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A posteriori error analysis of a fully-mixed formulation
for the Brinkman-Darcy problem*
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Abstract

We develop the a posteriori error analysis for a mixed finite element method applied to the coupling
of Brinkman and Darcy equations in 3D, modelling the interaction of viscous and non-viscous flow
effects across a given interface. The system is formulated in terms of velocity and pressure within
the Darcy subdomain, together with vorticity, velocity and pressure of the fluid in the Brinkman
region, and a Lagrange multiplier enforcing pressure continuity across the interface. The solvabil-
ity of a fully-mixed formulation along with a priori error bounds for a finite element method have
been recently established in [Alvarez et al., Comput. Methods Appl. Mech. Engrg., 307 (2016)
68-95]. Here we derive a residual-based a posteriori error estimator for such a scheme, and prove
its reliability exploiting a global inf-sup condition in combination with suitable Helmholtz decom-
positions, and interpolation properties of Clément and Raviart-Thomas operators. The estimator is
also shown to be efficient, following a localisation strategy and appropriate inverse inequalities. We
present numerical tests to confirm the features of the estimator and to illustrate the performance
of the method in academic and application-oriented problems.

Key words: Brinkman-Darcy equations, vorticity-based formulation, mixed finite element methods,
a posteriori error analysis.

Mathematics Subject Classifications (1991): 65N30, 656N12, 76D07, 65N15

1 Introduction

We have recently introduced a mixed finite element method to numerically approximate the flow
patterns of a viscous fluid within a highly permeable medium described by Brinkman equations, and its
interaction with pure porous media flow under Darcy’s law [1]. There, the system is formulated in terms
of velocity and pressure of the non-viscous flow, together with vorticity, velocity and pressure of the
Brinkman region. The tangential vorticity vanishes on the boundary of the Brinkman domain, whereas
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slip velocity conditions are assumed on the overall boundary. The corresponding mixed variational
formulation leads to a Lagrange multiplier enforcing pressure continuity across the interface, while
mass balance results from essential boundary conditions on each domain. As a consequence, a classical
saddle-point operator equation is obtained, whose invertibility hinges on the well-known Babuska-
Brezzi theory. A similar treatment is used to establish the solvability of the discrete problem associated
to the Galerkin method. The needed continuous and discrete inf-sup conditions can be guaranteed
thanks to the so-called T'-coercivity argument (cf. [17,25] and the references therein), where one defines
adequate injective operators delivering lower bounds of the corresponding suprema. As the stability of
the Galerkin scheme requires that the curl of the discrete vorticity space is contained in the discrete
Brinkman velocity space, we specify Raviart-Thomas and Nédélec spaces for the approximation of the
global velocity and the Brinkman vorticity, respectively.

On the other hand, the derivation of adaptive schemes for transmission free flow - porous media
problems has been extensively studied in recent years. In particular, we refer to [5,8-10,13,15] and
[26], which are focused on Stokes-Darcy and Navier-Stokes/Darcy couplings, and where the interface
conditions are treated in different ways, from both mathematical and numerical perspective. For
instance, in [5,13,15] and [20], Beavers-Joseph-Saffman-type conditions are considered on the interface,
whereas in [9] and [10], similar transmission conditions to those employed in [I] are assumed. Also,
an interesting feature of the proof of reliability in [5], which differs from the approaches in the other
works, is the utilization of intermediate inf-sup inequalities that are obtained along the proof of the
global inf-sup condition. Differently from the above, and similarly as in [13,15] and [26], the efficiency
estimates in [5] follow from usual arguments based on inverse inequalities and the localisation technique
employing triangle-bubble and edge-bubble functions. In turn, the assumption of a smallness condition
on the data is the distinctive feature of the approach in [15], where a reliable and efficient residual-
based a posteriori error estimator for the three dimensional version of the augmented-mixed method
introduced in [16], is derived. Furthermore, an a posteriori error estimator for a conforming and
nonconforming vorticity-based finite element method of a Stokes-Darcy coupled problem was derived
in [10] and [9], respectively, but the resulting estimate in [10] is not optimal. In addition, even
though in [9] and [10] the model problem is addressed for both two and three spatial dimensions, the
corresponding a posteriori error analysis is explicitly derived only for the 2D case.

According to the previous discussion, and as a natural continuation of the a priori error analysis
developed in [1], our goal in the present paper is to provide a reliable and efficient residual-based a
posteriori error estimator for the finite element method introduced and analyzed in that reference.
In this way, we aim to improve the accuracy of the discrete scheme from [!] in different scenarios,
including presence of singularities or high gradients of the solution. Indeed, in contrast with the
methodology developed in [9] and [10], and following the approaches in [15] and [26], we highlight
that the derivation of our error estimator is based on a global inf-sup condition in combination with
suitable Helmholtz decompositions adapted from [15] and [30], and local approximation properties
of Clément, Raviart-Thomas, and Clément-type Nédélec interpolators. Then, similarly as in [13, 15]
and [20], the associated efficiency estimates are consequence of suitable inverse inequalities and local
bounds for tetrahedron-bubble and facet-bubble functions.

The remainder of the paper is structured in the following manner. General preliminary notation is
presented in the last part of this section. The model problem and the mixed variational formulation are
outlined in §2, where we also recall its unique solvability and the mixed finite element discretisation.
The core of the present analysis is contained in §3, where we define the error estimator and provide
a detailed derivation of its reliability and efficiency. Finally, §4 gives two numerical tests aimed to
illustrate the features of the method and the proposed estimator.



Some recurrent notation to be employed throughout the paper includes the following. If S C R?
is a domain or a Lipschitz surface, and r € R, we set vectorial Sobolev spaces as H"(S) := [H"(9)]?,
adopt the convention HY(S) = L?(9), and denote the corresponding norms by || - ||,.s (for both H"(S)
and H"(S)). In general, given a generic Hilbert space H, we will employ H to denote its vectorial
counterpart H3. We also recall the definition of the Hilbert spaces

H(div; ) := {v € L*(S): dive € L*(S)}, H(curl;S) := {v € L*(S): curlv € L*(9)},

normed, respectively, with

' 1/2 1/2
lollaivis == { ol s + Ndivolds} ™ olewss = {ol}s + lcurlvlfs}
where, for any vector field v := (v1,v2,v3)* € L2(S) we have
3 Dovg — O3v2
divey = Zﬁwi and curlv := Vxv = | 93v1 — 01v3
i1 O1v2 — Gy

In addition we will use the space

L3(S) = {g e L7(5) /Sq:o},

endowed with the the usual norm of L2(S). In turn, for each integer k > 0 we denote by Pj(S) the
space of polynomials in S of total degree < k, and we set P1(S) = [Px(9)]?. Finally, the symbol 0 will
stand for a generic null vector (including the null functional and operator), and C' (indistinguishably
¢, with or without subscripts, bars, tildes or hats) will denote generic constants independent of the
discretisation parameters.

