K + ‖σ −ΠK(σ)‖0,K + ‖σ − Π̂K(σ)‖0,K + hK ‖f− PKk−1(f)‖0,K

}
,

and
‖u− uh‖0,Ω ≤ C

∑
K∈Th

{
‖t− PKk,∇(t)‖0,K + ‖σ −ΠK(σ)‖0,K + ‖σ − Π̂K(σ)‖0,K

+ hK ‖f− PKk−1(f)‖0,K + ‖u− PKk−1(u)‖0,K
}
,

where PKk,∇ : L2(K)→ XK and PKk−1 : L2(K)→ Y k denote the corresponding orthogonal projections.

In particular, note from (4.4) that Pkk,∇(ζ) = ζ̂∇ ∀ ζ ∈ H(div;K). In this way, since t = ∇u, and
tr(t) = 0 (which is equivalent to the fact that u is divergence free), we can write

td = t = ∇curl(w) for some w ∈ H2(Ω) ,

whence, under additional regularity assumptions on w, the approximation property provided by [12,
Lemma 4.4] can be applied to t. More precisely, if w|K ∈ Hr+2(K), with 1 ≤ r ≤ k + 1, there holds

‖t− Π̂K(t)‖0,K ≤ C hrK |t|r,K ,
and thus

‖t− PKk,∇(t)‖0,K = ‖t− t̂∇‖0,K ≤ ‖t− Π̂K(t)‖0,K ≤ C hrK |t|r,K .
In turn, we know from [12, Lemma 3.6] (cf. [9, eq. (4.8)]) that when σ|K ∈ Hr(K), with 1 ≤ r ≤ k+1,
one obtains that

‖σ −ΠK(σ)‖0,K ≤ C hrK |σ|r,K ,
whereas [12, Lemma 3.4] establishes that when u|K , f|K ∈ Hr(K), with 1 ≤ r ≤ k, there hold

‖u− PKk−1(u)‖0,K ≤ C hrK |u|r,K and ‖f− PKk−1(f)‖0,K ≤ C hrK |f|r,K .
Furthermore, similarly as for t, we deduce from [12, Lemma 4.4] that when σ|K ∈ Hr(K) and σd|K =
∇curl(w) for some w ∈ Hr+2(K), with 1 ≤ r ≤ k + 1, there holds

‖σ − Π̂K(σ)‖0,K ≤ C hrK |σ|r,K .
However, certainly this is not the case in our present nonlinear problem since actually we find that

σd = µ(|∇curl(w)|)∇curl(w) ,

and therefore, unless µ(|∇curl(w)|) remains constant, we can not guarantee that the aforedescribed
choice of subspaces and projection gives optimal rates of convergence or just convergence. In fact,
preliminary numerical experiments have reported that optimal rates of convergence are attained for
th and uh, but not for the remaining variables.

Consequently, being applicable only when the viscosity µ is constant, the mixed virtual element
method proposed in this section constitutes a clear alternative to the approach from [12] for solving the
Stokes problem. In particular, differently from [12], it provides a direct approximation of the velocity
gradient. Further comparisons and corresponding numerical results will be reported somewhere else.
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4.2 A second choice

In what follows we introduce a second choice of local subspaces and projection Π̂K yielding an optimally
convergent mixed-VEM scheme (3.12) for our fully nonlinear problem. Indeed, given an integer k ≥ 0,
we now define for each K ∈ Th,

XK :=
{

s ∈ Pk(K) : tr(s) = 0
}
,

HK :=
{
τ ∈ H(div;K) ∩H(rot;K) : τn|e ∈ Pk(e) ∀ edge e ∈ ∂K ,

div(τ ) ∈ Pk(K) , and rot(τ ) ∈ Pk−1(K)
}
,

Y K := Pk(K) ,

(4.7)

where P−1(K) := {0}. We recall here that the virtual subspace HK was first introduced in [7] and
recently utilized in [13] for a pseudostress-based formulation of the linear Brinkman problem. We
then remark that, according to (4.7) and the results in [7], the assumptions (A.1)-(A.5) are clearly
satisfied in this case as well. In particular, the spaces H̃(K) and H̃(Ω) needed in (A.5) and (A.6)
can be taken exactly as in (4.2).

Next, for each K ∈ Th we let PKk : L2(K)→ Pk(K) and PK
k : L2(K)→ Pk(K) be the orthogonal

projectors with respect to the inner products of L2(K) and L2(K), respectively, and set ĤK := Pk(K)
and Π̂K := PK

k . In this way, given ζ ∈ L2(K), Π̂K(ζ) is characterized by∫
K

Π̂K(ζ) : τ =

∫
K
ζ : τ ∀ τ ∈ Pk(K) , (4.8)

which obviously proves (3.9) in (P.3), and from which it readily follows that (3.8) in (P.2) holds with
ĉ1 = 1 and ĉ2 = 0. In turn, we notice that the property (P.1) was established in [7] (see also [13]).

Furthermore, taking ζ = t and τ := tr(PK
k (t)) I in (4.8), and bearing in mind that tr(t) = 0, we

deduce that tr(PK
k (t)) = 0, and hence PhX(t)|K = PK

k (t) for all K ∈ Th. Thus, as a consequence
again of Theorems 3.1, 3.2, 3.3, and 3.4, we obtain the following result.

