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Abstract

Numerical schemes for the nonlinear equilibrium dispersive (ED) model
for chromatographic processes with adsorption isotherms of Langmuir type
are proposed. This model consists of a system of nonlinear, convection-
dominated partial differential equations. The nonlinear convection gives rise
to sharp moving transitions between concentrations of different solute compo-
nents. This property calls for numerical methods with shock capturing capa-
bilities. Based on results by [R. Donat, F. Guerrero and P. Mulet (2017); sub-
mitted], conservative, shock capturing, numerical schemes can be designed
for this chromatography model. Since explicit schemes for diffusion problems
can pose severe stability restrictions on the time step, the novel schemes treat
diffusion implicitly and convection explicitly. To avoid the need to solve the
nonlinear systems appearing in the implicit treatment of the nonlinear dif-
fusion, second-order linearly implicit implicit-explicit (IMEX) Runge-Kutta
schemes are employed. Numerical experiments demonstrate that the schemes
give accurate numerical solutions with the same stability restrictions as in
the purely hyperbolic case.
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1. Introduction

1.1. Scope
Chromatography is used to separate complex fluid mixtures, when a high

purity of the product is demanded. In liquid batch chromatography, a pulse
of fluid mixture, the solute, is injected at one end of a long cylindrical column
filled with a porous medium (the stationary phase), followed by a continuous
flow of liquid, the mobile phase, along the column. The solute interacts with
the porous medium and its components begin to separate according to the
strength of their affinity with the stationary phase. If the column is long
enough, band profiles of single components move through it, so making it
possible to collect pure fractions of components at its end.

The Equilibrium Dispersive (ED) model [12, 17, 23] is applicable when
the mass transfer kinetics between the mobile phase and the stationary phase
is fast, and when all band-broadening effects can be lumped into an apparent
dispersion coefficient D

a

. Within the ED model, chromatographic processes
can be modeled by first-order non-linear convection-dominated conservation
laws [12, 20, 21], coupled with some algebraic relations between the concen-
trations of the components of the mixture in the mobile and solid phases.
Since analytical solutions can seldom be obtained, it is crucial to design nu-
merical schemes for performing simulations with these models, and thereby
to help practitioners to reduce the need for costly empirical experimentation.

There are other approaches that take into account the kinetics between
the mobile phase and the stationary phase assuming that the equilibrium
is not instantaneous, obtaining systems of equations with relaxation terms
[13, 14] (see also [12] for a more physical description). Both models (ED and
relaxation) are similar when this relaxation parameter tends to zero.

Nonlinear convection terms cause sharp moving transitions between con-
centrations of different solute components and numerical methods should be
able to cope with this situation, i.e., be conservative. Several works of simu-
lation in chromatography propose conservative numerical schemes in which if
D↵ is null, then the roles of time t and of position z can be interchanged, be-
ing then the amounts conserved given by concentration in the mobile phase,
and the flux given by the total solute concentrations (see [12, 22]). These
schemes are efficient and even used to solve certain problems of identification
of parameters in chromatography [16] since they do not require the inversion
of the non-linear function that algebraically connects these two concentration
vectors (total concentration and mobile phase concentration). The problem
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with these schemes is that, on the one hand, they do not conserve the orig-
inal quantities, i.e., the total concentrations, and on the other hand, they
can not apply if D↵ > 0. In this sense it is proposed in [17] to suitably
rewrite the model including the diffusion term and to solve it numerically by
a non-conservative, linearized scheme in order to obtain an efficient method.
However, Donat et al. [7] show that the non-conservative scheme proposed by
Javeed et al. [17] for the simulation of the ED model can yield simulations for
which the chromatographic fronts, that correspond to shocks when diffusion
is neglected, move at a wrong speed and individual solute concentrations are
not conserved when they should.

The main difficulty in the design of conservative numerical schemes in this
formulation is that the conversion from conserved variables to primitive vari-
ables (concentration of solute and mobile phase) can only be achieved through
an implicit function whose properties can be deduced from the mathematical
structure of the adsorption isotherm. Nevertheless this implicit function can
be approximated numerically by efficient root finders.