2 Governing equations and a mixed variational formulation

2.1 The continuous model

We first let Qp and Qp be bounded and simply connected polyhedral Lipschitz domains in R? such
that OQg NINp =: ¥ # ) and Qg N Qp = 0, and set Q := Qg U ¥ U Qp with boundary I' = 9 split
into 'y € 9Qp and I'p C 9Qp. Then, given source terms f, € L2(Qp) and f € L?(Qp), we are
interested in the Brinkman-Darcy coupled problem

Hgl up + vecurlwp + Vpg = fg, wp—curlup =0, divup=0 in Qp,
HBIUD +Vpp=fp, divup=0 in Qp,

wpxmn =0, up-n =wug-n, pp =pg on X, (2.1)
wpxn =0, ugp-n=0 on Iy,

uD-n:O on FD,

which is formulated in terms of the Brinkman velocity ug, the Brinkman pressure pg, the Brinkman
vorticity wg, the Darcy velocity up, and the Darcy pressure pp. Here m stands for the outward
normal at Qg and Qp, v > 0 is the kinematic viscosity of the fluid, and xp, kg > 0 are the absolute
permeabilities of the Darcy and Brinkman subdomains, respectively.



The boundary conditions on the Brinkman and Darcy subdomains suggest the following spaces
Hp(div; Qp) = {’UB € H(div;Qp): wvg-mn=0 on FB} ,
Hp(div; Qp) = {’UD € H(div;Qp): wvp-m=0 on FD} ,
Hy(curl; Qp) := {zB € H(curl;Qp): zpxn=0 on 0Qp=IpU E} .

In addition, the pressure continuity across the interface ¥ allows us to define its trace via the auxiliary
unknown A := pply = pgly € HY2(X), where (-,-)s; denotes the duality pairing of H~1/2(X) and
H'/2(%) with respect to the L?(X)-inner product. In turn, the continuity of normal velocities across
>’ is imposed in a weak manner as

(up-n — up-n,{x =0 Ve e HY2(D).
Then, a fully-mixed formulation for (2.1) reads as follows: Find 4 := (up,wp,up) € H and
pi= (pB7pD7>\) € Qo such that
a(u,v) + b(d,p) = F(@) Vv := (vp,zB,vp) € H,

b(, §) =0 V{7 = (¢8,9p,¢) € Qo

(2.2)

where H := HB(diV; QB) X Hg(curl; QB) X HD(diV; QD), Q() = L%(QB) X L2(QD) X Hl/z(E), and the
bilinear forms a: H x H — R and b : H x Qy — R, and the functional F € H', are defined by

a(u,v) ::ngl/ ug - v + V/ wB -z + V/ vp - curlwp
Qp Op Qp

— 1// uB-curlzB—FnDl/ up - vp,
Qp Qp

b(3,q) = _/

g divog — / gpdivvp + (v -n —wvp - n, &)y,
Op Qb

and

F(v) := ) fg-vB + A fo-vp,
B D

for all 4 := (up,wsn,up), ¥ := (vB, 2zB,vp) € H, and for all 7 := (¢B,¢D,&) € Qo.

The well-posedness of (2.2) has been established in [1] using the classical Babuska-Brezzi theory:

Theorem 2.1 There exists a unique (4,p) := ((uB,wB,uD), (pB,pD,)\)) € H x Qq solution of the
mized formulation (2.2). Moreover, there exists ¢ > 0 such that

1P lxqe < clFlw < C{lf

00p + If O,QB}- (2.3)

2.2 Discretisation using a finite element method

Let 7;LB and 7;LD be respective partitions of Qg and Qp by shape-regular tetrahedra T' of diameter Ap.
We assume that these tetrahedrisations match on the interface so that T; := ’EZB U TP is a regular
family of triangulations of = Qp U ¥ U Qp, with meshsize h := max{hy : T € T,}. We denote



by X5 the triangulation on ¥ induced by 7, which is formed by triangles F' of diameter hp, and set

hy := max{hp: F € ¥;}. Next we introduce the finite-dimensional spaces
Hi = {vg € H,(div;,): vilr € RToT) VT € Th*}, (2.4)
Q= {qh € LX) : aulr € Ro(T) YT € 7;;}, Qo = Q) NLAQ), (2.5)

where € {B,D}, and for any T' € 7;* we denote by RT((T") := Po(T") ® Py(T) x the local Raviart-
Thomas space of lowest order. In addition, we set

HY, = {z}? € Ho(curl; Qp):  zP|r € ND(T) VT e ThB}, (2.6)
where for any T € T,B, ND{(T) := Po(T) ® Po(T) x x is the local edge space of Nédélec type

NDy(T) := {w:T%(Ci)’: wx) =a+bxx Ve eT, a,bc C3}. (2.7)

The approximation of the interface unknown will occur on an independent triangulation ih of ¥, by
elements F' of maximum diameter hg := max{hz: F' € ¥}, where we define the space

Q= {)\h €CXE): MlpePi(F) VF e ih}. (2.8)

In this way the Galerkin scheme associated to (2.2) reads: Find ), = (up,wp, u) € Hy and
D = (p],?,p]h),)\h) € Qo,, such that

a(ﬁh,'{)’h) + b(ﬁh,ﬁh) == F(ﬁh) VU = (’U}]?,ZE,U}]?) e Hy,,

b(ﬁhaqh) = 0 v@h = (qil?7Q]Il)7£h) € QO,hv

where Hj, := HB x H(]ih X H]h) and Qo = Q]l?,o X QE x Q. We point out that the solvability of (2.9)
requires the mesh condition hy < Cp hi’ where Cy is a positive constant. Details are to be found
in [1, §4.2.3-4.2.4].

(2.9)

3 A residual-based a posteriori error estimator

In this section we derive a reliable and efficient a posteriori error estimator for the Galerkin scheme
(2.9). Most of the present proofs make extensive use of estimates available in [1,3,5,7,14,20,22 23 20].
3.1 Preliminaries

Given a tetrahedron T' € T, we let £(T') and F(T') be the sets of its edges and faces, respectively. In
addition, we denote by &, and Fj be the sets of all edges and faces of Ty, respectively, so that Fp, is
subdivided as follows:

Fn = fh(FB) U fh(QB) @] }‘h(E) @] fh(QD) U ]:h(FD),

where Fp(Ty) :={F € F, : F CTIL}, Fa(Q) :={F € F, : F C Q.,}, for each x € {B,D}, and
Fn(X) :={F € Fp,: F CX}. In turn, for each T' € T}, we denote

Frr(Q) = {Fedl: FeF()}, Fur.) = {Fedl: FeFI,)}



and Fp, p(X) := {F € 0T : F € F,(X)}. Also, for each face F' € F,(€2) we fix a unit normal np to F,
so that given v € L2(Q,) such that v|r € C(T) on each T € T*, and given F' € F, (), we let [vxny]
be the corresponding jump of the tangential traces across F, that is [v x ng] := (v|r —v|)|F X np,
where T and T” are the elements of 7,* having F' as a common face. In addition, for each edge FE of a
tetrahedron T' € 7;*, we fix a unit tangential vector ¢ along . When no confusion arises, we simple
write n instead of np, and t instead tg.

