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Abstra
t

We propose and analyze a dis
retization s
heme that 
ombines the dis
ontinuous Petrov-

Galerkin and �nite element methods. The underlying model problem is of general di�usion-

adve
tion-rea
tion type on bounded domains, with de
omposition into two sub-domains. We

propose a heterogeneous variational formulation that is of the ultra-weak (Petrov-Galerkin)

form with broken test spa
e in one part, and of Bubnov-Galerkin form in the other. A

standard dis
retization with 
onforming approximation spa
es and appropriate test spa
es

(optimal test fun
tions for the ultra-weak part and standard test fun
tions for the Bubnov-

Galerkin part) gives rise to a 
oupled DPG-FEM s
heme. We prove its well-posedness and

quasi-optimal 
onvergen
e. Numeri
al results 
on�rm expe
ted 
onvergen
e orders.
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1 Introdu
tion

The dis
ontinuous Petrov-Galerkin method with optimal test fun
tions (DPG method) is an

approximation s
heme that makes the use of optimal test fun
tions, 
f. [1, 5, 7℄, feasible by


onsidering broken test norms [8℄. Optimal test fun
tions are those whi
h maximize dis
rete

inf-sup numbers, and the broken form of test spa
es and norms allows for their lo
al 
al
ula-

tion or approximation. In this form, the DPG method has been developed by Demkowi
z and

Gopalakrishnan, see the just 
ited referen
es [7, 8℄.

The DPG method has been designed having in mind problems where standard methods

su�er from lo
king phenomena (of small inf-sup numbers) or, otherwise, require spe
i�
 stabi-

lization te
hniques. This is parti
ularly the 
ase with singularly perturbed problems where DPG
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s
hemes have made some 
ontributions [9, 6, 2, 3, 14℄. Nevertheless, in the 
urrent form most

of the s
hemes are not 
heap to implement. On the one hand, 
orresponding formulations have

several unknowns as is the 
ase with mixed �nite elements. On the other hand, the e�
ient

approximation of optimal test fun
tions for singularly perturbed problems is ongoing resear
h.

For these reasons, advan
ed DPG te
hniques are best used for spe
i�
 problems whereas �nite

elements are hard to beat when solving uniformly well-posed problems. Though, it has to be

said, that in the latter 
ases DPG s
hemes 
an also be e�
ient and are 
ompetitive in general,


f. the software pa
kage developed by Roberts [15℄.

In this paper we develop a dis
retization method that 
ombines DPG te
hniques with stan-

dard �nite elements. In this way, one 
an restri
t the use of more expensive DPG approximations

to regions where they are bene�
ial. Examples are, e.g., rea
tion-adve
tion-di�usion problems

with small di�usivity in a redu
ed area, or transmission problems that 
ouple a singularly per-

turbed problem with an unperturbed problem. In a previous publi
ation [12℄ we have proposed

su
h a 
ombination with boundary elements to solve transmission problems of the Lapla
ian in

the full spa
e, and studied a singularly perturbed 
ase of rea
tion di�usion in [11℄. In this paper

we follow the general framework from [12℄. There, the basis is set by a heterogeneous variational

formulation 
onsisting of an ultra-weak one in a bounded domain and variational boundary in-

tegral equations for the exterior unbounded part. Here, we 
ombine an ultra-weak formulation

with a standard variational form. We remark that this approa
h of 
ombining di�erent varia-

tional formulations has been systemati
ally analyzed in [10℄. Indeed, it is not essential to use an

ultra-weak formulation for the DPG s
heme, any well-posed formulation would work. Though,

the overall strategy in [10℄ is to employ DPG te
hniques throughout whereas we 
ombine di�erent

dis
retization te
hniques.

Having set our heterogeneous formulation, we pro
eed to rewrite it by using the so-
alled

trial-to-test operator (whi
h maps the test spa
e to the ansatz spa
e). This is only done for the

ultra-weak formulation. The whole system then transforms into one where spa
es on the ansatz

and test sides are identi
al. In this way, our heterogeneous variational formulation �ts the

Lax-Milgram framework just as in [12℄. We prove 
oer
ivity under the 
ondition that the trial-

to-test operator is weighted by a su�
iently large 
onstant. Then, quasi-optimal 
onvergen
e of

a dis
retized version follows by standard arguments. When proving 
oer
ivity we follow steps

that are similar to the ones when studying the 
oupling of DPG with boundary elements. But

whereas [12℄ analyzes only the Lapla
ian, here we set up the s
heme and prove 
oer
ivity for a

general se
ond-order equation of rea
tion-adve
tion-di�usion type. Throughout we assume that

our problem is uniformly well posed, i.e., we do not study variations for singularly perturbed


ases as in [11℄. Also note that, sin
e 
oe�
ients are variable, transmission problems 
an be

treated the same way by sele
ting the sub-domains a

ordingly. One only has to move the

possibly non-homogeneous jump data to the right-hand side fun
tional.