Theorem 4.2. Let XK , HK and Y K be those described in (4.7), consider Π̂K = PK
k as defined in

(4.8), and assume that the parameter κ lies in
(

0, α0

γ2
0

)
, where γ0 and α0 are the positive constants from

(2.2) and (2.3), respectively. Then the Galerkin scheme (3.12) has a unique solution ((th,σh),uh) ∈
(Xh ×Hh)× Yh and there exist positive constants C1, C2 > 0, independent of h, such that

‖th‖0,Ω + ‖σh‖div;Ω + ‖uh‖0,Ω ≤ C1

{
‖f‖0,Ω + ‖g‖1/2,Γ

}
,

‖t− th‖0,Ω + ‖σ − σh‖0,Ω + ‖p− ph‖0,Ω + ‖σ − σ̂h‖0,Ω + ‖p− p̂h‖0,Ω

≤ C2

∑
K∈Th

{
‖t−PK

k (t)‖0,K + ‖σ −ΠK(σ)‖0,K + ‖σ −PK
k (σ)‖0,K + hK ‖f− PKk (f)‖0,K

}
,

and
‖u− u‖0,Ω ≤ C2

∑
K∈Th

{
‖t−PK

k (t)‖0,K + ‖σ −ΠK(σ)‖0,K

+ ‖σ −PK
k (σ)‖0,K + ‖u− PKk (u)‖0,K + hK ‖f− PKk (f)‖0,K

}
,

where ph ∈ L2(Ω) is the postprocessed virtual pressure defined in (3.13), and σ̂h and p̂h are the fully
computable discrete approximations introduced in (3.42).
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We now recall from [12, Lemma 3.4] and [7, eqs. (22) and (28)] the approximation properties of
the operators PKk , PK

k and ΠK , respectively. In fact, given K ∈ Th, 0 ≤ ` ≤ k+1, and 1 ≤ m ≤ k+1,
there hold

‖v− PKk (v)‖0,K ≤ C h`K |v|`,K ∀v ∈ H`(K) , (4.9)

‖ζ −PK
k (ζ)‖0,K ≤ C h`K |ζ|`,K ∀ ζ ∈ H`(K) , (4.10)

and
‖ζ −ΠK(ζ)‖0,K ≤ C hmK |ζ|m,K ∀ ζ ∈ Hm(K) . (4.11)

Then, as a consequence of the foregoing estimates and Theorem 4.2, we are able to provide next
the rates of convergence of our mixed virtual element scheme (3.12) .

Theorem 4.3. In addition to the notations and hypotheses from Theorem 4.2, assume that for some
r ∈ [1, k + 1] there hold t|K , σ|K ∈ Hr(K), u|K ∈ Hr(K) and f|K ∈ Hr−1(K) for each K ∈ Th.
Then, there exists C > 0, independent of h, such that

‖t− th‖0,Ω + ‖σ − σh‖0,Ω + ‖p− ph‖0,Ω + ‖σ − σ̂h‖0,Ω + ‖p− p̂h‖0,Ω

≤ C hr
∑
K∈Th

{
|t|r,K + |σ|r,K + |f|r−1,K

}
,

and
‖u− u‖0,Ω ≤ C hr

∑
K∈Th

{
|t|r,K + |σ|r,K + |u|r,K + |f|r−1,K

}
.

4.3 A convergent approximation of σ in the broken H(div; Ω)-norm

In this section we proceed as in [13, Section 5.3] and construct a second approximation, denoted σ?h,
for the pseudostress variable σ, which has an optimal rate of convergence in the broken H(div)-norm.
To this end, for each K ∈ Th we let (·, ·)div;K be the usual H(div;K)-inner product with induced
norm ‖ · ‖div;K , and set σ?h |K := σ?h,K , where σ?h,K ∈ Pk+1(K) is the unique solution of the local
problem

(σ?h,K , τ h)div;K =

∫
K
σ̂h : τ h +

∫
K

div(σh) · div(τ h) ∀ τ h ∈ Pk+1(K) . (4.12)

We highlight that σ?h,K can be explicitly calculated for each K ∈ Th, independently. Then, the rate
of convergence for the broken H(div; Ω)-norm of σ − σ?h is established as follows.

Theorem 4.4. In addition to the hypotheses of Theorem 4.3, assume that for some r ∈ [1, k + 1]
there holds f|K = −div(σ)|K ∈ Hr(K) for each K ∈ Th. Then, there exists a positive constant C,
independent of h, such that{ ∑

K∈Th

‖σ − σ?h‖2div;K

}1/2

≤ C hr
∑
K∈Th

{
|t|r,K + |σ|r,K + |f|r,K

}
.