We now recall from [12] the tangential curl operator curly : HY/2(X) — L(H/2(%)), with
L(HY/2(%)) denoting the tangential vector fields of order —1/2, which is defined by curly(x) :=
Vx x m, for any sufficiently smooth function y. This is a linear and continuous map (see [12, Prop.
3.4 and 3.6]) which will be required in the sequel. We will also make use of the Raviart-Thomas interpo-
lator of lowest order (see [21]) IT5 : HY(Q,) — HJ, * € {B, D}, which according to its characterisation
given by the identity

/ Zv-n—/v-n V face F of T, (3.1)
F F

verifies that
div(ITjv) = Pj(div ), (3.2)

where Pf is the L2(€2,)-orthogonal projector onto Py(£2). In addition, we recall the Clément operator
onto the space of the continuous piecewise linear functions Ij : H!(Q,) — X} (cf. [19]), where

Xk = {vec@): vlr € P1(T) VTeﬁL*},

and let I} : H'(Q,) — X} be its vectorial counterpart defined component-wise. These maps satisfy
the following properties (see [11,21] and [19], respectively)

Lemma 3.1 There exist c1,cz > 0, independent of h, such that for all v € H'(€,) there hold

N

v —IGvlor < crhrlvlir VT €Ty,
1/2
lv-n — W nllor < chif? [vlliz, YF of Ty,

where Ty is a tetrahedron of T)* containing a face ' on its boundary.

Lemma 3.2 There exist constants c3,cq > 0, independent of h, such that for all v € H'(€) there
hold

lv =T (v)

AN

07 = €3 hTH’UHl,A*(T) VT e 7;:,
cahi[olar YF € Fa(),

IN

[v =I5 (v)[lo,r
where

AL(T) = u{T’ €T T’HT#@} and AL (F) = u{T’ €T T’ﬂF#@}.

Furthermore, following [20] we define the Clément-type Nédélec interpolator Ny, : L?(Qp) — HE

by:
1
Nh(’l/i) = Z (|AB(E)| /AB(E)lb'tE) |E‘)\Ea

Ee&,L(QB)



where &£,(Qp) is the set of interior edges of 7,2, Ag(E) := U{T' € TB: T'NE # (0}, and Ag is the
standard basis function for the lowest order Nédelec element, which satisfies

/ Aptp = 6E,E’ VE’GE(T),

where dg g/ is the Kronecker delta. The approximation properties of N}, are summarised in the
following lemma (see [20, §4.3, Th. 4.2, and §6] and also [7, Prop. 2]).

Lemma 3.3 There exist c5,c6 > 0, independent of h, such that for all 1 € Ho(curl, Qg) N H!(Qp),
k% _Nh(¢)“O,T < ¢ hT”"/’Hl,AB(T) VT € 77LB,
1% — Nu(@)or < cshp 2 |lhane VF € Fu(Qp).

We will also require stable Helmholtz decompositions for H, (div; Q) with « € {B,D}. A technical
assumption is that I'y lies on the “convex part” of €),, signifying that there exists a convex domain
containing €2, whose boundary contains I'y. More precisely, introducing the space

HE, () = {BeH'Q): Blr, = 0},

we have the following result shown in [22, Th. 3.2].

Lemma 3.4 Assume that there exists a conver domain Z, such that Q, C 2, and I'y C 0Z,. Then,
given v, € H,(div; () there exist w € H*(Q,) and B € H{. () such that

v, = Vw +curl B in O, and [Jwllz0, + [Bll0. < Cillvdlaivo.

where Cy is a positive constant independent of all the foregoing variables.

In turn, a decomposition for Hy(curl; Qp) is given as follows.
Lemma 3.5 Given zp € Hy(curl; Q) there exist p € Hy(Qp), x € H{(QB), and C > 0 such that
zp = ¢ + Vx in QOp,
and
lellos + lIXlLes < CllzBlleuriop-
Proof. See [30, Lemma 2.2 and §5] O

We end this section with an estimate (in terms of local quantities) for the H~1/2(X) norm of
functions in a particular subspace of H/2(X) N L2(X). According to the definition of Q3 (cf. (2.8)),
we introduce the following orthogonal-type space

Q= {gp EH2E)NLAE): (o )y =0 ¥ A, € Q%}. (3.3)

Lemma 3.6 Assume that for each F' € ¥, there exists F e ih such that F C F and hy < Cy hi,
with a constant Cy > 0 independent of hs, and hg. Then, there exists C' > 0 independent of the
aforementioned meshsizes, such that

¥, L
lel21)05 <C Y heleldr  VeeQ (2). (3-4)
FeXy,

Proof. See [15, Lemma 3.4]. O



3.2 Defining the proposed estimator

Given (up,pp) = ((u],?,wg,uh) (p2,pP, )\h)) € Hj, x Qp, 0 the unique solution of (2.9), we define for

cach T € T;B, the local a posteriort error indicator ©p 1 as follows:

Obr = hllfs —rp'up —v curlwi|§ 7 + b | curluy — willlg r + [[divey 1§ 7
Flewl{fiy — n5' uf — v curlwf}3r + Y b {Iluf x nllE - + I1wf 0]l -}
FeFp,1(0B)
+ Z he ||[(fs — kg uh—ucurlwh)xn]]HOF + Z he ||(fa ﬁglug—ucurlwg)xn\\gf
FeFy,r(0B) FeFy,r(Ts)
+ 30 he{II(Fs = w5 uf = v curlwl) x n— curl, ) I3 ¢ + 16 = Ali3r - (3.5)

FE}—h,T(Z)

and for each T € 7;LD, we define the local a posteriori error indicator ©p 1 as

Obr = Wllfp — 5! 3 leurl{ fyy — w5  uf HiE » + ldivuf |3

+ Y bl mp uR) xnlBe Y bl — wp ul) x nll 56
FeFnr(Qp) FeFnr(p) )
+ 3 b {I1(Fo = w5t ) x n— curl, W) I + IpF - 3
FG]‘-hyT(E)

It is not difficult to see that each term defining @%T and @2D7T is residual. Hence a global residual
error estimator for (2.9) can be defined as

1
2
= { > Ogr+ > @]%,T} . (3.7)
TeTp TeTP

The remainder of this section advocates to establish the existence of positive constants Cess and Cre,
independent of the meshsizes and the continuous and discrete solutions, such that

Cess © + h.o.t < [[(d, D) — (tn, Ph)||[HxQy < Cre1 ©. (3.8)

where h.o.t stands, eventually, for one or several terms of higher order. The upper and lower bounds
in (3.8), are derived below in §3.3 and §3.4, respectively.

3.3 Reliability
3.3.1 Preliminary estimates

We begin by recalling that the first inequality in the continuous dependence result (2.3) is equivalent
to the global inf-sup condition

1 a(ib, %) + b(B,7) + b, §
I g, < sup MDA EPOD 1D (3.9

(5.1eHxQq 13, D) lrxqo
(7,9)#0

for all (w,7) € H x Qp. This allows to establish a first estimate for the total error as follows.