The remainder of this paper is as follows. In Se
tion 2 we start by formulating the model

problem. A heterogeneous variational formulation is given in �2.1. There, we also state its

well-posedness and 
oer
ivity (Theorem 1) and brie�y mention a simpli�ed 
ase where 
ontinu-

ity a
ross the sub-domain interfa
e is in
orporated strongly (Corollary 2). The 
orresponding

dis
rete DPG-FEM s
heme is presented in �2.2. Its quasi-optimal 
onvergen
e is announ
ed in
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Theorem 3. Most te
hni
al details and proofs are given in Se
tion 3. In the last se
tion we report

on some numeri
al experiments.

Furthermore, throughout the paper, suprema are taken over sets ex
luding the null element,

and the notation A . B is used to say that A ≤ C · B with a 
onstant C > 0 whi
h does not

depend on any quantity of interest. Correspondingly, the notation A & B is used.

2 Mathemati
al setting and main results

Let Ω ⊂ R
d
, d ∈ {2, 3}, be a bounded, simply 
onne
ted polygonal/polyhedral Lips
hitz domain

with boundary ∂Ω, and normal ve
tor nΩ on ∂Ω pointing outside of Ω. We 
onsider the following

ellipti
 problem of di�usion-adve
tion-rea
tion type. Given f ∈ L2(Ω) �nd u ∈ H1
0 (Ω) su
h that

Au := div
(
−α∇u+ βu

)
+ γu = f in Ω. (1)

Here, L2(Ω) and H1
0 (Ω) denote standard Sobolev spa
es, the latter with zero tra
e on ∂Ω.

Furthermore, all 
oe�
ients are supposed to be su�
iently regular, with α(x) ∈ R
d×d

, β(x) ∈ R
d
,

γ(x) ∈ R for x ∈ Ω̄. We assume that all 
oe�
ients are uniformly bounded. Furthermore, we

assume that the symmetri
 part of α is positive de�nite and uniformly bounded from below,

with minimum eigenvalue larger than or equal to α0 > 0, and that

1
2divβ + γ ≥ 0 in Ω. These


onditions imply that the operator A is bounded and 
oer
ive on H1
0 (Ω).

2.1 Heterogeneous variational formulation

In order to solve (1) by a 
ombination of DPG method and �nite elements, we formulate the

problem in a heterogeneous way, using di�erent variational forms in di�erent parts of the domain.

For ease of illustration, we restri
t ourselves to two Lips
hitz sub-domains Ω1, Ω2 (again of

polygonal/polyhedral form, ea
h with one 
onne
ted 
omponent) with boundaries ∂Ω1, ∂Ω2,

as spe
i�ed in Figure 2.1. There, also a notation for the boundary pie
es is introdu
ed. In

parti
ular, Γ denotes the interfa
e between the sub-domains. The pi
ture indi
ates that both

sub-domains tou
h the boundary of Ω (where the homogeneous Diri
hlet 
ondition is imposed),

but this is not essential. For instan
e, one sub-domain, Ω2, 
an be of annular type so that, in

that 
ase, ∂Ω ⊂ ∂Ω2 and Γ = ∂Ω1. Other 
ombinations 
an be analyzed without di�
ulty, also

in
luding Neumann 
onditions. Nevertheless, sin
e our analysis 
enters around proving 
oer
ivity

of bilinear forms, we need positivity of the 
ombined adve
tion-rea
tion term on a sub-domain

that does not tou
h the Diri
hlet boundary.

Assumption 1. For i = 1, 2 there holds:

If meas(Γi) = 0 then there exists β > 0 su
h that

1
2divβ + γ ≥ β a.e. in Ωi.

Standard and broken Sobolev spa
es. Essential for the DPG method is to use broken

test spa
es. Therefore, at this early stage we 
onsider a partitioning T1 of Ω1 into (regular non-

interse
ting) �nite elements T su
h that Ω̄1 = ∪{T̄ ; T ∈ T1}, and with skeleton S := {∂T ; T ∈
T1}.
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Ω1

(DPG)

Ω2

(FEM)

Γ

Γ1

Γ2

Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅,

Ω̄1 ∩ Ω̄2 = Γ,

Ω̄1 ∩ ∂Ω = Γ̄1, Ω̄2 ∩ ∂Ω = Γ̄2.

Figure 1: De
omposition of the domain Ω into sub-domains.

Before des
ribing the variational formulation we introdu
e the Sobolev spa
es we need. For

a domain ω ⊂ Ω we use the standard spa
es L2(ω), H
1(ω), H1

0 (ω), and H(div, ω). The tra
e

operator a
ting on H1(ω) will be denoted simply by (·)|∂ω. Then we de�ne the tra
e spa
e

H1/2(∂ω) := H1(ω)|∂ω and its dual spa
e H−1/2(∂ω) :=
(
H1/2(∂ω)

)′
with 
anoni
al norms.