The particular structure of the ED model [7], summarized in the next
section, provides the theoretical background to implement conservative spa-
tial semi-discretizations of the ED model (1.2), in a method of lines strategy.
It is the purpose of this paper to advance fully discrete conservative numer-
ical schemes that are obtained by applying suitable time integrators to the
spatial semi-discretization. Explicit schemes applied to diffusion problems
can strongly restrict the time step due to stability constraints. Therefore
we aim to treat diffusion implicitly and convection explicitly. To avoid the
necessity to solve nonlinear systems appearing in the implicit treatment of
the nonlinear diffusion [4], we propose second-order linearly implicit IMEX
Runge-Kutta schemes recently introduced in [1].

1.2. The Equilibrium Dispersive (ED) model of chromatography
We denote time by t and let z be the axial coordinate along the column

that is normalized to have unit height, so that the top is at z = 0 and the
bottom at z = 1. We assume that " is the constant total porosity of the solid
phase, i.e., the proportion of void space that can be occupied by fluid and u

is the (constant) velocity of the mobile phase.
We denote by ci the concentrations of the i-th liquid phase and by qi

the concentration of solid phase adsorbent permeated by the i-th phase.
Thus, the total amount of liquid/solid material occupied by the i-th phase
is "ci+(1�")qi. The flux for the i-th phase is postulated as "(uci�Da

@ci/@z),
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so that the continuity equations of the ED model can be written as

@

@t

�
"ci + (1� ")qi

�
+

@

@z

✓
"

✓
uci �D

a

@ci

@z

◆◆
= 0, i = 1, . . . , N. (1.1)

We assume that the mobile phase corresponds to the last index N . With the
notation c := (c

1

, . . . , cN)
T and q := (q

1

, . . . , qN)
T and dividing (1.1) by ",

we obtain the system of continuity equations in the form

@

@t

✓
c+

1� "

"

q

◆
+ u

@c

@z

= D

a

@

2c

@z

2

. (1.2)

Appropriate boundary conditions for this model are proposed in [12], namely

uc�D

a

@c

@z

����
z=0

= uc
inj

(t),

@c

@z

����
z=1

= 0, (1.3)

for a known function c
inj

(t) that models the continuous injection of the liquid
phases (components 1 to N � 1) and the “displacer” (component N) through
the top of the column.

Within the ED model, the equilibrium relationship between the solid
phase and liquid phase concentrations is given by the adsorption isotherm
q = q(c), which is usually a non-linear function [12]. In this paper we
consider multi-component mixtures for which the adsorption isotherms are
of Langmuir type, that is

qi =
↵ici

1 + �Tc
, i = 1, . . . , N, (1.4)

where ↵ := (↵

1

, . . . ,↵N)
T, � := (�

1

, . . . , �N)
T, and the constants ↵i, �i > 0

quantify the nonlinearity of the isotherm. This Langmuir isotherm [18] has
the particularity of being a monotonous and concave function in each com-
ponent, and is based on thermodynamic statistical models of multicompo-
nent phase equilibrium. If we add terms that consider internal energies by
grouping the particles in each phase, the model generalizes to isotherms not
necessarily concave [12, 15] and considered in models of chromatography for
example in [3].

In [7] the theoretical results about the well-posedness of the ED model
(hyperbolicity when D

a

= 0 and parabolicity when D

a

> 0) obtained in [20]
for N = 1 are generalized to N > 1, see Section 2.
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The ED model (1.2) can be written as the system of conservation laws

@w

@t

+

@(uc)

@z

= D

a

@

2c

@z

2

, where w := W (c) := c+
1� "

"

q(c). (1.5)

This system can be written in standard form as long as there is a one-to-one
correspondence between the variables w and the concentrations c. Then, a
conservative discretization of the terms with spatial derivatives guarantees
mass conservation for the conserved variables w, and, as a consequence,
the shock-capturing property, i.e. shocks (for D

a

= 0) or steep profiles (for
D

a

> 0) in the numerical solution propagate at the correct speed.
In [7] it is shown that there is indeed a globally well-defined, one-to-one

correspondence between c and w, so that (1.5) can be rewritten as

@w

@t

+

@f(w)

@z

= D

a

@

2C(w)

@z

2

, f(w) = uC(w), (1.6)

where C(w) is a continuously differentiable function that satisfies C = W�1.
Furthermore, although there is no explicit expression for the function C(w)

for N > 1, the value of C(w) for any w 6= 0, wi � 0 can be determined by
computing the only positive root of a particular rational function [7].