Theorem 3.1 Let (u,p) € H x Qo and (un,pn) € Hy x Qo be the unique solutions of (2.2) and
(2.9), respectively. Then, there exists a constant C' > 0, independent of h, such that
O,QD}a

1(d, p) — (tn, Pr)llHxQe < C{HEHH’ + lup - n—up - nl_yps + (ldivag o, + [Idivey)|
where E € H' is defined by
E(¥) := F(¥) — a(tun,¥) — b(¥,pn) Vo e H, (3.10)

and satisfies
E(ﬁh) =0 V’l_;h € Hy,. (3.11)

Proof. Applying (3.9) to the error (w,7) := (4,p) — (dn, pr) and using (3.10) we arrive at

1 . N E(Il_j) +b(ﬁ_ﬁha®
- H(uvﬁ) - (uhaph)HHXQQ S sup = . (312)
c @oerxq, (T DlHxqo
(¥,9)#0
Then, noting that obviously
B@_[BE L b _ b = i)
10, Dllaxq, — [¥ln 1(7, )l ExQq 14llQo
and applying the supremum in (3.12), we find that
L. . . L
— I(d,8) — (@, ) [xQo < 1Bl + [[b(d —in, - )llqy-
Next, employing the second equation of (2.2) and the definition of b, we deduce that
b(u — 4y, q) = —/ g divup — / gpdivul + (up -n—u} -n,&)s,
Qg Qp
which yields
Ib(@ —dn, )lqy < lul -n—up - nl 15 + [ldivegfoes + diveuy oo
Finally, from (3.10) and the first equation of (2.9), we obtain (3.11), and the proof concludes. O

The next step consists in deriving suitable upper bounds for the residual term ||u]}? -n—ul,fb) nl_1/2x
and for ||E||g. We begin with the following result.

Lemma 3.7 There exists Cy > 0, independent of the meshsizes, such that
1/2
lul - = wp nlyjps < Cag D hrllupno—wnlge s (3.13)
FeFn(%)
Proof. Taking &, € QE and then pj, = (0,0,&,) € Qpp in the second equation of (2.9), we find that

(up -n —up n &)y =0  V&EQ,

which says that each component of u? -n — u}) - n belongs to Q}EL’L (¢f. (3.3)). In this way, (3.13)
follows from a direct component-wise application of (3.4) (¢f. Lemma 3.6). O



We now aim to estimate ||E||g. To this end, we first rewrite the functional as follows
E(v) = Ei(vg) + Ez(zB) + Es(vp),

where E; € Hg(div; Qp)’, Ey € Hg(curl; Qp)’ and E3 € Hp(div; Qp)’ are defined by

E;(vp) = /Q (fs — ngl uE —v curlw];?) -vp + /Q pE divog — (vB - n, \p)y,
B B

Es(zB) = 1// up -curlzp — 1// Wl 2p, (3.14)
QB QB

Es(vp) = /Q (fo— HBI u],?)-UD + /Q pE divop + (vp - n, Ap)s.
D B

Notice, from (3.11), that V&), := (vP, 25, v?) € Hy, there holds

Ei(vy) + Ea(zp) + Es(vy) = 0. (3.15)

3.3.2 Upper bound for ||E1| g, (div0p)

Given vp € Hp(div;Qp), we consider its Helmholtz decomposition established in Lemma 3.1. More
precisely, we let w € H?(Q2p) and B € H%B(QB) be such that vg = Vw + curl 8 in Qg, and

[wl20p + 1BlLes < O llvsllav.es- (3.16)
Then, we define the discrete Helmholtz decomposition associated to 'v]}? as
vp = 11 (Vw) + curl (I73) € HY,

where HE and IE are the Raviart-Thomas and Clément operators, respectively, introduced in §
Then, using from (3.15) that E1(vE) = 0, we can rewrite

E;(vg) = Ei(vg —vP) = E(Vw — I¥(Vw)) + Ei(curl(8 — I23)). (3.17)

Consequently, in what follows we derive suitable upper bounds for the module of the two expressions
on the right hand side of ( ), which are provided by the following two lemmas.

Lemma 3.8 There exists C > 0, independent of meshsizes, such that for each w € H2(Qg) there
holds

2
|E1 (Vw — I (Vw))| < C{ > @iT} [wll2,05 (3.18)
TET

where
a2 2 -1, B B2 B 2
O1p == hy | fg — kg wp, —v Curlwh”O,T + Z hr llpy, — )‘hHO,F'
FE]'—}LT(E)

Proof. Using the definition of the functional E1 (c¢f. (3.14)), the identity (3.2), the fact that pP|p €
Py(F) for each F € F;,(X), and the characterisation of IIP given in (3.1), we find that

E (Vw — IB(Vw)) = /QB(fB —rg wy, — v curlwy) - (Vo — I} (Vw)) (3.19)

+ ((Vw —TI2(Vw)) -n,p8 — Ap)s .
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In turn, the fact that Vw € H!(Qp) guarantees that (Vw — IIP(Vw)) - n € L?(X), and hence
(V0 IR(Tw) mgf = s = 3 / (Vo = (V) - = M),
FeFn(
which, together with (3.19), gives

E(Vw - II}(Vw)) = > / fs — wglup — v curlw}) - (Vw — TP (Vw))
TeTP

+ > /w 12 (Vw)) - n(pl — An).

FEF, ()

In this way, employing the Cauchy-Schwarz inequality, and the approximation properties of HE given
in Lemma 3.1, we deduce from the above expression that

|E1(Vw — I1; (Vw))|

o
B!
——
ol

{z Ry — n v curlwBlor + 3 helf -

TETB FeFn(%)
which yields (3.18) and completes the proof. O

Lemma 3.9 There exists C > 0, independent of meshsizes, such that for each 3 € H'(Qp) there holds

1
3
|E1 (curl(8 —1;8))| < C{ > @%,T} 181,05 (3.20)
TeTy
where
é%,T = hi | curl{ fg — Hgl uy —v Curlw%]’”%j + Z hell[(fs — H;“E — veurlwy) x n]]H(Q),F
FeFnr(0B)

+ Z he|l(f B—nBluE—ucurlwh)anOF
FeFnr(p)

+ Z he|l(fg — ﬁgl uP — v curlw?) x n — curls()\h)Hg’F.
FG]‘—h’T(E)

Proof. Given 3 € H'(Qp), we deduce from (3.14) and the identity div{curl(3 —IZ3)} = 0, that
Ex(curl(8 - 120)) = [ (fy— " ufl — v curlw}) curl(  129) — (eurl(8 - 136) - . M)
Qp
In turn, thanks to the identities given in [29, Chapter I, eq. (2.17) and Th. 2.11], we find that

(curl(8 —T1;’8) -, Ap)s = (curly(\), B -1 8)s = Z /Curl (An) - (B -T13B),

FeFn(

which gives

E;(curl(3—123 Z / fs—rgup —veurlwy)-curl(B-1;8) — Z /curls()\h)-(ﬁ—lg,@).

