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Abstract

It is well known that the widely popular mean regression model could be inadequate if
the probability distribution of the observed responses do not follow a symmetric distribution.
To deal with this situation, the quantile regression turns to be a more robust alternative for
accommodating outliers and the misspecification of the error distribution since it characterizes
the entire conditional distribution of the outcome variable. This paper presents a likelihood-
based approach for the estimation of the regression quantiles based on a new family of skewed
distributions introduced by Wichitaksorn et al. (2014). This family includes the skewed version
of Normal, Student-t, Laplace, contaminated Normal and slash distribution, all with the zero
quantile property for the error term, and with a convenient and novel stochastic representation
which facilitates the implementation of the EM algorithm for maximum-likelihood estimation
of the pth quantile regression parameters. We evaluate the performance of the proposed EM
algorithm and the asymptotic properties of the maximum-likelihood estimates through empirical
experiments and application to a real life dataset. The algorithm is implemented in the R
package lqr(), providing full estimation and inference for the parameters as well as simulation
envelopes plots useful for assessing the goodness-of-fit.

Keywords Quantile regression model; EM algorithm; Scale mixtures of Normal distributions.

1 Introduction

Quantile regression (QR) models have become increasingly popular since the seminal work of
Koenker & G Bassett (1978). In contrast to the mean regression model, QR belongs to a robust
model family, which can give an overall assessment of the covariate effects at different quantiles
of the outcome (Koenker, 2005). In particular, we can model the lower or higher quantiles of the
outcome to provide a natural assessment of covariate effects specific for those regression quantiles.
Unlike conventional models, which only address the conditional mean or the central effects of the
covariates, QR models quantify the entire conditional distribution of the outcome variable. In
addition, QR does not impose any distributional assumption on the error, except the requirement
about the zero conditional quantile. The foundations of the methods for independent data are
now consolidated, and some statistical methods for estimating and drawing inferences about con-
ditional quantiles are provided by most of the available statistical programs (e.g., R, SAS, Matlab
and Stata). For instance, just to name a few of them, in the well-known R package quantreg() is
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implemented as a variant of the Barrodale & Roberts (1977) simplex (BR) for linear programming
problems described in Koenker & d’Orey (1987), where the standard errors are computed by the
rank inversion method (Koenker, 2005). Another method implemented in this popular package is
the Lasso Penalized Quantile Regression (LPQR), introduced by Tibshirani (1996), where a penalty
parameter is specified to determine how much shrinkage occurs in the estimation process. As it
can be seen, the QR model can be implemented in a wide range of different methodologies.

From a Bayesian point of view, Kottas & Gelfand (2001) considered the study of the median
regression, which is a special case of QR. In this context, these authors discussed a non-parametric
approach for the error distribution based on either Polya tree or Dirichlet process priors. Regarding
general quantile regression, Yu & Moyeed (2001) proposed a Bayesian modeling approach by using
the asymmetric Laplace distribution (ALD), Kottas & Krnjajić (2009) developed Bayesian semi-
parametric models for quantile regression using Dirichlet process mixtures for the error distribution.
Kozumi & Kobayashi (2011) developed a simple and efficient Gibbs sampling algorithm for fitting
the quantile regression model based on a location-scale mixture representation of the ALD. From
the classical viewpoint, Benites et al. (2013), Zhou et al. (2014) and Tian et al. (2014) adjusted
a linear QR model based on EM algorithm for maximum likelihood (ML) assuming ALD errors.
Particularly Benites et al. (2013) showed that their approach out-performed other common non-
parametric estimators as those obtained via BR and LPQR algorithms. While ALD has the zero
quantile property and a useful stochastic representation, it is not differentiable at zero, which could
lead to problems of numerical instability. Thus the Laplace density is a pretty strong assumption
in order to set a quantile regression model through the classical or Bayesian framework.

To overcome this deficiency, recently Wichitaksorn et al. (2014) introduced a generalized class
of skew densities (SKD) for the analysis of QR that provides competing solutions to the ALD-based
formulation. The robust SKD class of distributions is constructed by mixing a skew-normal dis-
tribution (SKN) proposed by Fernández & Steel (1998) and the symmetric class of scale mixture
of normal (SMN) distributions proposed by Andrews & Mallows (1974). The SKN distribution
is obtained by partitioning two scaled mixture of normal (Gaussian) distributions, which have a
skewness parameter defined in the interval (0, 1), allowing direct application to parametric quantile
regression. On the other hand, employing scale mixture of normals facilitates efficient estimation
via Markov chain Monte Carlo (MCMC) methods and the EM algorithm. In fact, Wichitaksorn
et al. (2014) adopt a MCMC approach as a natural solution to estimation and inference by using
the marginal representation of the SKD class of distributions. In contrast to the marginal approach
adopted in Wichitaksorn et al. (2014), in this paper a novel stochastic representation is proposed,
which allows the study of many of its properties and also the implementation of an efficient (and
easy) EM algorithm for ML estimation of the parameters at the pth level, with closed form ex-
pressions at the E- and M- steps. Therefore, the main contribution of this paper is to propose
a robust method for drawing inferences about conditional quantiles in linear regression problems
from a likelihood-based perspective. Moreover, the proposed EM-type algorithm has been coded
and implemented in the R package lqr() (Galarza et al., 2015), which is available for download
at CRAN repository. A great advantage of this package is that it offers an automatic fit of all the
SKD distributions taking into consideration.