1.3. Outline of the paper
The remainder of the paper is organized as follows. In Section 2 we recall

from [7] results related to the analysis of the mathematical structure of the
ED model. Section 3 describes second-order linearly implicit IMEX Runge-
Kutta schemes and discusses some issues required for their implementation
in numerical simulations of chromatographic processes that fit the ED model
(1.4), (1.5). In Section 4 we show some numerical experiments to test the
performance of these schemes. Some conclusions are collected in Section 5.

2. Mathematical structure of the ED model

In what follows we shall assume that the components of the mixture are
ordered so that 0 < ↵

1

< ↵

2

< . . . < ↵N , see (1.4). We quote here the main
results from [7, 8] that will be needed in the sequel.
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Theorem 2.1. For any c 2 RN
+

, the Jacobian matrix W 0
(c) is diagonal-

izable, with real, strictly positive, pairwise distinct eigenvalues �

1

, . . . ,�N

satisfying

1 < �

1

< d

1

< �

2

< · · · < dN�1

< �N < dN , di := 1 +

⌘i

1 + �Tc
,

where ⌘i := (1� ")↵i/" for i = 1, . . . , N .

Lemma 2.1. For any fixed w 2 RN
+

, the rational function

R 3 y 7! Rw(y) := 1� y +

NX

i=1

y

y + ⌘i
�iwi 2 R

has only one positive root, denoted by ⇢

0

(w). In fact, 1  ⇢

0

(w)  1+�Tw.

Theorem 2.2. The function W : RN
+

! RN
+

given in (1.5) is invertible. The
inverse function C := W�1

: RN
+

! RN
+

is continuously differentiable in RN
+

and is given by C = (C

1

(w), . . . , CN(w))

T, where

Ci(w) :=

wi

1 + ⌘i/⇢0(w)

, i = 1, . . . , N.

Corollary 2.1. The ED model (1.6) is well posed in the following sense. For
D

a

= 0 the system of conservation laws

@w

@t

+

@f(w)

@z

= 0

is strictly hyperbolic, and for any w such that wi > 0, all the eigenvalues µj

of its Jacobian matrix uC 0
(w) are positive, pairwise distinct, and bounded

above by u. These eigenvalues µj = u/�j satisfy

u > µ

1

> u/d

1

> µ

2

> · · · > u/dN�1

> µN > u/dN > 0

(cf. Theorem 2.1). For D

a

> 0, the system (1.6) is parabolic in the sense
of Petrovskii (cf., e.g., [9]), i.e., the eigenvalues of the matrix D

a

C 0
(w) are

bounded below by some positive constant for any w 2 RN
+

.
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3. Linearly implicit IMEX schemes

3.1. Method of lines approach
In order to apply this technique to the ED model, we rewrite (1.6) as

@w

@t

+

@

@z

✓
f(w)� g

✓
w,

@w

@z

◆◆
= 0, g

✓
w,

@w

@z

◆
:= D

a

C 0
(w)

@w

@z

.

(3.1)
We consider a uniform mesh with grid points zj = (j � 1/2)�z, j =

1, . . . ,M , where �z = 1/M , and write the resulting semi-discrete scheme as

w0
(t) = L

�
w(t)

�
+D

�
w(t)

�
,

where w(t) is an M ⇥N matrix whose j-th column, wj(t), is an approxima-
tion of w(zj, t) 2 RN , j = 1, . . . ,M , L represents the spatial discretization
of the convective term �@f(w)/@z and D the spatial discretization of the
diffusion term @g(w, @w/@z)/@z in (3.1).

The schemes we propose compute numerical approximations to the point-
values of the conserved variables, wj(t) ⇡ w(xj, t), and are characterized by
a conservative discretization of the convective and diffusive terms of the form

Lj = �
1

�z

�
f̂ j+1/2 � f̂ j�1/2

�
, Dj =

1

�z

�
ĝj+1/2 � ĝj�1/2

�

(dropping the dependencies for simplicity), using convective and diffusive
numerical fluxes f̂ j+1/2 and ĝj+1/2, respectively, that approximate the re-
spective exact fluxes at the corresponding cell interface zj+1/2 = zj +�z/2.

