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Abstract

In this paper we consider an augmented fully-mixed variational formulation that has been recently
proposed for the non-isothermal Oldroyd—Stokes problem, and develop an a posteriori error analysis
for the 2D and 3D versions of the associated mixed finite element scheme. More precisely, we derive
two reliable and efficient residual-based a posteriori error estimators for this problem on arbitrary
(convex or non-convex) polygonal and polyhedral regions. The reliability of the proposed estimators
draws mainly upon the uniform ellipticity of the bilinear forms of the continuous formulation,
suitable assumptions on the domain and the data, stable Helmholtz decompositions, and the local
approximation properties of the Clément and Raviart-Thomas operators. On the other hand,
inverse inequalities, the localisation technique based on bubble functions, and known results from
previous works, are the main tools yielding the efficiency estimate. Finally, several numerical results
confirming the properties of the a posteriori error estimators and illustrating the performance of
the associated adaptive algorithms are reported.
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1 Introduction

We have recently introduced an augmented-mixed finite element method to numerically approximate
the flow patterns of a non-isothermal incompressible viscoelastic fluid described by the non-isothermal
Oldroyd—Stokes equations [6]. The underlying model consists of the Stokes-type equation for Oldroyd
viscoelasticity, coupled with the heat equation through a convective term and the viscosity of the fluid.
The original unknowns are the polymeric part of the extra-stress tensor, the velocity, the pressure, and
the temperature of the fluid. In turn, for convenience of the analysis, the strain tensor, the vorticity,
and the stress tensor are introduced as further unknowns. This allows to join the polymeric and solvent
viscosities in an adimensional viscosity, and to eliminate the polymeric part of the extra-stress tensor
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and the pressure from the system, which, together with the solvent part of the extra-stress tensor, can
anyway be approximated later on by postprocessed. In this way, a fully mixed approach is applied, in
which the heat flux vector is incorporated as an additional unknown as well. Since the convective term
in the heat equation forces both the velocity and the temperature to live in H! instead of L? as usual,
we proceed as for the Boussinesq model in [8 [0 0] and augment the variational formulation with
suitable Galerkin type expressions arising from the constitutive and equilibrium equations, the relation
defining the strain and vorticity tensors, and the Dirichlet boundary condition on the temperature.
The resulting augmented scheme is then written equivalently as a fixed-point equation, so that the
well-known Schauder and Banach theorems, combined with the Lax—Milgram theorem and certain
regularity assumptions, are applied to prove the unique solvability of the continuous system. As for
the associated Galerkin scheme, whose solvability is established similarly to the continuous case by
using the Brouwer fixed-point and Lax-Milgram theorems, we employ Raviart—Thomas approximations
of order k for the stress tensor and the heat flux vector, continuous piecewise polynomials of order
< k + 1 for velocity and temperature, and piecewise polynomials of order < k for the strain tensor
and the vorticity. Optimal a priori error estimates were also derived.

Now, it is well known that under the eventual presence of singularities or high gradients of the
solution, most of the standard Galerkin procedures such as finite element and mixed finite element
methods inevitably lose accuracy, and hence one usually tries to recover it by applying an adaptive
algorithm based on a posteriori error estimates. For example, residual-based a posteriori error analyses
for the aforementioned Boussinesq model have been developed in [11] and [12] for the associated mixed-
primal and fully-mixed formulations, respectively. In fact, standard arguments relying on duality
techniques, suitable decompositions and classical approximation properties, are combined there with
corresponding small data assumptions to derive the reliability of the estimators. In turn, inverse
inequalities and the usual localisation technique based on bubble functions are employed in both
works to prove the corresponding efficiency estimates. On the other hand, and concerning isothermal
viscoelastic flows, not much has been done and we just refer to [I7, 29, 30] for the steady-state case
and [19, 20] for the time dependent case, where different contributions addressing this interesting
issue can be found. In particular, a fully local a posteriori error estimator for a simplified Oldroyd-
B model without convective terms in a convex polygonal domain was obtained in [30]. The main
unknowns are given by the velocity, the extra-stress and the pressure of the fluid, whereas continuous
piecewise linear finite elements together with a Galerkin Least Square (GLS) approach are used for
the associated discrete scheme. In turn, a fully local residual-based a posteriori error estimator for
the velocity-pressure-stress formulation of a more general model, namely the Giesekus and Oldroyd-B
type differential constitutive laws in 2D and 3D, was derived in [I7] . In this case, the discrete spaces
employed are the Hood —Taylor pair for the velocity and the pressure, and continuous piecewise linear
elements for the viscoelastic stress component. Furthermore, and up to the authors’ knowledge, the
first work dealing with high gradients of the solution for the non-isothermal Oldroyd—Stokes problem
is [14]. An optimal control technique is proposed and analised there for a four-to-one contraction
domain, where a vortex is generated near the corner region of the contraction. However, we remark
that this work does not consider an adaptive algorithm.

According to the above discussion, and in order to complement the study started in [6] for the
non-isothermal Oldroyd—Stokes problem, in this paper we proceed similarly to [Il, 11, 12, 25], and
develop two reliable and efficient residual-based a posteriori error estimators for the augmented-mixed
finite element method studied in [6]. This means that our analysis begins by applying the uniform
ellipticity of the bilinear form defining the continuous formulation. Next, we apply suitable Helmholtz
decompositions, local approximation properties of the Clément and Raviart—Thomas interpolants,
and known estimates from [23] 24], to prove the reliability of a residual-based estimator. In turn, the



efficiency estimate is consequence of standard arguments such as inverse inequalities, the localization
technique based on bubble functions, and other known results to be specified later on in Section
Alternative, a second reliable and efficient residual-based a posteriori error estimator not making use
of any Helmholtz decomposition is also proposed.

The rest of this work is organised as follows. The remainder of this section introduces some standard
notations and functional spaces. In Section [2[ we recall from [6, Section 2] the model problem and its
continuous and discrete augmented fully-mixed variational formulations. Next, in Section[3|we consider
the 2D case, introduce two a posteriori error indicators, and assuming small data and certain regularity
assumptions, we derive the corresponding theoretical bounds yielding reliability and efficiency of each
estimator. The analysis and results from Section [3| are then extended to the 3D case in Section
Finally, some numerical results illustrating the good performance and good effectivity indexes of both
error estimators under diverse scenarios in 2D and 3D, and confirming the satisfactory behaviour of
the corresponding adaptive refinement strategies, are presented in Section

Preliminary notations

Let Q C R, n € {2,3}, denote a bounded domain with Lipschitz boundary I' = T'p U I'y, with
I'pNTx =0 and [T'p|, |In| > 0, and denote by n the outward unit normal vector on I'. For s > 0 and

€ [1,+o0], we define by LP(Q) and W*P(Q) the usual Lebesgue and Sobolev spaces endowed with
the norms |- [|r»(q) and |- [[ws.r(q), respectively. Note that WOP(Q) = LP(Q). If p = 2, we write H*(Q)
in place of W*2(Q),
respectively, and the seminorm by |- |so. By M and M we will denote the corresponding vectorial
and tensorial counterparts of the generic scalar functional space M, and || - ||, with no subscripts, will
stand for the natural norm of either an element or an operator in any product functional space. In
turn, for any vector field v = (v;)i=1,,, we set the gradient, and divergence operator, as

ov; ov;
= : d divv:= J
Vv (8%)1’417” an ivv: Z 3&6]

Furthermore, for any tensor fields 7 = (735); j=1,n and ¢ = ((ij)i,j=1,n, We let div T be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

1
T = (Tji)ig=1m, Z% TiG= Z 7ijGij,  and 7= 7 — ~tr(T)],

i,j=1

where T is the identity matrix in R™*™. Additionally, we define the following tensorial and vectorial
functional spaces (see [0, Section 2.2] for details):

Ho(div; ) = {TEH(diV;Q) : /trTzo},
Q

L% (Q) = {I‘EL2 r'=r and trr:O}, (1.1)
bkew {n S LQ nt = —77}7
and
Hr (div; Q) {q €cH(div;Q?): q-n=0 on FN}, (1.2)



respectively. Furthermore, given an integer & > 0 and a set S C R", Py(S) denotes the space of
polynomial functions on S of degree < k. In addition, and coherently with previous notations, we
set Pr(S) := [Px(S)]" and Px(S) := [Pr(S)]"*". Finally, we end this section by mentioning that,
throughout the rest of the paper, we employ 0 to denote a generic null vector (or tensor), and use C
and ¢, with or without subscripts, bars, tildes or hats, to denote generic constants independent of the
discretization parameters, which may take different values at different places.

2 The non-isothermal Oldroyd—Stokes problem

In this section we recall from [6] the non-isothermal Oldroyd-Stokes model, its fully-mixed variational
formulation, the associated Galerkin scheme, and the main results concerning the corresponding solv-
ability analysis.

2.1 The model problem

The non-isothermal Oldroyd—Stokes problem consists of a system of equations where the Stokes equa-
tion for the Oldroyd viscoelastic model introduced in [2], is coupled with the heat equation through a
convective term and the viscosity of the fluid (cf. [13] [I8]). More precisely, given a body force f, and
a heat source g, the aforementioned system of equations is given by

op —2up(f)e(u) =0 in , —div(op+2eun(f)e(u))+Vp=£f in Q,
divu=0 in Q, —div(kVO)4+u-Vd=g in Q, (2.1)

u=0 on I'y, #=0p on I'p, kKVOA-n=0 on Iy and /p:O,
Q

where the unknowns are the polymeric part of the extra-stress tensor op, the velocity u, the pressure

1
p, and the temperature 6 of a fluid occupying the region Q. In addition, e(u) := i{Vu + (Vu)t}

stands for the strain tensor of small deformations, x is the thermal conductivity coefficient, yup and un
are the polymeric and solvent (or newtonian) viscosities, respectively, which are given by the following
Arrhenius relationship:

up(6) = a1 exp (2) L in(8) = arexp (l;) , (2.2)

where the coeflicients aq, b1, as, and by are defined so that
0<wp(s) <1, O0<pun(s)<1 Vs>0. (2.3)

Furthermore, we assume that both the polymeric and solvent viscosities are Lipschitz continuous and
bounded from above and from below, that is,

e (s) = pp ()] < Lyupls =t [un(s) — un(8)] < Luxls =t Vs,t >0, (2.4)

and
pap < pp(s) < pop, N < panN(s) < pgn Vs 2 0. (2.5)

Note that a small real parameter € > 0 on the second equation of (2.1)) is introduced to make the
effect of the solvent viscosity much smaller than that of the polymeric part.