The rest of the paper proceeds as follows. Section 2 presents the construction of the SKD family
of distributions as a scale mixture of skew normal distribution and some important propositions
and properties of this family. Section 3 introduces the QR model and the EM algorithm for ML
estimation as well as the standard errors. Section 4 presents simulation studies of finite sample
performance and robustness of our proposed method. An application of the EM algorithm to a
dataset examining some characteristics of Australian athletes available from the Australian Institute
of Sport (AIS) is presented in Section 5. Finally, Section 6 closes the paper, sketching some future
research directions.
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2 The SKD family of distributions

In order to define the SKD class of distributions, we first make some remarks related to the skew-
normal (SKN) distributions as defined by Wichitaksorn et al. (2014). Thus, in the following we
present some definitions where we explain first the fundamental concept of the SKN distribution
and its relation with the SKD family of distributions.

2.1 Preliminaries

As defined in Wichitaksorn et al. (2014), we say that a random variable X has a skew-normal
(SKN) distribution with location parameter µ, scale parameter σ > 0 and skewness parameter
p ∈ (0, 1), if its probability density function (pdf) is given by

f(x|µ,σ, p) = 2

[
pφ

(
x

∣∣∣∣µ,
σ2

4(1− p)2

)
I{x ≤ µ}+ (1− p)φ

(
x

∣∣∣∣µ,
σ2

4p2

)
I{x > µ}

]
, (1)

where φ(·|µ,σ2) represents the pdf of the normal distribution with mean µ and variance σ2 (N(µ,σ2))
and I{·} denotes the indicator function. By convention, we shall write X ∼ SKN(µ,σ, p). Note
that, P (X ≤ µ) = p and P (x > µ) = 1− p, which allows a direct application to quantile regression
problems. When p = 0.5 we have the symmetric N(µ,σ2) distribution. Also, the pdf in (1) is con-
structed as a mixture of two truncated normal distributions with weights p and 1− p respectively.
Therefore, it can be conveniently written as

f(x|µ,σ, p) =
4p(1 − p)√

2πσ2
exp

{
−2ρ2p

(
x− µ

σ

)}
, (2)

where ρp(·) is the so called check (or loss) function defined by ρp(u) = u(p − I{u < 0}). It is
important to remark that the SKN distribution is closed under location-scale transformations, i.e.,
if Z ∼ SKN(0, 1, p), then X = µ+σZ ∼ SKN(µ,σ, p). Moreover, the SKN distribution has a useful
stochastic representation, given in the next result. The proof can be found in the Appendix.

Lemma 1. Let T0 ∼ N(0, 1) and I with probability function

P

(
I = −

1

2(1 − p)

)
= p and P

(
I =

1

2p

)
= 1− p,

be independent. Then, the random variable with stochastic representation

X = µ+ σI|T0|,

follows a SKN(µ,σ, p) distribution.

2.2 Scale mixture of normal distributions

The family of scale mixture of normal (SMN) distributions (Andrews & Mallows, 1974; Lange &
Sinsheimer, 1993) is a wide class of thick-tailed distributions including the normal one as a special
case. This class of symmetric distributions also includes the Student-t (T), slash (S), contaminated
normal (CN), among many others. The SMN class can be conveniently represented using the
following stochastic representation,

W = µ+ σκ(U)1/2T0,

where µ is a location parameter, κ(·) is the weight function, U is positive random variable with
pdf h(u|ν) and cumulative distribution function (cdf) H(u|ν), ν is a scalar or vector parameter
indexing the distribution of U and T0 ∼ N(0, 1), with U independent of T0. Under this setup, the
marginal pdf of Y is given by

f(w|µ,σ,ν) =
∫∞
0 φ

(
w|µ,κ(u)σ2

)
dH(u|ν).

We shall use W ∼ SMN(µ,σ2,ν) to denote this class of distributions.
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2.3 A family of zero-quantile skewed distributions

This new class of distributions, defined by Wichitaksorn et al. (2014), is constructed as a scale
mixture of SKN distributions. We say that Y follows a skewed distribution (denoted by SKD)
with location parameter µ, scale parameter σ and skewness parameter p, if Y can be represented
stochastically as

Y = µ+ σκ(U)1/2Z, (3)

where Z ∼ SKN(0, 1, p). A direct consequence of this definition is that, as the SKN distribution,
P (Y ≤ µ) = p and P (Y > µ) = 1− p.

From the stochastic representation (3), the conditional distribution of Y given U = u is
SKN(µ,κ(u)1/2σ, p). Then, integrating out U , we have that the marginal pdf of Y is

f(y|µ,σ, p,ν) =
∫ ∞

0

4p(1− p)√
2πκ(u)σ2

exp

{
−2ρ2p

(
y − µ

κ1/2(u)σ

)}
dH(u|ν), (4)

and consequently, several skewed and thick-tailed distributions can be obtained from different speci-
fications of the weight function κ(·) and pdf h(u|ν). Alternatively, another stochastic representation
for the SKD distribution can be provided. This representation is given in the following result, whose
proof is given in Appendix.

Lemma 2. Let T0 ∼ N(0, 1) and U a positive random variable, with U independent of T0. Let I be
the discrete random variable defined in Lemma 1. Then, Y ∼ SKD(µ,σ, p,ν) can be stochastically
represented as

Y
d
= µ+ σκ(U)1/2I|T0|.