The convective numerical flux

f̂ j+1/2 = f̂(wj�1

,wj,wj+1

) (3.2)

is computed by MUSCL reconstructions [24] as follows, where we take into
account that all characteristic velocities are positive (see Corollary 2.1):

f̂ j+1/2 = uC(wL

j+1/2),

wL

i,j+1/2 := wi,j +
1

2

minmod(wi,j �wi�1,j,wi+1,j �wi,j),

(3.3)

where we use the standard definition

minmod(a, b) :=

(
sgn(a)min{|a|, |b|} if sgn(a) = sgn(b),
0 otherwise.
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The diffusive numerical fluxes are computed by second-order centered
finite differences

ĝj+1/2 =
1

�z

Bj+1/2(w)(wj+1

�wj),

Bj+1/2(w) := B(wj,wj+1

) =

D

a

2

�
C 0

(wj+1

) +C 0
(wj)

�
.

(3.4)

The boundary conditions (1.3) at z = 0 = z

1/2 are discretized by pre-
scribing the sum of convective and diffusive numerical fluxes as follows:

f̂
1/2 � ĝ

1/2 = uc
inj

(t) = f(w)� g

✓
w,

@w

@z

◆����
z=0

.

The term L
1

+D
1

is modified accordingly:

L
1

+D
1

=

1

�z

⇣�
� f̂

3/2 + ĝ
3/2

�
�

�
� f̂

1/2 + ĝ
1/2

�⌘

=

1

�z

�
�f̂

3/2 + ĝ
3/2 + uc

inj

(t)

�
.

The boundary conditions (1.3) at z = 1 = zM+1/2 are discretized by taking

ĝM+1/2 = 0 = g

✓
w,

@w

@z

◆����
z=1

,

so the term LM +DM is modified accordingly:

LM +DM =

1

�z

⇣�
� f̂M+1/2 + ĝM+1/2

�
�
�
� f̂M�1/2 + ĝM�1/2

�⌘

=

1

�z

�
f̂M�1/2 � f̂M+1/2 � ĝM�1/2

�
.

Furthermore, the computation of the convective fluxes as in (3.2), for
j = 2,M requires values at the corresponding ghost cells zk, whose indices
are k = 0 for the first case and k = M + 1 for the second. We obtain the
values at those ghost cells by using extrapolation with a linear polynomial
that satisfies the boundary condition and that interpolates the data for the
internal point which is symmetric with respect to the boundary. For z = 0

and k = 1� j, taking into account (1.3), this extrapolation yields the value

c
1�j(t) = �cj(t) +

2(j � 1/2)h

(j � 1/2)h+D

a

/u

c
inj

(t).
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For z = 1 and k = M + 1, in view of (1.3) we obtain by extrapolation

cM+1

(t) = cM(t).

With all these comments and the notation in (3.4) we can write the resulting
spatial semi-discretization as

d

dt

U (t) = L(U , t) +D(U ), (3.5)

where

U (t) =

0

BBB@

w
1

(t)

w
2

(t)

...
wM(t)

1

CCCA
, L(U , t) =

0

BBB@

L
1

(U , t)

L
2

(U , t)

...
LM(U , t)

1

CCCA
, D(U ) =

1

�z

2

B(U )U ,

where the sub-vectors L
1

, . . . ,LM are given by

Lj(U , t) =

1

�z

8
><

>:

�f̂ j+1/2(U ) + f̂ j�1/2(U ) for 1 < j < M ,
�f̂

3/2(U ) + ucinj(t) for j = 1,
f̂M�1/2(U ) for j = M ,

and B is an R(NM)⇥(NM) block tridiagonal matrix function formed of blocks
Bj+1/2 2 RN⇥N such that

�
B(Ũ )U

�
j
=

8
>>><

>>>:

Bj+1/2(Ũ )(wj+1

�wj)

�Bj�1/2(Ũ )(wj �wj�1

) for 1 < j < M ,
B

3/2(Ũ )(w
2

�w
1

) for j = 1,
�BM�1/2(Ũ )(wM �wM�1

) for j = M .