Now, in order to derive our mixed approach (see [6, Section 2.1] for details), we begin by introducing
the strain tensor as an additional unknown t := e(u), whence the polymeric and solvent parts of the
extra-stress tensor can be written, respectively, as

op = 2up(@)t and on = 2eun(f)t in Q. (2.6)
Next, defining the dimensionless effective viscosity as in [18], that is
p(0) == 2up(0) + 2eun(), (2.7)

and adopting the approach from [24] and [18] (see also [5], [8, [10]), we include as auxiliary variables the
vorticity tensor p, the stress tensor o, and the heat-flux vector p, respectively, by

p:=Vu—e(u), o:=p@)t—pl, and p:=xkVO—-0u in Q.

In this way, utilising the incompressibility condition divu = tr (e(u)) = 0 in © and the homogeneous
Dirichlet boundary condition u = 0 on I, the equations in (2.1) can be rewritten, equivalently, as

t+p=Vu in Q, of =p@t in Q —dive=f in Q
1
p=——troe in Q, klp+xkYu=Vl in Q —divp=g in Q, (2.8)
n
u=0 on I, 6=0p on I'p, p-n=0 on I'y and /tra:O.
Q
Note that the fourth equation in (2.8]) allows us to eliminate the pressure p from the system and
compute it as a simple post-process of o. In addition, it easy to see from ([2.4]) and (2.5)) that the fluid

viscosity p (cf. (2.7)) is Lipschitz continuous and bounded from above and from below, that is, there
exist constants L, > 0 and p1, 2 > 0, such that

() = p@)] < Lyls =t Vs,t >0, (2.9)

and
< p(s) <pg Vs >0. (2.10)

We end this section emphasizing from that we can recover the polymeric and solvent parts of
the extra-stress tensor as a simple post-process of # and t, whereas from the fourth equation of
we can compute the pressure in terms of o conserving the same rate of convergence of the solution as
we show theoretical and numerically in [6, Lemma 4.14 and Section 5], respectively. However, for the
sake of simplicity and physical interest, in Section [5| we will focus only on the formulae suggested for
the polymeric part of the extra-stress tensor and the pressure.

2.2 The fully-mixed variational formulation

In this section we recall from [0 Section 2.2] the weak formulation of the coupled problem given by
(2.8). To this end, let us first group appropriately some of the unknowns and spaces as follows:

t:=(t,0,p) € H:=1L2 (Q) x Hy(div; Q) x L (),

skew

where H is endowed with the norm

Izl = rld o + I7llai 0 + Il6.e Ve = (r,7,m) € H.



Hence, the augmented fully-mixed variational formulation for the non-isothermal Oldroyd—Stokes
problem reads: Find (t,u, p, ) € H x H}(Q) x Hry (div; Q) x HY(Q) such that

Ag((t, ), (r,v)) = F(r,v) V(r,v)eHxHi(Q),
(2.11)

A((p.9),(a,9) + Bu((p,0), (a. %)) = F(a,¥) V(q,¢) € Hry(div; Q) x H(Q),

where, given (¢, w) € H'(Q) x H{(Q), Ay, ;&, and By, are the bilinear forms defined, respectively, as

Ay((t,u), (r,v)) ::/ﬂu(gb)t:{r—/ﬂrd}—l—/ﬂad:{ﬂlrd—r}—i—/ﬂtzrd
+/Q{u—i—fcgdiva}-divr—/ﬂv-diva+/ﬂp:7’—/ga:n (2.12)
+ ﬁg/ﬂ{e(u)—t} :e(v)+m4/g(p—{Vu—e(u)}) ',

A((p,0),(q,v)) := /ﬂ_l/ﬂp-{q—f%V@D}—I-/Q{0+H6divp}divq—/gwdivp

+/{5/V9-V1/1+/€7 0,
Q

I'p

(2.13)

and

By ((p.6), (a,0)) == n* /Q ow - {a- Vel (2.14)

for all (t,u), (r,v) € H x H}(€) and for all (p,0),(q,¢) € Hry(div;Q) x HY(Q). In turn, F and F
are the bounded linear functionals given by

F(r,v) = / f- {V — ngdivr}, (2.15)
Q
for all (r,v) € H x H}(2) and

Fa.v) = (a-nbo)r, + [ o{v—rdiva} +: [ op0. (2.16)

D

for all (q,v) € Hpy(div;Q) x HY(Q). Notice that ;i € {1,...,7}, are positive parameters to be
specified next in Theorem Indeed, the following result taken from [6] establishes the well-posedness

of @11,

Theorem 2.1 Assume that

pe (0220 e (028 (= TE2)) L wae (0,200 (1 2)) . ks e (0,25),
o 201 2

92 -
and Ko, kg, k7 > 0, with §; € <0, >, 82,03 € (0,2), and § € (0,2k). Let
12

wi={oecH@): |6l < cg{lgloe+180lors + 16pli/2r, } b

and assume that the datum f satisfy

a(Q
oo < ()

f
csllfllos < 261(1 4 k2)V2¢(Q)’

(2.17)

6



where ¢(Q) is the constant in [6, eq. (2.15)], &(Q) is the ellipticity constant of the bilinear form A
(cf. [6; eq. (3.17)]), and cs and cg are the positive constants, independent of the data, provided by [G,
Lemmas 3.1 and 3.2], respectively. Then the augmented fully-mized problem has at least one
solution (t,u, p,0) € H x H}(Q) x Hry (div; Q) x HY(Q) with & € W, and there holds

(6w < csliflon and 0.0 < cs{llglloe + Iplloro + 6l j2ry ) (218)

Moreover, if the data £, g and 0p are sufficiently small so that, with the constants Cs, Cg and 65 from

[0, Lemmas 3.4 and 3.5, and eq. (3.22)], respectively, and denoting by 55 the boundedness constant of
the continuous injection of HY(Q) into L™°(Q), with 6 € (0,1) (when n = 2) or 6 € (1/2,1) (when
n = 3), there holds

56550505%{”9”0,9 + |fpllo,rp + H9DH1/2,FD}||f||6,Q <1 (2.19)
Then the solution 0 is unique in V.

Proof. See [6, Theorem 3.8] for details. O

2.3 The fully-mixed finite element method

Let T, be a regular triangulation of  made up of triangles T' (when n = 2) or tetrahedra T' (when
n = 3) of diameter hp, and define the meshsize h := max{hT T e 771} Then, given an integer
k > 0, we set for each T € T}, the local Raviart-Thomas space of order k as

RTk(T) = Pk(T) & Pk(T)X,

where x := (z1,...,2,)" is a generic vector of R™. Then, we introduce the finite element subspaces
approximating the unknowns t, o, p,u, p and 6 as follows

HE = {rh €L2(Q): rulr € Pu(T) VT e Th},

Hy {Th € Ho(div;Q): c'rplr € RTR(T) VeeR" VT € E},

B = {m €L (@) mir €PuT) YT €T}, .
Hj ={vhecﬁ Vilr € Pry(T) YT € Th, thOOnr}, (220
HY = {ay € Hry(diviQ):  aulr € RTW(T) VT €T},

HO = {wh cCQ): nlr € Pri(T) VT € n}.

In this way, by defining t,, := (tn, 04, py), L), := (vh, Th,my) € Hy, := Hf x HY x Hf, the Galerkin
scheme of (2.11)) reads: Find (t;,, up, pr.0s) € Hy x HY x HY x HY such that
A9h(<§h7uh)v (£h,Vh)) = F(Ehjvh) v(Eh?vh) € Hy, x HE, ( )
2.21
A((Pn,0n), (an, ¥n)) + Bu, (Prs0n), (an.vn)) = F(an,¥n) Y(an,¥n) € HY x HY.

The following theorem, also taken from [6], provides the well-posedness of (2.21)), the associated
Céa estimate, and the corresponding theoretical rate of convergence.



Theorem 2.2 Assume that the conditions on k;, i € {1,...,7}, required by Theorem hold. Let

Wi={on€H: [onlha < cs{llglon + 100 lors + 160l /2ry } |

and assume that the datum f satisfy (2.17)). Then the Galerkin scheme (2.21)) has at least one solution
(t, up, Ph, 0r) € Hj, x HY' x Hp x Hz with 0, € Wy, and there holds

It un)l < esliflog and  [[Pn,00)I| < cg{llgllo + 190 llo.rs + Ipll1/rs |- (2.22)

In addition, there exists C1 > 0, independent of h, such that
|(t,u,p,0) — (5, un, P, 0n)|| < Cl{dist ((L, u), Hj, x H}L') + dist ((p,ﬁ),HE X H%)}

Assume further that there exists s > 0 such that t € H*(Q2), o € H*(Q2), dive € H*(Q2), p € H*(1),
uec HHL(Q), p e H¥(Q), divp € H(), and 0 € H*YL(Q), and that the finite element subspaces are
defined by (2.20). Then, there exist Co > 0, independent of h, such that

162, 6) = (6w, o B0)]| < Coh™™H 0.+ o s + [ divelsa + ol
+ Jullssr0 + Ipllog + divplaa + [6]410}

Proof. We refer the reader to [6, Theorems 4.7, 4.11, and 4.13] for details. O

3 A posteriori error analysis: the 2D-case

In this section we proceed analogously to [25, Section 3] and derive two reliable and efficient residual
based a posteriori error estimators for the two-dimensional version of . The corresponding a
posteriori error analysis for the 3D case, which follows from minor modifications of the one to be
presented next, will be addressed in Section

