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Abstract. We introduce a residual error indicator for the edge finite element

approximation of the eigenmodes of the Maxwell cavity problem. By using the
known equivalence with a mixed problem we prove reliability and efficiency of

the error indicator. Numerical results confirm the optimal behavior of an

adaptive scheme based on the error indicator.

1. Introduction

The study of a posteriori analysis for the approximation of partial differential
equations is nowadays recognized as a fundamental tool when dealing with problems
with singular solutions [1, 30]. A posteriori analysis for eigenvalue problem arising
from partial differential equations is a more recent research field which is now
reaching its full maturity [29, 16, 17, 9, 11].

We consider the approximation of Maxwell’s eigenvalue problem with edge finite
elements. Our aim is to introduce a suitable a posteriori error indicator and to
show that it is equivalent to the error of the eigenfunctions. Since the error for
the eigenvalues can be bounded by the error of the eigenfunctions, our error indi-
cator provides an upper bound for the eigenvalue error as well. For simplicity, we
deal with simple eigenvalues; however, our analysis can be extended to multiple
eigenvalues and to clusters of eigenvalues in the spirit of [8].

A posteriori analysis for Maxwell’s equations is present in the literature mainly
for what concerns the source problem [21, 4, 24, 23, 13, 26, 12, 31]. To the best
of our knowledge, the eigenvalue problem has been considered only in [10] where
the reliability analysis is performed up to higher order terms (asymptotically in the
mesh size). Here, we improve the analysis by adding suitable (quite natural) terms
to the error indicator, thus avoiding the introduction of the higher order terms in
the error analysis. The reliability estimate shows that our error indicator yields
asymptotically an upper bound for the error in the eigenfunctions.

The main tool for the analysis consists of a mixed formulation equivalent (both at
continuous and discrete level) to the original problem. A superconvergence result,
presented in Lemma 9, is crucial for the proof of our main reliability estimate.

The outline of the paper is as follows: after recalling the Maxwell’s eigenvalue
problem in Section 2, we introduce the indicator and perform the main reliability
and efficiency analysis in Section 3; Section 4 contains the proofs of the main
auxiliary results. Finally, Section 5 reports on a numerical test confirming the
theoretical results and showing that the indicator can be successfully applied to
drive an adaptive scheme.
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2. Problem setting

Let Ω ⊂ R3 be an open bounded polyhedral domain with Lipschitz boundary ∂Ω
and let n be the outward normal unit vector. For the sake of simplicity we assume
that Ω is simply connected and that its boundary is connected.

The eigenvalue problem for the Maxwell system consists in finding ω > 0 and
E : Ω→ R3 with E 6= 0 such that

curl
(
µ−1 curlE

)
= ω2εE in Ω,

div (εE) = 0 in Ω,

E × n = 0 on ∂Ω.

Here E represents the electric field, while ε and µ are the electric permittivity and
the magnetic permeability, respectively. Assuming that the medium is homogeneous
and isotropic, ε and µ are positive constants; in such a case we can assume without
loosing generality that ε = µ = 1.

Before writing a variational formulation of the problem, we introduce the func-
tional setting we will use. Boldface characters will indicate vector valued functions
and the corresponding functional spaces. For a given domain D and p ≥ 1, Lp(D)
denotes the classical Lebesgue function space and Lp(D) := [Lp(D)]3. For positive
t, Ht(D) stands for the standard Sobolev space and Ht(D) := [Ht(D)]3. Moreover,
we introduce the following Hilbert spaces:

H1
0(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
,

H(curl; Ω) :=
{
v ∈ L2(Ω) : curlv ∈ L2(Ω)

}
,

H0(curl; Ω) := {v ∈ H(curl; Ω) : v × n = 0 on ∂Ω} ,

H0(curl0; Ω) := {v ∈ H0(curl; Ω) : curlv = 0} ,
H(div; Ω) :=

{
v ∈ L2(Ω) : div v ∈ L2(Ω)

}
,

H0(div; Ω) := {v ∈ H(div; Ω) : v · n = 0 on ∂Ω} ,

H(div0; Ω) := {v ∈ H(div; Ω) : div v = 0} ,

H0(div0; Ω) :=
{
v ∈ H(div0; Ω) : v · n = 0 on ∂Ω

}
.

We will use the following norms:

‖v‖21 := ‖v‖20 + ‖∇v‖20 ,

‖v‖2curl := ‖v‖20 + ‖curlv‖20 ,

‖v‖2div := ‖v‖20 + ‖div v‖20 ,

where ‖ · ‖0 denotes the norm of [L2(Ω)]d for any integer d ≥ 1; moreover, (·, ·) will
denote the inner product of [L2(Ω)]d. Finally, for domains D different from Ω, we
will denote by ‖ · ‖0,D and (·, ·)D the corresponding norm and inner product.

For ε = µ = 1, the variational form of the eigenvalue problem for the Maxwell
system reads as follows: find ω > 0 and E ∈ H0(curl; Ω) ∩H(div0; Ω) with E 6= 0
such that

(1) (curlE, curlF ) = ω2 (E,F ) ∀F ∈ H0(curl; Ω) ∩H(div0; Ω).

From the computational point of view, it is difficult to enforce the divergence free
constraint, hence usually the following form of the variational problem is preferred.
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Problem 1. Find ω > 0 and E ∈ H0(curl; Ω) with E 6= 0 such that

(curlE, curlF ) = ω2 (E,F ) ∀F ∈ H0(curl; Ω).

It is easy to check that the positive eigenvalues of Problem 1 are also eigenvalues
of the original equation (1). In addition to them, Problem 1 admits the eigenvalue
ω2 = 0 with eigenspace H0(curl0; Ω) = ∇

(
H1

0(Ω)
)
.

Let X h be a finite dimensional subspace of H0(curl; Ω); then, an approximation
of Problem 1 reads:

Problem 2. Find ωh > 0 and Eh ∈ X h with Eh 6= 0 such that

(curlEh, curlF h) = ω2
h (Eh,F h) ∀F h ∈ X h.

Sufficient conditions to guarantee that all the positive eigenvalues of Problem 2
are well separated from the vanishing one and that no spurious mode is generated
by the numerical scheme are introduced in [7]. These conditions are based on the
introduction of the following mixed formulation of (1) and on its finite element
counterpart. For ω > 0, let us denote λ := ω2, u := ωE and σ := − curlE/ω. No-
tice that, by definition, σ ∈ curl (H0(curl; Ω)) = H0(div0; Ω) (cf. [2, Theor. 3.17]).