The approximate solution of (3.5) can be obtained by the application
of Runge-Kutta ODE solvers. Strong Stability Preserving (SSP) explicit
Runge-Kutta methods are a popular class of time integrators whose use leads
to the following stability constraint (see [6] for details):

�t

✓
u

�z

+

2D

a

�z

2

◆
max

U
%

�
C 0

(U )

�
 C

0

 1 for some constant C

0

> 0,
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where %(C 0
(U )) is the spectral radius of C 0

(U ). Since maxU %(C 0
(U )) < 1,

a practical bound would be

�t

✓
u

�z

+

2D

a

�z

2

◆
 C

0

(3.6)

This restriction on �t can be very stringent if D
a

is not very small or �z

is very small. This restriction originates from the explicit treatment of the
diffusion term.

An alternative to explicit Runge-Kutta methods are implicit-explicit Run-
ge-Kutta (IMEX-RK) methods (see [1] and references therein), for which only
the diffusion term is treated implicitly. It is hoped (and can be proven in
some cases) that the stability restrictions on �t are of the form

�t

u

�z

max

w
%(C 0

(w))  C

1

 1,

or, from a practical point of view,

�t

u

�z

 C

1

. (3.7)

An IMEX-RK method is specified by the pair of Butcher arrays

c̃ Ã

b̃
T

c A

bT
,

where the s ⇥ s lower triangular matrices Ã = (ãij) (with ãij = 0 for all
j � i) and A = (aij) are the matrices of the explicit and implicit parts
of the method, respectively, while b̃ = (

˜

b

1

, . . . ,

˜

bs)
T, c̃ = (c̃

1

, . . . , c̃s)
T, b =

(b

1

, . . . , bs)
T and c = (c

1

, . . . , cs)
T are s-dimensional vectors of real coeffi-

cients, and c̃ and c are given by the usual relations

c̃i =

i�1X

j=1

ãij, ci =

iX

j=1

aij, i = 1, . . . , s.

To overcome the excessive numerical work for the solution of nonlinear
systems, an essential gain is obtained by the approach proposed in [1]. We
rewrite the semidiscrete formulation (3.5) in the form

d

dt

Ũ = K
�
Ũ ,U , t

�
,

d

dt

U = K
�
Ũ ,U , t

�
,
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with initial condition w̃j(0) = wj(0) = w(xj, 0), j = 1, . . . ,M , where we use
the notation

K
�
Ũ ,U , t

�
:= L

�
Ũ , t

�
+

1

�z

2

B
�
Ũ
�
U ,

with the aim of applying a partitioned Runge-Kutta scheme, consisting in
the application of the explicit part to the first block of equations and the
implicit part to the second block. If both Butcher arrays satisfy b̃ = b, then
the step from t

n to t

n+1

= t

n
+�t of the linearly implicit IMEX-RK scheme

is given by the following algorithm.

Algorithm 3.1 (Linearly implicit IMEX-RK scheme).

Input: approximate solution vector Un for t = t

n

do i = 1, . . . , s

compute the stage values:

Ũ
(i)  Un

+�t

i�1X

j=1

ãijKj, Û
(i)  Un

+�t

i�1X

j=1

aijKj

solve for Ki the linear equation

Ki = L
�
Ũ

(i)�
+

1

�z

2

B
�
Ũ

(i)��
Û

(i)
+�taiiKi

�
,

enddo

Un+1  Un
+�t

sX

j=1

bjKj

Output: approximate solution vector Un+1 for t = t

n+1

= t

n
+�t.

The linear equation for Ki is solved by using standard and efficient block
tridiagonal solvers (see [10]).

In our experiments we use the classical second-order IMEX-RK scheme
given by the following Butcher arrays:

˜c Ã

˜b
T

=

0 0 0

1 1 0

1/2 1/2

,

c A

bT
=

0 0 0

1 1/2 1/2

1/2 1/2

,
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denoted by H-CN(2,2,2) in [1], since it is a natural choice when dealing with
convection-diffusion problems, since Heun’s method is an SSP explicit RK
one [11], and the Crank-Nicolson method is A-stable and widely used for
diffusion problems.