TeTB FeF ()’

11



Now, integrating by parts in the first term on the right hand side of the last equation, we obtain

E)(curl(8 —I¥B)) = — Z /Tcurl{fB — kgtup — v curlwp} - (B - I;8)

TeT,?

t Z /F[[(fB—'iBlul;?—chrle) Xn]].(I@_IEIg)

FeF,(QB)

(3.21)
b [ el v curlwf) xn) - (8- 130)
FeF,(Tp) " I
+ Z /{(fB—ﬁgluE—ycurle) x n —curl,(\y)} - (B —123).
Fer(m)’F
Applying Cauchy-Schwarz inequality, Lemma , and the uniform boundedness of the number of
tetrahedra of the macro-elements Ag(7) and Ag(F), we deduce from (3.21) that
|E1(curl(8 —I28))| < Z {h%” curl{ fg — /igl up —v curle}HaT
TeT,?
+ > helll(fs - mg' g — v eurlwp) x ][
FeFn ()
+ D hell(fs — kgt g — v curlw)) x nlf
FeFp,r(TB)
1
2
bX el - ! - v curluf) xn - curl. () B b 1810
FeFnr(%)
which implies (3.20) and ends the proof. O

The following Lemma concludes the upper bound for ||Eq|/g, (diviQp)'-

Lemma 3.10 Assume that there exists a convex domain Zg such that Qg C =g and I'g C 0=g.
Then, there exists C1 > 0, independent of meshsizes, such that

1
~ 2
1 E1 ([ g diviop)y < 01{ Z @123,5[’} ;

TeT?
where (:)QB’T = (:)%T + ég,T’ that is
Obr = Wi |l — wp uf, — v curlwP|§ 7 + W7 || curl{f — g’ ul — v curlw} 3 7
+ Y helll(fe - rp'uf — v curlw]) x n]|3
FeF, r(0B)
+ Y hell(fs gt up — v curlw))) x n|f
FeFnr(Ts)
+ Z hp {||(fB — kgt up — v curlwp) x n — curls()\h)HaF + P = A 3F}
FE‘F}L,T(E)
Proof. It follows from (3.18), (3.20), and the stability of the Helmholtz decomposition (3.16). O
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3.3.3 Upper bounds for ||Ez||¢,(curt;0s)y and ||Es|la, d@iviop)

We first establish the upper bound for ||E3||gr, (diviap) > Which is basically a “mirror reflection” through
> of Lemma

Lemma 3.11 Assume that there exists a conver domain =p such that Qp C ZEp and I'p C 0=p.
Then, there exists C's > 0, independent of the meshsizes, such that

1
2
1 E3 |l 1y (diviop) < 03{ Z 92D,T} -

TeTP
where
Fa -1, D -1, D
@2D,T = W7 || fp — kp' up ”%,T + h% | curl{fp — xp, uh}Hg,T
-1, D 2 -1, D 2
+ Z he|l(fo — kp wp) xnlll5r + Z hell(fo — kp ui) x nlg F
FeFnr(QB) FeFnr(I'p)
+ > we{ith - sp ul) x = curl (IR £ + 19D = Al r -
FE.Fh,T(E)
Proof. It proceeds exactly as in the proofs of Lemmas 3.8, , and , by replacing Qg, I'g, and
Hp(div; Qp) by Qp, I'p, and Hp(div; Qp), respectively. We omit further details. O
The upper bound for ||Ea|fg,(curl;0y) i provided next. Indeed, the derivation of this bound hinges
on the Helmholtz decomposition given in Lemma 3.5, integration by parts, and the approximation
properties of the Clément operators [ }f? and N}, established in Lemmas and 3.3, respectively.

Lemma 3.12 There exists Co > 0, independent of the meshsizes, such that

1
2
B2 [[Hg(curtop)y < Cz{ > 6%1} : (3.22)

TeT?

where

Ohp = Wl —curlufliy + 3 he{lul xnllde + [l nllde )
FeFnr(2B)

Proof. Given zp € Hy(curl;Qp), we know from Lemma that there exist ¢ € H{(p) and
x € H}(9p), such that
zp = ¢ + Vx in Qp,

and
lellnos + [Ixllos < Cllzsllcurl,os- (3.23)

Next, employing the operators IE’ and N}, defined in §3.1, we introduce the following discrete Helmholtz
decomposition
zi, = Naly) + VI (0),

which clearly belongs to HE’O. In this way, and recalling from (3.15) that Eo(2P) = 0, it follows that
Ey(zp) = Ea(2zp — 2;) = Ea(p — Ni(9)) + Eo(V(x — ;)
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from which, according to the definition of Eqo (¢f. (3.14)), we find that

Es(z5) = v /Q uf - curl(p — Na(g)) — v /Q WB (o~ Nalp)) — v / WP V(x — ().

Qp

Then, integrating by parts on each T, and noting that divwp is zero on T' (cf. (2.6), (2.7)), we have

= Y v [t} (o= Niw) = X v [ b o= Nile)

TeTP TeTE
S /[[uhxn]] (e-Nip) - 3 /ﬂwh n]- (x - B ().
FeFnr(0B) FeF,(2B)

In this way, applying Cauchy-Schwarz inequality, the approximation properties of I],? and N}, given

in Lemmas and 3.3, respectively, the fact that the number of tetrahedra of the macro-elements
Ap(T) and Ag(F) is uniformly bounded, and the stability estimate (3.23), we get (3.22) and finish
the proof. O

We end this section by concluding that the reliability of ©, that is the upper bound in (3.8), is a
straightforward consequence of Theorem and Lemmas and -

3.4 Efficiency

We now devote our attention to the derivation of upper bounds depending on the actual errors asso-
ciated to the local indicators on each subdomain. For clarity of the analysis we will restrict ourselves
to piecewise polynomial forcing terms fg and fp, but we remark that if they are otherwise sufficiently
smooth, the error committed from suitable polynomial approximation would produce additional higher
order terms in (3.8), explaining the eventual appearance of h.o.t in that inequality.

First, and thanks to the incompressibility condition in Qp (respectively Qp), one has that
Idiv g o < Jus —w)llavr  and  [ldivegfor < [lup — ) faiv,r- (3.24)

The remaining terms in 6%,T and @%,T can be treated very much in the same way as done in [23,

,27], where the analysis is based on inverse inequalities found in [18], together with the localisation
technique based on tetrahedron-bubble and facet-bubble functions [33]. Such a theory requires further
notation and preliminary results collected in what follows.

Given T € Ty, and F € F(T), let ¢ and 9 denote tetrahedron-bubble and face-bubble functions,
respectively (see [32, egs. (1.4) and (1.6)]), which satisfy:

i) ¢ € Py(T), supp(¢or) CT, pr =00n 0T, and 0 < ¢y <1in T.

ii) p|r € P3(T), supp(¥r) Cwp :=U{T" € T, : F € F(T')}, r =00n OT\{F}, and 0 < ¢p < 1

in wp.