The duality pairing on ∂ω is 〈· , ·〉∂ω and extends the L2(∂ω) bilinear form. Correspondingly,

(· , ·)ω is the L2(ω) bilinear form.

We also need H1
D(Ωi) 
onsisting of H

1
-fun
tions with vanishing tra
e on Γi (i = 1, 2). Ve
tor-

valued spa
es and fun
tions will be denoted by bold symbols. Conne
ted with T1 we use the

produ
t spa
es H1(T1) and H(div,T1) with 
orresponding produ
t norms.

Now, related with T1 are the skeleton tra
e spa
es

H1/2(S) :=
{
û ∈ ΠT∈T1H

1/2(∂T ); ∃w ∈ H1(Ω) su
h that û|∂T = w|∂T ∀T ∈ T1
}
,

H−1/2(S) :=
{
σ̂ ∈ ΠT∈T1H

−1/2(∂T ); ∃q ∈ H(div,Ω) su
h that σ̂|∂T = (q · nT )|∂T ∀T ∈ T1
}

and

H
1/2
00 (S) :=

{
û ∈ H1/2(S); û|∂Ω1

= 0
}
,

H
1/2
D (S) :=

{
û ∈ H1/2(S); û|Γ1

= 0
}
.

Here, nT is the exterior unit normal ve
tor on ∂T , and (q · nT )|∂T indi
ates the standard way

of de�ning normal tra
es of H(div, T )-fun
tions. The notation û|∂Ω1
= 0 (resp. û|Γ1

= 0) is
to be understood in the sense that û is a T1-pie
ewise tra
e of an element of H1

0 (Ω1) (resp. of

H1
D(Ω1)). These tra
e spa
es are equipped with the norms

‖û‖H1/2(S) := inf
{
‖w‖H1(Ω); w ∈ H1(Ω) su
h that û|∂T = w|∂T ∀T ∈ T1

}
, (2a)

‖σ̂‖H−1/2(S) := inf
{
‖q‖H(div,Ω); q ∈ H(div,Ω) su
h that σ̂|∂T = (q · nT )|∂T ∀T ∈ T1

}
, (2b)

and analogously for H
1/2
00 (S) and H

1/2
D (S). For fun
tions û ∈ H1/2(S), σ̂ ∈ H−1/2(S) (they are
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elements of produ
t spa
es) and τ ∈ H(div,T1), v ∈ H1(T1) we use the duality pairings

〈û , τ · n〉S :=
∑

T∈T1

〈û|∂T , τ · nT 〉∂T , 〈σ̂ , v〉S :=
∑

T∈T1

〈σ̂|∂T , v〉∂T .

Heterogeneous formulation in Ω1 ∪Ω2. In Ω1, where the DPG method will be used, we


onsider an ultra-weak variational formulation. As mentioned before, this is just for illustration

as any other formulation of primal, mixed, dual-mixed or strong type 
an be used and analyzed

analogously to our 
ase, 
f. [10, Se
tion 2.3℄.

The ultra-weak formulation requires additional independent unknowns

σ := α∇u− βu on Ω1, û := ΠT∈T1u|∂T , σ̂ := ΠT∈T1(σ · nT )|∂T . (3)

Then we test the de�ning relation of σ with α−T
and τ ∈ H(div,T1), and equation (1) with

v ∈ H1(T1). Integrating by parts element-wise, and substituting the 
orresponding terms by σ,

û, and σ̂, we obtain

(u ,divT τ + βα−Tτ + γv)Ω1
+ (σ ,∇T v + α−Tτ )Ω1

− 〈û , τ · n〉S − 〈σ̂ , v〉S = (f , v)Ω1
. (4)

Here, divT and ∇T denote the T1-pie
ewise divergen
e and gradient operators, respe
tively.

In Ω2 we use the standard primal formulation

(α∇u− βu ,∇w)Ω2
+ (γu ,w)Ω2

− 〈nΩ2
· (α∇u− βu) , w〉∂Ω2

= (f ,w)Ω2
(5)

for w ∈ H1
D(Ω2).

Solving (1) in Ω is equivalent to solving (in appropriate spa
es) (4) and (5) with homogeneous

Diri
hlet 
ondition on ∂Ω and transmission 
onditions on Γ. These transmission 
onditions will

be imposed in variational form. For the time being, we repla
e nΩ2
· (α∇u− βu)|Γ by −σ̂|Γ in

(5). Here, we slightly abuse the notation of σ̂ noting that 〈σ̂ , v〉S = 〈σ̂ , v〉Γ for v ∈ H1(Ω1) with
v|Γ1

= 0, 
f., e.g., [11, Se
tion 2.2℄.