Proof. From [13, Lemma 5.3] and the first part in the proof of [13, Theorem 5.5], we find that there
exists C > 0, independent of h, such that for each K ∈ Th there holds

‖σ − σ?h,K‖div;K ≤ C
{
‖σ − σ̂h‖0,K + ‖div(σ − σh)‖0,K

+ ‖σ −PK
k+1(σ)‖0,K + |σ −PK

k+1(σ)|1,K
}
,
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where PK
k+1 : L2(K) → Pk+1(K) is the L2(K)-orthogonal projector. Thus, employing from (3.24)

that ‖div(σ − σh)‖0,K = ‖f− PKk (f)‖0,K , the foregoing estimate becomes

‖σ − σ?h,K‖div;K ≤ C
{
‖σ − σ̂h‖0,K + ‖f− PKk (f)‖0,K

+ ‖σ −PK
k+1(σ)‖0,K + |σ −PK

k+1(σ)|1,K
}
.

Finally, the result follows after applying the estimate for ‖σ − σ̂h‖0,K (cf. Theorem 4.3), and the
approximation properties of PKk (cf. (4.9)) and PK

k+1 (cf. [12, Lemma 3.4]).

5 Numerical results

In this section we present three numerical experiments illustrating the performance of the augmented
mixed virtual element scheme (3.12) introduced and analized in Sections 3 and 4. More precisely, in
all the computations we consider the specific virtual element subspaces Xh, Hh and Yh (cf. (3.1)-(3.2)-
(3.3)) and associated discrete nonlinear operator Ah (cf. (3.11)) determined by the definitions of the
local subspaces XK , HK , and Y K , and projectors Π̂K , respectively, described in our second choice
(cf. Section 4.2) with k ∈ {0, 1, 2}. In addition, as it is mentioned in [13], the zero mean condition for
tensors in the space Hh is imposed via a real Lagrange multiplier, which means that, instead of (3.12),
we solve the modified discrete scheme given by: Find ((th,σh), (uh, ξh)) ∈ (Xh× H̃h)× (Yh×R) such
that

[Ah(th,σh), (sh, τ h)] + [B(sh, τ h),uh] + ξh

∫
Ω

tr(τ h) = [F , (sh, τ h)] ,

[B(th,σh),vh] + ηh

∫
Ω

tr(σh) = [G,vh] ,

(5.1)

for all ((sh, τ h), (vh, ηh)) ∈ (Xh × H̃h)× (Yh × R), where

H̃h :=
{
τ ∈ H(div; Ω) : τ |K ∈ HK ∀ K ∈ Th

}
,

and ξh is an artificial unknown introduced just to keep the symmetry of (3.12). Concerning the
decompositions of Ω employed in our computations, we consider quasi-uniform triangles, distorted
squares and distorted hexagons.

We begin by introducing additional notations. In what follows, N stands for the total number of
degrees of freedom (unknowns) of (5.1), that is,

N := 2(k+ 1)×{number of edges e ∈ Th} +
(k + 2)(9k + 5)

2
×{number of elements K ∈ Th} + 1 .

Also, the individual errors are defined by

e(t) := ‖t− th‖0,Ω , e(σ) := ‖σ − σ̂h‖0,Ω , e(u) := ‖u− uh‖0,Ω ,

e(p) := ‖p− p̂h‖0,Ω and e(σ?) :=

{ ∑
K∈Th

‖σ − σ?h‖2div;K

}1/2

,

where (σ̂h, p̂h), and σ?h are computed according to (3.42) and (4.12), respectively. In turn, the
associated experimental rates of convergence are given by

r(·) :=
log
(
e(·) / e′(·)

)
log(h /h′)

,

21



where e and e′ denote the corresponding errors for two consecutive meshes with sizes h and h′,
respectively.

The corresponding nonlinear algebraic system arising from (5.1) is solved by the Newton method
with a tolerance of 10−6 and taking as initial iteration the solution of the associated linear Stokes
problem (four iterations were required to achieve the given tolerance in each example). The numerical
results presented below were obtained using a MATLAB code, where the corresponding linear systems
were solved using its instruction “\” as main solver.

In Example 1 we consider the linear Stokes problem associated with the data: Ω := (0, 1)2 and
µ = 1

2 , along with f and g chosen so that the exact solution is given by

u(x) =

(
x2

1 exp(−x1)(1 + x2)
(
2 sin(1 + x2) + (1 + x2) cos(1 + x2)

)
x1(x1 − 2) exp(−x1)(1 + x2)2 sin(1 + x2)

)

and
p(x) = sin(2πx1) sin(2πx2) ,

for all x := (x1, x2)t ∈ Ω.

In Example 2 we deal with the nonlinear version of Example 1. More precisely, we consider instead
of µ = 1

2 the kinematic viscosity function µ : R+ → R+ given by the Carreau law:

µ(t) := κ0 + κ1(1 + t2)(β−2)/2 ∀ t ∈ R+ ,

with κ0 = κ1 = 1
2 and β = 3

2 . It is easy to check in this case that the assumptions (2.2) and (2.3) are
satisfied with

γ0 = κ0 + κ1

{
|β − 2|

2
+ 1

}
and α0 = κ0 .

On the other hand, we take the stabilization parameter κ := α0

2γ2
0

which obviously satisfies the assump-

tion required in Lemma 3.3. Then, we let again Ω := (0, 1)2, and choose the data f and g so that the
exact solution is the same from Example 1. The set of decompositions utilized is also as in Example
1.