3.1 Preliminaries

We start by introducing a few useful notations for describing local information on elements and edges.
Let &, be the set of all edges of Ty, and £(T) denotes the set of edges of a given T' € Tj,. Then
En =En(Q)UE(TD) U&EL(I'N), where E,(Q2) := {e €& :eC Q}, En(Tp) = {e €&, :eC FD}, and
En(Tn) = {e €&, e C FN}. Moreover, h, stands for the length of a given edge e. Also for each
edge e € &, we fix a unit normal vector n. := (n1,n9)%, and let s, := (—n2,n1)" be the corresponding
fixed unit tangential vector along e. However, when no confusion arises, we simply write n and s
instead of n, and s,, respectively. Now, let v € L?(2) such that v|; € C(T) on each T € Tj,. Then,
given T' € T, and e € E(T) N EL(N), we denote by [v - s| the tangential jump of v across e, that
is, [v-s] :== (v|lr = v|1)|e - s, where T and T" are the triangles of 7, having e as a common edge.
Similar definitions hold for the tangential jumps of scalar and tensor fields ¢ € L2(2) and 7 € L2(12),
respectively, such that ¢|r € C(T') and 7|p € C(T') on each T' € Tp,. In addition, given scalar, vector
and matrix valued fields ¢, v = (v1,v2)" and T = (73 j)1<i j<2, respectively, we set

curl (¢) := ( % ) , curl(v):= ( curl (vq)* >7

¥ curl (v9)t
_ Ovg Ouy _ (Om2  Omy Omm O\
rot (v) = 92 Oz and rot(7)= (35101 T Oy Or 8@)



where the derivatives involved are taken in the distributional sense.

Let us now II, : H'(Q) — HY (cf. (2.20)) be the Raviart-Thomas interpolation operator, which,
according to its characterisation properties (see, e.g., [21, Section 3.4.1]), verifies

div (I, v) = Pp(divv) VYv € H(Q), (3.1)

where P}, is the L?(Q2)-orthogonal projector onto the picewise polynomials of degree < k. A tensor
version of I, say IIj, : H'(Q2) — HZ, which is defined row-wise by I, and a vector version of P,
say P}, which is the L?(2)-orthogonal projector onto the picewise polynomial vectors of degree < k,
might also be required. The local approximation properties of IIj, (and hence of IIj) are established
in what follows. For the corresponding proof we refer to [2I, Lemmas 3.16 and 3.18] (see also [4]).

Lemma 3.1 There erist constants c1,co > 0, independent of h, such that for all v.€ HY(Q) there
hold
v =IIpvlor < cibrl[vive VT € Th,

and
IV-n=T,v-nfoe < eoh?|[ vz, Ve €&,

where T, is a triangle of T, containing the edge e on its boundary.

In turn, let I : H(Q) — H} (22) be the Clément interpolation operator, where
HL(Q) = {v cC(Q): vlr e Py(T) VT e ﬁl}.
The local approximation properties of this operator are established in the following lemma (see [7]).

Lemma 3.2 There exist constants c3,cy > 0, independent of h, such that for all v € HY(Q) there
holds
[v—Ipvllor < cshrllvlliam VT € Th,

and

v = Invlloe < cahl?|vllia@ Ve € En,
where

A(T)::u{T’en: T’HT#Q)} and A(e):zu{T’en: T’ﬂe;«é@}.

In what follows, a vector version of I, say I, : HY(Q2) — H}(Q), which is defined component-
wise by Iy, will be needed as well. For the forthcoming analysis we will also utilise a couple of results
providing stable Helmholtz decompositions for Ho(div ;) and Hr (div;€2). In this regard, we remark
in advance that the decomposition for Hr (div;2) will require the boundary I'y to lie in a “convex
part” of €, which means that there exists a convex domain containing {2, and whose boundary contains
I'n. More precisely, we have the following lemma (cf. (L.I), (L.2)).

Lemma 3.3
(a) For each T € Hy(div; Q) there exist z € H?(Q2) and ¢ € H(Q) such that
T=Vztcurly in Q and |zl20+[ele < CllTav o (3-2)

where C' is a positive constant independent of all the foregoing variables.



(b) Assume that there exists a convexr domain = such that Q@ C = and 'y C 0=. Then, for each
q € Hry (div;Q) there exist { € H'(Q) and x € Hp () such that

q=C+curly in Q and |Clie+ Xl < Claldvie (3.3)
where C' is a positive constant independent of all the foregoing variables, and

H%N(Q) = {neHl(Q): n=0 on FN}.

Proof. For the proof of (a) we refer to [25, Lemma 3.7], whereas (b) follows from [I, Lemma 3.9]. We
omit further details. O

3.2 The main result

In what follows we assume that the hypotheses of Theorems and hold and let (t,u,p,0) €
H x H}(Q) x Hpy (div; Q) x HY(Q) and (tp,, up, Pr, 0p) € Hy, x HY x HY x HY be the unique solutions
of problems and , respectively. Then, we define for each T" € T, the local a posteriori
error indicators

é%’T = Ha’;l1 — 1(On)ty, zT + ||f—|—div0'h||(2)7T + Hah — o';zui,T
4w —e()lZr + llon — (T, — e(w) B + llg +divpals (3.4
+ HVGh — (s 'pp, + fflehuh)HaT + Z 16D — 0h||(2),e’
ec&(T)NERL(TD)
@%,T = é%T + [[Vuy — (ta +Ph)||g,T ) (3.5)

and _
031 = O p +If —PL(D) 57+ g — Pr(9)llsr + K3 [IVun — (tn + py)ll5 7

_ _ 2
+ h%|rot (th+ph)|\(2)7T+h2T [rot (v 'pp + K 19huh)H0’T

+ > helllttn+pn)slls.+ Y e[l on A kT 00w) -s]flp,  (36)
ce&(T) c€E(T)NER(Q)
+ Z he o (k'pp + K 10puy) - s 2
ds 0,67

ecE(T)NEL(TD)
so that the global a posteriori error estimators are given, respectively, by
1/2 1/2

O1:=1{ > 0+ 00— 0l or, and ©y:=1{ > 3,5 . (3.7)
TETh TeTh

Note that the last term defining @%’T (cf. (3.6)) requires that dg—sD

€ L%(e) for each e € &,(I'p). This
&
is ensured below by assuming that 6p € HY(I'p).

The main goal of the present Section is to establish, under suitable assumptions, the existence
of positive constants Ciel, Cefr, Crel, and Ceg, independent of the meshsizes and the continuous and
discrete solutions, such that

Ceﬁ®1 S ||(§a u, p, 9) - (tha Up, Ph, eh)” S Cr(ﬂ@la (38)
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and
CEH@Q S H(§7 u7p7 9) - (th uh7ph7 6h>” S Crel@2~ (39)

The upper and lower bounds in and , which are known as the reliability and efficiency of the
estimators @1 and Oq, are derived below in Section and respectively, under the assumption
that 0p is piecewise polynomials on the induced triangulation on I'n. Otherwise, higher order terms
arising from polynomial approximations of these functions would appear in and .

At this point we remark that for the derivation of the first a posteriori error estimator we will use the
fact that u € HY(Q2) and 0 € H (), so that we can integrate some terms by parts in the whole domain
Q. In turn, for the second estimator we exploit the properties of the Helmholtz decompositions (cf.
Lemma jointly with the Clément and Raviart—-Thomas operators, whence new terms capturing
the jumps across the sides/edges of the triangulation appear.

3.3 A general a posteriori error estimate

In order to establish the reliability estimates of the a posteriori error estimators ©; and O, that is
the upper bounds in and , we first bound the unknowns related to the fluid and the heat
by applying the uniform ellipticity of the bilinear forms of the continuous formulation, and then we
conclude a preliminary upper bound for the total error by assuming that the data are small enough.
More precisely, we begin with the following auxiliary result.

Lemma 3.4 There exists C > 0, independent of h, such that
Itw) = )l < Cf o = )t + 118+ divorllog +llow —ohlo
+ [[tn —e(w)llo.o + lon — (Vun —e(un))llo.q + 1Rl aiv ) } (3.10)

9 P
+ mLu(l + k2)Y2CsC5Cs |

500 — Onll10
where Rg : Hy(div; Q) — R is the functional defined by
Re(T) = — 111/ {0'?Z = u(@h)th} crd - ng/ {f—i— diva‘h} -divT
Q Q
— / (th-i-ph)ZTd—/uh'diVT,
Q Q

Rf(’rh) =0 V1€ Hg. (3.12)

(3.11)

which satisfies

Proof. According to [6, Lemma 3.1], we have that the bilinear form Ay is uniformly elliptic on
H x H}(Q) with a positive constant «a(£2). This implies that

A t7u - L yUp ), (I, V
a@ltw) — Epu)l < sup  2eEW = (Er0a), (5V)
(r,v)€HxH(Q) [(x, V)l
(r,v)#0

(3.13)

In turn, in order to estimate the right-hand side in (3.13]), we first add and subtract suitable terms to
write

AG((L ll) - (§h7 uh)v (L V))
= F(L V) - A9h((§h7 uh)’ (LV)) - (A9 - Aeh) ((Ehv uh)’ (LV)) ’

11



and then proceed similarly to [I, eq. (3.15)]. Indeed, from the definitions of Ay and F (cf. (2.12))
and ([2.15)), respectively), and employing the Cauchy—Schwarz inequality, the estimate given by [6, eq.
(3.24)] for |[(Ag — Ay, ) (-, (r,v))|, and the regularity assumption [6], eq. (3.22)], we deduce that

[Ag((6,1) — (&, w), (x,v))|
VI
+ Jlon = hllg 0+ l16n = eCun) o + lon = (Vun = e(@llog + [Rell iy |

< cf ot = nont]| -+ 1E+divenlog
’ (3.14)

+2L,(1+ K1) /2CsCsCs ||flls 2|0 — Onll1.0
where 55, Cs, and Cj are the constants provided by [6, eqgs. (3.22), (3.25), and (3.32)], respectively.
In this way, replacing the inequality into , we get . Moreover, using the fact that
F(ry, vi) — Ag, (L, un), (xy, vi)) =0 V(rp,, vh) € Hy x Hy,
and taking in particular r, = (0,7,0) and v;, = 0, we get , which completes the proof. O

Next, we derive an analogous preliminary bound for the error associated to the heat variables.