We formally distinguish between u1 := u|Ω1
and u2 := u|Ω2

. Then, our preliminary hetero-

geneous variational formulation 
onsists in �nding

(u, u2) = (u1,σ, û, σ̂, u2) ∈ U := U1 ×H1
D(Ω2)

with U1 := L2(Ω1)× L2(Ω1)×H
1/2
D (S)×H−1/2(S)

su
h that û|Γ = u2|Γ and

(u1 ,divT τ + βα−Tτ + γv)Ω1
+ (σ ,∇T v + α−Tτ )Ω1

− 〈û , τ · n〉S − 〈σ̂ , v〉S = (f , v)Ω1
,

(α∇u2 − βu2 ,∇w)Ω2
+ (γu2 , w)Ω2

+ 〈σ̂ , w〉Γ = (f ,w)Ω2

for any (v, w) ∈ V ×H1
D(Ω2)

with

v = (v, τ ) and V := H1(T1)×H(div,T1).
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This formulation 
an be used to de�ne the 
ombined DPG-FEM dis
retization, but requires

that T1 be 
ompatible a
ross Γ with the �nite element mesh in Ω2. We therefore repla
e the


ontinuity 
onstraint û|Γ = u2|Γ by a variational 
oupling on Γ that is similar to a DG-bilinear

form involving jumps and �uxes a
ross element boundaries. To this end we abbreviate

b(u,v) := (u1 ,divT τ + βα−Tτ + γv)Ω1
+ (σ ,∇T v + α−Tτ )Ω1

− 〈û , τ · n〉S − 〈σ̂ , v〉S ,

c2(u2, w2) := (α∇u2 − βu2 ,∇w2)Ω2
+ (γu2 , w2)Ω2

, (6)

L1(v) := (f , v)Ω1
, L2(w2) := (f ,w2)Ω2

,

and de�ne the 
oupling bilinear form

d(u, u2;w, w2) := 〈σ̂ , w2〉Γ + 〈χ̂ , û− u2〉Γ +
1

2
〈β · nΩ1

(û− u2) , ŵ + w2〉Γ (7)

for (u, u2), (w, w2) ∈ U with u = (u1,σ, û, σ̂), w = (w1,χ, ŵ, χ̂).

The �nal 
ombined ultra-weak primal formulation of (1) then reads

(u, u2) = (u1,σ, û, σ̂, u2) ∈ U :

b(u,v) = L1(v) ∀v ∈ V, (8a)

c2(u2, w2) + d(u, u2;w, w2) = L2(w2) ∀(w, w2) ∈ U. (8b)

We will also need the bilinear form for Ω1 that 
orresponds to c2(·, ·):

c1(u1, w1) := (α∇u1 − βu1 ,∇w1)Ω1
+ (γu1 , w1)Ω1

(
u1, w1 ∈ H1(Ω1)

)
. (9)

For referen
e, we expli
itly spe
ify the strong form of (8a):

u := (u1,σ, û, σ̂) ∈ U1 : Bu = L1. (10)

Following [10℄ one 
an show that (8) is equivalent to (1) so that, in parti
ular, (8) has a unique

solution. However, sin
e we will use di�erent strategies for solving (8a) and (8b), we need a

slightly di�erent representation.

To this end we de�ne the trial-to-test operator Θ : U1 → V by

〈Θu ,v〉V = b(u,v) ∀v ∈ V.

Here, 〈· , ·〉V denotes the 
anoni
al inner produ
t in V . Note that Θ = R−1B with Riesz operator

R : V → V ′
. Sin
e B is de�ned on U1 without boundary 
ondition along Γ it has a non-trivial

kernel, and so does Θ. Still, Θ : U1 → V is surje
tive. Therefore, denoting by Θκ := κΘ the

s
aled trial-to-test operator (for κ > 0 to be 
hosen), an equivalent formulation is: For given

κ > 0 �nd (u, u2) ∈ U su
h that

a(u, u2;w, w2) = L(w, w2) ∀(w, w2) ∈ U (11)

with a(u, u2;w, w2) := b(u,Θκw) + c2(u2, w2) + d(u, u2;w, w2)

and L(w, w2) := L1(Θκw) + L2(w2).

One of our main results is the following theorem.
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Theorem 1. The variational formulation (11) is well posed, and is equivalent to problem (1)

in the following sense. If u ∈ H1
0 (Ω) solves (1) then (u, u2) = (u1,σ, û, σ̂, u2), with ui := u|Ωi

(i = 1, 2) and σ, û, σ̂ de�ned by (3), satis�es (u, u2) ∈ U and solves (11).

Vi
e versa, if (u, u2) = (u1,σ, û, σ̂, u2) ∈ U solves (11) then u de�ned by u|Ωi := ui (i = 1, 2)
satis�es u ∈ H1

0 (Ω) and solves (1).