Problem 3. Find λ ∈ R and (u,σ) ∈ H0(curl; Ω) ×H0(div0; Ω) with (u,σ) 6=
(0,0) such that

(2)
(u,v) + (curlv,σ) = 0 ∀v ∈ H0(curl; Ω),

(curlu, τ ) = −λ (σ, τ ) ∀τ ∈ H0(div0; Ω).

It is not difficult to check that the eigenvalues of Problem 3 are strictly positive
and that they coincide with the non vanishing eigenvalues of Problem 1, so that
Problem 1 and 3 are equivalent in the sense of [6, Prop. 11.2.1] (see also [7]).

Moreover, since any solution of Problem 3 satisfies ‖u‖20 = λ ‖σ‖20, normalizing an
eigenfunction of Problem 1 by imposing ‖E‖0 = 1 corresponds to normalizing that
of Problem 3 by ‖σ‖0 = 1.

Let M0
h be a finite dimensional subspace of H0(div0; Ω). Then, the discretization

of Problem 3 reads:

Problem 4. Find λh ∈ R and (uh,σh) ∈ X h ×M0
h with (uh,σh) 6= (0,0) such

that

(3)
(uh,vh) + (curlvh,σh) = 0 ∀vh ∈ X h,

(curluh, τh) = −λh (σh, τh) ∀τh ∈M0
h.

The equivalence of Problems 2 and 4 has been proved in [7, Theor. 2.1] under
the assumption that

(4) curl (X h) ⊆M0
h.

More precisely, all the solutions with positive frequencies ωh of Problem 2 corre-
spond to solutions of Problem 4 with the identifications λh = ω2

h, uh = ωhEh

and σh = − curlEh/ωh. Moreover, as in the continuous case, normalizing the
eigenfunctions of Problem 2 by ‖Eh‖0 = 1 corresponds to normalizing those of
Problem 4 by ‖σh‖0 = 1.

The compatibility condition (4) is generally obtained by defining M0
h exactly

equal to curl (X h). Let us remark that Problems 3 and 4 are introduced only for
the theoretical analysis, but not for the actual computations. In fact, Problem 2 is
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the one used in practice to compute the eigenvalues and eigenfunctions of Maxwell
equations. Therefore, the fact that it would not be easy to find an algebraic basis
of the space curl (X h) does not matter in practice.

We recall the standard family of finite elements that we are going to use in this
paper. Let {Th} be a regular family of partitions of Ω into a finite number of
tetrahedra. Let hK be the diameter of the element K ∈ Th and h := maxK∈Th hK .
We denote by Pk(K) the space of polynomials of degree at most k on K and by

P̃k(K) the subspace of homogeneous polynomials of degree k on K. For k ≥ 0 we
define

Nk(K) := [Pk(K)]3 ⊕ x× [P̃k(K)]3,

RTk(K) := [Pk(K)]3 ⊕ x P̃k(K),

where x = (x, y, z). Then, we set

X h := {vh ∈ H0(curl; Ω) : vh|K ∈Nk(K)} ,
Mh := {τh ∈ H0(div; Ω) : τh|K ∈RTk(K)} ,
M0

h := curl (X h) = {τh ∈Mh : div τh = 0} .
Spaces X h and Mh belong to the well-known families of edge and face spaces

introduced by Nédélec in [22] and Raviart–Thomas in [25], respectively. Therefore,
they are often called Nédélec and Raviart–Thomas spaces. We remark that the
characterization of M0

h in the last line above is well known (see [22]) and it is
a consequence of the commuting diagram property. Moreover, the compatibility
condition (4) is satisfied by definition. These finite element spaces provide ap-
proximations of H0(curl; Ω) and H0(div; Ω). We recall here the properties of the
corresponding interpolation operators which will be used in the following.

For t > 1/2 and p > 2,

IE :
{
v ∈ H0(curl; Ω) ∩Ht(Ω) : curlv ∈ Lp(Ω)

}
→ X h

denotes the interpolant operator for the Nédélec spaces, which enjoys the following
approximation properties (see, e.g. [6]): for any v ∈ Hm(Ω) with 1 < m ≤ k + 1

‖v − IEv‖0 ≤ Ch
m |v|Hm(Ω) .

Moreover, for 1/2 < t ≤ 1 and p > 2,

‖v − IEv‖0 ≤ Ch
t
[
|v|Ht(Ω) + ‖curlv‖Lp(Ω)

]
.

Analogously, the interpolant operator for the Raviart–Thomas spaces is defined
for p > 2 as

IF : H(div; Ω) ∩ Lp(Ω)→Mh.

This interpolant is also well defined for any τ ∈ Ht(Ω) with 1/2 < t ≤ k + 1 and
the following estimate holds true:

‖τ − IF τ‖0 ≤ Ch
t |τ |Ht(Ω) .

It is well known that the interpolation operators defined above satisfy the following
commuting diagram property for any u ∈ H0(curl; Ω)∩Ht(Ω) with curlv ∈ Lp(Ω)
(t > 1/2, p > 2):

curl (IEu) = IF (curlu).

The following a priori error estimates for Problems 3 and 4 follow from [5,
Theor. 2 & 3] together with this lemma. From now on, for simplicity, we assume
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that λ is a simple eigenvalue; generalizations to multiple or clusters of eigenvalues
can be performed following the analysis of [8].

Proposition 1. Let λ be a simple eigenvalue of Problem 3 and (u,σ) an associated
eigenfunction with ‖σ‖0 = 1. Then, there exists a solution (λh,uh,σh) of Prob-
lem 4 with ‖σh‖0 = 1, such that λh approximates λ as h goes to zero. Moreover, if
the sign of (uh,σh) is chosen so that (σ,σh) > 0, then (uh,σh) is also an approx-
imation of (u,σ). In such a case, there exists a positive constant C independent of
h such that

‖u− uh‖0 + ‖σ − σh‖0 ≤ C inf
τh∈M0

h
vh∈Xh

(
‖σ − τh‖0 + ‖u− vh‖curl

)
,

|λ− λh| ≤ C
(
‖u− uh‖20 + ‖σ − σh‖20

)
.

To end this section, we recall that it has been also proved in [5] that this finite
element method does not introduce spurious eigenvalues. As a consequence of this,
for h small enough, except for λh, all the other eigenvalues of Problem 3 are well
separated from λ. More precisely, the following result holds true.

