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Universidad de Concepción, Casilla 160-C, Concepción, Chile

Stefan Diehl

Centre for Mathematical Sciences, Lund University,
P.O. Box 118, S-221 00 Lund, Sweden

M. Carmen Mart́ı⇤

CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile

(Communicated by the associate editor name)

Abstract. Flotation is a unit operation that is extensively used in the re-
covery of valuable minerals in mineral processing and related applications. It
utilizes the di↵erence in surface properties of the valuable hydrophobic minerals
and the unwanted hydrophilic gangue material. Essential insight to the hydro-
dynamics of a flotation column can be obtained by studying just two phases:
gas and fluid. To this end, the approach based on the drift-flux theory, pro-
posed in similar form by several authors, is reformulated as a one-dimensional
non-linear conservation law with a multiply discontinuous flux. The unknown
is the gas volume fraction as a function of height and time, and the flux func-
tion depends discontinuously on spatial position due to feed inlets for gas, feed
slurry, and wash water. The resulting model is similar, but not equivalent,
to previously studied clarifier-thickener models for solid-liquid separation and
therefore adds a new real-world application to the field of conservation laws
with discontinuous flux. Steady-state solutions are studied in detail, including
their construction by applying an appropriate entropy condition across each
flux discontinuity. This analysis leads to operating charts and tables collect-
ing all possible steady states along with some necessary conditions for their
feasibility in each case. Numerical experiments show that the transient model
recovers the steady states, depending on the feed rates of the di↵erent inlets.

1. Introduction.

1.1. Scope. Flotation is a unit operation that is extensively used in the recov-
ery of valuable minerals and coals in mineral processing but also in many other
applications in environmental and chemical engineering [12, 21, 33, 36, 42]. It is a
physico-chemical separation process that utilizes the di↵erence in surface proper-
ties of the valuable hydrophobic minerals and the unwanted hydrophilic gangue
material. The theory of froth flotation is complex, involves three phases (solids,
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Figure 1. Left: Schematic of a typical flotation column (after
[21, 38]), including heights of singular sources zG, zF and zW, the
underflow level zU, and the e✏uent level zE. Right: Corresponding
conceptual model of the flotation column used in this work, indi-
cating the volumetric feed flows QG, QF and QW, the underflow
rate QU, the e✏uent rate QE, and the spatially piecewise constant
bulk velocity q = q(z, t).

water, and froth or gas) with many subprocesses [42]. The principle of the conven-
tional flotation process is roughly as follows. Gas is introduced close to the bottom
of a flotation column (see Figure 1), and the bubbles generated then rise upward
throughout the pulp that contains hydrophobic and hydrophilic solid particles. The
hydrophobic particles in the pulp attach to the bubbles. Since the overall density of
the bubble-particle aggregates is less than that of the medium, the aggregates then
float to the top of the column, where the desired product, the foam or froth carry-
ing the valuable material (the concentrate in mining) is removed, usually through
a launder. Additionally, close to the top wash water is injected to assist with the
rejection of entrained impurities [39] and to increase the froth stability and improve
recovery [21, 31]. Once the hydrophobic particles have attached to the air bubbles,
flotation can be considered as a separation between relatively large low-density enti-
ties, called air bubbles, and a suspension of liquid and gangue. Consequently, flota-
tion can be described as a gas-liquid separation process by buoyancy analogous to
the solid-liquid separation by gravity sedimentation in clarifier-thickeners [8,10,15].

Well-established spatially one-dimensional models of clarifier-thickeners can be
formulated as a scalar conservation law for the local solids concentration as a func-
tion of depth and time, where the flux is discontinuous as a function of spatial
position due to upward- and downward-directed bulk flows, transitions to overflow
and underflow transport, and a singular source term marking the feed [8, 10, 15].
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Clarifier-thickener models have motivated in part the mathematical research on
conservation laws with discontinuous flux [3, 4, 6, 10, 14–20].

It is the purpose of this paper to formulate, partially analyze, solve for steady
states, and numerically simulate a related model for a flotation column, where we
follow [13] and limit ourselves to a one-dimensional two-phase system of gas bubbles
dispersed in a fluid, or rather a suspension of liquid and gangue. Hence, we do not
model any sedimentation of solid particles in the suspension. The final form of the
model (cf. Figure 1) is the conservation law with multiply discontinuous flux