Furthermore, for su�
iently large κ > 0, the bilinear form a(·, ·) is U -
oer
ive, i.e.,

a(u, u2;u, u2) & ‖(u, u2)‖
2
U ∀(u, u2) ∈ U. (12)

Proof. By the assumptions on Ω, f , α, β, and γ, problem (1) is uniquely solvable. Furthermore,

by the derivation of (11), if u ∈ H1
0 (Ω) solves (1) then (u, u2) as spe
i�ed in the statement solves

(11). This 
an be seen by integrating by parts and noting that d(u, u2;w, w2) = 〈σ̂ , w2〉Γ sin
e

û|Γ = u2|Γ, 
f. (7).
The 
oer
ivity of a(·, ·) will be shown in Se
tion 3.1 under the assumption that κ > 0 is large

enough. It is also straightforward to show that this bilinear form is bounded on U × U , as is
the linear fun
tional L on U . In that 
ase the Lax-Milgram lemma proves the well-posedness of

(11).

Now, sin
e κ introdu
es only a s
aling of the test fun
tions Θκw ∈ V , the variational formu-

lation (11) is a
tually independent of κ 6= 0, and so is its well-posedness.

As previously mentioned, the 
ontinuity 
onstraint û|Γ = u2|Γ 
an also be imposed strongly.

In this 
ase the solution spa
e is

U0 := {(u1,σ, û, σ̂;u2) ∈ U ; û|Γ = u2|Γ}

and the 
oupling bilinear form redu
es to

d0(u, w2) := d(u, u2;w, w2) = 〈σ̂ , w2〉Γ ∀(u, u2) = (u1,σ, û, σ̂, u2), (w, w2) ∈ U0.

The variational formulation be
omes: For given κ > 0 �nd (u, u2) ∈ U0
su
h that

a0(u, u2;w, w2) = L(w, w2) ∀(w, w2) ∈ U0
(13)

with a0(u, u2;w, w2) := b(u,Θκw) + c2(u2, w2) + d0(u;w2) (14)

and L(w, w2) := L1(Θκw) + L2(w2).

Analogously as Theorem 1 one obtains the well-posedness of (13) and 
oer
ivity of a0(·, ·).

Corollary 2. The variational formulation (13) is well posed, and is equivalent to problem (1)

in the following sense. If u ∈ H1
0 (Ω) solves (1) then (u, u2) = (u1,σ, û, σ̂, u2), with ui := u|Ωi

(i = 1, 2) and σ, û, σ̂ de�ned by (3), satis�es (u, u2) ∈ U0
and solves (13).

Vi
e versa, if (u, u2) = (u1,σ, û, σ̂, u2) ∈ U0
solves (13) then u de�ned by u|Ωi := ui (i = 1, 2)

satis�es u ∈ H1
0 (Ω) and solves (1).

Furthermore, for su�
iently large κ > 0, the bilinear form a0(·, ·) is U0
-
oer
ive, i.e.,

a(u, u2;u, u2) & ‖(u, u2)‖
2
U ∀(u, u2) ∈ U0.
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2.2 Combined DPG-FEM dis
retization

The 
oupled DPG-FEM method 
onsists in solving (11) within �nite-dimensional subspa
es

Uhp ⊂ U . The indi
es h and p indi
ate that this 
an be pie
ewise polynomial, 
onforming spa
es

of 
ertain polynomial degrees. Spe
i�
ally, the 
omponents of Uhp that belong to the unknowns

u1,σ, û, σ̂ will be pie
ewise polynomial with respe
t to the mesh T1 and its skeleton S. On the

other hand, the 
omponent of Uhp that approximates u2 is pie
ewise polynomial with respe
t to

a mesh T2 in Ω2. In the 
urrent form we do not need 
ompatibility of the meshes T1, T2 along

Γ. The dis
rete s
heme then reads: For given κ > 0 �nd (uhp, u2,hp) ∈ Uhp su
h that

a(uhp, u2,hp;w, w2) = L(w, w2) ∀(w, w2) ∈ Uhp. (15)

Note that this formulation in
ludes the use of optimal test fun
tions for the dis
retization in

Ω1, 
f. (8a) and the 
orresponding terms in (11) with trial-to-test operator Θκ. On the other

hand, the part of the problem that belongs to Ω2 is solved by standard �nite elements, 
f. the


orresponding relation (8b).

Our se
ond main result is the following theorem.

Theorem 3. If κ > 0 is su�
iently large then the s
heme (15) is uniquely solvable and 
onverges

quasi-optimally, i.e.,

‖u− uhp‖U1
+ ‖u2 − u2,hp‖H1(Ω2) . inf{‖u−w‖U1

+ ‖u2 − w2‖H1(Ω2); (w, w2) ∈ Uhp}.

Proof. The statement is a dire
t impli
ation of the U -
oer
ivity of a(·, ·) for large κ by Theorem 1,

the Lax-Milgram lemma and Cea's estimate.

Remark 4. We note that also the dis
rete s
heme 
an be 
hanged to impose strongly the 
ontinu-

ity of the approximations of û and u2 a
ross Γ. This only requires 
ompatibility of the meshes T1
and T2 along the interfa
e, 
onforming subspa
es Uhp ⊂ U0

, and repla
ing the bilinear form a(·; ·)
in (15) by the bilinear form a0(·; ·), 
f. (14). The quasi-optimal error estimate from Theorem 3

then holds analogously.