In addition, there exists an extension operator L : C(F) — C(T) that satisfies L(p) € Py(T") and
L(p)lr =p Vp € Py(F), for a given k > 0 (see [31]). The vectorial counterpart of L will be denoted
L. Moreover, the following properties hold (where a proof can be found in [31, Lemma 4.1]).
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Lemma 3.13 Given k € NU{0}, there exist c1, ca, c3 > 0, depending only on k and the shape reqularity
of the triangulations, such that for each T € T and F € F(T), there hold

1/2
lall27 < erllvy? a3y Vg€ Pu(T),

Ipl2 p < c2llvi’pl2 Vo€ Pul(F), (3.25)

N

1/2
> L) 2 r < eshrllpldy Vo e Pu(F).

The following inverse estimate is also required (see a proof in [18, Th. 3.2.6]).

Lemma 3.14 Letl,m € NU{0} such thatl < m. Then, there exists c4 > 0, depending only on k,l,m
and the shape regularity of the triangulations, such that for each T € Ty there holds

(lmr < cahp™lahr  Va € Pu(T). (3.26)

Finally we give two technical lemmas before tackling the derivation of the required upper bounds.

Lemma 3.15 Let ¢;, € L%(Q) be an element-wise polynomial of degree k > 0, and let ¢ € L2(Q2) be
such that curl(¢) = 0 in Q. Then, there exist c5,ce > 0, independent of the meshsize, such that

W |l eurl(C)l5r < e lI¢=Culldr VT € Th, (3.27)
he [[[€h x n]

or < o6llC—Culldw, — YF€Fn(), (3.28)
where the set wp is given by wp := U{T" € T, : F € F(T")}.

Proof. See [23, Lemmas 4.9 and 4.10, respectively]. O

Lemma 3.16 Let ¢;, € L%(Q) be an element-wise polynomial of degree k > 0, and let ¢ € L2(Q2) be
such that div(¢) = 0 in Q. Then, there exist c7,cs > 0, independent of the meshsize, such that

Wl div(C) g r < erll¢ = Culldr VT €T, (3.29)
hi lI¢n - nllg r < esll¢ = Culldw, Y F € Fa(Q). (3.30)

Proof. Indeed, applying the first inequality given in ( ), using that div(¢) = 0 in £, integrating
by parts, and then employing the Cauchy-Schwarz inequality, we get

ldiv(C)I3z < e vy divC)lgr = @ /TwTdiV(Ch) ~div (¢, =€) 1)
3.31

<a /T(C— Cn) - V(r div(Cy)) < 1€ = Cpllor V(W7 div(¢p))llo,r-
Now, using the inverse inequality ( ), and the fact that 0 < ¢y <1 in T, we find that

IV (7 div(C)) o < chpt |[9r div(Cy)llor < chgpt [|div(¢,)

which together with (3.31) gives (3.29). The proof of (3.30) corresponds to a slight adaptation of the
proof of [0, Lemma 4.6], which makes use of (3.29). O

‘07T7

After these preliminary results, we are ready to give local efficiency estimates for several terms
associated to the interface.
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Lemma 3.17 There exist constants ¢; > 0, i € {9,10,11}, independent of the meshsizes, such that

(a) hrlpl —Aullg e < C9{HPB — o187 + W7 llus — wi 1§ 1 + hElIX = )‘hH(Q),F}7 for all F € Fi(%),
where Tr is the tetrahedron of 723 having F as a face,

(b) hFth )‘hHOF < ClO{HPD py, ||OTF+h |up —u ||(%,TF+hFH)‘_)‘hHg,F}f for all F € F (%),
where Tr is the tetrahedron of 771D having F' as a face,
(¢) hpllug - n —up - n|ff 5
< Cll{H'U/B P[5 7, + PNl div (up — w)[§ 7 + up — wp|§ 7, + A7 l|div (up — uh)”OTF}
for all F € Fp(X), where Tk is the tetrahedron of 7;LB U 7;LD having F as a face.

Proof. Estimates (a) and (b) can be obtained by adapting the proof of [5, Lemma 4.12], whereas (c)
follows after a slight modification of the proof in [26, Lemma 3.17] (see also [, Lemma 4.7]). O

Lemma 3.18 There exist constants ¢; > 0, i € {12,13}, independent of the meshsizes, such that

(a) Z he||(f; mB uP — v curlw?) x n — curl, ()‘h)HOF
FeF, (%)

<end > (s —uflBa, + leurlws — i3, ) + 1A= Ml s ¢
FE.F}L(E)
(b) > hel(fp - rp'uk) x n— curl,(Ay)[I§ 5

FE.Fh )

< ci3 Z lup —ui 5,7 + 1A~ )‘h”l/QE
FeFn(%)
where, given F € F,(X), Tr is the tetrahedron of 771]3 (respectively 723) having F as a face.

)
Proof. The proofs of (a) and (b) follow after a straightforward adaptation of that of [24, Lemma 20],
and recalling from [12, Lemma 3.6] that the operator curly is bounded. O

We remark that estimates (a) and (b) provided by the previous lemma are the only nonlocal bounds
of the efficiency analysis. However, under an additional regularity assumption on A we are able to
prove the following local bounds.

Lemma 3.19 Assume that \|p € H'(F), for each F € F,(X). Then there exist c14,c15 > 0, indepen-
dent of the meshsizes, such that for each F € Fp(X) there hold

he|(fs — ngl uE —v curlw],f) X n — curls()\h)HaF

< cu{llus — uf |3z, + | eurlws — w3z, + helleurlA = M) - }
and

hell(fo = w5 uf) x n = el ()R # < ens{lup = uP IRz, + kel eurlyh = M) 3 - |,

where Tg is the tetrahedron of 7;LB (respectively 7;1D) having F' as a face.
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Proof. The derivation of these estimates follows as in the proof of [24, Lemma 21]. U

The following three lemmas provide the corresponding upper bounds for the remaining terms defin-
ing @%’T (cf. (3.5)) and @2D7T (cf. (3.6)).

Lemma 3.20 There exist positive constants ¢;, i € {16,17,18,19}, independent of the meshsizes,
such that

() W3l eurl{fiy — ' uf} — v curlwP} 3, < erofflup —uf 3 + | curliws — wP)3 ),
for all T € ’7;LB.

—1 —2
(b) 15wl — v curlwl 3 < exr{ s — w3 + ]| curl(ws —wP) 2. +hr2lps ~ P13
for all T € 7;1B.

(©) hell[(fs — 5" uff = v curlwf) x nl3r < cis{llup — ufBy, + | curliws - of)R, }.
for all F € F,(QB), where wp :== UW{T' € T,B: F € F(T")}.