Lemma 3.5 There exists C' > 0, independent of h, such that

19,8) = (o, 00 < C{ llg + divpullo + [V0n = (7 pn + 5~ 00w) [
(3.15)

2 _
+ 6o = Onllorn + Rl (aiv 0y } + FOR 1+ k3)2() [|64]

where Ry, : Hr (div; Q) — R is the functional defined by

1,9 ||u - uh”l,Qy

Ru(q) := —Ii@/ {g—i—divph}divq—/ {/ilph+/£19huh}-q—/Ghdivq+<q-n,9D>rD , (3.16)
Q Q Q

which satisfies
Rh(qh) =0 Vqp€ Hg (3.17)

Proof. According to [0, Lemma 3.2] and using the fact that ||ul|;o < cs|/flloq (cf. (2.18)), we have

that the bilinear form A + By is uniformly elliptic on Hp (div;Q) x H}(Q) with a positive constant

a(€2)/2. This implies that
a(Q A+]§ p,9 — phveha q7¢
o)~ o< s AEBI@A Pl 6 )

2 (a,)€Hry (div;2) xH () [(a, )]
(a,%)#0

In turn, in order to estimate the right-hand side in (3.18]), we add and subtract suitable terms to write
(A +Bu)((p,0) — (Pn, 1), (a, %))
= F(q7 1/]) - (A + Buh)((ph, ah)a (CL 1/])) - Bu—uh((pha eh)y (qa w))v

whence, using the definitions of A, ]§w, and F (cf. (2.13), (2.14)), and (2.16)), respectively), the
continuity of By_y, (see [0, eq. (3.16)]), and the Cauchy-Schwarz inequality, we find that

(A + By)((p,6) — (ph, 6h), (q,zb))\
[ (a, )l
+ 116p = Onllo.ro + 1 Ralle, (aiv oy } + 1711+ /) 2e(Q)16n]1,0/la — unll,0,

(3.18)

< C{ lg +divpallgn + HVGh — (& 'pn + "flehuh)Ho,Q

(3.19)

12



where ¢(Q2) is the constant in [0, eq. (2.15)]. Then, replacing the inequality (3.19)) into (3.18)), we
obtain (3.15)). Finally, using the fact that

F(an, ¥n) — (A + B, ) ((Pr, 04), (an, ¥n)) =0 ¥ (an, ) € H? x HY

and taking in particular ¢, = 0, we arrive at (3.17)), which completes the proof. O

We now combine the inequalities provided by Lemmas and to derive a preliminary upper
bound for the total error ||(t,u, p,0) — (t;, un, Pn,0r)|. Indeed, by gathering together the estimates
(3.10) and (3.15)), and noting the fact that 6, € W, it follows that

||(L u, p, 9) - (thvuhaphaeh)” < C(fagveD)H(L u, p, 9) - (thvuhaphaeh)”

+ C{ HU% - M(eh)thHOQ + |f +diveslyq + lon — O-;LH(LQ +ltn — e(un)llo 0

. (3.20)
+ llpn — (Vap — e(wp))lloq + [lg + divenlloo + | VO — (57 pr + 57 00w) ||
165 — Ballorp + IRt ey + (Rl sy -
where
C(f7gu GD) = max {Cl(f7 g, 9D)7 CQ(fu g, 9D)}7
with 5
Ca(£.0.00) 1= oo™ (1+ 19 2e(@eg (Il + 1oy + 160l 2, }
and 5
Cy(f, 9,0p) := ——— L, (1 + £3)2CsC5Cs| £l s.0-
2(f, 9,0p) ) u(1+ k1) CsCsCs|[f][ 5.0
Consequently, we can establish the following preliminary upper bound for the total error.
Lemma 3.6 Assume that the data f,g and 0p satisfy:
1
Cif.g.6p) < 5 Vie {12}, (3.21)

Then, there exists C > 0, depending only on parameters, data and other constants, all of them inde-
pendent of h, such that

It p,0) = (& wns P 00)1| < O [l = @)t + 1€+ divarnllyg
+ llon = ahllgq + Itn —e(w)lloo + lpn — (Van — e(an)llgq + llg + div pallo g (3.22)

+ ||VO, — (v 'pr + H_l9huh)HO,Q + [|0p — 6]

0. T 1 Rellay(aiv.0)y + Rallae @iv.oy }

Proof. Tt follows from a direct application of the assumption ([3.21)) in the inequality (3.20)). O

We end this section with equivalent definitions of the functionals Rt and Ry. In fact, noting that
tp:I=trt, =0 and p;, : I = 0, we first observe that

/Q(th+0h)17'd:/9(th+l)h)di7'=/g(th+ph):T.

13



In this way, given 7 € Hy(div;Q), we integrate by parts the expression fQ uy - div T and use the
homogeneous Dirichlet boundary condition on I' of u, € Hj! (cf. (2.20)), to find that

Re(T) = m/ﬂ{a%u(Gh)th} : T/{Q/Q{qudivah}-diVTJr/Q{Vuh(tthph)} :7. (3.23)

Analogously, given q € Hr (div;{2), we integrate by parts the expression fQ 0, div q and use now the
homogeneous Neumann boundary condition of q on I'y, to arrive at

Ru(q) = —HG/Q {g+diV ph} ddiJr/Q {V9h— (H_1Ph+f€_19huh)} ‘q+{q-n,0p —Op)p_ . (3.24)

3.4 Reliability of the a posteriori error estimators

We now proceed to bound the norms of the functionals R¢ and Ry, appearing on the right-hand side
of , by conveniently considering either their original definitions or the new expressions
and (3.24)), respectively. This task is actually performed in two different ways, which leads to the
reliability of the a posteriori error estimators ©1 and ©s. We begin with ©1.

Theorem 3.7 Assume that the data £, g and 0p satisfy (3.21)). Then there exist Cyep > 0, independent
of h, such that
H(£7 uapve) - (Eh?uhvphagh)n < Crel®1- (325)

Proof. We first observe that, employing Cauchy—Schwarz inequality and recalling that (-, '>FD stands
for the duality pairing between H='/2(I'p) and HY/?(I'p), we deduce from (3.23) and (3.24)) that

IRellsoa oy < e1{ [|o = O]+ I+ divonlon + IVan = (6 +plloa ) (326)
and
IRl v < c2{llg + divonllog + [V — (5 pn + 17 00wa) g o + 100 — Oll1 /oy o (3:27)

respectively. In this way, the proof follows straightforwardly from the definition of ©; (cf. (3.5))),

Lemma and inequalities (3.26]) and (3.27)). O

Having proved Theorem [3.7] we now aim to establish the reliability of O, (cf. (3.6))), which is accom-

plished by applying the Helmholtz decompositions provided by Lemma to bound HRfHHO(div;Q)/

and HRhHHF (div:Q)" Actually, in what follows we provide the details only for R¢ since those for Ry
N K

follow analogously. In fact, given 7 € Hp(div;(2), and thanks to part (a) of Lemma we first let
z € H2(Q) and ¢ € H(Q) be such that 7 = Vz + curl ¢ in Q, and

HZ 2,0t H‘P 1,0 < CHTHdiv;Qa (3.28)

and then define 7, := II;(Vz) + curl (In¢) + cl, where ¢ € R is chosen so that 7, belongs to Hf
(cf. Section [3.1)). Hence, employing from (3.12) that R¢(75) = 0, it readily follows from the foregoing
expressions that R¢(7) can be decomposed as

Ri(T) = Re(T — 1) = Re(Vz — I1,(Vz)) + Re(curl (p — Ir¢p)) . (3.29)

Consequently, we now require to bound the terms on the right-hand side of (3.29)), which is done
in the following two lemmas.

14



Lemma 3.8 There exists C > 0, independent of h, such that for each z € H2(Q) there holds

1/2
Ri(Vz - T(V2)| <€ 3 OFr g alee,
TeT
where )
02, = hZ || — u(6,)t £f—PLE)|2 -+ hZ|Vuy, — (t 2 3.30
£, 7o — 1(0n)tn OT+H o, + h7lIVan — (tn + pp)llo - (3.30)

Proof. Using the alternative definition of the functional R¢ (cf. (3.23)), the proof follows from a slight
modification of that of [25] Lemma 3.10]. We omit further details. O

Lemma 3.9 There exists C > 0, independent of h, such that for each ¢ € H'(Q) there holds

1/2
Ri(curl (¢ - Tip))| <€ > 82 el
TETH
where
~ 2
Oy = |0t — nn)t]| |+ BElvot (tn+ p)lEr+ D2 e llen + PSR (3.31)
’ ec&(T)

Proof. Given ¢ € H(Q), we first notice from the original definition ([3.11)) of R¢ that there holds

Refeurl (¢~ Tug)) = 1 [ {ai~u)tn} s curl (0 Tugp) - [ (60 p1) s curl (o Tp) . (332

Then, for estimating the first term on the right-hand side of (3.32)) we proceed as in the proof of [25]
Lemma 3.9] and apply the boundedness of I, : HY(Q) — H'(Q2) ([16, Lemma 1.127, pag. 69]), as well
as the Cauchy—Schwarz and triangle inequalities, to obtain

1/2

1 /Q {of = non)ts} :wrl«o—lm\ <o S ot -menl b oIl 333)
TETy, ’

Next, analogously to the proof of |25, Lemma 3.9], we decompose the second term on the right-hand
side of (3.32)) according to the triangulation 73, and integrate by parts on each T € T}, to obtain