3 Te
hni
al details and proof of 
oer
ivity

We start with re
alling the H1
0 (Ω)-
oer
ivity of the full di�erential operator A. This transforms

into the following properties of the bilinear forms c2, c1, 
f. (6), (9).

Lemma 5. The bilinear forms c1(·, ·) and c2(·, ·) satisfy

ci(ui, ui) +
1

2
〈β · nΩiui , ui〉Γ & ‖ui‖

2
H1(Ωi)

for all ui ∈ H1
D(Ωi) (i = 1, 2).
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Proof. Noting that

(βu ,∇u)Ωi = −
1

2
((divβ)u , u)Ωi +

1

2
〈β · nΩiu , u〉∂Ωi

(
u ∈ H1(Ωi), i = 1, 2

)
,

there holds for ui ∈ H1
D(Ωi) (i = 1, 2)

ci(ui, ui) = (α∇ui − βui ,∇ui)Ωi + (γui , ui)Ωi

= (α∇ui ,∇ui)Ωi + ((
1

2
divβ + γ)ui , ui)Ωi −

1

2
〈β · nΩiui , ui〉Γ.

The 
oer
ivity property then follows with the positivity of the symmetri
 part of α and by

using either the Poin
aré-Friedri
hs inequality and

1
2divβ + γ ≥ 0 in Ωi (if meas(Γi) 6= 0) or

Assumption 1, i.e.,

1
2divβ + γ ≥ βi > 0 in Ωi (i = 1, 2).

We 
ontinue with some properties of the operator B, 
f. (10), when restri
ted to the spa
e

in
orporating homogeneous Diri
hlet boundary 
onditions on the whole of ∂Ω1, that is,

B : U1,0 := L2(Ω1)× L2(Ω1)×H
1/2
00 (S)×H−1/2(S) → V ′. (16)

Lemma 6. The operator B : U1,0 → V ′
is an isomorphism with ‖B‖L(U1,0,V ′) and ‖B

−1‖L(V ′,U1,0)

bounded independently of the mesh T1.

Proof. This is a parti
ular 
ase of the di�erent variational formulations studied in [4, Example

3.7℄. More generally, in [4℄, Carstensen, Demkowi
z and Gopalakrishnan proved that �breaking�

a 
ontinuous variational formulation of a well-posed problem (by introdu
ing broken test spa
es)

and using 
anoni
al tra
e norms, this does not alter the well-posedness of the formulation.

Let us introdu
e the tra
e spa
e H
1/2
00 (Γ) := H1

0 (Ω)|Γ with 
anoni
al norm. To simplify the

presentation of some te
hni
al details we will need the following tra
e operator,

trΓ : U1 → H
1/2
00 (Γ), trΓ(u,σ, û, σ̂) := û|Γ.

The boundedness of this operator is immediate, and is analogous to the 
ase of the Lapla
ian on

a single domain 
onsidered in [12, Lemma 4℄.

Lemma 7. The operator trΓ is bounded with bound independent of T1.

In the following we identify the kernel of B when a
ting on the full spa
e U1. Let us re
all

that A is the operator of our problem (1). For given ϕ ∈ H
1/2
00 (Γ) we de�ne its A-harmoni


extension E(ϕ) := (u1,σ, û, σ̂) ∈ U1 by

u1 ∈ H1
D(Ω1) : Au1 = 0 in Ω1, u1 = ϕ on Γ, (17a)

σ = α∇u1 − βu1, û = u1 on S, σ̂ = σ · nT on ∂T ∀T ∈ T1. (17b)
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Lemma 8. The operator E : H
1/2
00 (Γ) → U1 is bounded with bound independent of T1. Moreover,

E is a right-inverse of trΓ, and the image of E is the kernel of B, kerB = E H
1/2
00 (Γ).

Proof. These statements 
an be proved analogously to the 
ase of the Lapla
ian, 
f. [12, Lemmas

11 and 12℄.

Of 
ourse, we also need 
ontinuity of the bilinear forms b(·, ·), c2(·, ·) and d(·, ·). This is

straightforward to show and has already been used in the initial part of the proof of Theorem 1.

We only give the statement.

Lemma 9. The bilinear forms b : U1×V → R, c2 : H1(Ω2)×H1(Ω2) → R, and d : U×U → R

are all uniformly (in T1) bounded.

3.1 Proof of 
oer
ivity, statement (12) in Theorem 1

We are now ready to prove the U -
oer
ivity of the bilinear form a(·, ·), 
f. (11). We adapt the

pro
edure from [12℄ to our situation.