Finally, in Example 3 we follow [24] and consider the same nonlinearity µ from Example 2, together
with the L-shaped domain Ω := (−1, 1)2 \ [0, 1]2, and choose the data f and g so that the exact solution
is given by

u(x) =

(
r2/3 sin(θ)

−r2/3 cos(θ)

)
and p(x) = cos(x1) cos(x2) − sin2(1) ,

for all x := (x1, x2)t ∈ Ω, where r := |x| =
√
x2

1 + x2
2 and θ := arctan

(
x2
x1

)
. Note in this ex-

ample that ∇u is singular at the origin, and hence lower rates of convergence are expected in our
computations. More precisely, there holds u ∈ H5/3−ε(Ω), which implies that t,σ ∈ H2/3−ε(Ω) and
div(σ) ∈ H−1/3−ε(Ω) for each ε > 0.

In Tables 5.1 up to 5.6, we summarize the convergence history of the augmented mixed virtual
element scheme (5.1) as applied to Example 1 and 2. We notice there that the rate of convergence
O(hk+1) predicted by Theorems 4.3 and 4.4 (when r = k + 1) is attained by all the unknowns for
these smooth examples, for triangular as well as for quadrilateral and hexagonal meshes. In particular,
these results confirm that our postprocessed stress σ?h improves in one power the non-satisfactory order
provided by the first approximation σ̂h with respect to the broken H(div)-norm (results that are not
reported here). Next, in Tables 5.7, 5.8 and 5.9, we provide the convergence history of Example 3.
As predicted in advance, and due to the singularity at the origin of u in this case, we observe that
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the orders O(h2/3) and O(h5/3) are attained by (σ, p) and u, respectively. Moreover, σ?h attained

O(h−1/3) (cf. Theorem 4.4) because f = −div(σ) ∈ H−1/3−ε(Ω) for each ε > 0. A very common
way to overcome this drawback is the use of adaptive algorithms based on suitable a posteriori error
estimators. This issue will be addressed in a forthcoming work.

Finally, in order to graphically illustrate the accurateness of our discrete scheme, in Figure 5.1 we
display some components of the approximate solutions for Example 2. They all correspond to those
obtained with the first mesh of each kind (triangles, quadrilaterals and hexagons, respectively) and
for the polynomial degree k = 2.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.0643 7833 1.35e-1 −− 1.57e-1 −− 2.53e-2 −− 5.72e-2 −− 5.11e-1 −−
0.0488 13573 1.03e-1 0.98 1.18e-1 1.02 1.92e-2 1.00 4.15e-2 1.15 3.88e-1 1.00

0 0.0248 52213 5.26e-2 0.99 5.96e-2 1.02 9.75e-3 1.00 1.97e-2 1.10 1.97e-1 1.00
0.0166 115941 3.54e-2 1.00 3.98e-2 1.01 6.53e-3 1.00 1.30e-2 1.05 1.32e-1 1.00
0.0129 194041 2.73e-2 1.00 3.07e-2 1.01 5.05e-3 1.00 9.94e-3 1.03 1.02e-1 1.00

0.0643 26313 2.61e-3 −− 7.32e-3 −− 5.74e-4 −− 4.84e-3 −− 2.45e-2 −−
0.0488 45647 1.42e-3 2.20 3.96e-3 2.22 3.31e-4 2.00 2.61e-3 2.23 1.41e-2 2.02

1 0.0248 175903 3.14e-4 2.23 8.38e-4 2.30 8.56e-5 2.00 5.49e-4 2.31 3.59e-3 2.02
0.0166 390831 1.34e-4 2.14 3.42e-4 2.24 3.85e-5 2.00 2.23e-4 2.26 1.61e-3 2.01
0.0129 654281 7.89e-5 2.05 1.96e-4 2.16 2.30e-5 2.00 1.27e-4 2.18 9.59e-4 2.01

0.0643 53505 6.37e-5 −− 1.96e-4 −− 7.20e-6 −− 1.31e-4 −− 9.58e-4 −−
0.0488 92859 2.77e-5 3.02 8.52e-5 3.02 3.14e-6 3.00 5.70e-5 3.02 4.19e-4 3.00

2 0.0248 358075 3.62e-6 3.01 1.11e-5 3.01 4.14e-7 3.00 7.45e-6 3.01 5.52e-5 3.00
0.0166 795771 1.09e-6 3.00 3.35e-6 3.01 1.25e-7 3.00 2.24e-6 3.01 1.66e-5 3.00
0.0129 1332321 5.04e-7 3.00 1.55e-6 3.00 5.76e-8 3.00 1.03e-6 3.00 7.68e-6 3.00

Table 5.1: Example 1, history of convergence using triangles.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.0538 8221 7.99e-2 −− 1.03e-1 −− 2.37e-2 −− 4.58e-2 −− 4.42e-1 −−
0.0404 14561 6.01e-2 0.99 7.75e-2 0.98 1.78e-2 1.00 3.47e-2 0.97 3.32e-1 1.00