(@) hell(fo 5t uf —v curlwl) xnlld p < e {lun —ulldz, + | curl(ws —wP)liz, +hot},
for all F € Fp(I's), where TF is the tetrahedron of 7;8 having F' as a face, and

B B B
hot = hpllug — w;|§ 7, + bl curliws — wi) I3z, + A7 llpe — 0316 75

Proof. Since curl(fg — rg' up — v curlwg) = curl(Vpg) = 0 in O, to derive (a) and (c) it suffices
to apply the estimates (3.27) and (3.28) (¢f. Lemma ), respectively, to

¢:=fg— kg up—veurlwg and ¢, = fz— kg uj — v curlwp. (3.32)
On the other hand, reasoning similarly as in the proof of [28, Lemma 5.14], we get
Ihllor = |1z — wp" up, — v curlwy|or

5 5 . 5 (3.33)
< o{llus — uf o + lleurlws — wflor + 7' Ips — phllor |-

from which, it is easy to deduce the estimate (b). For the proof of (d), we set ¢ and ¢, as in (3.32).
Given F € F(T') we denote xp := ¢, x n on F. Then, applying the second inequality given in
(3.25), and the extension operator L : C(F') — C(T'), we find that

2
Il r < e v xpldr = e /FwF Xp-(Cuxm)=cz | $rLixp)- (G xmn).
F

Now, integrating by parts, it follows that

YrL(xp) - ((pxn) = Cp-eurl(vr L(xp)) + / curl(¢,) - ¥r L(xp)-

Tk Tr Tr

Next, applying the Cauchy-Schwarz inequality, the inverse estimate ( ), and the preliminary bound
for [|eurl(¢y)llory (cf. (3.27)), we deduce that

Ixelde < e2{enliCuloms + 16 = Callo } bt Ior Lixe) oz (3:34)
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In turn, recalling that 0 < ¢¥p <1 in F, and employing the third inequality in ( ), we can write

orr < o5 il Ixellors - (3.35)

lor Lxp)llore < 107 Lixs)

Finally, using (3.35), the definitions of ¢ and {;, (¢f. (3.32)), the preliminary estimate (3.33), and the
fact that hp < hr,, we deduce from (3.34) that

1/2
B Ixellor < e {llus —ufllor, + || curliws - wf) oz, + hot},

where
hot := hi,llus —upllory + |l curl(ws — wi)llozpr + hrellps — pillozy
which gives (d), and ends the proof. O

Lemma 3.21 There exist ¢; > 0, ¢ € {20,21,22,23}, independent of the meshsizes, such that

() B3leurl{fy - sp ul}3y < exnllup —uPl3, VT eETP,
-1
) Blfo—sp uRlRe < e {Mhllun — PRy + leo - PRIR,} YT TP,
— D D
(©  hell —rp ul) xnllE e < enllup — w3,

for all F € Fy(Qp), where the set wr is given by wp = U{T" € TP : F € F(T")},

@ el — p uP) x il p < e {llup —uP |3, + oo~ Pl r, + hot)
for all F € Fp(T'p), where T is the tetrahedron of 771D having F' as a face, and

D

B
ho.t == b, lup — up B 7, + b3 lps — PR3 1,

Proof. Thanks to the fact that curl(fy — kp' up) = curl(Vpp) = 0 in Qp, (a) and (c) can be
obtained applying (3.27) and ( ), respectively, to ¢ = fp — 551 up and §;, := fp — /4,51 uP. The
remaining estimates follow analogously to the proofs of (b) and (d) in Lemma . O

_ We next turn to the derivation of local efficiency estimates for the residual expressions defining
62 ..

Lemma 3.22 There exist ¢; > 0,1 € {24,25,26}, independent of the meshsizes, such that

(a) A3 wf — curluB|3 < o {flup — uflor + b Jlws - wFor},

() helluf xnllfr < e > {lus—uflir + phlws - PR} VF e Fu(@m),
TCwg

B

(©)  hrllwy n]lfp < collws — @il

O,wp *

Proof. Regarding (a), let us denote xp = wP® — curlu? in a generic T € Tj,. Applying the first

estimate of (3.25) to x7, and then using that curlup = wp in OQp, we find that
1/2
el < e}l = o1 [ drxe-curlun =) = e [ vrxr- wn = o).
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Next, integrating by parts in the first term on the right hand side of the last identity, and recalling
that ¢ vanishes on 0T, we obtain

IXzller < e /T(UB —up) - eurl(¥r xr) — e /TwaT-(wB—wE)- (3.36)

Then, applying Cauchy-Schwarz inequality and (3.26), we deduce from (3.36) that

Ixrlr < elvrxrlon{hr" lus - uf

ox + llws — wRllor }.

In this way, using that 0 < ¢7 < 1in T, we get

hrrlor < efflun — uflor + hr lws - of for |-

which gives (a). Estimate (b) can be derived by adapting the arguments in the proof of [2, Lemma
4.15]. Finally, since div(wp) = div(curlug) = 0 in Qp, for the derivation of (c), it suffices to apply
(3.30) to ¢ := wp and ¢, == w?. O

We end this section by observing that the term Ap ||\ — Ah||%, r appearing in Lemma (items (a)
and (b)), is bounded as follows:

Yo bl =NllE e < RIA=MlGs < CRIA =Nl 2x
Fe]:h(Z)

Therefore the efficiency of © is a direct consequence of (3.24) and Lemmas -

4 Numerical results

In this section we provide two computational tests aimed at illustrating the properties of the estimator
O introduced in §3.2. All linear systems are solved with the distributed multifrontal direct solver
MUMPS.

Example 1.

For our first test we design a mesh convergence example using two sets of closed-form solutions, and
performing uniform and adaptive mesh refinement. The Darcy and Brinkman sub-domains consist
of two boxes Qp = (—0.5,0.5)3, Qp = (—0.125,0.125)? x (—0.4,0.4). The model parameters are
/f]gl = 10, K:Bl = 50, v = 0.01. The convergence of the method is assessed by computing errors

between the following manufactured smooth exact solutions

—37sin(mz) cos(mag) cos(mrs)

wp(z1,22,23) = | 3mcos(mxy)sin(mway) cos(mrs)
0
cos(mxy) sin(mxs) sin(mxs)
u(ry,x9,x3) = sin(mxy) cos(mxe) sin(mxs) |,

—2sin(mxy ) sin(mxy) cos(mxs)
p(x1, 22, x3) = sin(mxy)sin(rzy) sin(nes),

up = U|QB, up = uqQy, PB :p’937 PD :p|QD7 A :p|27
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e(up) r(up) e(ws) r(ws) e(up) r(up) e(ps) r(ps) e(pp) 7(pp)

e(A) r(\) eff

Smooth solution, uniform mesh refinement

0.4501
0.2886
0.1732
0.1026
0.0536

0.0271
0.0174
0.0091
0.0057
0.0027

0.75
0.83
0.92
0.96

0.2592
0.1721
0.0990
0.0520
0.0261

- 27274
0.69 1.4933
0.73 0.8299
0.98 0.4901
0.98 0.2258

1.01
0.77
0.84
1.05

0.0401 - 0.2919
0.0067 3.00 0.1069
0.0029 1.11 0.0432
0.0015 0.75 0.0197
0.0008 0.92 0.0098

1.69
1.20
0.89
0.93

0.5829 - 0.4323
0.2783 1.25 0.4281
0.1739 0.81 0.4154
0.1079 0.95 0.4156
0.0636 0.94 0.4159

Smooth solution, adaptive mesh refinement

0.4501
0.2356
0.1420
0.0834
0.0504

0.0387
0.0217
0.0052
0.0025
0.0011

1.42
2.14
1.05
1.23

0.2743
0.1321
0.0771
0.0498
0.0213

- 6.1233
0.91 3.3016
0.71 0.7157
0.97 0.3849
0.98 0.2017

1.05
1.59
0.98
0.97

0.0168 - 0.2534
0.0084 0.97 0.0641
0.0048 0.91 0.0295
0.0012 1.32 0.0148
0.0006 1.00 0.0075