4. Numerical experiments

4.1. Preliminaries
In this section we perform several numerical experiments to illustrate the

behavior of the proposed IMEX-WENO scheme. Specifically, we consider the
simulation of a three-component mixture proposed in [17].

Displacement chromatography (see, e.g., [19, 21]) relies on the idea that
one component (the displacer) has a stronger affinity to the solid phase than
any of the other components in the sample mixture, hence it has the capa-
bility to displace the other components of the mixture from the stationary
phase. For a sufficiently long column and appropriate adsorption isotherms,
the concentrations of the components form rectangular regions of high con-
centration of one component in the mixture. The series of such zones are
the so-called isotachic train [5]. We consider the case of a mixture of two
components and one displacer proposed in [17, Sect. 4.3]. The values of the
parameters are: ↵

1

= 4,↵

2

= 5,↵

3

= 6, �

1

= 4, �

2

= 5, �

3

= 1. In addition
" = 0.5 and u = 0.2.

For each iteration, �t is determined by (3.6), (3.7) with the appropriate
parameters C

0

= C

1

= 1. Moreover, we compute approximate L

1 errors
at different times for each scheme as follows. We denote by (c

M
j,i(t))

M
j=1

and
(c

ref

l,i (t))
Mref
l=1

the numerical solution for the i-th component at time t calculated
with M and M

ref

= 12800 cells, respectively. We compute c̃

ref

j,i (t) for j =

1, . . . ,M by

c̃

ref

j,i (t) =
1

R

RX

k=1

c

ref

R(j�1)+k,i(t), R = M

ref

/M.

The total approximate L

1 error (c

M
j,i(t))

M
j=1

at time t is then given by

e

tot

M (t) :=

1

M

NX

i=1

MX

j=1

��
c̃

ref

j,i (t)� c

M
j,i(t)

��
.
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Figure 1: Reference numerical solution obtained by IMEX-RK2 at final times T =
1, 4, 8, 12 for (a, b) Experiment 1, (c, d) Experiment 2 and (e, f) Experiment 3.

Based on these approximate total errors, we may calculate a numerical order
of convergence from pairs e

tot

M/2(t) and e

tot

M (t) by

✓M(t) := log

2

�
e

tot

M/2(t)/e
tot

M (t)

�
.

4.2. Three-component displacement tests
Experiment 1

We assume that components 1 and 2 are injected between t = 0 and
t = 0.1 with c

1

= c

2

= 1 at z = 0. Component 3, the displacer, is injected
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Figure 2: Experiment 1: numerical solutions obtained by IMEX-RK2 and explicit methods
with D

a

= 10�4 at final time T = 4. Here and in Figures 3 to 7, the spatial resolution
corresponds to M = 400, results are labeled by “IMEX” and “EX”, and the reference
solution (“REF-SOL”) is defined by M

ref

= 12800.

from t = 0.1 with c

3

= 1, that is,

c
inj

(t) =

(
(1, 1, 0)

T for 0  t  0.1,
(0, 0, 1)

T for t > 0.1.

Figures 1 (a) and (b) show the results for Experiment 1 for D

a

= 10

�4 and
D

a

= 10

�3, respectively, obtained by the IMEX-RK scheme for the reference
resolution M = M

ref

= 12800. The formation of the displacement train can
be clearly appreciated in both simulations. This fact (see [17]) prevents the
formation of a rectangular pulse for component 1. This makes that only the
second component can form a rectangular pulse. We see that the numerical
solution behaves as expected.

Figures 2 and 3 display the numerical solution at times T = 4 and T = 12,
respectively, obtained by both schemes (the explicit and the linearly implicit
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Figure 3: Experiment 1: numerical solutions for D
a

= 10�4 and final time T = 12.

IMEX-RK scheme, denoted henceforth by “IMEX-RK2”) at an intermediate
spatial discretization M = 400 and with D

a

= 10

�4, while Table 1 shows the
corresponding approximate errors and CPU times for both D

a

= 10

�4 and
D

a

= 10

�3. Both figures, as well as Table 1, indicate that the explicit and
IMEX-RK2 schemes produce numerical solutions of nearly the same quality;
however, both numerical solutions are significantly more “smeared out” than
the reference solution, which becomes especially appreciable near transitions
between zones of slow variation and steep gradients.