Proposition 2. Let us enumerate the eigenvalues of Problems 3 and 4 in increasing
order as follows: 0 < λ1 ≤ · · · ≤ λi ≤ · · · and 0 < λh,1 ≤ · · · ≤ λh,Ih , with

Ih := dim(M0
h). Let us assume that λJ is a simple eigenvalue of Problem 3. Then,

there exists h0 > 0 such that

|λJ − λh,i| ≥
1

2
min
j 6=J
|λJ − λj | ∀i ≤ Ih, i 6= J, ∀h < h0.

3. A posteriori error analysis

In this section, we introduce an error indicator valid for Problem 2 and show
how it can be interpreted as an indicator for the mixed formulation of Problem 4.

Let us consider a solution (ω,E) of Problem 1 with ω > 0 and ‖E‖0 = 1. Let
(ωh,Eh) be the solution of Problem 2 with ‖Eh‖0 = 1 that approximates (ω,E).
In particular, we assume that the sign of Eh has been chosen so that (Eh,E) > 0.

The local error indicators are defined for each K ∈ Th as follows:

(5)

µ2
K := h2

K

∥∥Eh − curl
(
curlEh/ω

2
h

)∥∥2

0,K
+ h2

K ‖divEh‖20,K

+
1

2

∑
F∈FI(K)

[
hF
∥∥[[
(
curlEh/ω

2
h

)
× n]]

∥∥2

0,F
+ hF ‖[[Eh · n]]‖20,F

]
,

where FI(K) denotes the set of the inner faces of the element K, hF the diameter
of F , [[·]] the jump of a quantity across and inner face F and n a unit vector normal
to F . Then, the global estimator is defined by

µ2 :=
∑

K∈Th

µ2
K .

Due to the equivalence of the original Maxwell eigenvalue problem with the
mixed formulation presented in the previous section, the analysis of reliability and
efficiency of this error indicator will rely on studying the same properties of an error
indicator for Problem 4.

Let (λ,u,σ) be a solution of Problem 3 with ‖σ‖0 = 1 and hence ‖u‖20 = λ

and let (λh,uh,σh) be a solution of Problem 4 with ‖σh‖0 = 1, ‖uh‖20 = λh and
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(σ,σh) > 0. Thanks to the compatibility condition (4), the second equation of
(3) implies that curluh = −λhσh; hence, from the first equation in (2), (u,uh) =
− (curluh,σ) = λh (σh,σ) > 0, too.

For each K ∈ Th, we define the local error indicators for Problem 4 by

η2
K := h2

K ‖uh + curlσh‖20,K + h2
K ‖divuh‖20,K

+
1

2

∑
F∈FI(K)

(
hF ‖[[σh × n]]‖20,F + hF ‖[[uh · n]]‖20,F

)
and the corresponding global error estimator by

η2 :=
∑

K∈Th

η2
K .

We observe that due to the equivalence between Problems 2 and 4, the following
relations hold true:

(6) µ2
K =

1

λh
η2
K ∀K ∈ Th and µ2 =

1

λh
η2.

The first step of our a posteriori error analysis will be to show that the estimator
η yields asymptotically an upper estimate for the error ‖u− uh‖0 + ‖σ − σh‖0.

Theorem 3. Let (λ,u,σ) and (λh,uh,σh) be solutions of Problems 3 and 4, re-
spectively, such that the latter approximates the former as h goes to zero. Then,
there exist ρ(h) tending to zero as h → 0 and two positive constants C1 and C2

independent of the mesh size such that

‖u− uh‖0 + ‖σ − σh‖0 ≤ C1η + C2ρ(h)
(
‖u− uh‖0 + ‖σ − σh‖0

)
.

Proof. In order to estimate the first term, we introduce the following Helmholtz
decomposition of u − uh (see, e.g., [2, Theor. 3.12]): there exist α ∈ H1

0(Ω) and
β ∈ H(curl; Ω) ∩H0(div0; Ω) such that

(7) u− uh = ∇α+ curlβ.

Then, we have that α ∈ H1
0(Ω) satisfies

(∇α,∇ψ) = (u− uh,∇ψ) ∀ψ ∈ H1
0(Ω),

whereas, thanks to [2, Cor. 3.16], ‖β‖0 ≤ C ‖curlβ‖0. Moreover, there exists
t > 1/2 such that β ∈ Ht(Ω) and ‖β‖Ht(Ω) ≤ C ‖curlβ‖0, too (see [2, Prop. 3.7]).

Let αh be the piecewise linear and continuous Scott-Zhang interpolant [27] of α
on the mesh Th that vanishes on ∂Ω. Taking into account the first equations from
(2) and (3) and the fact that ∇αh ∈ X h, we have that

‖∇α‖20 = (u− uh,∇α) = − (uh,∇α) = − (uh,∇(α− αh))

=
∑

K∈Th

[
(divuh, α− αh)K − (uh · nK , α− αh)∂K

]

≤
∑

K∈Th

‖divuh‖0,K ‖α− αh‖0,K +
1

2

∑
F∈FI(K)

‖[[uh · nK ]]‖0,F ‖α− αh‖0,F

 ,
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where nK denotes the outer unit normal to ∂K. Hence, standard estimates for the
Scott-Zhang interpolant lead to

(8) ‖∇α‖20 ≤ C
∑

K∈Th

h2
K ‖divuh‖20,K +

1

2

∑
F∈FI(K)

hF ‖[[uh · nK ]]‖20,F

 ≤ Cη2.

Let us now consider the second term in the Helmholtz decomposition. Integrating
by parts and using the second equation in (2) and the fact that curluh = −λhσh

(which in turn follows from the second equation in (3) and (4)), we obtain

(9)
‖curlβ‖20 = (u− uh, curlβ) = (curl (u− uh) ,β)

= (λ− λh) (σ,β) + λh (σ − Phσ,β) + λh (Phσ − σh,β) .

Here and thereafter, Ph : H0(div0; Ω) → M0
h is the L2(Ω)-orthogonal projec-

tion onto M0
h which satisfies the following approximation property for all τ ∈

H0(div0; Ω) ∩Ht(Ω) with 0 < t ≤ 1 [10, Lemma 3.2]:

(10) ‖τ − Phτ‖0 ≤ Ch
t ‖τ‖Ht(Ω) .