Table 1 presents some particular cases belonging to the SKD family, namely, the skewed Student-
t (SKT(µ,σ, p, ν)); skewed Laplace (SKL(µ,σ, p)); skewed slash (SKS(µ,σ, p, ν)) and skewed con-
taminated normal (SKCN(µ,σ, p, ν, γ)), respectively. Moreover, Figure 1 presents the pdf associated
to these members considering µ = 0 and σ = 1. In particular, this figure shows how the skewness
changes for different values of parameter p. It is important to remark that, when p = 0.5 these
distributions turn to be symmetrical.

Distribution κ(u) h(u|ν) f(y|µ,σ,ν)

skewed Student-t u−1 G(ν2 ,
ν
2 )

4p(1−p)Γ( ν+1
2 )

Γ( ν
2 )

√
2πσ2

{
4
ν ρ

2
p

(y−µ
σ

)
+ 1

}− ν+1
2

skewed Laplace u Exp(2) 2p(1−p)
σ exp

{
−2ρp

(y−µ
σ

)}

skewed slash u−1 Beta(ν, 1) ν

∫ 1

0
uν−1φskd(y|µ, u−1/2σ, p)du

skewed cont. normal u−1 νI{u = γ}+ (1− ν)I{u = 1}
0 ≤ ν, γ ≤ 1,

νφskd(y|µ, γ−1/2σ, p) + (1− ν)φskd(y|µ,σ, p)

Table 1: κ(·), h(u|ν) and pdf for some members of the SKD family. G(α,β) denotes the Gamma
distribution with shape parameter α > 0 and rate parameter β > 0, Exp(β) denotes the exponential
distribution with mean β, Beta(α,β) denotes the Beta distribution and φskd(y|µ,σ, p) denotes the
pdf of the SKN distribution defined in (2).

An interesting result related to the moments of the SKD distributions is presented next.
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(a) Skew normal
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(b) Skew Student-t
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(c) Skew Laplace
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(d) Skew slash
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(e) Skew contaminated normal
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Figure 1: Density functions for the standard skewed normal, skewed Student-t, skewed Laplace,
skewed slash and skewed contaminated normal distributions under different values of the skewness
parameter. Parameters have been set as µ = 0, σ = 1, γ = 0.1 and ν = (4, 2, 0.1) for the Student-t,
slash and contaminated normal distribution, respectively.

Moment generating function for the SKD family

From the stochastic representation of Y given in (2), we have that

E[(Y − µ)k] = σkE[Ik]E[Hk]E[κ(U)k/2],

where H = |T0|. Moreover, from (3) we have

E[Ik] = (−1)kpk+1+(1−p)k+1

2kpk(1−p)k
, k = 1, 2, . . . .

In addition, since the weight function κ(U) depends of the mixture distribution h(u|ν), E[κ(U)k/2]
is given iqual to 1 when κ(U) = U−1 and P (U = 1) = 1; (ν/2)k/2Γ((ν − k)/2)/Γ (ν/2) when
κ(U) = U−1 and U ∼ G(ν/2, ν/2);

√
2k Γ((k+2)/2) when κ(U) = U and U ∼ Exp(2); ν/(ν− k/2)

when κ(U) = U−1 and U ∼ Beta(ν, 1) and ν/γk/2 + (1 − ν) when κ(U) = U−1 and h(u|ν, γ) =
νI{u=γ} + (1− ν)I{u=1}.

The moments E[Hk] are obtained using the moment generating function of a half normal dis-
tribution. This function is defined as MH(t) = 2 exp{t2/2}[1−Φ(−t)]. It is important to note that,
after some algebra, these moments are

5



E[Hk] =

⎧
⎨

⎩

(k − 1)!!, for k even;

(k − 1)!!
√

2/π, for k odd,

where n!! denotes the double factorial function. Finally the kth centred moment of Y is given by

E[(Y − µ)k] =

⎧
⎪⎨

⎪⎩

σk(k − 1)!!
[
(−1)kpk+1+(1−p)k+1

2kpk(1−p)k

]
E[κ(U)k/2], for k even;

√
2/πσk(k − 1)!!

[
(−1)kpk+1+(1−p)k+1

2kpk(1−p)k

]
E[κ(U)k/2], for k odd.

3 Quantile regression using the SKD family

Let yi, i = 1, . . . , n, be an observed response variable and xi a k × 1 vector of covariates for the
ith observation, and let Qyi(p|xi) be the pth (0 < p < 1) QR function of yi given xi. Suppose that
the relationship between this quantile and xi can be modeled as Qyi(p|xi) = x⊤

i βp, where βp is a
(k× 1) vector of unknown parameters of interest. Then, we consider the quantile regression model
given by

yi = x⊤
i βp + ϵi, i = 1, . . . , n, (5)

where ϵi is the error term whose distribution (with density, say, fp(·)) is restricted to have the pth

quantile equal to zero, that is,
∫ 0
−∞ fp(ϵi)dϵi = p, and consequently P (yi ≤ x⊤

i βp) = p. The density
fp(·) is often left unspecified in the classical literature. Thus, quantile regression estimation for βp
proceeds by minimizing

β̂p = arg min
βp∈R

k

n∑

i=1

ρp
(
yi − x⊤

i βp
)
, (6)

where ρp(·) is known as the check function and β̂p is the quantile regression estimate for βp at
the pth quantile. The case where p = 0.5 corresponds to the median regression. Is important to
stress that there is a connection between the minimization of the sum in (6) and the maximum-
likelihood theory, since to minimize (6) is equivalent to maximize the likelihood when data follows
a distribution belonging to the family of zero conditional quantile SKD introduced in Section 2.3.
It can be observed that the check function in (4) is inversely proportional to the pdf and therefore
to the likelihood. Particularly, in the case of the skewed Laplace distribution, the check function
is linearly being not differentiable at zero. In this case, we cannot derive explicit solutions to
the minimization problem and linear programming methods have to be applied to obtain quantile
regression estimates for βp.