Lttt o) el (o =T = 3= [ rotitn+p) (0 =Tige) = 3 [ 16n+ pu)s] - (o~ L)

TET;, ecEp V€

In this way, applying the Cauchy—Schwarz inequality, the approximation properties of the Clément
interpolator I, (cf. Lemma[3.2)), and the fact that the number of triangles of the macro-elements A(T")
and A(e) are uniformly bounded, we deduce that

/Q(th—l-Ph) 30111"1(90—11190)‘

1/2 (3.34)
<C Y ahzlvot (bh+p)l5r+ Y hellltbn+pu)sllG. ¢ lelie.
TeTy, ec&(T)
Finally, by replacing the inequalities (3.33)) and (3.34)) into (3.32)) we conclude the proof. O

As a direct consequence of Lemmas and and the stability estimate (3.28)) for the Helmholtz
decomposition, we obtain the following upper bound for ||Re (g, aiv 0 -
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Lemma 3.10 There exists C > 0, independent of h, such that

1/2
||Rf”Ho(div;Q)’ < C Z @%,T )
TeTs
where )
Oy = ||ot — un)tal|  +IE =~ PaDIBr+ BT~ (b + o)l

(3.35)
+ hllrot (bn + o) |5+ D hellltn + pr)s]IG, -

ec&(T)
Proof. It suffices to see that the first term defining C:)%T (cf. (3.30) in Lemma is dominated by

the first term of @%T (cf. (3.31) in Lemma , which explains the subtraction of the former in the
original definition of @?T. (]

Finally, the corresponding estimate for Ry, is given by the following lemma.

Lemma 3.11 Assume that there exists a conver domain = such that Q C = and 'y C 0=. Assume
further that Op € H'(I'p). Then there exists C > 0, independent of h, such that

||Rh||HFN(diV;Q)’ <C Z @ﬁ,T )

TETh
where
_ _ 2
Ol = g —Pu@5r+ 7 ||VOh — (7 pn + £ 00w || 1
_ _ 2 _ _ 2
+ b frot (57 om0 o p D e |[[(5T P+ s ) - S] fg,
e€E(T)NER(Q) (3.36)
daD —1 —1 2 2
+ Z he ds ( Pr+ K Opup)-s + [16p — HhHO,e :
ecE(T)NEL(TD) 0,e

Proof. The result follows analogously to the proof of Lemma (see also [12, Lemma 3.8]), taking
into account now the Helmholtz decomposition provided by part (b) of Lemma and the fact that
Ru(an) =0 Va, € HY (cf (3.17)). In particular, using the alternative definition of Ry, (cf. (3.24))
and proceeding similarly to Lemma [3.8] we find the first, second and last term of the local estimator
(3-36). On the other hand, considering the original definition of Ry, noting that dc%’ € L2(I'p),
applying the integration by parts formula on I'p given by (cf. [15, Lemma 3.5, eq. (3.34)])

dbp

<cur1X - n, 9D>FD E—— <ds’x

> Vx € HY(Q), (3.37)
I'p

and proceeding analogously to Lemma (see also [12, Lemma 3.7]), we obtain the remaining terms
of (3.36)). Further details are omitted. O

The reliability estimate for ©9 is stated now.

Theorem 3.12 Assume that the data f,g and Op satisfy (3.21). Assume further that 0p € HY(I'p).
Then there exist Crep > 0, independent of h, such that

1(t, u, p, ) — (ty, un, Py On)|| < CrelOo. (3.38)
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Proof. Tt is a straightforward consequence of the definition of Oy (cf. (3.6))), Lemmas and
and the fact that the terms h2.|| V6, — (nflph—i—/flehuh)HaT and hel|fp — 65§ ., which form part

of @ﬁ’T (cf. (3.36)), are dominated by ||V8, — (v~ 'py + nflﬁhuh)HaT and ||6p — 0p|[§ ., respectively.
U

3.5 Efficiency of the a posteriori error estimators

We now aim to establish the lower bounds in and . For this purpose, we will make extensive
use of the original system of equations given by , which is recovered from the augmented-mixed
continuous formulation by choosing suitable test functions and then integrating by parts back-
wardly the corresponding equations.

We begin with the efficiency estimate for 0.
Theorem 3.13 There exists Cog > 0, independent of h, such that
Cer®1 < ||(t, 1, p,0) — (b, un, P, On)|- (3.39)
Proof. We first introduce the identity o — p(6)t = 0 (cf. ([2:8)), that is,
ot — w0t = (o = %) + u(Bh) (6 = ta) + (u(6) — p(6)) ¢,

which, proceding as in [6, Lemma 3.4], and noting that ||[74]jo.q < ||7(|0.q for each T € L2(12), yields

2
d
ot = w0nyta| | < 3{1llt = ulid 0+ llo = onl o+ LENEIZ0lO = Ol -

Recall here from [6] that § € (0,1) (when n = 2) or § € (1/2,1) (when n = 3) stands for the extra
regularity that we need to assume for the solution of (2.11). In turn, employing the estimate [6],
eq. (3.22)] to bound ||t||sq, and the continuous injection of H!(2) into L™%(12), whose boundedness

constant is 5’5 (cf. Theorem , it is not difficult to see that there exist a positive constant ¢y,
depending only on data and other constants, all of them independent of A, such that

2
|ot = nonta] < er{le—tulBa+llo—onlda+ 10— 0alia}- (3.40)
Analogously, by considering the identity V0 — (k= 'p + x~0u) = 0 (cf. ([2.§))), we have

VO, — (57 'pr+ £ 0pu) =V (0, — 0) + 5 (p—pa) + £ (Bu—6Opuy)

where the last term of the right-hand side can be rewritten as u — fpuy, = 0(u — uy,) + (0 — 6,)uy,
and then it can be bounded by

[0u — Opunllo.o < [10]lLa)llu — unllLa) + [[unllLa@) 10 — OnllLa)-

Therefore, using the fact that H!(Q) is continuously embedded into L*(£2), 6 lives in the ball W, and
the estimate |[up||1.0 < cs||f]lo,o holds (cf. (2.22)), we obtain

Hveh - (K_lph + K_lehuh)H%,Q < CQH(U, | o8 9) - (uha Ph, Hh)H27 (341)

with co a positive constant independent of h. On the other hand, it is readily seen from (2.8]) that
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”f + div O'h”%’ﬂ

IN

. 2
1div (o — a5

IN

lg + divpnll§ o < [Idiv(p — Pl o

IN

||0'h—0'2||3,9 4”0'—0'h‘|(2),9=

IN

It — e(wnlBo < 2]t = talZ o+ u — wal} o }. (3.42)

IN

2{llp — pul3a + I - willZ o},

3{It = tullB + o — palo + lu - wilfa},

100 = Ol ry < c3ll0 —0nllF q

1oy — (Vuy, —e(up)) I o

IN

IVay = (tr + pp) I3 0

and
10D = 0nl15 o1y < call6 = Onll3 g, (3.43)

where the last two inequalities make use of the trace inequalities in L?(I'p) and HY/2(I'p), respectively.
In this way, the required efficiency estimate (3.39)) follows straightforwardly from the definition of ©

(cf. (3.5))) and the inequalities ((3.40)—(3.43]). O

Next, we continue with the derivation of the efficiency estimate of O.
Lemma 3.14 There hold
(8) IIf = Pu(®)lox < 2ldiv (o —ap)or VT €T,

(b) llg = Pr(g)llo,r < 2[|div (P — Pa)

loor VT €Ty,

and there exist c1,co > 0, independent of h, such that

(€) B3lrot (¢ + o)l < cr{lIt = taldr + o — pul3r} YT €T,

(@ Aelll(tn + pslIEe < ea{llt = tal, + o — pulBe, } Ve ln,

where the set we s given by we = U{T’ €eTh:ec S(T’)}.

Proof. For (a) and (b) we refer to [25, Lemma 3.18]. In turn, since rot (t + p) = rot (Vu) = 0, we
find that the proof of (c) and (d) follows after a straightforward application of [3, Lemmas 4.3 and
4.4], respectively. O

The corresponding bounds for the remaining terms defining ©, are given next.

Lemma 3.15 There exist c1,co > 0, independent of h, such that

(2) > hElrot (v "pn+ 57 0w 57 < crll(w,p,0) — (un, Pr, On)II%,
TeT;

(0) > el pn + £~ 00un) -3 < c2l(w,p,6) — (un, pa, 0)II*.
e€&L(Q)

In addition, under the assumption that p € HY(T'p), there exists c3 > 0, independent of h, such that
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2

< ¢sl|(u, p,0) — (up, pr, 0p)|*
0,e

i

ds — (Hﬁlph + ﬁ’10huh) - S

(c) Z he
e€&r(Tp)

Proof. 1t follows almost straightforwardly from a slight modification of the proof of [12, Lemma 3.11].
We omit further details. O

As a consequence of Theorem [3.13] and Lemmas and we are now in position to state the
efficiency of ©s.

Theorem 3.16 Assume that fp € H'(I'p). Then, there erists C~’eff > 0, independent of h, such that

Ceff®2 < ||(§7 uvpae) - (Ehauhvphveh)u' (344)

4 A posteriori error analysis: the 3D-case

In this section we extend the results from Sectionto the three-dimensional version of . Similarly
as in the previous section, given a tetrahedron T' € T, we let £(T') be the set of its faces, and let &,
be the set of all faces of the triangulation 7;,. Then, we write &, = &,() U &,(I'p) U Er(I'n), where
5h(Q) = {6 €&, :eC Q}, Eh(FD) = {6 e&,:eC FD}, and 5h(FN) = {6 €&, eC FN}. Also,
for each face e € &, we fix a unit normal n, to e, so that given T € L?(Q) such that 7|r € C(T) on
each T' € Ty, and given e € £,(Q2), we let [T X n.] be the corresponding jump of the tangential traces
across e, that is [T X n.] := (7|r — T|77)|e X ne, where T and T” are the elements of 7, having e as a
common face. In what follows, when no confusion arises, we simple write n instead of n..