For the first term on the right-hand side of (9), we use Proposition 1, the fact
that ‖σ‖0 = 1 and the bound for ‖β‖0 to write

(λ− λh) (σ,β) ≤ C
(
‖u− uh‖20 + ‖σ − σh‖20

)
‖curlβ‖0 .

For the second one, we proceed as follows:

λh (σ − Phσ,β) = λh (σ − Phσ,β − Phβ) ≤ λh ‖σ − Phσ‖0 ‖β − Phβ‖0
≤ λh ‖σ − σh‖0 Ch

t ‖β‖Ht(Ω) ≤ Ch
t ‖σ − σh‖0 ‖curlβ‖0 ,

where we have used that ‖σ − Phσ‖0 ≤ ‖σ − τh‖0 for all τh ∈M0
h and the bound

for ‖β‖Ht(Ω).

For the third term, we use a superapproximation property for ‖Phσ − σh‖0 that
we will prove in Section 4 (see Lemma 9) and the bound for ‖β‖0 again:

λh (Phσ − σh,β) ≤ ρ(h)
(
‖u− uh‖0 + ‖σ − σh‖0

)
‖curlβ‖0 .

Thus, inserting the last three inequalities in (9), we obtain

‖curlβ‖0 ≤ Cρ(h)
(
‖u− uh‖0 + ‖σ − σh‖0

)
and, combining this with (7) and (8),

(11) ‖u− uh‖0 ≤ Cη + Cρ(h)
(
‖u− uh‖0 + ‖σ − σh‖0

)
.

Now, let us estimate ‖σ − σh‖0. By definition, divσ = divσh = 0 in Ω. Hence,

applying [2, Theor. 3.17 and Cor. 3.19], there exists w ∈ H0(curl; Ω) ∩H(div0; Ω)
such that

σ − σh = curlw in Ω

with

(12) ‖w‖curl ≤ C ‖σ − σh‖0 .
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Then, for any vh ∈ X h, from the first equations in (2) and (3) we have

(13)

‖σ − σh‖20 = (σ − σh, curlw)

= (σ − σh, curl (w − vh)) + (σ − σh, curlvh)

= (σ − σh, curl (w − vh))− (u− uh,vh) .

Next, we construct vh using the interpolant operator introduced in [26, Theor. 1].
In what follows we recall its definition and some of its properties. Let X 0

h :=
{vh ∈ H0(curl; Ω) : vh|K ∈N0(K)} be the lowest-order Nédélec space. There ex-
ists an operator Πh : H0(curl; Ω) → X 0

h such that for every w ∈ H0(curl; Ω)
there exist ϕ ∈ H1

0(Ω) and z ∈ H1
0(Ω) which satisfy w −Πhw = ∇ϕ + z and the

following estimates for all K ∈ Th:

(14)
h−1
K ‖ϕ‖0,K + ‖∇ϕ‖0,K ≤ C ‖w‖0,ωK

,

h−1
K ‖z‖0,K + ‖∇z‖0,K ≤ C ‖curlw‖0,ωK

.

Here and thereafter ωK is the union of the elements which share at least one vertex
with K. Notice that as a consequence of (14), ‖Πhw‖0 ≤ C ‖w‖curl.

Let us set vh = Πhw in (13) and bound separately the two terms in the last
line. First, integration by parts and the first equation of (2) lead to

(σ − σh, curl (w − vh)) = (σ − σh, curl z)

= − (u, z)−
∑

K∈Th

(curlσh, z)K +
1

2

∑
F∈FI(K)

([[σh × n]], z)F


= (uh − u, z)−

∑
K∈Th

(uh + curlσh, z)K +
1

2

∑
F∈FI(K)

([[σh × n]], z)F


and hence

|(σ − σh, curl (w − vh))| ≤ ‖u− uh‖0 ‖z‖0

+
∑

K∈Th

‖uh + curlσh‖0,K ‖z‖0,K +
1

2

∑
F∈FI(K)

‖[[σh × n]]‖0,F ‖z‖0,F

 .
From (14), using standard trace estimates and (12), we infer

‖z‖20,F ≤ C
(
h−1
F ‖z‖

2
0,K + hF ‖∇z‖20,K

)
≤ ChF ‖curlw‖20,ωK

= ChF ‖σ − σh‖20,ωK
,

whereas

‖z‖0,K ≤ ChK ‖curlw‖0,ωK
≤ ChK ‖σ − σh‖0,ωK

.

Hence,

(15)

|(σ − σh, curl (w − vh))| ≤ C ‖σ − σh‖0

h ‖u− uh‖0

+
∑

K∈Th

h2
K ‖uh + curlσh‖20,K +

1

2

∑
F∈FI(K)

hF ‖[[σh × n]]‖20,F

1/2
 .
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To bound the second term in the last line of (13), we use the fact that vh =
Πhw ∈ X 0

h ⊂ X h and (12) to write

|(u− uh,vh)| ≤ ‖u− uh‖0 ‖Πhw‖0
≤ C ‖u− uh‖0 ‖w‖curl ≤ C ‖u− uh‖0 ‖σ − σh‖0 .

Putting together the last inequality with (13), (15) and (11), we arrive at

‖σ − σh‖0 ≤ Cη + C ‖u− uh‖0 ≤ Cη + Cρ(h)
(
‖u− uh‖0 + ‖σ − σh‖0

)
which allows us to conclude the proof. �

In what follows, we prove the efficiency of the local indicators ηK .

Theorem 4. There exists a positive constant C such that the following bounds hold
true for any K ∈ Th:

(16)
hK ‖divuh‖0,K ≤ C ‖u− uh‖0,K ,

hK ‖uh + curlσh‖0,K ≤ C
(
hK ‖u− uh‖0,K + ‖σ − σh‖0,K

)
.

Moreover, for any inner face F , let ωF denote the union of the two tetrahedra
sharing this face. Then, there exists another positive constant C such that

(17)
h

1/2
F ‖[[uh · n]]‖0,F ≤ C ‖u− uh‖0,ωF

,

h
1/2
F ‖[[σh × n]]‖0,F ≤ C

(
hF ‖u− uh‖0,ωF

+ ‖σ − σh‖0,ωF

)
.

Consequently, for each K ∈ Th,

ηK ≤ C
(
‖u− uh‖0,ω̃K

+ ‖σ − σh‖0,ω̃K

)
,

where ω̃K is the union of the tetrahedra sharing a face with K.