For a fixed value of σ, the maximization of the resulting likelihood in the SKN family with
respect to the parameter βp is equivalent to the minimization of the objective function in (6).
Therefore, the relationship between the check function and this family of distributions can be used
to reformulate the QR method within the likelihood framework. In order to do that, we propose
the following useful result. Its proof is given in Appendix.

Lemma 3. Let T0 ∼ N(0, 1) and Y ∼ SKD(µ,σ, p,ν). If D = ρ(Y−µ
σ ), then D can be represented

stochastically as

D
d
= 1

2κ(u)
1/2|T0|. (7)

Thus, from (7), we have that D
d
= |W | where W = 1

2κ(u)
1/2T0 belongs to the SMN class of

distribution given in Section 2.2. Hence, D is the half-type version of a SMN random variable
with location parameter µ = 0, scale parameter σ = 1/2. Table 2 presents different probability
distributions for D under specific members of the SKD family.
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Distribution Distribution of D pdf of D

skewed normal HN(12
2
) 4√

2π
exp(−2d2)

skewed Student-t HT(12
2
, ν)

4Γ( ν+1
2 )

Γ( ν2 )
√
νπ

{
4
ν d

2 + 1
}− ν+1

2

skewed Laplace Exp(12) 2 exp(−2d)

skewed slash HS(12
2
, ν) 2ν

∫ 1

0
uν−1φ(d|µ, 1

4u) du

skewed cont. normal HCN(12
2
, ν, γ) 2νφ(d|µ, 1

4γ ) + 2(1 − ν)φ(d|µ, 14)

Table 2: Probability distributions for the function D defined in Lemma 3. HT denotes the
half-Student-t distribution, HS denotes the half-slash distribution and HCN denotes the half-
contaminated normal distribution.

3.1 Parameter estimation via the EM algorithm

In this section, we propose an estimation method for the QR model based on the EM algorithm
for obtaining the ML estimates.

The EM algorithm (Dempster et al., 1977), is a powerful frequentist approach to estimate pa-
rameters via ML when the data has missing/censored observations and/or latent variables. The
main features of EM algorithm is the ease of implementation and the stability of monotone con-
vergence.

From the hierarchical representation given in (3), the QR model defined in (5) can be expressed
as

Yi|Ui = ui ∼ SKN(x⊤
i βp,

√
κ(ui)σ, p),

Ui ∼ h(ui|ν),

where h(u|ν) represents the mixture density. Let y = (y1, . . . , yn) and u = (u1, . . . , un) be the
observed and missing (latent) data, respectively. Then, the complete data log-likelihood function
of θ = (β⊤

p ,σ,ν) given (y,u), ignoring some additive constant terms, is given by ℓc(θ|y,u) =∑n
i=1 ℓc(θ|yi, ui), where

ℓc(θ|yi, ui) =
∑

{yi≤x
⊤
i βp}

log φ

(
yi

∣∣∣∣x
⊤
i βp,

κ(ui)σ2

4(1 − p)2

)
+

∑

{yi>x
⊤
i βp}

log φ

(
yi

∣∣∣∣x
⊤
i βp,

κ(ui)σ2

4p2

)

+ log h(ui|ν),

for i = 1, . . . , n. Denoting by ξi = (1 − p) I{yi ≤ x⊤
i βp}+ p I{yi > x⊤

i βp}, the expression ℓc(θ|yi, ui)
can be rewritten as

ℓc(θ|yi, ui) =
n∑

i=1

log φ

(
yi

∣∣∣∣x
⊤
i βp,

κ(ui)σ2

4ξ2i

)
+

n∑

i=1

log h(ui|ν).

In what follows the superscript (k) will indicate the estimate of the related parameter at the
stage k of the algorithm. The E step of the EM algorithm requires evaluation of the so-called
Q-function Q(θ|θ(k)) = E[ℓc(θ|y,u)|y,θ(k)]. Thus, ignoring constants that does not the depend on
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the parameter of interest θ, the Q-function is given by

Q(θ|θ(k)) ∝ −n log σ − 2
n∑

i=1

{
κ̂−1(ui)ξ

2
i z

2
i

}
+

n∑

i=1

E
[
log h(ui|ν)|yi,θ(k)

]
, (8)

with zi = (yi − x⊤
i βp)/σ. For evaluating (8), it is required to compute κ̂−1(ui) = E[κ−1(Ui)|yi,θ(k)],

that will depend of the weight function κ(·). The conditional distribution of the latent variable
given the observed data f(ui|yi,θ(k)) will depend on the functional form of h(ui|ν). Table 3 shows
the conditional pdf of U given Y for specific choices of h(ui|ν).