Now, we recall that the curl of a 3D vector v := (v, ve, v3) is the 3D vector

curl (v) =V x v := (31}3_81}2 Ov _ Ovs 81]2—801>
6$2 61‘3, 8373 8.%‘1 ’ 81‘1 833‘2
and that, given a tensor function 7 := (7i;)3x3, the operator curl (7) is the 3 x 3 tensor whose rows
are given by
curl (7‘11, 712, 7'13)
curl (1) := | curl (721, 722, T23)
curl (7‘31, 732, 7'33)
In addition, 7 x n stands for the 3 x 3 tensor whose rows are given by the tangential components of
each row of T, that is,
(711,712, T13) X 1
Txn:=| (721,722,T23) X 1
(731,732, 7T33) X 1

_ Having introduced these notations, we now set for each I' € T, the local a posteriori error indicators
@%’T and @%’T (exactly as in (3.4) and (3.5)), respectively), and define

037 = O p + It —Pr(®)ll5. 1 + g — Pu(@)ll.r + B3 | Vun — (tn + p1)ll5 1

_ _ 2
+ h% ||curl (t; + ph)Hg,T + h% chrl (v pp+ 5 10huh)H0,T

4.1
+ 3 hellltbn+ o) xndl5 .+ D" ke |[[57 P+ 57 Ohwn) x m] ||, -y
e€&(T) e€E(T)NER(Q)
- > he | VOp x 0 — (k7' pp + £ 0up) x nHi,e :
ecE(T)NEL(TD)
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In this way, the corresponding global a posteriori error estimators are defined as in (3.7)), that is
1/2 1/2

0, = Z 9%,T + [16p — eh”%/Q,FD and Oz := Z @%,T ’
TET, TETh

and the main estimates, which are the analogue of Theorems and are as follows.

Theorem 4.1 Assume that the data f,g and 0p satisfy (3.21). Assume further that 0p € H'(I'p).
Then, there exist positive constants Chrel, Cefr, Crel, and Ceg, independent of h, such that

Ceffe)l < H(i» 11>P79) - (Ehauhaphagh)n < Crel®1

and
Ceff®2 S H(L u, p, 9) - (Ehauhvphaehﬂl S C’rel('-)Q-

The proof of Theorem follows very closely the analysis of Section [3] except a few issues to be
described throughtout the following discussion. Indeed, we first observe that the general a posteriori
error estimate given by Lemma [3.6]is also valid in 3D, and that the corresponding upper bounds of
IRl (div s and HRhHHrN(div .y yielding the reliability of © are the same as those given in

and ([3.27)), respectively.

Now, for the reliability of ©2, we need to use a 3D version of the stable Helmholtz decompositions
provided by Lemma [3.3] These required results were established recently for arbitrary polyhedral
domains in [22] Theorems 3.1 and 3.2]. Next, the associated discrete Helmholtz decompositions
and the functionals R¢ and Ry are set and rewritten exactly as in and , respectively.
Furthermore, in order to derive the new upper bound of ||R[|g, (giv 0y and ||7'\’,h||HFN (div;0) > We oW
need the 3D analogue of the integration by parts formula on the boundary given by . In fact,
by applying the identities from [26], Chapter I, eq. (2.17) and Theorem 2.11], we deduce that in this
case there holds

(curlx - n,0p)p, = —(Vfp xn,x)r, VX € H!(Q).

In addition, the integration by parts formula on each tetrahedron T" € 7T, which is employed in the
proof of the 3D analogue of Lemma becomes (cf. [26, Chapter I, Theorem 2.11])

/curlq'x/q'curlxz<q><n,x>8T Vq € H(curl;Q), Vyx e HY(Q),
T T

where (-, ) 5y is the duality pairing between H='/2(9T) and H'/2(9T'), and, as usual, H(curl; Q) is the
space of vectors in L?(2) whose curl lie also in L2(Q2). Note that the foregoing identities explain the
appearing of the expressions (t;+py,) xn, (s 'pp+£"10,up) xn, and VOp xn— (k" 'pp+£"10,u;) xn
in the 3D definitions of G%,T (cf. ([&1)). The rest of the proof of the reliability of ©, and the entire
analysis yielding the efficiency of both ©; and ©5 proceed as in Sections and respectively,
taking into account that the proof of the 3D version of the Lemma[3.15|follows almost straightforwardly
from a slight modification of the proof of [12, Lemma 4.2].

5 Numerical results

This section serves to illustrate the performance and accuracy of the proposed augmented finite element
scheme along with the properties of the a posteriori error estimators @1 and ©4, in 2D and 3D domains,
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derived in Sections [3] and [d] respectively. In this regard, we remark that for purposes of adaptivity,
which requires to have locally computable indicators, we use that

160 = O} jo.rp, < ol = OnllTry, =co Y 6o —Olli.,

eEgh(FD)
and redefine © as
1/2
O1:=4 > O ,
TETy,
where
2
d P 2 2 2
0% = [lo = nnta], + 1+ divonldy + lon —ab] -+ e — el 7

+ lon = (Vun = e(un))llg 7+ IVan = (6 + pu) 15 7 + lg + divpallg -

+ || VO, — (5 'pr + Ii_lehuh)H;T + Z 10D — Onll . -
ecE(T)NEL(TD)

Under this redefinition © is certainly still reliable, but efficient only up to all its terms, except for the
last one, associated to the boundary I'n. Nevertheless, the numerical results to be displayed below
allow us to conjecture that this modified @ actually verifies both properties.

Our implementation is based on the public domain finite element software FreeFem++ [27] which
provides for both 2D and 3D domains the automatic adaptation procedure tools adaptmesh and msh-
met, respectively. A Picard algorithm with a fixed tolerance tol = 1E — 6 has been used for the
corresponding fixed-point problem and the iterations are terminated once the relative error of
the entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

coeff™ 1 — coeff™||,
l
T < tol,
2
[|coeff™ ™|,

where || - [|;2 is the standard /[2-norm in RN, with N denoting the total number of degrees of freedom
defining the finite element subspaces H¢, HY, ]HIZ ,Hj, HE, and Hz. As usual, the individual errors are
denoted by:

e(t) == [[t —tullon, e(o):=lo—onldiva, elp):=Ilp—rpuloa

e(u) == lu—upllie, eP):=[p—Pullave, @) :=0—"0l1q,

e(op) = |lop —opillon, ep) = Ilp—rnloa,

where op ) and pj, are the postprocessed polymeric part of the extra-stress tensor and the pressure,
respectively, given by

1
opp = 2up(fp)t, and pp:=——tro, in Q.
n
In turn, the global error is computed as

e:= {e(t)2 +e(0)” +e(p)” +e(u)’ +e(p)” + e(9)2}1/2’
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whereas the effectivity index with respect to ©;, i € {1,2} is given by

eff(©;) := g.

In addition, we define the experimental rates of convergence

(o) = log(e()/€'(0))
- log(h/I)

where e and €' denote errors computed on two consecutive meshes of sizes h and h’, respectively. How-
ever, when the adaptive algorithm is applied, the expression log(h/h’) appearing in the computation
of the above rates is replaced by — log(N/N’) with n = 2 (in 2D domains) or n = 3 (in 3D domains),
where N and N’ denote the corresponding degrees of freedom of each triangulation.

for each ¢ € {t,o-,p, u,p,0, ap,p},

The examples to be considered in this section are described next. In all of them, as in [13, Section 2],
we choose the coefficients of the polymer and solvent viscosity ai, b1, as and by (cf. (2.2])) as follow:

AFE

—AFE
by = by = —, a2=exp<

ROR

I > , and a3 = (1—€)ag,

where AF is the activation energy, R is the ideal gas constant, and 0y is a reference temperature of
the fluid. Note that the constraint will be satisfied as long as the temperature of the system
stays above fg. In turn, we consider k£ = 1, ¢ = 0.01, and according to [6, eq. (3.20)], the stabilization
parameters are taken as k1 = p1/u3, ko = K1, kK3 = U1/2, kg = /4, K5 = K, K¢ = K 1/2, and
k7 = k/2. In addition, the condition fQ tro, = 0 is imposed via a penalization strategy.

Example 1. In our first example we concentrate on the accuracy of the augmented method. We
consider the square domain € := (0,1)2, the boundary I' = T'p U 'y, with I'p := {0} x (0,1) and
Iy := '\ I'p. The following viscosity parameters correspond to polystyrene [28, Section 4.2]:

AFE
—— = 14500, 6O = 538.
R ) R
The data f, g, and 0p are chosen so that a manufactured solution of (2.8)) is given by the smooth

functions
) 23 (x1 — 1)? cos(mas) sin(mas)
ux) = )
—2z1(z1 — 1)(221 — 1) sin(mag)?
p(x) := cos(mxy) cos(mxe),
0(x) := 10(x1 — 1)%sin(mw2)? + 540 Vx = (71,79) € Q.
The results reported in Tables[5.1]and [5.2] are in accordance with the theoretical bounds established in
Theorem In addition, we also compute the global a posteriori error indicators ©1, @4 and measure

their reliability and efficiency with the effectivity index. For the two orders tested, these estimators
remain always bounded.

Example 2. Our second example is aimed at testing the features of adaptive mesh refinement
after the a posteriori error estimators ©; and ©3. We conﬁider a four-to-one contraction domain
Q= (0,2) x (0,1) \ (1,2) x (0.25,1), the boundary I' = I'p U I'y, with I'p := {0} x (0,1) and
I'y :=I'\ I'p. The following viscosity parameters correspond to Nylon-6,6 [28, Section 4.2]:

AFE

—— = 6600, 6r = 563.
R s R
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The data f, g, and 6p are chosen so that the exact solution is given by

a(x) = ( (s — 1) (w2 — 0.25) (323 — 2525 + 0.25) sin(rz)2 )

—723(z2 — 1)%(z2 — 0.25)% cos(mzy) sin(ma)
10(z5 — 0.25)
z1 — 1.02)2 + (z2 — 0.27)2
4(%1 - 1)(1‘2 - 025)
(x1 —1.02)2 4 (22 — 0.27)2
The constant pg is such that pr = 0. Notice that both the pressure and the temperature exhibit
high gradients near the vertex (1,0.25). Notice also that the only difference with respect to (2.8)) is

a non-homogeneous heat flux p - n = fy imposed on I'y, where fy is manufactured according to the
above solution. Therefore, the local estimators ©1 7 and ©2 7 have to be modified by adding the term

> helfn—pr-nlfg,,

ecE(T)NEL(TN)

p(x) = ( + po,

0(x) := +570 Vx:= (z1,22) €

whose estimation from below and above follows in a straightforward manner.