Proof. The inequalities on the first lines of (16) and (17) have been proved in [10,
Theor. 4.5]. Hence, we only have to prove the remaining estimates.

Let bK ∈ H1
0(Ω) be the standard quartic bubble function on K which attains the

value one at the barycenter of this element, extended by zero outside K. Let us set
ϕ := bK (uh + curlσh) ∈ H1

0(Ω). Then, taking into account the first equation in
(2), which implies that u+ curlσ = 0, we have

C ‖uh + curlσh‖20,K ≤ (uh + curlσh,ϕ)K

= − (u− uh,ϕ)K − (σ − σh, curlϕ)K

≤ ‖u− uh‖0,K ‖ϕ‖0,K + ‖σ − σh‖0,K ‖curlϕ‖0,K .

The application of an inverse inequality in the last term and the definition of ϕ
yield

C ‖uh + curlσh‖20,K ≤ C
(
‖u− uh‖0,K +

1

hK
‖σ − σh‖0,K

)
‖uh + curlσh‖0,K ,

from which the desired estimate easily follows.
There remains to prove the last bound in (17). For a fixed inner face F , we

observe that [[σh × n]] ∈ [Pk(F )]3. Let JF be the extension of [[σh × n]] to ωF

such that JF |K ∈ [Pk(K)]3 for K ⊂ ωF and it is constant in the direction from
the barycenter of F to the opposite vertex of K. Moreover, let bF ∈ H1

0(ωF ) be
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the piecewise cubic function which attains the value one at the barycenter of F .
Setting γ := JF bF ∈ H1

0(ωF ), we have from (2)

(σ − σh, curlγ)ωF
= − (u,γ)ωF

−
∑

K⊂ωF

(curlσh,γ)K + ([[σh × n]],γ)F

= − (u− uh,γ)ωF
−
∑

K⊂ωF

(uh + curlσh,γ)K + ([[σh × n]],γ)F .

Hence, from the definition of γ,

(18)

C ‖[[σh × n]]‖20,F ≤ ([[σh × n]],γ)F

≤ ‖σ − σh‖0,ωF
‖curlγ‖0,ωF

+ ‖u− uh‖0,ωF
‖γ‖0,ωF

+

( ∑
K⊂ωF

‖uh + curlσh‖20,K

)1/2

‖γ‖0,ωF
.

Now, from standard computations, for each K ⊂ ωF we have

‖JF ‖20,K ≤ ChF ‖[[σh × n]]‖20,F ,

which implies

‖γ‖0,ωF
= ‖JF bF ‖0,ωF

≤ ‖JF ‖0,ωF
≤ Ch1/2

F ‖[[σh × n]]‖0,F .

On the other hand, using an inverse inequality again,

‖curlγ‖0,ωF
= ‖curl (JF bF )‖0,ωF

≤ ‖(curlJF ) bF ‖0,ωF
+ ‖∇bK × JF ‖0,ωF

≤ ‖curlJF ‖0,ωF
+ ‖∇bK‖L∞(ωF ) ‖JF ‖0,ωF

≤ Ch−1
F ‖JF ‖0,ωF

≤ Ch−1/2
F ‖[[σh × n]]‖0,F .

Inserting the last two inequalities into (18), we obtain

‖[[σh × n]]‖20,F ≤ C

h−1/2
F ‖σ − σh‖0,ωF

+ h
1/2
F ‖u− uh‖0,ωF

+h
−1/2
F

( ∑
K⊂ωF

h2
K ‖uh + curlσh‖20,K

)1/2
 ‖[[σh × n]]‖0,F ,

which together with the second inequality in (16) yield the claimed estimate. �

3.1. Reliability and efficiency of the original indicator µ. In practice, what
is actually solved is Problem 1 and the a posteriori error indicators µK are the ones
that are used to drive an adaptive scheme to solve this problem. In what follows, we
will derive reliability and efficiency estimates for these indicators. For the former,
we have the following result.

Proposition 5 (Reliability). Let (ω,E) and (ωh,Eh) be solutions of Problems 1
and 2, respectively, such that the latter approximates the former as h goes to zero.
Then, there exists a positive constant C such that, for h small enough,

‖E −Eh‖curl ≤ Cµ∣∣ω2 − ω2
h

∣∣ ≤ Cµ2.
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Proof. By using the relations between the solutions of Problems 1 and 2 and those
of Problems 3 and 4, respectively, and (6), some simple algebra yields

(19) ‖E −Eh‖curl ≤ Cµ+ C ′µ2.

Now, since u = ωE ∈ H0(curl; Ω) ∩ H(div0; Ω) ⊂ Ht(Ω) for t > 1/2 and σ =
curlE/ω ∈ H0(div0; Ω) ∩H(curl; Ω) ⊂ Ht(Ω) as well, by virtue of Proposition 1
we have that ‖u− uh‖0 + ‖σ − σh‖0 → 0 as h goes to zero. Then, according

to Theorem 4, µ = 1
ωh
η ≤ C

ωh
(‖u− uh‖0 + ‖σ − σh‖0) → 0, too. Therefore,

for h small enough, µ2 is negligible in (19) and we conclude the first estimate
of the proposition. The second one follows for h small enough from Theorem 3,
Proposition 1 again and (6):

|ω − ωh| =
|λ− λh|
ω + ωh

≤ C
(
‖u− uh‖20 + ‖σ − σh‖20

)
≤ Cη2 =

C

ω2
h

µ2.

�

The consequences of Theorem 4 in terms of local bounds for the indicator µ are
less evident than what has been proved for the reliability estimates. Although this is
a typical situation when dealing with eigenvalue problems, we find it useful to detail
the estimates that can be obtained in this particular case. The next proposition
shows some useful bounds for the terms in the definition of µ.

Proposition 6. There exists a positive constant C such that the following bounds
hold true for any K ∈ Th:

(20)

hK ‖divEh‖0,K ≤ C ‖E −Eh‖0,K ,

hK
∥∥Eh − curl(curlEh/ω

2
h)
∥∥

0,K

≤ C

ω2
h

[
hK
∥∥ω2E − ω2

hEh

∥∥
0,K

+ ‖curl(E −Eh)‖0,K
]
.