Distribution Distribution of U Conditional distribution of U |Y κ̂−1(ui)

skewed Student-t G(ν2 ,
ν
2 ) G

(
ν+1
2 ,

ν+4ξ2i z
2
i

2

) ν + 1

ν + 4ξ2i z
2
i

skewed Laplace Exp(2) GIG
(
1
2 , 2ξ

2
i z

2
i ,

1
2

) 1

2ξi |zi|

skewed slash Beta(ν, 1) TG
(
ν + 1

2 , 2ξ
2
i z

2
i , 1

)
[
ν + 1

2

2ξ2i z
2
i

]
F(1|ν + 3

2 , 2ξ
2
i z

2
i )

F(1|ν + 1
2 , 2ξ

2
i z

2
i )

skewed cont. normal νI{u = γ}+ (1− ν)I{u = 1}
0 ≤ ν, γ ≤ 1

a I{u = γ}+ b I{u = 1}
a+ b

aγ + b

a+ b

Table 3: Conditional distribution of U given Y for specific SKD distributions.

In Table 3, F(x|α, 1/β) represents the cdf of a Gamma (α, 1/β) distribution. Moreover, expres-

sions a and b are given by a = νφ
(
yi|x⊤

i βp,
γ−1σ2

4ξ2i

)
and b = (1− ν)φ

(
yi|x⊤

i βp,
σ2

4ξ2i

)
. The notation

TG(a, b, t) represents a random variable with Gamma(a, 1/b) distribution truncated to the right at
the value t. Finally, GIG(ν, a, b) denotes the Generalized Inverse Gaussian (GIG) distribution - see
Barndorff-Nielsen & Shephard (2001) for more details. The pdf of the GIG distribution is given by

f(x|ν, a, b) =
(b/a)ν

2Kν(ab)
xν−1 exp

{
−

1

2

(
a2/x+ b2x

)}
, x > 0, ν ∈ R, a, b > 0,

with Kν(.) being the modified Bessel function of the third kind. The proposed EM algorithm
can be summarized in the following steps:

1. E-step: Given θ = θ(k), compute κ̂−1(ui).

2. M-step: Update θ(k) by maximizing Q(θ|θ(k)) over θ, which leads to the following expres-
sions

β̂p
(k+1)

= (X⊤Ω(k)X)−1X⊤Ω(k)y,

σ̂2
(k+1)

=
4

n
(y −Xβ(k+1)

p )⊤Ω(k)(y −Xβ(k+1)
p ),

where Ω is a n × n diagonal matrix, with elements ξ2i κ̂
−1(ui), i = 1, . . . , n, X is the design

matrix and y is the vector of observations. After the M -step, we will update the parameter
ν by maximizing the marginal log-likelihood function of y, obtaining

ν̂(k+1) = arg max
ν

n∑

i=1

log f(yi|β̂p
(k+1)

, σ̂(k+1),ν).
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In practice, the EM algorithm iterates until some distance involving two successive evaluations
of the actual log-likelihood ℓ(θ), like ||ℓ(θ(k+1)) − ℓ(θ(k))|| or ||ℓ(θ(k+1))/ℓ(θ(k)) − 1||, is small
enough. We have use ordinary least squares estimators (OLSE) as an initial estimate of β, reaching
convergence in a few seconds.

3.2 Standard error approximation

Louis’ missing information principle (Louis, 1982) relates the score function of the incomplete data
log-likelihood with the complete data log-likelihood through the conditional expectation ∇o(θ) =
E[∇c(θ|y,u)|y], where ∇o(θ) = ∂ℓo(θ|y)/∂θ and ∇c(θ) = ∂ℓc(θ|y,u)/∂θ are the score functions
for the incomplete and complete data, respectively. As defined in Meilijson (1989), the empirical
information matrix can be computed as

Ie(θ|y) =
n∑

i=1

s(yi|θ) s⊤(yi|θ)−
1

n
S(y|θ)S⊤(y|θ), (9)

where S(y|θ) =
∑n

i=1 s(yi|θ) and s(yi|θ) is the empirical score function for the ith individual.

Replacing θ by its ML estimator θ̂ and considering ∇o(θ̂) = 0, equation (9) takes the simple form

Ie(θ̂|y) =
n∑

i=1

s(yi|θ̂) s⊤(yi|θ̂).

At the kth iteration, the empirical score function s(yi|θ)(k) for the ith subject can be computed
as

s(yi|θ)(k) = E
[
s(yi, u

(k)
i |θ(k))|yi

]
,

where ui(k), is the latent variable following the conditional distribution f(ui|yi,θ(k−1)). Using
Louis’s method (Louis, 1982), the observed information matrix at iteration k, can be approximated
as Ie(θ̂|y)(k) =

∑n
i=1 s(yi|θ)(k)s⊤(yi|θ)(k). such that at convergence, I−1

e (θ̂|y) = (Ie(θ|y) |θ=
̂θ
)−1

is an estimate of the covariance matrix of the parameter estimates.
Thus, by taking partial derivatives of the complete log-likelihood function in (8) with respect

to θ, we obtained the following elements of the score function:

∂ℓci
∂βp

=
4

σ
[Ω1X]i

∂ℓci
∂σ

=
4

σ3
(y−Xβp)

⊤Ω(y−Xβp)−
1

σ

where Ω1 is a n × n diagonal matrix with diagonal elements ξ2i zi κ̂
−1(ui) and [ · ]i denotes the

ith element of the vector.

4 Simulation studies

In this section, a simulation study to evaluate the finite sample performance of ML estimates
obtained using the proposed EM algorithm is performed. The computational procedure is imple-
mented using R software R Core Team (2014) using the lqr package by Galarza et al. (2015). In
particular, we consider the following linear model

yi = x⊤
i β + ϵi, i = 1, . . . , n.