0 0.0215 50926 3.20e-2 1.00 4.07e-2 1.03 9.49e-3 1.00 1.77e-2 1.07 1.77e-1 1.00
0.0147 109341 2.18e-2 1.00 2.76e-2 1.01 6.47e-3 1.00 1.20e-2 1.02 1.21e-1 1.00
0.0111 189806 1.65e-2 1.00 2.10e-2 1.00 4.91e-3 1.00 9.11e-3 1.00 9.15e-2 1.00

0.0538 26341 7.19e-3 −− 6.58e-2 −− 3.94e-4 −− 4.62e-2 −− 6.44e-2 −−
0.0404 46721 3.75e-3 2.27 3.22e-2 2.49 2.20e-4 2.02 2.26e-2 2.49 3.18e-2 2.46

1 0.0215 163726 8.20e-4 2.42 6.52e-3 2.54 6.24e-5 2.01 4.57e-3 2.54 6.74e-3 2.47
0.0147 351781 3.29e-4 2.38 2.49e-3 2.52 2.90e-5 2.00 1.74e-3 2.52 2.71e-3 2.38
0.0111 610886 1.71e-4 2.37 1.31e-3 2.33 1.67e-5 2.00 9.17e-4 2.33 1.47e-3 2.22

0.0538 52561 2.21e-4 −− 9.78e-3 −− 4.54e-6 −− 6.91e-3 −− 8.80e-3 −−
0.0404 93281 9.40e-5 2.98 4.01e-3 3.10 1.89e-6 3.05 2.83e-3 3.10 3.61e-3 3.10

2 0.0215 327151 1.26e-5 3.20 4.02e-4 3.66 2.82e-7 3.03 2.84e-4 3.66 3.63e-4 3.66
0.0147 703121 4.02e-6 2.98 1.18e-4 3.19 8.91e-8 3.01 8.37e-5 3.19 1.07e-4 3.18
0.0111 1221191 1.72e-6 3.07 4.57e-5 3.45 3.89e-8 3.00 3.23e-5 3.45 4.13e-5 3.45

Table 5.2: Example 1, history of convergence using quadrilaterals.
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k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.0488 11201 9.74e-2 −− 7.92e-0 −− 2.16e-2 −− 5.60e-0 −− 7.93e-0 −−
0.0377 18675 8.91e-2 0.34 6.55e-0 0.74 1.70e-2 0.90 4.63e-0 0.74 6.55e-0 0.74

0 0.0277 33795 5.80e-2 1.41 5.08e-0 0.83 1.24e-2 1.04 3.59e-0 0.83 5.08e-0 0.83
0.0197 66828 4.29e-2 0.88 3.57e-0 1.02 8.78e-3 1.01 2.53e-0 1.02 3.58e-0 1.02
0.0146 121943 3.08e-2 1.10 2.67e-0 0.96 6.50e-3 1.00 1.89e-0 0.96 2.68e-0 0.96

0.0488 33599 3.06e-3 −− 2.74e-1 −− 3.25e-4 −− 1.93e-1 −− 2.59e-1 −−
0.0377 56093 2.00e-3 1.63 1.56e-1 2.16 1.96e-4 1.95 1.10e-1 2.16 1.47e-1 2.19

1 0.0277 101381 1.05e-3 2.13 8.61e-2 1.95 1.06e-4 2.00 6.09e-2 1.95 8.08e-2 1.96
0.0197 200480 5.22e-4 2.03 4.25e-2 2.05 5.31e-5 2.01 3.01e-2 2.05 3.99e-2 2.05
0.0146 366007 2.89e-4 1.97 2.27e-2 2.09 2.93e-5 1.98 1.60e-2 2.09 2.12e-2 2.10

0.0488 65159 5.18e-5 −− 8.60e-3 −− 3.13e-6 −− 6.08e-3 −− 7.45e-3 −−
0.0377 108847 2.33e-5 3.08 3.86e-3 3.09 1.46e-6 2.93 2.73e-3 3.09 3.34e-3 3.09

2 0.0277 196615 8.77e-6 3.20 1.36e-3 3.41 5.83e-7 3.01 9.62e-4 3.41 1.17e-3 3.43
0.0197 388807 3.21e-6 2.92 4.82e-4 3.01 2.07e-7 3.01 3.41e-4 3.01 4.17e-4 3.01
0.0146 709989 1.27e-6 3.08 1.79e-4 3.30 8.46e-8 2.98 1.26e-4 3.30 1.54e-4 3.30

Table 5.3: Example 1, history of convergence using hexagons.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.0643 7833 1.27e-1 −− 2.03e-1 −− 2.53e-2 −− 6.11e-2 −− 5.66e-1 −−
0.0488 13573 9.66e-2 0.98 1.53e-1 1.02 1.92e-2 1.00 4.38e-2 1.20 4.29e-1 1.00

0 0.0248 52213 4.94e-2 0.99 7.72e-2 1.01 9.74e-3 1.00 2.04e-2 1.13 2.18e-1 1.00
0.0166 115941 3.32e-2 1.00 5.16e-2 1.01 6.53e-3 1.00 1.33e-2 1.07 1.46e-1 1.00
0.0129 194041 2.56e-2 1.00 3.99e-2 1.00 5.05e-3 1.00 1.02e-2 1.04 1.13e-1 1.00