Let (u, u2) = (u1,σ, û, σ̂, u2) ∈ U be given. We start with the simple estimate

‖(u, u2)‖U ≤ ‖u‖U1
+ ‖u2‖H1(Ω2) ≤ ‖u− E trΓ(u)‖U1

+ ‖ E trΓ(u)‖U1
+ ‖u2‖H1(Ω2). (18)

By Lemma 8, the û-
omponent of u− E trΓ(u) has zero tra
e on ∂Ω1, i.e., u− E trΓ(u) ∈ U1,0,

f. (16). Combining Lemmas 6 and 8 this gives

‖u− E trΓ(u)‖U1
≤ ‖u− E trΓ(u)‖U1,0 . ‖Bu‖V ′ = b(u,Θu)1/2. (19)

The last identity is due to the well-known relations of the trial-to-test operator Θ,

‖Bu‖V ′ = sup
v∈V

b(u,v)

‖v‖V
=

b(u,Θu)

‖Θu‖V
, ‖Θu‖V = ‖R−1Bu‖V = ‖Bu‖V ′ .

A

ording to Lemma 8, operator E is bounded,

‖ E trΓ(u)‖U1
. ‖û‖

H
1/2
00

(Γ)
. (20)

A 
ombination of (18), (19), and (20) then gives

‖(u, u2)‖
2
U . b(u,Θu) + ‖û‖2

H
1/2
00

(Γ)
+ ‖u2‖

2
H1(Ω2)

. (21)

We 
ontinue by 
onsidering ue := (ue1,σ
e, ûe, σ̂e) := E trΓ(u) = E û|Γ. In parti
ular, there holds

‖û‖
H

1/2
00

(Γ)
. ‖ue1‖H1(Ω1). Noting that, 
f. (7),

d(ue, u2;u
e, u2) = 〈σ̂e , u2〉Γ + 〈σ̂e , û− u2〉Γ +

1

2
〈β · nΩ1

(û− u2) , û+ u2〉Γ

= 〈σ̂e , û〉Γ +
1

2
〈β · nΩ1

û , û〉Γ −
1

2
〈β · nΩ1

u2 , u2〉Γ, (22)

10



an appli
ation of Lemma 5 gives

‖û‖2
H

1/2
00

(Γ)
+ ‖u2‖

2
H1(Ω2)

. c1(u
e
1, u

e
1) + c2(u2, u2) +

1

2
〈β · nΩ1

ue1 , u
e
1〉Γ +

1

2
〈β · nΩ2

u2 , u2〉Γ

= c1(u
e
1, u

e
1) + c2(u2, u2) + d(ue, u2;u

e, u2)− 〈σ̂e , û〉Γ.

Relation (22) 
an also be written like

d(ue, u2;u
e, u2) = d(u, u2;u, u2) + 〈σ̂e − σ̂ , û〉Γ,

so that the previous bound be
omes

‖û‖2
H

1/2
00

(Γ)
+ ‖u2‖

2
H1(Ω2)

. c1(u
e
1, u

e
1) + c2(u2, u2) + d(u, u2;u, u2)− 〈σ̂ , û〉Γ.

Now, re
alling the de�nitions of c1(·, ·) (see (9)) and the extension operator E (see (17)), inte-

gration by parts yields the expe
ted relation c1(u
e
1, u

e
1) = 〈σ̂e , û〉Γ. Therefore, 
ontinuing the

estimate,

‖û‖2
H

1/2
00

(Γ)
+ ‖u2‖

2
H1(Ω2)

. c2(u2, u2) + d(u, u2;u, u2) + 〈σ̂e − σ̂ , û〉Γ. (23)

The last term in (23) 
an be bounded by duality, the 
ontinuity of H−1/2(S) ∋ (σ̂e − σ̂) 7→
(σ̂e − σ̂)|Γ ∈ H−1/2(Γ), and relation (19). This gives

〈σ̂e − σ̂ , û〉Γ . ‖u− E trΓ(u)‖U1
‖û‖

H
1/2
00

(Γ)
. b(u,Θu)1/2‖(u, u2)‖U .

Combining this bound with (21) and (23), and applying Young's inequality, we �nd that

‖(u, u2)‖
2
U . κb(u,Θu) + c2(u2, u2) + d(u, u2;u, u2)

= b(u,Θκu) + c2(u2, u2) + d(u, u2;u, u2)

for a su�
iently large 
onstant κ > 0. This proves the stated 
oer
ivity of a(·, ·).

4 Numeri
al experiments

In this se
tion we report on two numeri
al experiments. In both of them we 
hoose d = 2 and,

starting from a manufa
tured solution, we 
ompute the right-hand side fun
tion f . The solution
of the se
ond experiment does not satisfy the homogeneous Diri
hlet boundary 
ondition. In

this 
ase, we use a standard approa
h and extend the inhomogeneous Diri
hlet datum into the

domain and then shift the resulting terms to the right-hand side. As dis
rete trial spa
e we use

Uhp := P 0(T1)×
[
P 0(T1)

]2
× S1

D(S)× P 0(S)× S1
D(T2),

where T1 and S are a mesh and its skeleton in Ω1 and T2 is a mesh in Ω2. Throughout, we

use meshes T1 and T2 whi
h are 
ompatible on the interfa
e Γ (although this is not ne
essary in