9



Quantiles (%)
25 50 75

Distribution Parameter n BIAS MC-SD BIAS MC-SD BIAS MC-SD
β0 100 0.004 (0.060) 0.004 (0.053) -0.013 (0.062)

200 0.005 (0.044) 0.002 (0.037) -0.003 (0.040)
400 0.002 (0.029) -0.001 (0.026) -0.003 (0.029)

β1 100 0.000 (0.059) -0.001 (0.049) 0.002 (0.058)
200 -0.003 (0.040) 0.001 (0.034) -0.002 (0.040)

skewed normal 400 0.001 (0.028) -0.000 (0.025) 0.000 (0.029)
β2 100 0.003 (0.060) -0.002 (0.049) 0.001 (0.059)

200 -0.000 (0.048) 0.000 (0.040) -0.000 (0.046)
400 -0.002 (0.030) -0.000 (0.026) -0.001 (0.028)

σ 100 -0.009 (0.036) -0.011 (0.036) -0.007 (0.035)
200 -0.006 (0.026) -0.005 (0.025) -0.004 (0.026)
400 -0.001 (0.018) -0.002 (0.017) -0.001 (0.017)

β0 100 0.012 (0.070) -0.001 (0.060) -0.011 (0.069)
200 0.005 (0.051) 0.001 (0.042) -0.004 (0.048)
400 0.000 (0.033) 0.002 (0.029) -0.003 (0.034)

β1 100 0.005 (0.071) 0.000 (0.060) -0.002 (0.070)
200 0.001 (0.055) -0.001 (0.045) -0.002 (0.050)

skewed Student-t 400 0.002 (0.036) 0.001 (0.029) 0.000 (0.034)
β2 100 0.004 (0.080) 0.000 (0.067) -0.003 (0.078)

200 0.005 (0.057) 0.002 (0.048) 0.003 (0.053)
400 0.001 (0.036) -0.001 (0.030) 0.002 (0.038)

σ 100 -0.008 (0.050) -0.012 (0.046) -0.010 (0.047)
200 -0.003 (0.036) -0.002 (0.032) -0.002 (0.032)
400 -0.002 (0.024) -0.002 (0.023) -0.002 (0.023)

β0 100 0.009 (0.067) -0.003 (0.052) -0.006 (0.068)
200 0.006 (0.042) 0.001 (0.039) -0.002 (0.046)
400 0.002 (0.031) -0.001 (0.029) -0.002 (0.032)

β1 100 -0.005 (0.066) 0.005 (0.055) 0.000 (0.068)
200 0.001 (0.046) -0.000 (0.039) -0.002 (0.044)

skewed Laplace 400 -0.001 (0.029) -0.001 (0.027) -0.000 (0.029)
β2 100 -0.002 (0.074) 0.002 (0.064) -0.007 (0.078)

200 -0.000 (0.045) -0.000 (0.037) 0.000 (0.044)
400 -0.001 (0.030) -0.002 (0.027) -0.001 (0.030)

σ 100 -0.008 (0.052) -0.007 (0.050) -0.007 (0.051)
200 -0.004 (0.035) -0.005 (0.036) -0.002 (0.035)
400 -0.005 (0.026) -0.001 (0.026) -0.003 (0.025)

Table 4: Simulation study: Absolute bias (BIAS) and Monte Carlo standard error (MC-SD) for parameter

estimates of the QR model for different samples size.

β̂0 β̂1 β̂2
Distribution Quantile (%) MC-SD IM-SD MC-CP MC-SD IM-SD MC-CP MC-SD IM-SD MC-CP

25 0.027 0.026 0.93 0.028 0.027 0.93 0.027 0.028 0.95
skewed normal 50 0.022 0.023 0.96 0.023 0.023 0.96 0.023 0.024 0.95

75 0.027 0.026 0.94 0.028 0.027 0.93 0.026 0.028 0.95
25 0.036 0.034 0.94 0.035 0.033 0.95 0.037 0.038 0.95

skewed Student-t 50 0.030 0.030 0.94 0.030 0.029 0.93 0.030 0.033 0.97
75 0.034 0.034 0.93 0.033 0.034 0.96 0.038 0.038 0.96
25 0.031 0.029 0.93 0.031 0.030 0.94 0.031 0.028 0.93

skewed Laplace 50 0.027 0.025 0.95 0.025 0.025 0.95 0.027 0.024 0.92
75 0.031 0.029 0.94 0.033 0.030 0.93 0.031 0.028 0.94

Table 5: Simulation study: Monte Carlo standard deviation (MC-SD), mean standard deviation (IM-
Sd) and Monte Carlo coverage probability (MC-CP) estimates of the fixed effects β0, β1 and β2 for different
quantiles (n = 400).
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Figure 2: Simulation study: Bias (upper panel) and RMSE (lower panel) for the fixed effects β0,
β1 and β2 for varying sample sizes over the quantiles p = {0.25, 0.50, 0.75}.

Our interest is to estimate the fixed effects parameters β and nuisance parameter σ, for a grid of
quantiles p = {0.25, 0.50, 0.75}. The simulated dataset was generated as follows. We considered a
n× 3 design matrix x⊤

i for the fixed effects β, where the first column corresponds to the intercept
and the other two columns were generated from a bivariate normal N2(0, I2). The parameters were
chosen as β0 = 2, β1 = 3, β2 = 5, σ = 0.50 and ν = 4 and the error term ϵi has been generated
independently from an SKD(0,σ, ν, p) distribution, where p stands for the quantile to be estimated.
We considered different sample sizes, say, n = 100, 200 and 400. For each sample size, we generated
m = 500 datasets. For the data simulation, we considered the skewed normal, skewed Student-t
and skewed Laplace distributions.