Moreover, there exists another positive constant C such that, for any inner face F ,

(21)

h
1/2
F ‖[[Eh · n]]‖0,F ≤ C ‖E −Eh‖0,ωF

,

h
1/2
F

∥∥[[(curlEh/ω
2
h)× n]]

∥∥
0,F

≤ C

ω2
h

[
hF
∥∥ω2E − ω2

hEh

∥∥
0,ωF

+ ‖curl(E −Eh)‖0,ωF

]
,

where ωF is again the union of the two tetrahedra sharing the face F .

Proof. The first inequalities in (20) and (21) are obtained by using the same ar-
guments as in the proof of Theorem 4.5 of [10]. Let us prove the estimate for the
residual term in the second line of (20). Let bK ∈ H1

0(Ω) be the standard quartic
bubble function on K which attains the value one at the barycenter of this element,
extended by zero outside K. Let us set ϕ := bK

[
ω2
hEh − curl(curlEh)

]
∈ H1

0(Ω).
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Then, taking into account (1), which implies that ω2E−curl(curlE) = 0, we have∥∥Eh − curl(curlEh/ω
2
h)
∥∥2

0,K
=

1

ω4
h

∥∥ω2
hEh − curl curlEh

∥∥2

0,K

≤ C

ω4
h

(
ω2
hEh − curl(curlEh),ϕ

)
K

= − C

ω4
h

[
(ω2E − ω2

hEh,ϕ)K − (curl(E −Eh), curlϕ)K
]

≤ C

ω4
h

∥∥ω2E − ω2
hEh

∥∥
0,K
‖ϕ‖0,K + ‖curl(E −Eh)‖0,K ‖curlϕ‖0,K .

Taking into account the definition of ϕ and using an inverse inequality we arrive at∥∥Eh − curl(curlEh/ω
2
h)
∥∥2

0,K
≤ C

ω2
h

∥∥Eh − curl(curlEh/ω
2
h)
∥∥

0,K

×
[∥∥ω2E − ω2

hEh

∥∥
0,K

+ h−1
K ‖curl(E −Eh)‖0,K

]
,

which allows us to conclude the last inequality in (20). The proof of the last
inequality in (21) can be obtained using similar arguments. �

Putting things together, we obtain from the above proposition that

(22) µK ≤ C
[
‖E −Eh‖0,ω̃K

+ ‖curl(E −Eh)‖0,ω̃K
+ hK

∥∥ω2E − ω2
hEh

∥∥
0,ω̃K

]
,

where ω̃K is, as above, the union of the tetrahedra sharing a face with K. It is
clear that the presence of the term

∥∥ω2E − ω2
hEh

∥∥
0,ω̃K

in the right hand side of

our estimate prevents the efficiency property from being local. Indeed, bounding
this term involves dealing with the difference |ω2 − ω2

h| which is not localized.
Nevertheless, the main interest of a posteriori error analysis is to build adaptive

schemes and global efficiency is in general enough to guarantee their convergence
(the reader is referred to [18, ?] for elliptic eigenvalue problems and to [8] for
mixed eigenvalue problems). In the present case, indeed, we have a global efficiency
estimate. In fact, from (22) we have

µ ≤ C
(
‖E −Eh‖curl + h

∥∥ω2E − ω2
hEh

∥∥
0

)
.

To bound the last term above, we write∥∥ω2E − ω2
hEh

∥∥
0
≤
∣∣ω2 − ω2

h

∣∣ ‖Eh‖0 + ω2 ‖E −Eh‖0 .
Then, using the normalization constraint ‖Eh‖0 = 1 and the well known identity
(cf. [3, Lemma 9.1])

ω2 − ω2
h = ‖curl(E −Eh)‖20 − ω

2 ‖E −Eh‖20 ,
we obtain

µ ≤ C
(
‖E −Eh‖curl + h ‖E −Eh‖2curl

)
.

Since ‖E −Eh‖curl → 0 as h goes to zero, the last term in the inequality above is
asymptotically negligible. Thus, for h small enough, we derive the global efficiency
estimate

µ ≤ C ‖E −Eh‖curl .
On the other hand, in the case of lowest order elements, it is possible to proceed

as in [17] to obtain an estimate more local than (22). More precisely, in this case
curl(curl(Eh|K)) vanishes, so that hK ‖Eh‖0,K ≤ µK . Moreover, as stated in
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the proof of Proposition 5, u = ωE and σ = curlE belong to Ht(Ω) for some

t > 1/2. Hence, according to Proposition 1,
∣∣ω2 − ω2

h

∣∣ ≤ Ch2t̂ with t̂ := min{t, 1}.
Therefore, proceeding as above, we have

hK
∥∥ω2E − ω2

hEh

∥∥
0,ω̃K

≤
∣∣ω2 − ω2

h

∣∣hK ‖Eh‖0,ω̃K
+ ω2hK ‖E −Eh‖0,ω̃K

≤ Ch2t̂µω̃K
+ ω2hK ‖E −Eh‖0,ω̃K

,

where µω̃K
:=
(∑

K′⊂ω̃K
µ2
K′

)1/2
. Then, substituting this estimate in (22) leads to

µK ≤ C
[
‖E −Eh‖0,ω̃K

+ ‖curl(E −Eh)‖0,ω̃K
+ h2t̂µω̃K

]
.

4. Auxiliary results

In what follows we will consider the following auxiliary source problem: given a
solution (λ,u,σ) of Problem 3, find (ûh, σ̂h) ∈ X h ×M0

h such that

(23)
(ûh,vh) + (curlvh, σ̂h) = 0 ∀vh ∈ X h,

(curl ûh, τh) = −λ (σ, τh) ∀τh ∈M0
h.

The existence and uniqueness of the solution to this problem is a consequence of
the well-posedness of the source problem associated to (3) (see e.g. [7, Prop. 4.1]).
It is clear that (ûh, σ̂h) provides an approximation to (u,σ). Moreover, by simple
computations using (3) and (23), we obtain

(24) − λh (σ̂h,σh) = (curluh, σ̂h) = − (ûh,uh) = (curl ûh,σh) = −λ (σ,σh) .

We recall that Ph : H0(div0; Ω) → M0
h is the L2(Ω)-orthogonal projection

onto M0
h. The following technical result shows that Phσ provides a higher-order

approximation of σ̂h.

Lemma 7. Let (λ,u,σ) and (ûh, σ̂h) be solutions of Problems 3 and (23), respec-
tively. Then, there exists ρ(h) tending to zero as h→ 0 such that

‖Phσ − σ̂h‖0 ≤ ρ(h) ‖u− ûh‖curl .