Since c
inj

(t) is discontinuous at t = 0.1 here and in Experiments 2 and 3,
we avoid a loss of order of accuracy in the time integration by ensuring that
tn = 0.1 for some intermediate n, by shortening �t accordingly.
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Explicit IMEX-RK2 Explicit IMEX-RK2
M etotM ✓M cpu etotM ✓M cpu etotM ✓M cpu etotM ✓M cpu

Experiment 1, D
a

= 10�4, T = 4 Experiment 1, D
a

= 10�3, T = 4
50 160.58 — 0.00 155.64 — 0.01 65.18 — 0.00 63.80 — 0.01

100 85.93 0.90 0.01 84.93 0.87 0.03 21.37 1.61 0.03 21.29 1.58 0.03
200 42.82 1.00 0.09 42.67 0.99 0.23 6.00 1.83 0.23 5.97 1.83 0.14
400 16.66 1.36 0.66 16.82 1.34 1.12 1.50 2.00 1.60 1.50 1.99 0.82
800 5.16 1.69 3.69 5.26 1.68 5.06 0.37 2.03 17.93 0.37 2.02 5.40

1600 1.34 1.94 22.77 1.41 1.90 22.28 0.09 2.04 119.73 0.09 2.01 18.62
Experiment 1, D

a

= 10�4, T = 12 Experiment 1, D
a

= 10�3, T = 12
50 207.58 — 0.01 207.96 — 0.03 71.15 — 0.02 71.00 — 0.03

100 115.32 0.85 0.05 115.90 0.84 0.11 21.96 1.70 0.09 22.00 1.69 0.10
200 52.88 1.12 0.29 53.194 1.12 0.50 5.80 1.92 0.73 5.82 1.92 0.43
400 19.81 1.42 1.52 19.98 1.41 2.45 1.45 2.00 4.43 1.45 2.00 2.36
800 6.02 1.72 9.82 6.09 1.71 13.67 0.36 2.01 51.05 0.36 2.02 11.72

1600 1.56 1.94 68.56 1.59 1.94 62.19 0.09 2.02 295.10 0.09 2.04 44.16

Table 1: Experiment 1: approximate L1 errors (etotM , figures to be multiplied by 10�3),
convergence rates (✓M ) and CPU times (cpu) in seconds.

Experiment 2
Next, we assume that the concentration injected for the displacer is fur-

ther reduced, so that

c
inj

(t) =

(
(1, 1, 0)

T for 0  t  0.1,
(0, 0, 0.5)

T for t > 0.1.

The values of the rest of the parameters are the same as in Experiment 1. In
this case, none of the isotherms is intersected by the operating line and both
components fail to form equilibrated rectangular pulses. The results of the
reference solution are shown in Figures 1 (c) and (d), Figures 4 and 5 display
numerical solutions for M = 400, and Table 2 provides the corresponding
error and CPU time information.

Experiment 3
The concentration injected for the displacer is even further reduced, so

that

c
inj

(t) =

(
(1, 1, 0)

T for 0  t  0.1,
(0, 0, 0.1)

T for t > 0.1.
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Figure 4: Experiment 2: numerical solutions for D
a

= 10�4 and final time T = 4.

The values of the rest of the parameters are the same as in Experiments 1
and 2. In this case, none of the isotherms is intersected by the operating
line. According to this, both components fail to form equilibrated rectangu-
lar pulses. The results of the reference solution are shown in Figure 1 (e)
and (f), Figures 6 and 7 display numerical solutions for M = 400, and Table 3
provides the corresponding error and CPU time information.