For all scenarios, we compute the square root of the mean square error (RMSE), the bias (Bias)
and the Monte Carlo standard deviation (MC-SD) for each parameter over the 500 replicates. For
the parameter θ, these quantities are defined, respectively, by

MC-SD(θ̂) =

√√√√ 1

m− 1

m∑

j=1

(
θ̂(j) − θ̂

)2

and RMSE(θ̂) =
√
MC-Sd2(θ̂) + Bias2(θ̂),

where Bias(θ̂) = θ̂ − θ, θ̂ =
1

m

m∑

j=1

θ̂(j) is the Monte Carlo mean and θ(j) is the estimate of θ

from the j-th sample, with j = 1 . . . m. In addition, we also compute the average of the standard
deviations (IM-SD) obtained via the observed information matrix derived in Subsection 3.2 and
95% coverage probability (MC-CP) defined as CP(θ̂) = 1

m

∑m
j=1 I(θ ∈ [θ̂LCL, θ̂UCL]), where I is the

indicator function such that θ lies in the interval [θ̂LCL, θ̂UCL], with θ̂LCL and θ̂UCL the estimated
lower and upper bounds of the 95% CI, respectively.

From Table 4 it can be observed that the Bias and MC-SD for the regression parameters β0,
β1 and β2 tends to approach zero when sample size is increased revealing that the ML estimates
obtained have consistent asymptotic properties. Figure 2 (given in Appendix) shows the obtained
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results of BIAS and RMSE under the skew normal model. In addition, IM-SD, MC-SD and MC-CP
for β0, β1 and β2 are presented in Table 5 for different quantiles. Note that the values of MC-SD
and IM-SD are very close indicating that the asymptotic approximation of the parameter standard
errors are reliable.

5 Application

In this section we present an application based on a dataset from Cook & Weisberg (1994) on
characteristics of Australian athletes available from the Australian Institute of Sport (AIS). We
consider the variables body mass index (bmi), lean body mas (lbm) and gender (sex) associated
with n = 202 Australian athletes. See Figure 3, where we also present the plot of the bmi versus
the lbm and sex.

In order to illustrate the model proposed in Section 3, we consider the following quantile re-
gression model

bmii = β0 + β1lbmi + β2sexi + ϵi,

where ϵi belongs to the SKD family for i = 1, . . . , 202. Note that we have disconsidered the
interaction (between lbm and sex) because it was found to be not significant in a preliminary
analysis.

Using the R package lqr() (see Appendix), we fit five models as was described in Section 3,
performing a median regression (p = 0.5). To compare them, we consider the Akaike (AIC; Akaike,
1974), Schwarz (BIC; Schwarz, 1978), Hannan-Quinn (HQ; Hannan & Quinn, 1979) information
criteria and the value of the estimated log-likehood function. Table 6 presents the obtained results
for each model comparison criterion. According to these measures, it can be concluded that the
best model is the skewed slash been just a little better than skew Student-t model. Figure 4 shows
the envelope plots for the residuals obtained after fitting the p = 0.5 quantile regression model
under the skew Student-t and skew slash distribution respectively. In addition, it can be observed
that the rest of the skewed and heavy-tailed models, say, the Student-t, Laplace and contaminated
normal outperforms the skewed normal one. Consequently, these results provide evidence about
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Figure 3: Data analysis: Fitted skewed slash QR overlayed with five different quantile regression
lines over the grid p = {0.10, 0.25, 0.50, 0.75, 0.90} for the AIS data, by gender.
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the presence of possible outliers and influence observations in the data that the skewed normal
model cannot accommodate.

skewed normal skewed Student-t skewed Laplace skewed slash skewed cont. normal
AIC 1095.56 810.99 821.78 810.83 814.11
BIC 1108.79 824.22 835.01 824.06 827.34
HQ 1100.91 816.34 827.14 816.18 819.46

log-likelihood -543.78 -401.49 -406.89 -401.41 -403.05

Table 6: Model comparison criteria for the median (p = 0.5) linear regression model using the SKD family.

Under the skewed slash model, Table 7 presents the parameter estimation for the QR model. It
is important to note that the significance of the fixed effects is verified for a significance level equal
to α = 0.05. Figure 3 shows the fitted quantile regression overlayed with five different quantile
regression lines over the grid p = {0.10, 0.25, 0.50, 0.75, 0.90} for the skew slash model, by gender.
For the Student-t model, estimates and standard errors model were very similar. Moreover, the
point estimate of the (degrees of freedom) parameter ν is 7.98 indicating an important depart from
normality and, therefore, a moderate tail behaviour.

Parameter Estimate Std. Error z value p-value
β0 7.21 2.09 3.46 0.000
β1 0.22 0.03 8.48 0.000
β2 2.49 0.77 3.25 0.001
σ 1.31
ν 2.07

Table 7: Parameter estimation under skewed Slash QR model.

Finally, Figures 5 and 6 show the point estimates and 95% confidence interval for model pa-
rameters under the Student-t and slash QR model respectively for different values of the quantiles.
Confidence intervals for both models looks really similar. Note that, in each case, the parameters
estimates and also de confidence interval are far from zero confirming the conclusion obtained from
the analysis of the p-value.