1.58
1.02
0.98
0.99

0.4406 - 0.4105
0.1911 1.70 0.4152
0.0799 1.15 0.4153
0.0304 0.95 0.4153
0.0162 1.03 0.4155

Singular solution, uniform mesh refinement

0.4501
0.2886
0.1732
0.1026
0.0536

0.5625
0.4738
0.4699
0.4401
0.4166

0.19
0.01
0.07
0.05

0.2842
0.2149
0.1559
0.1418
0.1177

- 2.7286
0.47 1.4939
0.42 1.1299
0.10 1.0879
0.19 0.6195

1.01
0.37
0.01
0.81

23178 - 8.2820
2.0032 0.21 6.5354
1.5432 0.49 5.3244
1.5081 0.03 5.3893
1.1758 0.16 1.9296

0.51
0.40
0.01
3.07

21328 — 0.2938
1.9781 0.16 1.2798
1.7503 0.06 0.6265
1.4556 0.15 1.8422
1.2903 0.19 0.0878

Singular solution, adaptive mesh refinement

0.4501
0.2343
0.1947
0.1501
0.1102

2.4180
1.1509
0.5920
0.1634
0.1020

1.09
0.94
0.97
0.93

0.8916
0.3537
0.1998
0.0891
0.0414

- 1.0916
1.55 0.2940
1.16 0.1262
1.11 0.0392
1.33 0.0231

2.48
0.96
1.05
0.84

1.1077 - 7.0585
0.6392 0.94 3.6865
0.2884 1.20 2.0058
0.0957 1.28 1.1960
0.0668 1.09 0.8638

0.91
0.97
0.92
0.95

1.4824

0.7290

0.6220 1.69 0.7123
0.3395 1.09 0.7267
0.1087 1.21 0.7355
0.0699 1.31 0.7234

Table 4.1: Test 1: error history and convergence rates achieved by the lowest-order method.

and their finite element approximations using a RTy — ND; — RTy — Py — Py — P family.

The domains are discretised into a series of nested uniform triangulations, where errors, experimental
convergence rates, and effectivity indexes will be defined as

e(u) :=||uB — uBp||div,op, €(wWB) = [[wB — wWBhL|lcurl,0p, €(UD):= |[[up — ups||div,0p -

e(p) == |lpB — PBAll0.28, €(PD) :=|IPD — PD},

e =

{le(un)]? + le(wn)]? + [e(up)]* + [e(pB)]* + [e(pp)]” + [e(N)]*}

|0,QDa 6()\) = ”)\ - )\hHI/Q,Za T() :

1/2
)

eff(0) :=

e

65

_ log(e(-)/é())
~ L log(N/N)’

with e and é denoting errors associated to two consecutive meshes of sizes h and B, and being associated
to methods having N and N degrees of freedom, respectively. The first two parts of Table
optimal convergence for all fields under either adaptive or uniform mesh refinement.

show

Secondly, we regard the same domains but manufacture an exact pressure that is singular near one

wall of Qp (the singularity being located at (x4, zp, x.) = (0,0, —0.55)):

p=((z1 — 24)? + (w2 — ) + (23 — 2.)?) "L + sin(7zy) sin(7xs) sin(mzs).
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Figure 4.1: Test 1. (a,b): zoom on the interface of two intermediate adapted meshes for the case
of high gradient pressure, generated with the adaptive method; (c,d): global velocity and Brinkman
vorticity obtained with a uniform refinement; and (e,f): global pressure computed with the adaptive
method in the case of a high gradient, and smooth pressure profile, respectively. In all figures we
represent only a part of {)p, for visualisation purposes.

We expect that the convergence is hindered by the lower regularity of the exact solution. This is
indeed evidenced in the third block of Table 4.1, where we see an oscillating effectivity index and a
very low convergence, especially so for the Darcy pressure and the Lagrange multiplier. The optimal
character of the error decay is however restored when we use an adaptive mesh refinement strategy
(see the last section of the table). We also confirm that the error indicator © performs well even if the
fluid viscosity v has a considerable variation (see Table 1.2). Intermediate adapted meshes and some
components of the approximate solution are displayed in Figure 4.1.

Example 2.

Next we turn to the simulation of the flow behaviour within a composite domain = (0, 2) x (0,0.2) x
(0.75). A smooth interface exists between the Darcy and Brinkman subdomains, where the Brinkman
part is on top (see related test cases in [1,4,9,13]). For this problem we assume a uniform current flow
on the x1—direction and the presence of gravity, so f = fp = (0.25,0,—0.1)T. In addition, we take
adimensional parameters specified as /{gl =1, v =0.01, and &51 = 8+4800n(x1,x2,x3), where n is the
sum of characteristic functions on 20 balls of radius 1E-4, located randomly in Qp and representing
obstacles of much lower permeability.

The boundary conditions are set as follows: on the face x1 = 0 we impose a unitary normal inflow
velocity ug - m = 1, on the bottom and top faces we set slip velocity conditions ug - = 0 and
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Smooth solution, Smooth solution,  Singular solution,  Singular solution,
uniform refinement adaptive refinement uniform refinement adaptive refinement

e eff e eff e eff e eff
v =0.01

2.8166  0.4323  6.1506 0.4105 9.2927  0.2938  7.8154 0.7290
1.5326  0.4281 3.3105 0.4152 7.2897  1.2798  3.9902 0.7123
0.8548  0.4154  0.7249 0.4153 5.9427  0.6265  2.1513 0.7267
0.5049  0.4156  0.3896 0.4153 5.9021 1.8422 1.2197 0.7355
0.2363  0.4159  0.2036 0.4155 2.7096  0.0878  0.8764 0.7234

v =10

2.8043 04149  6.1288 0.4092 9.8591 0.3372  6.9503 0.7248
1.4311 0.4291 3.4192 0.4083 6.0251 2.6394  3.7943 0.7496
0.7847  0.4107  0.7504 0.4107 5.5590  0.8520  2.0643 0.7250
0.5152  0.4197  0.4121 0.4113 4.4921 2.4083 1.0251 0.7394
0.2520  0.4103  0.2013 0.4171 3.0435 1.3107  0.8184 0.7254

Table 4.2: Test 1: total error decay and effectivity indexes achieved by the lowest-order method for
different values of the fluid viscosity.

up - n = 0 (for the Brinkman and Darcy boundaries, respectively), and on the remaining parts of
the boundary we do not force velocity nor pressure. On the interface we impose zero tangential
vorticity and the transmission conditions analyzed in the paper. We now use the method based on the
RT; — NDDy — RT; — P; — P; — Ps family, and a penalisation approach is used to impose zero-mean
value of the Brinkman pressure. In Figure we present the sketch of the domains and interface,
the obtained approximate solutions and snapshots of two adaptive meshes produced following the a
posteriori error estimator. All fields are well-resolved, even with coarse grids.
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