11



our analysis). In the de�nition of Uhp, P
k(T1) denotes the spa
e of T1-pie
ewise polynomials of

degree k, P 0(S) denotes the spa
e of pie
ewise 
onstant fun
tions on S, and S1
D(S) ⊂ H

1/2
D (S)

denotes the spa
e of pie
ewise a�ne and 
ontinuous fun
tions on S whi
h vanish on Γ1. The

spa
e S1
D(T2) ⊂ H1

D(Ω2) is the spa
e of pie
ewise a�ne, globally 
ontinuous fun
tions on T2
whi
h vanish on Γ2. The trial-to-test operator Θκ = κR−1B with R : V → V ′

being the

Riesz operator is approximated using the dis
rete Riesz operator Rhp : Vhp → V ′
hp with a �nite

dimensional spa
e Vhp ⊂ V , whi
h we 
hoose to be

Vhp := P 2(T1)×
[
P 2(T1)

]2
.

The resulting method is 
alled pra
ti
al DPG method, and was analyzed in [13℄. In the latter work,

it was shown that the additional dis
retization error of using Vhp instead of V does not degrade the


onvergen
e order. Throughout, we use κ = 1 and do not en
ounter di�
ulties with this 
hoi
e.

Note that if (u1,σ, û, σ̂, u2) denotes the exa
t solution of (11) and (u1,hp,σhp, ûhp, σ̂hp, u2,hp) ∈
Uhp denotes the dis
rete solution (15), then by de�nition of the norm H1/2(S) it holds

‖û− ûhp‖H1/2(S) ≤ ‖u− IT1 ûhp‖H1(Ω1) =: err(û),

where IT1 ûhp ∈ S1
D(T1) is the nodal interpolant of ûhp with (IT1 ûhp)|S = ûhp. Likewise,

‖σ̂ − σ̂hp‖H−1/2(S) ≤ ‖σ − IT1σ̂hp‖H(div,Ω1) =: err(σ̂),

where IT1σ̂hp ∈ RT0(T1) is the lowest-order Raviart-Thomas interpolant of σ̂hp, i.e., (nT ·
IT1σ̂hp)|∂T = σ̂hp|∂T for any T ∈ T1. Furthermore, we plot the errors

err(u1) := ‖u1 − u1,hp‖L2(Ω1),

err(σ) := ‖σ − σhp‖L2(Ω1),

err(u2) := ‖u2 − u2,hp‖H1(Ω2),

as well as the so-
alled energy error of the DPG part

err(u) := sup
v∈V

b(u− uhp,v)

‖v‖V
= ‖Θκ(u− uhp)‖V ,


f. (19). In both experiments, we use a sequen
e of meshes resulting from uniform mesh re�ne-

ments. The quasi-optimality result of Theorem 3 and well-known approximation results then

show that

‖u− uhp‖U1
+ ‖u2 − u2,hp‖H1(Ω2) = O(h) = O(N−1/2).

Here, N denotes the overall number of degrees of freedom of Uhp. Hen
e, err(·) = O(N−1/2) for
all of the errors de�ned above.
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4.1 Experiment 1

We 
hoose Ω1 := (0, 1) × (0, 1), Ω2 := (1, 2) × (0, 1) and use the exa
t solution

u(x, y) := x(2− x)y(1− y).

The remaining parameters in the equation (1) are 
hosen as α = id, β = (xy, 1)⊤, and γ =
1− sin(πx). In Figure 2 we plot the errors versus the degrees of freedom on a double logarithmi


s
ale. As expe
ted, all the errors behave like O(N−1/2), whi
h is plotted in bla
k without

markers. In Figure 3, we plot the error û − u2 on the 
oupling boundary Γ for the 
ase with

mesh width 1/32.
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Figure 2: Error plots for Experiment 1. The bla
k line without markers denotes O(N−1/2), and
N is the total number of degrees of freedom.

4.2 Experiment 2

We 
hoose Ω1 := (0.2, 0.7)× (0.2, 1.2) and Ω2 := (0.7, 1.2)× (0.2, 1.2) and use the exa
t solution

u(x, y) := arctan

(
1− |(x, y)|

ε

)
.

The remaining parameters in the equation 1 are 
hosen as α = ε · id, β = exp(x) (sin y, cos y),
γ = 0, and ε = 0.05. The exa
t solution u has a 
urved layer of moderate width inside Ω,
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Figure 3: The jump û− u2 on the interfa
e Γ in Experiment 1.

see Figure 4. In Figure 5 we plot the errors versus the degrees of freedom on a double logarithmi


s
ale. Again, as expe
ted, we obtain the 
onvergen
e order O(N−1/2). In Figure 6, we plot the

error û− u2 on the 
oupling boundary Γ, again for mesh width 1/32. Note that the layer of the
exa
t solution 
uts through Γ, and this is re�e
ted in Fig. 6.
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