6 Conclusion

In this paper, we have proposed a likelihood-based approach for the estimation of the QR model
based on a family of skewed distributions, namely, the SKD class of distributions as opposed to
the use of the ALD distribution. By using the relationship between the QR check function and
zero quantile property related to this family, we cast the QR problem into the usual likelihood
framework. The newly stochastic representation of this class of distributions allows us to express
the QR model based on a mixture of normal distributions, making easy the implementation of an
EM algorithm for obtaining the ML estimates of the model parameters with closed form expressions
at the E- and M- step. This EM algorithm was implemented as part of the R package lqr(). We
hope that by making the code of our method available to the community, we will encourage to
other researchers to use the EM algorithm and the SKD class of distributions in their studies of
QR.

Finally, the proposed method can be extended to a more general framework, such as, censored
regression models, measurement error models, nonlinear regression models, among many others,
providing satisfactory results at the expense of additional complexity in implementation. An in-
depth investigation of such extension is beyond the scope of the present paper, but certainly an
interesting topic for future research.
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Figure 4: Data analysis: Envelopes for the residuals after fitting the p = 0.5 skewed Student-t
and skewed slash QR model.
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Appendix

Proof of Lemma 1

Let H = |T0|, then we have that X = µ + σIH. In order to use the transformation method we
define an auxiliar variable K = I, leading to I = K, H = (X−µ)/σK and thus |J| = 1/σK, where
|J| represents the determinant of the Jacobian of the transformation. The joint distribution for K
and X can be computed as

f(k, x|µ,σ) =
P (I = k)

σ|k|
fH

(
x− µ

σk

)
.

Using the fact that I and H are independent, then

f(k, x|µ,σ) =

⎧
⎨

⎩

2p(1− p)/σ fH (−2(1− p)(x− µ)/σ) ; x ≤ 0, k = −1/2(1 − p)

2p(1− p)/σ fH (2p(x− µ)/σ) ; x > 0, k = 1/2p

where P (I = k) = pI{k = − 1
2(1−p)} + (1 − p)I{k = 1

2p} and H is a Half normal random variable
with pdf given by

fH(h) =

√
2√
π
exp

{
−
h2

2

}
I{h > 0}.

Then, the pdf of X is obtained by marginalization, i.e.

f(x|µ,σ) = 2

[√
2p(1− p)√

πσ
exp

{

−
1

2

(
x− µ

σ/2(1−p)

)2
}]

I{x ≤ 0}

+2

[√
2p(1− p)√

πσ
exp

{

−
1

2

(
x− µ

σ/2p

)2
}]

I{x > 0}

= 2

[
pφ

(
x

∣∣∣∣µ,
σ2

4(1 − p)2

)
I{x ≤ 0}+ (1− p)φ

(
y

∣∣∣∣µ,
σ2

4p2

)
I{x > 0}

]
,

concluding the proof.

Proof of Lemma 2

From Lemma 1, we have that Y |U = u ∼ SKN(µ,κ(u)1/2σ, p). Consequently, the marginal distri-
bution of Y can be obtained from

f(y|µ,σ,ν) =
∫ ∞

0

4p(1− p)√
2πκ(u)σ2

exp

{
−2ρ2p

(
y − µ

κ1/2(u)σ

)}
dH(u|ν)

corresponding to the pdf of the (4), concluding the proof.

Proof of Lemma 3

From the definition of check function ρp(·), the distance D = ρ(Y−µ
σ ) can be written asD = I2(

Y−µ
σ )

where I2 is a discrete random variable such that P (I2 = p − 1) = p and P (I2 = p) = 1 − p. Let
I2 be independent of Y . Note that (Y − µ)/σ represents a standardized SKD random variable.

Therefore, from Lemma 2, it follows that D
d
= I2κ(u)1/2I|T0|. Finally, from the fact that T = I2×I

is a degenerate random variable such that P (T = 1/2) = 1, we conclude the proof.
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Sample output from R package lqr()

--------------------------------------------------------------
Quantile Linear Regression using SKD family

--------------------------------------------------------------

Criterion = AIC
Best fit = Slash
Quantile = 0.5

--------------------------------
Model Likelihood-Based criterion
--------------------------------

Normal Student-t Laplace Slash C. Normal
AIC 1095.5632 810.9939 821.7857 810.8339 814.1112
BIC 1108.7963 824.2269 835.0188 824.0670 827.3443
HQ 1100.9173 816.3480 827.1398 816.1880 819.4654
loglik -543.7816 -401.4969 -406.8929 -401.4169 -403.0556

---------
Estimates
---------

Estimate Std. Error z value Pr(>|z|)
beta 1 7.21136 2.08532 3.45815 0.00054 ***
beta 2 0.22220 0.02619 8.48464 0.00000 ***
beta 3 2.48574 0.76500 3.24932 0.00116 **
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

sigma = 1.30806
nu = 2.0699
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Lax-Wendroff discontinuous Galerkin methods for hyperbolic conservation laws

2017-02 David Mora, Gonzalo Rivera, Iván Velásquez: A virtual element method for
the vibration problem of Kirchhoff plates

2017-03 Carlos Garcia, Gabriel N. Gatica, Antonio Marquez, Salim Meddahi:
A fully discrete scheme for the pressure-stress formulation of the time-domain fluid-
structure interaction problem

2017-04 Luis F. Gatica, Filander A. Sequeira: A priori and a posteriori error analyses
of an HDG method for the Brinkman problem
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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