Proof. Let (w,ψ) ∈ H0(curl; Ω) × H0(div0; Ω) be the solution of the following
problem:

(25)
(w,v) + (curlv,ψ) = 0 ∀v ∈ H0(curl; Ω),

(curlw, τ ) = − (σ̂h − Phσ, τ ) ∀τ ∈ H0(div0; Ω).

By testing the first equation above with a smooth v with compact support in Ω,
we derive that curlψ = −w. Hence, w ∈ H0(curl; Ω) ∩ H(div0; Ω) and ψ ∈
H(curl; Ω) ∩H0(div0; Ω), so that both belong to Ht(Ω) for some t > 1/2 (see [2,
Prop. 3.7]) and

(26) ‖w‖Ht(Ω) + ‖ψ‖Ht(Ω) ≤ C
(
‖w‖curl + ‖ψ‖0

)
≤ C ‖σ̂h − Phσ‖0 .

Let us denote by Π the Fortin operator introduced in [5]. In particular, we have

(27)
(curl (w −Πw) ,vh) = 0 ∀vh ∈M0

h,

‖w −Πw‖0 ≤ Ch
t ‖w‖curl .
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Then,

‖σ̂h − Phσ‖20 = − (curlw, σ̂h − Phσ) (25) second eq.

= − (curl(Πw), σ̂h − Phσ) (27) first eq.

= − (curl(Πw), σ̂h − σ) curl(Πw) ∈M0
h

= (ûh − u,Πw) (23), (2) first eqs.

= (ûh − u,Πw −w) + (ûh − u,w)

= (ûh − u,Πw −w)− (curl (ûh − u) ,ψ) (25) first eq.

= (ûh − u,Πw −w)− (curl (ûh − u) ,ψ − Phψ) (23) and (2) second eqs.

≤ Cht
[
‖ûh − u‖0 + ‖curl (ûh − u)‖0

]
‖σ̂h − Phσ‖0 (27), (10) and (26)

which allows us to end the proof. �

The following auxiliary result shows that the term ‖u− ûh‖curl that arises in
the previous lemma is bounded by the actual error.

Lemma 8. Let (λ,u,σ), (λh,uh,σh) and (ûh, σ̂h) be solutions of Problem 3,
Problem 4 and (23), respectively, with ‖σ‖0 = ‖σh‖0 = 1. Then,

‖u− ûh‖curl ≤ C
(
‖u− uh‖0 + ‖σ − σh‖0

)
.

Proof. The triangle inequality yields

‖u− ûh‖curl ≤ ‖u− uh‖curl + ‖uh − ûh‖curl.

Thanks to (2), (3) and (4), we have that

‖u− uh‖2curl = ‖u− uh‖20 + ‖λσ − λhσh‖20 .

Subtracting (23) from (3), the stability of the resulting discrete problem (see [7])
leads to

‖uh − ûh‖curl ≤ C ‖λσ − λhσh‖0 .
Finally, from Proposition 1,

‖λσ − λhσh‖0 ≤ λ ‖σ − σh‖0 + |λ− λh| ‖σh‖0
≤ λ ‖σ − σh‖0 + C

(
‖u− uh‖20 + ‖σ − σh‖20

)
≤ C

(
‖u− uh‖0 + ‖σ − σh‖0

)
and the lemma follows from the last four inequalities. �

Now we are in a position to prove the following superapproximation result which
is an easy generalization of analogous properties known for the approximation of
mixed Laplacian (see [15, 19] and [6, Ch. 7.4]).

Lemma 9. Let (λ,u,σ) and (λh,uh,σh) be solutions of Problems 3 and 4, respec-
tively, with ‖σ‖0 = ‖σh‖0 = 1 and such that the latter approximates the former as
h goes to zero. Then, there exists ρ(h) tending to zero as h→ 0 such that

‖Phσ − σh‖0 ≤ ρ(h)
(
‖σ − σh‖0 + ‖u− uh‖0

)
.
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Proof. Let (ûh, σ̂h) be the solution of (23). By the triangle inequality we have

(28) ‖Phσ − σh‖0 ≤ ‖Phσ − σ̂h‖0 + ‖σ̂h − σh‖0 .

Hence, thanks to the last two lemmas, we only have to bound the second term on
the right-hand side above.

Let us enumerate the eigenvalues of Problems 3 and 4 in increasing order as in
Proposition 2. Let us assume that the eigenvalue λ we are considering is λJ ; then,
for h small enough, λh = λh,J .

Let σh,J := σh and, for each i 6= J (i ≤ Ih), we choose an eigenfunction

(uh,i,σh,i) of Problem 4 corresponding to the eigenvalue λh,i, so that {σh,i}Ihi=1 is

an L2(Ω)-orthogonal basis of M0
h. Then, we can write

σ̂h − σh =

Ih∑
i=1

αiσh,i with αi := (σ̂h − σh,σh,i)

and

(29) ‖σ̂h − σh‖20 =

Ih∑
i=1

α2
i .

We bound separately αJ and αi for i 6= J . For the former we have

αJ = (σ̂h − σh,σh) = (σ̂h,σh)− 1 =
λ

λh
(σ,σh)− 1,

where we have used (24) for the last equality. Now,

λ

λh
(σ,σh)− 1 =

λ

λh
− 1 +

λ

λh
[(σ,σh)− 1] =

λ− λh
λh

− λ

2λh
‖σ − σh‖20 .

Hence, from Proposition 1, it follows that

(30) |αJ | =
∣∣∣∣ λλh (σ,σh)− 1

∣∣∣∣ ≤ C (‖u− uh‖20 + ‖σ − σh‖20
)
.

On the other hand, for i 6= J , from (3) and (23) we have

−λh,i (σ̂h,σh,i) = (curluh,i, σ̂h) = − (ûh,uh,i)

= (curl ûh,σh,i) = −λ (σ,σh,i) = −λ (Phσ,σh,i) .

Adding λ (σ̂h,σh,i) to both sides of this identity yields

(λ− λh,i) (σ̂h,σh,i) = λ (σ̂h − Phσ,σh,i) ,

which, provided λ 6= λh,i, leads to

(σ̂h,σh,i) =
λ

λ− λh,i
(σ̂h − Phσ,σh,i) .