Tables[5.3] [5.4] and [5.5]along with Figure[5.1] summarizes the convergence history of the method ap-

plied to a sequence of quasi-uniformly and adaptively refined triangulation of the domain. Sub-optimal
rates are observed in the first case, whereas adaptive refinement according to either a posteriori error
indicator yield optimal convergence and stable effectivity indexes. On the other hand, approximate
solutions builded using the augmented Py — RTy — Py — P; — RTy — P; scheme with 562743 degrees
of freedom (via the indicator ©;) are shown in Figure In particular, we observe in both the
velocity and heat flux streamlines a vortex near the corner region of the four-to-one domain whereas
both the pressure and temperature exhibit high gradients in the same region. In turn, examples of
some adapted meshes generated using ©1 and ©9 are collected in Figure We can observe a clear
clustering of elements near the corner region of the contraction as we expected. Notice that the meshes
obtained via the indicator ©4 are lightly more refined in the interior of the contraction domain than
the meshes obtained via the indicator ©;. This fact is justified by the terms that capture the jumps
between triangles obtained in the Helmoltz decomposition.
Example 3. To conclude, we replicate the Example 2 in a three-dimensional setting. In fact, we
consider the four-to-one domain Q := (0,2) x (0,1)2\ (1,2) x (0.25,1)2, the boundary I' = I'p U Ty,
with T'p := {0} x (0,1)? and I'y := I' \ I'p. The viscosity parameters are the same as in the second
example. However, this time the manufactured exact solutions adopt the form

—z3(z3 — 1) (w3 — 0.25)(323 — 2.5205 — 7 cos(mx2) + 0.25) sin(7w1)? sin(72)
u(x) = z3(z3 — 1)(z3 — 0.25)(32% — 2.525 — 7 cos(mz1) + 0.25) sin(rx ) sin(wag)? |,

—mz3(z3 — 1)%(z3 — 0.25)? sin(mx1) sin(7as) (cos(mz2) — cos(mzy))

10(z3 — 0.25)
x| — 1.05)2 + (333 — 0.3)2
4(1‘1 — 1)(1‘3 — 0.25)

(331 — 1.05)2 + (1’3 — 0.3)2
Similarly, Tables and along with the Figure [5.4] confirm a disturbed convergence under quasi-
uniform refinement and an optimal convergence rates when using adaptive refinement guided by the a
posteriori error estimator ©1. In turn, some approximated solutions after four mesh refinement steps

showing an analogous behaviour to its 2D counterpart are collected in Figure [5.5] whereas snapshots
of the last three meshes via ©1 are shown in Figure [5.6

p(x) = ( + Po;

0(x) :=

+570 Vx:= (z1,29,23) € Q.
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N| h [e) [ rlt) [elo) [ (o) [ elp) [ rlp) | e(w) | r(w) | e(p) [ r(p)
1467 [ 0.196 [ 0.155 | — [1246[ - [0268] - [0264] - [0148] -
5631 | 0.097 | 0.075 | 1.025 | 0.633 | 0.960 | 0.146 | 0.859 | 0.127 | 1.040 | 0.063 | 1.214
22131 | 0.048 | 0.038 | 0.979 | 0.310 | 1.009 | 0.080 | 0.858 | 0.062 | 1.018 | 0.031 | 0.995
87837 | 0.025 | 0.019 | 1.032 | 0.157 | 1.018 | 0.040 | 1.045 | 0.031 | 1.027 | 0.015 | 1.105
353853 | 0.013 | 0.009 | 1.093 | 0.077 | 1.085 | 0.020 | 1.089 | 0.015 | 1.072 | 0.007 | 1.111

e(p) ‘ r(p) ‘ e() ‘ r(6) ‘ e(op) ‘ r(op) ‘ e ‘ r ‘ eff(©1) ‘ eff(©2) ‘ iter
18.678 - 3.265 - 0.349 - 19.007 - 0.931 0.183 4
9.628 | 0.940 | 1.419 | 1.181 | 0.171 | 1.017 | 9.755 | 0.992 | 0.942 0.180
4.738 | 1.002 | 0.6564 | 1.094 | 0.082 | 1.027 | 4.794 | 1.038 | 0.947 0.178
2.405 | 1.014 | 0.331 | 1.019 | 0.041 | 1.035 | 2.434 | 0.984 | 0.950 0.176
1.187 | 1.082 | 0.163 | 1.087 | 0.020 | 1.117 | 1.201 | 1.013 | 0.950 0.176

W W W

Table 5.1: EXAMPLE 1, Py — RTy — Py — P; — RTy — P; scheme with quasi-uniform refinement.

N| h [e) | r(t) [e(a) [ o) | elp) | rp) | e(w | rw) [ el | rp)
3666 [ 0.196 [ 0.026 | - [0.151] — [0.023] - [0.037] - [0016] -
14076 | 0.097 | 0.006 | 2.036 | 0.037 | 2.002 | 0.006 | 1.986 | 0.009 | 2.071 | 0.004 | 1.894
55326 | 0.048 | 0.001 | 2.044 | 0.009 | 2.019 | 0.001 | 2.048 | 0.002 | 2.065 | 0.001 | 1.998
219591 | 0.025 | 0.000 | 1.989 | 0.002 | 2.040 | 0.000 | 1.998 | 0.001 | 1.986 | 0.000 | 2.032
884631 | 0.013 | 0.000 | 2.186 | 0.000 | 2.153 | 0.000 | 2.196 | 0.000 | 2.195 | 0.000 | 2.167

e(p) \ r(p) \ e(d) \ r(0) \ e(op) \ r(op) \ e \ r \ eff(01) \ eff(02) \ iter
2.435 - 0.296 - 0.045 - 2.458 - 0.951 0.114 3
0.584 | 2.024 | 0.069 | 2.060 | 0.011 | 2.048 | 0.590 | 2.122 | 0.953 0.116
0.138 | 2.041 | 0.015 | 2.120 | 0.003 | 2.039 | 0.139 | 2.111 | 0.951 0.115
0.036 | 2.023 | 0.004 | 2.047 | 0.001 | 2.006 | 0.036 | 1.961 | 0.956 0.115
0.009 | 2.148 | 0.001 | 2.133 | 0.000 | 2.185 | 0.009 | 2.011 | 0.957 0.115

W W w w

Table 5.2: EXAMPLE 1, Py — RT; — P; — Py — RT; — P5 scheme with quasi-uniform refinement.

N| h [e) [ rlt) [ elo) [ (o) [elp) [ r(p) [ e(w) | r(w) | e(p) [ rp)

1803 | 0.190 | 1.651 - 485.735 - 2.078 - 2.717 - 11.050 -
6987 | 0.103 | 0.692 | 1.285 | 540.574 - 1.742 | 0.260 | 3.783 - 11.448 -
27345 | 0.049 | 1.409 - 384.144 | 0.501 | 1.410 | 0.310 | 1.625 | 1.238 | 6.920 | 0.738

107985 | 0.026 | 1.135 | 0.315 | 231.471 | 0.738 | 0.932 | 0.603 | 0.673 | 1.285 | 2.842 | 1.296
430221 | 0.013 | 0.646 | 0.817 | 123.634 | 0.907 | 0.558 | 0.742 | 0.208 | 1.698 | 1.205 | 1.242

e(p) ‘ r(p) ‘ e() ‘ r(6) ‘ e(op) ‘ r(op) ‘ e ‘ r ‘ eff(©1) ‘ eff(©2) ‘ iter
260.136 - 82.410 - 5.521 - 557.149 - 1.010 0.701 8
453.925 | -~ 105.853 | — 6.172 - 713.786 | — 1.013 | 0.712 | 6
338.485 | 0.430 | 31.700 | 1.767 | 4.031 | 0.624 | 512.982 | 0.484 | 1.002 0.708 )
221.602 | 0.617 | 10.676 | 1.585 | 1.674 | 1.280 | 320.629 | 0.684 | 1.001 | 0.707 | 4
125.639 | 0.821 | 2.834 | 1.919 | 0.970 | 0.789 | 176.293 | 0.865 | 1.000 0.707 3

Table 5.3: EXAMPLE 2, Py — RTy — Py — P; — RTy — P scheme with quasi-uniform refinement.
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N| et [ rt) [ efo) [r(a) [elp) [ r(p) | e(w) | r(u) | e(p) | r(p)

1803 | 1.651 - 485.735 - 2.078 - 2.717 - 11.050 -
2793 | 1.152 | 1.645 | 477.153 | 0.042 | 0.887 | 3.893 | 2.440 | 0.491 | 5.918 | 2.854
3969 | 1.353 - 233.594 | 3.936 | 0.604 | 2.188 | 0.715 | 6.984 | 3.017 | 3.834

6465 | 1.108 | 0.818 | 95.506 | 3.515 | 0.503 | 0.751 | 0.524 | 1.274 | 2.464 | 0.829
12177 | 0.985 | 0.372 | 52.350 | 2.003 | 0.435 | 0.460 | 0.425 | 0.665 | 2.127 | 0.466
24309 | 0.789 | 0.641 | 35.354 | 1.156 | 0.358 | 0.558 | 0.286 | 1.139 | 1.696 | 0.655
42405 | 0.612 | 0.913 | 26.435 | 1.043 | 0.284 | 0.830 | 0.173 | 1.822 | 1.213 | 1.204
78363 | 0.507 | 0.615 | 19.354 | 1.030 | 0.238 | 0.581 | 0.126 | 1.033 | 0.957 | 0.772