0.0643 26313 2.48e-3 −− 9.18e-3 −− 5.74e-4 −− 6.00e-3 −− 2.56e-2 −−
0.0488 45647 1.34e-3 2.23 4.78e-3 2.36 3.31e-4 2.00 3.12e-3 2.37 1.46e-2 2.04

1 0.0248 175903 3.00e-4 2.21 9.35e-4 2.42 8.56e-5 2.00 5.96e-4 2.45 3.68e-3 2.03
0.0166 390831 1.30e-4 2.10 3.73e-4 2.30 3.85e-5 2.00 2.33e-4 2.35 1.65e-3 2.02
0.0129 654281 7.71e-5 2.03 2.12e-4 2.20 2.30e-5 2.00 1.31e-4 2.24 9.80e-4 2.01

0.0643 53505 4.26e-5 −− 1.98e-4 −− 7.20e-6 −− 1.32e-4 −− 9.77e-4 −−
0.0488 92859 1.85e-5 3.03 8.59e-5 3.03 3.14e-6 3.00 5.73e-5 3.03 4.27e-4 3.00

2 0.0248 358075 2.41e-6 3.01 1.12e-5 3.02 4.14e-7 3.00 7.45e-6 3.02 5.63e-5 3.00
0.0166 795771 7.26e-7 3.00 3.36e-6 3.01 1.25e-7 3.00 2.24e-6 3.01 1.70e-5 3.00
0.0129 1332321 3.33e-7 3.02 1.53e-6 3.05 5.76e-8 3.00 1.02e-6 3.03 7.83e-6 3.00

Table 5.4: Example 2, history of convergence using triangles.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.0538 8221 7.99e-2 −− 1.35e-1 −− 2.37e-2 −− 4.78e-2 −− 4.78e-1 −−
0.0404 14561 6.00e-2 0.99 1.01e-1 0.99 1.78e-2 1.00 3.63e-2 0.96 3.59e-1 1.00

0 0.0215 50926 3.20e-2 1.00 5.32e-2 1.03 9.49e-3 1.00 1.81e-2 1.10 1.91e-1 1.00
0.0147 109341 2.18e-2 1.00 3.61e-2 1.01 6.47e-3 1.00 1.22e-2 1.04 1.31e-1 1.00
0.0111 189806 1.65e-2 1.00 2.74e-2 1.00 4.91e-3 1.00 9.24e-3 1.00 9.90e-2 1.00

0.0538 26341 5.54e-3 −− 7.14e-2 −− 3.91e-4 −− 5.02e-2 −− 6.95e-2 −−
0.0404 46721 2.95e-3 2.20 3.51e-2 2.47 2.20e-4 2.01 2.46e-2 2.48 3.43e-2 2.45

1 0.0215 163726 6.58e-4 2.38 7.10e-3 2.54 6.24e-5 2.00 4.98e-3 2.54 7.22e-3 2.48
0.0147 351781 2.68e-4 2.35 2.71e-3 2.51 2.90e-5 2.00 1.90e-3 2.51 2.90e-3 2.39
0.0111 610886 1.41e-4 2.33 1.44e-3 2.31 1.67e-5 2.00 1.01e-3 2.31 1.57e-3 2.22

0.0538 52561 1.90e-4 −− 1.04e-2 −− 4.48e-6 −− 7.35e-3 −− 9.33e-3 −−
0.0404 93281 8.15e-5 2.96 4.32e-3 3.06 1.88e-6 3.03 3.05e-3 3.06 3.88e-3 3.06

2 0.0215 327151 1.13e-5 3.14 4.52e-4 3.59 2.82e-7 3.02 3.19e-4 3.59 4.06e-4 3.59
0.0147 703121 3.63e-6 2.97 1.35e-4 3.15 8.90e-8 3.01 9.56e-5 3.15 1.22e-4 3.14
0.0111 1221191 1.58e-6 3.01 5.75e-5 3.10 3.87e-8 3.02 4.10e-5 3.06 5.23e-5 3.06

Table 5.5: Example 2, history of convergence using quadrilaterals.

24



k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.0488 11201 9.29e-2 −− 7.99e-0 −− 2.15e-2 −− 5.65e-0 −− 8.00e-0 −−
0.0377 18675 8.22e-2 0.47 6.61e-0 0.73 1.69e-2 0.93 4.67e-0 0.73 6.61e-0 0.74

0 0.0277 33795 5.47e-2 1.34 5.12e-0 0.83 1.23e-2 1.02 3.62e-0 0.83 5.13e-0 0.83
0.0197 66828 4.02e-2 0.89 3.61e-0 1.02 8.75e-3 1.00 2.55e-0 1.02 3.61e-0 1.02
0.0146 121943 2.90e-2 1.09 2.70e-0 0.97 6.49e-3 1.00 1.91e-0 0.96 2.70e-0 0.97

0.0488 33599 2.76e-3 −− 2.75e-1 −− 3.22e-4 −− 1.94e-1 −− 2.60e-1 −−
0.0377 56093 1.82e-3 1.61 1.57e-1 2.15 1.95e-4 1.93 1.11e-1 2.15 1.48e-1 2.18