16 DANIELE BOFFI, LUCIA GASTALDI, RODOLFO RODRÍGUEZ, AND IVANA ŠEBESTOVÁ

The definition of αi, the orthogonality of {σh,i}Ihi=1 and the last identity yield∑
i 6=J

α2
i =

∑
i6=J

αi (σ̂h − σh,σh,i) =
∑
i6=J

αi (σ̂h,σh,i)

=
∑
i6=J

αi
λ

λ− λh,i
(σ̂h − Phσ,σh,i)

≤ max
i 6=J

λ

|λ− λh,i|

∑
i 6=J

α2
i

1/2 ∑
i 6=J

(σ̂h − Phσ,σh,i)
2

1/2

.

Finally, Proposition 2 gives∑
i 6=J

α2
i

1/2

≤ C ‖σ̂h − Phσ‖0

which, together with (30) and (29) yield

‖σ̂h − σh‖20 ≤ C
[
‖σ̂h − Phσ‖20 +

(
‖u− uh‖20 + ‖σ − σh‖20

)2
]
.

This relation, inserted in (28), leads to

‖Phσ − σh‖0 ≤ C
(
‖σ̂h − Phσ‖0 + ‖u− uh‖20 + ‖σ − σh‖20

)
.

Thus, from the above inequality and Lemmas 7 and 8, we conclude the proof. �

5. Numerical results

In this section, we illustrate the behavior of the error indicators (5). Problem 1
has been discretized by using lowest-order edge elements (k = 1) on tetrahedral
meshes that have been created with the mesh generator TetGen ([28]). The resulting
algebraic eigenvalue problem has been solved using the Matlab routine eigs, that
is based on the ARPACK package ([20]).

We have chosen a so called Fichera domain: Ω := (−1, 1)
3\[−1, 0]

3
(see Figure 1).

Let us remark that this is the same example as in [10], where, for lowest-order
elements, the error indicator was taken only as the term in (5) involving the jumps
of the normal components of the computed eigenfunction.

We have computed the eigenpair corresponding to the smallest positive eigen-
value. The exact eigenpairs of this problem are not known. Because of this, first,
we have computed them with highly refined structured ‘uniform’ meshes, which
allowed us to obtain a very accurate approximation of the corresponding eigenvalue
by means of a least squares extrapolation. These ‘uniform’ meshes have been ob-
tained by subdividing the domain into equal hexahedra, each of them subdivided
into six tetrahedra. By so doing, we have obtained ω2 = 3.220 as an approximate
value of the smallest positive eigenvalue with four correct significant digits. This
value for ω2 was taken as the ‘exact’ eigenvalue. Let us remark that this agrees
with what is reported in Monique Dauge’s web page ([14]).

Let us emphasize that such an extrapolation procedure to compute a more accu-
rate approximation of an unknown quantity can only be used for scalar unknowns
like the eigenvalues, but not for functional unknowns as is the case of the eigenfunc-
tions. This is the reason why, in what follows, we will focus on the computation of
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Figure 1. Domain with the initial mesh.

the eigenvalues. Moreover, let us remark that according to Proposition 5, µ2 pro-
vides an asymptotic upper estimate for the error of the eigenvalue approximation;
namely, for h small enough there holds∣∣ω2 − ω2

h

∣∣ ≤ Cµ2.

We have applied an adaptive scheme driven by the error indicators µK . Notice
that, for the lowest-order edge elements, divEh = 0 and curl(curlEh) = 0 on
each element K. Therefore, the local error indicators reduce to

µ2
K = h2

K ‖Eh‖20,K +
1

2

∑
F∈FI(K)

(
hF
ω4
h

‖[[curlEh × n]]‖20,F + hF ‖[[Eh · n]]‖20,F

)
.

In this test, we started the computations with the unstructured mesh consisting
of 581 elements, which is shown in Figure 1. Then, we proceeded with the adaptive
refinement process. Figures 2 and 3 display the fifth and the last adaptively refined
mesh, respectively.

Figure 4 displays a log-log plot of the errors between the computed approxima-
tions of the smallest positive eigenvalue and the ‘exact’ one, versus the number N
of elements of the meshes. The figure shows the results obtained with ‘uniform’
meshes and with adaptively refined meshes. The very accurate agreement between
the eigenvalues computed with ‘uniform’ meshes and the line obtained by a least
square fitting of them is a clear indication of the reliability of the value taken as
‘exact’.

The slope −2/3 of the optimal order of convergence for the used lowest-order
edge elements is very close to the slope 0.660 of the line obtained by a least squares
fitting of the values computed with the adaptive scheme. The results are very
similar to those reported in [10], although, for instance, in the latter, the slope was
a bit steeper: −0.75.
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Figure 2. Adaptively refined mesh at the fifth step.

Figure 3. Adaptively refined mesh at the last refinement step.

We report in Table 1 the squared estimator for the error of the computed smallest
positive eigenvalue and its three components:

µ2
1 :=

∑
K∈Th

h2
K ‖Eh‖20,K ,

µ2
2 :=

∑
K∈Th

1

2

∑
F∈FI(K)

hF
ω4
h

‖[[curlEh × n]]‖20,F ,

µ2
3 :=

∑
K∈Th

1

2

∑
F∈FI(K)

hF ‖[[Eh · n]]‖20,F .
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10 -2
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Uniform (computed errors)

Uniform (fitted line)

 O(N
-0.45

)

Adaptive (computed errors)

Adaptive (fitted line)

 O(N
-2/3

)

Figure 4. Error curves for the smallest positive eigenvalue of the
Maxwell’s equations on the Fichera domain computed with ‘uni-
form’ and adaptively refined meshes: log-log plots of the respective
errors versus the number of elements.

The table also shows the error and the ratio of the estimator to this error, which
plays the role of an effectivity index.

We observe that µ2
1 is around 8.5% of µ2, µ2

2 around 11.5%, and µ2
3 around 80%.

Consequently, the first two components are significantly smaller than the third one
(which was the only one considered in [10]), but not asymptotically negligible. On
the other hand, the effectivity indexes are bounded above and below away from
zero and, except for the coarsest meshes, they take values in a very narrow range
(between 5.18 and 6.25).
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Combining the DPG method with finite elements
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2017-14 Mario Álvarez, Gabriel N. Gatica, Ricardo Ruiz-Baier: A posteriori error
analysis of a fully-mixed formulation for the Brinkman-Darcy problem

2017-15 Daniele Boffi, Lucia Gastaldi, Rodolfo Rodŕıguez, Ivana Sebestova: A
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