148599 | 0.337 | 1.276 | 14.094 | 1.012 | 0.173 | 1.004 | 0.067 | 1.976 | 0.668 | 1.123
286053 | 0.268 | 0.702 | 10.136 | 0.989 | 0.138 | 0.682 | 0.047 | 1.045 | 0.513 | 0.807
962743 | 0.172 | 1.313 | 7.245 | 1.008 | 0.089 | 1.287 | 0.025 | 1.904 | 0.324 | 1.358

e(p) [rp) | el | r(0) [elop)|r(op)| e | r [eff(B1) | iter
260.136 - 82.410 - 5.521 557.149 - 1.010 8
410.800 - 57.315 | 1.659 | 3.435 | 2.169 | 632.238 - 1.005 )
218.748 | 3.587 | 20.780 | 5.775 | 2.067 | 2.891 | 320.704 | 3.863 | 1.003 5)
86.491 | 3.804 | 19.236 | 0.317 | 1.540 | 1.207 | 130.284 | 3.693 | 1.014 )
42.241 | 2.264 | 17.562 | 0.288 | 1.316 | 0.496 | 69.531 | 1.984 | 1.042 )
28.680 | 1.120 | 13.182 | 0.830 | 1.069 | 0.601 | 47.403 | 1.108 | 1.052 4
21.095 | 1.104 | 10.129 | 0.947 | 0.789 | 1.093 | 35.311 | 1.058 | 1.053 3
15.621 | 0.978 | 8.060 | 0.744 | 0.642 | 0.670 | 26.151 | 0.978 | 1.061 3
11.037 | 1.086 | 3.787 | 2.361 | 0.440 | 1.184 | 18.302 | 1.116 | 1.025 3
8.061 | 0.963 | 2.458 | 1.320 | 0.352 | 0.680 | 13.179 | 1.003 | 1.020 3
5.615 | 1.065 | 0.981 | 2.716 | 0.228 | 1.289 | 9.221 | 1.056 | 1.007 3

Table 5.4: EXAMPLE 2, Py — RTy — Py — P1 — RTy — P scheme with adaptive refinement via ;.

10
2
10+ 7
e
1
10 + 7
—%— Ch
—<&— quasi-uniform refinement
- -P- - adaptive refinement after ©,
- - - - adaptive refinement after ©,
100 i i N il i i R S R S| i i R S S S
4 5 6
10 10 10
N

Figure 5.1: Example 2, e vs. N for quasi-uniform/adaptive schemes.
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N‘ e(t) ‘ r(t) ‘ e(o)

[ r(o) [ elp) | rlp) [ e(m) | r(w) | e(p) | r(p)

1803 | 1.651 - 485.735 - 2.078 — 2.717 - 11.050 -
3177 | 1.161 | 1.242 | 479.666 | 0.044 | 0.910 | 2.914 | 2.499 | 0.295 | 8.074 | 1.108
4395 | 1.358 - 233.586 | 4.434 | 0.720 | 1.447 | 0.688 | 7.946 | 2.966 | 6.170
6987 | 1.041 | 1.147 | 92.836 | 3.981 | 0.438 | 2.147 | 0.453 | 1.804 | 2.021 | 1.655
12759 | 0.953 | 0.230 | 51.210 | 1.976 | 0.374 | 0.518 | 0.404 | 0.384 | 1.785 | 0.413
24789 | 0.715 | 0.864 | 34.828 | 1.161 | 0.347 | 0.224 | 0.227 | 1.732 | 1.333 | 0.878
42729 | 0.576 | 0.793 | 26.799 | 0.963 | 0.258 | 1.091 | 0.152 | 1.481 | 1.070 | 0.807
81009 | 0.435 | 0.879 | 18.989 | 1.077 | 0.218 | 0.526 | 0.095 | 1.469 | 0.865 | 0.666
151581 | 0.319 | 0.993 | 14.100 | 0.950 | 0.157 | 1.055 | 0.055 | 1.719 | 0.607 | 1.131
297489 | 0.233 | 0.924 9.898 1.050 | 0.121 | 0.757 | 0.037 | 1.191 | 0.444 | 0.924
577731 | 0.162 | 1.093 7.223 0.949 | 0.078 | 1.342 | 0.020 | 1.901 | 0.304 | 1.140
e(p) ‘ r(p) ‘ e(d) ‘ r(0) ‘ e(op) ‘ r(op) ‘ e ‘ r ‘ eff(03) ‘ iter
260.136 - 82.410 - 5.521 — 557.149 - 0.701 8
408.119 - 57.796 | 1.253 | 3.587 | 1.523 | 632.447 - 0.709 5
214.041 | 3.977 | 19.688 | 6.637 | 2.312 | 2.707 | 317.437 | 4.248 | 0.708 5
84.584 | 4.005 | 17.847 | 0.424 | 1.442 | 2.038 | 126.858 | 3.957 | 0.712 5
41.294 | 2.381 | 17.352 | 0.093 | 1.301 | 0.342 | 68.044 | 2.069 | 0.723 4
28.423 | 1.125 | 12.086 | 1.089 | 0.955 | 0.930 | 46.558 | 1.143 | 0.720 4
20.719 | 1.161 | 7.255 | 1.874 | 0.751 | 0.885 | 34.649 | 1.085 | 0.715 3
15.350 | 0.938 | 4.951 | 1.195 | 0.565 | 0.889 | 24.919 | 1.031 | 0.709 3
10.830 | 1.113 | 2.240 | 2.532 | 0.422 | 0.930 | 17.923 | 1.052 | 0.704 3
7.893 0.938 | 1.568 | 1.060 | 0.313 | 0.883 | 12.760 | 1.008 | 0.699 3
5.517 1.079 | 0.641 | 2.697 | 0.214 | 1.150 9.113 1.014 | 0.699 3

Table 5.5: EXAMPLE 2, Py — RTy — Py — P1 — RTy — P scheme with adaptive refinement via Os.

N| h [et) [rt) [ elo) [ (o) [elp) [ r(p) | e(w) | r(u) | e(p) | r(p)
8884 | 0.354 | 2.808 - 202.828 - 3.755 - 2.133 - 13.714 -
67396 | 0.177 | 2.070 | 0.451 | 196.015 | 0.051 | 3.701 | 0.021 | 2.435 - 8.711 | 0.672
525316 | 0.088 | 1.703 | 0.285 | 134.581 | 0.549 | 2.871 | 0.371 | 1.288 | 0.930 | 4.323 | 1.024
4148740 | 0.044 | 1.168 | 0.548 | 79.625 | 0.762 | 1.811 | 0.669 | 0.524 | 1.307 | 2.078 | 1.063
e(p) [rp) | e | r() [elop)|r(op)| e | r [eff(B1) | iter
160.643 - 74.310 - 5.237 - 269.247 - 1.040 7
180.583 - 68.476 | 0.121 | 3.958 | 0.415 | 275.218 - 1.037 6
121.390 | 0.580 | 33.893 | 1.027 | 3.120 | 0.347 | 184.416 | 0.585 | 1.020 5
73.642 | 0.726 | 12.062 | 1.500 | 1.933 | 0.695 | 109.150 | 0.761 | 1.007 4

Table 5.6: EXAMPLE 3, PO —RTy — Py — P — RTO — Py
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N|et) | r(t) [ efo) [ (o) [elp) [ rlp) [e(w) | r(w) | e(p) | r(p)

8884 | 2.808 - 202.828 - 3.755 - 2.133 - 13.714 -
16760 | 2.912 - 195.934 | 0.163 | 3.105 | 0.898 | 1.136 | 2.978 | 10.403 | 1.306
121932 | 1.913 | 0.635 | 135.452 | 0.558 | 1.815 | 0.812 | 1.051 | 0.118 | 5.117 | 1.073
782480 | 1.197 | 0.757 | 72.896 | 1.000 | 1.078 | 0.841 | 0.390 | 1.598 | 2.536 | 1.133
4282528 | 0.649 | 1.081 | 36.213 | 1.235 | 0.601 | 1.031 | 0.161 | 1.561 | 1.246 | 1.255

e(p) | rp) | eld) | r0) |elop) |[rlop)| e | r |eff(©y) | iter
160.643 - 74.310 - 5.237 - 269.247 - 1.040 7
163.159 - 32.320 | 3.935 | 3.794 | 1.524 | 257.051 | 0.219 | 1.007 6
120.935 | 0.453 | 27.820 | 0.227 | 2.455 | 0.658 | 183.724 | 0.508 | 1.009 )
66.899 | 0.955 | 9.073 | 1.808 | 1.422 | 0.881 | 99.370 | 0.992 | 1.004 5)
33.902 | 1.200 | 3.302 | 1.784 | 0.741 | 1.151 | 49.724 | 1.222 | 1.006 4

Table 5.7: EXAMPLE 3, Py — RTy — Py — P1 — RTy — P; scheme with adaptive refinement via ;.
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Figure 5.2: Example 2, approximated spectral norm of the stress tensor component, velocity stream-
lines, and pressure field (top panels), heat flux streamlines, temperature field, and polymeric part of
the extra-stress tensor component (bottom panels).
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Figure 5.3: Example 2, three snapshots of adapted meshes according to the indicators ©; and ©, (top
and bottom panels, respectively).
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Figure 5.4: Example 3, e vs. N for quasi-uniform/adaptive scheme via ©.
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Figure 5.5: Example 3, approximated spectral norm of the stress tensor component, velocity stream-

lines, and pressure field (top panels), heat flux streamlines, temperature field, and polymeric part of
the extra-stress tensor component (bottom panels).

,ews&%t‘%
SISy
oA
5

Figure 5.6: Example 3, three snapshots of adapted meshes according to the indicators ©;.
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