1 0.0277 101381 9.46e-4 2.14 8.65e-2 1.95 1.06e-4 2.00 6.12e-2 1.95 8.12e-2 1.96
0.0197 200480 4.77e-4 1.99 4.27e-2 2.05 5.31e-5 2.01 3.02e-2 2.05 4.02e-2 2.05
0.0146 366007 2.64e-4 1.97 2.28e-2 2.09 2.93e-5 1.98 1.61e-2 2.09 2.13e-2 2.10

0.0488 65159 4.57e-5 −− 8.77e-3 −− 3.11e-6 −− 6.20e-3 −− 7.61e-3 −−
0.0377 108847 2.09e-5 3.02 3.92e-3 3.10 1.46e-6 2.92 2.77e-3 3.10 3.40e-3 3.11

2 0.0277 196615 7.80e-6 3.22 1.39e-3 3.40 5.82e-7 3.00 9.80e-4 3.40 1.20e-3 3.42
0.0197 388807 2.85e-6 2.92 4.91e-4 3.01 2.07e-7 3.01 3.47e-4 3.01 4.25e-4 3.01
0.0146 709989 1.15e-6 3.01 2.04e-4 2.92 8.37e-8 3.01 1.40e-4 3.02 1.69e-4 3.08

Table 5.6: Example 2, history of convergence using hexagons.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.1179 7009 1.20e-1 −− 2.19e-1 −− 4.69e-2 −− 9.35e-2 −− 4.62e-0 −−
0.0786 15697 9.26e-2 0.63 1.60e-1 0.78 3.13e-2 1.00 6.30e-2 0.97 5.19e-0 -0.29

0 0.0429 52537 6.27e-2 0.64 1.01e-1 0.75 1.71e-2 1.00 3.60e-2 0.92 6.19e-0 -0.29
0.0289 115641 4.85e-2 0.65 7.58e-2 0.73 1.15e-2 1.00 2.56e-2 0.87 6.96e-0 -0.29
0.0218 203321 4.03e-2 0.65 6.18e-2 0.73 8.67e-3 1.00 2.02e-2 0.83 7.56e-0 -0.30

0.1179 23521 7.80e-2 −− 1.80e-1 −− 1.73e-3 −− 9.88e-2 −− 4.07e-0 −−
0.0786 52777 5.97e-2 0.66 1.33e-1 0.74 9.44e-4 1.49 7.24e-2 0.77 4.58e-0 -0.29

1 0.0429 176947 4.00e-2 0.66 8.58e-2 0.73 3.91e-4 1.46 4.60e-2 0.75 5.48e-0 -0.29
0.0289 389747 3.09e-2 0.66 6.47e-2 0.72 2.23e-4 1.41 3.45e-2 0.73 6.16e-0 -0.30
0.0218 685491 2.56e-2 0.66 5.29e-2 0.71 1.51e-4 1.38 2.82e-2 0.72 6.70e-0 -0.30

0.1179 47809 5.01e-2 −− 1.51e-1 −− 7.06e-4 −− 9.45e-2 −− 3.81e-0 −−
0.0786 107353 3.82e-2 0.67 1.13e-1 0.72 3.96e-4 1.42 7.05e-2 0.72 4.29e-0 -0.29

2 0.0429 360163 2.50e-2 0.70 7.12e-2 0.76 1.96e-4 1.16 4.43e-2 0.77 5.14e-0 -0.30
0.0289 793507 1.96e-2 0.61 5.53e-2 0.64 1.01e-4 1.68 3.44e-2 0.64 5.77e-0 -0.29
0.0218 1395811 1.63e-2 0.66 4.53e-2 0.70 6.74e-5 1.43 2.86e-2 0.65 6.28e-0 -0.30

Table 5.7: Example 3, history of convergence using triangles.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.1512 3985 1.49e-1 −− 3.65e-1 −− 6.08e-2 −− 2.06e-1 −− 5.70e-0 −−
0.0825 13245 1.05e-1 0.58 2.12e-1 0.89 3.35e-2 0.99 1.05e-1 1.10 7.46e-0 -0.44

0 0.0422 50268 6.85e-2 0.64 1.33e-1 0.70 1.71e-2 1.00 6.48e-2 0.73 9.88e-0 -0.42
0.0283 111105 5.14e-2 0.72 9.76e-2 0.78 1.15e-2 1.00 4.72e-2 0.79 1.15e+1 -0.39
0.0211 200381 4.21e-2 0.67 7.93e-2 0.70 8.58e-3 1.00 3.82e-2 0.72 1.28e+1 -0.36

0.1512 12721 2.79e-1 −− 2.17e-0 −− 6.58e-3 −− 1.51e-0 −− 6.44e-0 −−
0.0825 42461 1.89e-1 0.65 1.71e-0 0.39 2.94e-3 1.33 1.20e-0 0.38 8.24e-0 -0.41

1 0.0422 161552 1.30e-1 0.56 1.24e-0 0.48 1.17e-3 1.37 8.70e-1 0.47 1.13e+1 -0.47
0.0283 357377 1.00e-1 0.65 8.91e-1 0.84 6.48e-4 1.49 6.51e-1 0.73 1.31e+1 -0.38
0.0211 644829 8.23e-2 0.67 7.21e-1 0.72 4.20e-4 1.46 5.30e-1 0.69 1.46e+1 -0.36