4.3. Numerical error and efficiency
To assess the numerical error and efficiency of the linearly implicit IMEX-

RK scheme we utilize the information of Tables 1, 2 and 3 for the final times
T = 4 and T = 12 and the alternative diffusion coefficients D

a

= 10

�4

and D

a

= 10

�3. First of all, this information corroborates what can be in-
ferred from Figures 2 to 7, namely that the explicit and IMEX-RK2 schemes
produce almost the same errors, and moreover the observed rates of conver-
gence ✓M are consistent with the fact that both schemes are formally second
order in space and time (where we recall that the MUSCL extrapolation (3.3)
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Figure 5: Experiment 2: numerical solutions for D
a

= 10�4 and final time T = 12.

is inactive near local extrema of the numerical solution, where the scheme
locally degenerates to first-order accuracy). Furthermore, consistently with
the respective CFL conditions (3.6) and (3.7) for the explicit and IMEX-RK2
schemes we observe that although each time step is computationally more
involved for the IMEX-RK2 than for the explicit scheme, the IMEX-RK2
becomes faster than the explicit one for sufficiently fine discretizations. This
gain is more significant, and becomes visible already for coarser discretiza-
tions, for the larger of the diffusion coefficients chosen for inspection.

The same observation can be deduced from Figures 8 and 9, where we
present a number of efficiency plots, that is, of approximate L

1 error versus
CPU time, deduced from the error and CPU time information of Tables 1
to 3. Here we understand by efficiency the amount of computational effort
necessary to achieve a reduction of numerical error.
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Explicit IMEX-RK2 Explicit IMEX-RK2
M etotM ✓M cpu etotM ✓M cpu etotM ✓M cpu etotM ✓M cpu

Experiment 2, D
a

= 10�4, T = 4 Experiment 2, D
a

= 10�3, T = 4
50 134.47 — 0.00 125.24 — 0.01 49.78 — 0.01 48.12 — 0.01

100 68.05 0.98 0.02 66.02 0.92 0.04 16.14 1.63 0.04 16.60 1.54 0.03
200 33.06 1.04 0.24 32.17 1.04 0.39 4.65 1.79 0.28 4.85 1.77 0.17
400 12.37 1.42 0.86 12.47 1.37 1.55 1.18 1.98 2.22 1.26 1.95 0.86
800 3.78 1.71 5.40 3.88 1.68 5.42 0.29 2.03 17.82 0.32 1.98 4.09

1600 0.99 1.93 23.11 1.04 1.90 17.06 0.07 2.04 123.10 0.09 1.88 16.77
Experiment 2, D

a

= 10�4, T = 12 Experiment 2, D
a

= 10�3, T = 12
50 144.53 — 0.02 142.59 — 0.04 49.94 — 0.03 49.25 — 0.04

100 66.31 1.12 0.09 66.39 1.10 0.13 15.33 1.70 0.13 15.39 1.68 0.13
200 30.63 1.11 0.43 30.62 1.12 0.71 4.08 1.91 0.89 4.09 1.91 0.49
400 11.16 1.46 1.89 11.24 1.45 3.17 1.02 2.00 5.60 1.02 2.00 2.28
800 3.29 1.76 12.63 3.40 1.72 3.67 0.25 2.02 48.94 0.25 2.02 10.24

1600 0.84 1.97 63.33 0.90 1.92 47.57 0.06 2.03 306.46 0.06 2.00 42.23

Table 2: Experiment 2: approximate L1 errors (etotM , figures to be multiplied by 10�3),
convergence rates (✓M ) and CPU times (cpu) in seconds.

5. Conclusions

Linearly implicit IMEX-RK methods were recently advanced as a tool
for the efficient numerical solution of diffusively corrected multispecies kine-
matic flow models with applications to traffic flow and polydisperse sedimen-
tation [1, 2, 4]. It has been demonstrated that these methods can also be
applied to the ED model of chromatography, and they share the advantage of
conservativity with the class of methods introduced in [7]. Moreover it turns
out that they are competitive in accuracy with explicit methods of the same
formal order of accuracy in space and time, and that they are more efficient
than comparable explicit methods for relatively large diffusion coefficients
and fine discretizations. Future work will explore the options of further in-
creasing efficiency by alternative choices of underlying Runge-Kutta schemes,
and by applying these methods to scenarios with degenerate or discontinu-
ous diffusion coefficients, which were the prime motivation of our above-cited
previous treatments.
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Figure 6: Experiment 3: numerical solutions for D
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= 10�4 and final time T = 4.
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