0.1512 25345 1.74e-1 −− 6.08e-0 −− 3.88e-3 −− 4.29e-0 −− 8.43e-0 −−
0.0825 84745 1.30e-1 0.48 3.87e-0 0.74 1.96e-3 1.13 2.74e-0 0.74 9.61e-0 -0.22

2 0.0422 322759 8.04e-2 0.72 2.25e-0 0.81 8.95e-4 1.17 1.59e-0 0.81 1.21e+1 -0.35
0.0283 714241 6.18e-2 0.66 1.65e-0 0.78 5.38e-4 1.28 1.18e-0 0.75 1.38e+1 -0.33
0.0211 1288969 5.06e-2 0.67 1.33e-0 0.71 3.66e-4 1.31 9.66e-1 0.67 1.54e+1 -0.37

Table 5.8: Example 3, history of convergence using quadrilaterals.
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k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) e(σ?) r(σ?)

0.0770 12708 2.03e-1 −− 1.50e+1 −− 3.92e-2 −− 1.06e+1 −− 1.68e+1 −−
0.0462 35038 1.27e-1 0.93 1.01e+1 0.79 2.30e-2 1.04 7.11e-0 0.79 1.90e+1 -0.24

0 0.0330 68456 1.05e-1 0.55 8.35e-0 0.55 1.63e-2 1.03 5.83e-0 0.59 2.15e+1 -0.37
0.0257 112962 8.99e-2 0.63 6.80e-0 0.82 1.25e-2 1.05 4.90e-0 0.69 2.35e+1 -0.35
0.0204 178148 7.89e-2 0.57 5.73e-0 0.74 9.78e-3 1.06 4.08e-0 0.79 2.56e+1 -0.37

0.0770 38120 1.39e-1 −− 1.42e+1 −− 4.80e-3 −− 1.00e+1 −− 1.58e+1 −−
0.0462 105110 1.01e-1 0.63 9.33e-0 0.82 2.87e-3 1.01 6.81e-0 0.76 1.78e+1 -0.23

1 0.0330 205364 8.10e-2 0.65 7.23e-0 0.76 1.53e-3 1.87 5.32e-0 0.74 2.09e+1 -0.49
0.0257 338882 6.64e-2 0.79 6.12e-0 0.66 1.09e-3 1.34 4.32e-0 0.83 2.30e+1 -0.37
0.0204 534440 5.68e-2 0.67 5.15e-0 0.75 8.14e-4 1.28 3.64e-0 0.74 2.51e+1 -0.38

0.0770 73927 1.61e-1 −− 2.44e+1 −− 5.00e-3 −− 1.73e+1 −− 2.35e+1 −−
0.0462 203847 1.12e-1 0.71 1.54e+1 0.91 2.39e-3 1.45 1.09e+1 0.91 2.73e+1 -0.29

2 0.0330 398279 8.36e-2 0.87 1.24e+1 0.64 1.48e-3 1.43 8.77e-0 0.64 3.09e+1 -0.37
0.0257 657223 6.92e-2 0.75 9.95e-0 0.88 1.04e-3 1.40 7.43e-0 0.66 3.39e+1 -0.36
0.0204 1036487 5.96e-2 0.64 8.44e-0 0.72 7.81e-4 1.23 6.35e-0 0.68 3.66e+1 -0.34

Table 5.9: Example 3, history of convergence using hexagons.

Figure 5.1: Example 2, σh,11 (top) and ph (bottom).
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[12] E. Cáceres and G.N. Gatica, A mixed virtual element method for the pseudostress-velocity
formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017), no. 1, 296–331.
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[21] G.N. Gatica, M. González and S. Meddahi, A low-order mixed finite element method for a
class of quasi-Newtonian Stokes flows. I: A priori error analysis. Comput. Methods Appl. Mech.
Engrg. 193 (2004), no. 9-11, 881–892.

[22] G.N. Gatica, A. Márquez and M.A. Sánchez, Analysis of a velocity-pressure-pseudostress
formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Engrg. 199 (2010),
no. 17-20, 1064–1079.

[23] G.N. Gatica, A. Márquez and M.A. Sánchez, A priori and a posteriori error analyses of a
velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows. Comput. Methods
Appl. Mech. Engrg. 200 (2011), no. 17–20, 1619–1636.

[24] G.N. Gatica and F.A. Sequeira, Analysis of an augmented HDG method for a class of quasi-
Newtonian Stokes flows. J. Sci. Comput. 65 (2015), no. 3, 1270–1308.

[25] J.S. Howell, Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems
using trace-free velocity gradients. J. Comput. Appl. Math. 231 (2009), no. 2, 780–792.

[26] O. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and
solvability in the large for the boundary value problems of them. Boundary Value Problems of
Mathematical Physics V, Providence, RI: AMS, 1970.

[27] A.F.D. Loula and J.N.C. Guerreiro, Finite element analysis of nonlinear creeping flows.
Comput. Methods Appl. Mech. Engrg. 79 (1990), no. 1, 87–109.
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