@�

@t
+

@

@z
F (z, t,�) =

X

S2{G,F,W}

qS(t)�S(t)�(z � zS), z 2 R, t > 0, (1.1)

where � is the sought volume fraction of gas bubbles as a function of height z and
time t, and F (z, t,�) is a flux function, made precise in later parts of the paper, that
is nonlinear in � and discontinuous in z at five di↵erent positions. Three of these
positions, zG, zF and zW, are associated with singular feed sources of gas, feed
slurry, and wash water, respectively, at given rates qS and volume fractions �S ,
where �(·) denotes the Dirac symbol. The model (1.1) is posed for z 2 R without
boundary conditions, and is therefore supplied solely with initial data

�(z, 0) = �0(z), z 2 R. (1.2)

While the time-dependent PDE (1.1) describes transient variations of � as a
function of position and time, a property of practical interest in applications are
the stationary solutions to the model that correspond to undisturbed normal states
of operation. A steady-state solution of (1.1) is generally a piecewise constant
function, with possible jump discontinuities both within the four zones of Figure 1,
and across the five spatial discontinuities z = zE, etc.

The main outcomes of this work are to a classification of all steady-state solutions
by means of diagrams and tables, and numerical simulations of dynamic behaviour.
The variety of real-world applications of conservation laws with discontinuous flux
is hereby widened to include flotation.

1.2. Related work. Our model formulation is based on the description of a flota-
tion column by Stevenson et al. [38], Dickinson and Galvin [13] and Galvin and
Dickinson [22] that is based on algebraic expressions for the gas and liquid fluxes,
velocities and volume fractions. The description of one-dimensional two-phase flows
based on the continuity equations for both phases and closed by defining a relative
flux, or drift flux, between both phases as a function of volume fraction was intro-
duced by Wallis [40], as is elaborated in [35]. Treatments that invoke this drift-flux
analysis to describe flotation processes include [25, 27, 31, 39, 43, 44]. However, all
these works utilize these variables for steady-state analyses, but do not incorporate
the drift-flux variables into one solvable PDE model for transient simulations, which
is precisely the main contribution of the present paper.

As stated above, the theory of conservation laws with discontinuous flux has seen
a vast amount of interest in recent years, where the typical model equation is

@�

@t
+

@

@z
F(z,�) = 0, F(z,�) =

(
f(�) for z > 0,

g(�) for z < 0

or equivalently, in terms of the Heaviside step function H(z),

@�

@t
+

@

@z

�
H(z)f(�) + (1�H(z))g(�)

�
= 0. (1.3)
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The basic di�culty associated with (1.3) is as follows. Suppose, for simplicity, that
� = �(z, t), z 2 R, t > 0 is a piecewise constant solution of (1.3) having traces
��(t) := limz"0 �(z, t) and �+(t) := limz#0 �(z, t) at z = 0. Then the fluxes to both
sides of z = 0 must be equal at any time, which compels the jump condition

f(�+(t)) = g(��(t)) a.e. t > 0. (1.4)

This single equation does not define the two traces uniquely and one needs to spec-
ify a selection principle or jump entropy condition to single out pairs that besides
satisfying (1.4) are admissible. This selection principle usually depends on the par-
ticular physical reality (1.3) is supposed to model. For instance, applications of (1.3)
also include tra�c flow with discontinuously changing road surface conditions, ion
etching, two-phase flow in heterogeneous porous media, and medical applications
(see [5], [24, Ch. 8], and [28] for overviews and references). We use here the admis-
sibility condition from [14], which has proved to be the natural one for the related
problem of continuous sedimentation [15]. Furthermore, its generalization [18] to
the case of a scalar convection-di↵usion equation with spatial discontinuity in both
the flux and di↵usion functions implies the physically relevant solution in the case
of the well-established model of continuous sedimentation with compression [10].
As is stated in [24, p. 426], there are di↵erent “recipes” to select unique solutions
of the Riemann problem of (1.3), and all of them eventually lead to uniqueness of
the initial value problem for (1.3), according to the unified treatment in [1].

1.3. Outline of the paper. In Section 2, we derive the model equations for the
local fraction of gas bubbles, detailing the definition of the flux density functions in
each zone of the spatial domain and the treatment of the feed inlets. Some notation
necessary for the description of the steady-state solutions is also introduced. In Sec-
tion 3, we focus on the characterization of all possible steady states for the flotation
model previously defined, providing a detailed study of the derivation process at the
di↵erent spatial discontinuities introduced by the feed inlets. Some steady states
exist only under certain conditions on the injection rates and to get an overview
of all possibilities, we present operating charts and tables for the categorization
of all steady states. In Section 4, we briefly review the numerical method to ap-
proximately solve the flotation model. Some numerical examples are provided in
Section 5 and, finally, we present some conclusions in Section 6.

2. Mathematical model.

2.1. Phase velocities and drift flux. Assume that we consider a region of space
that is free of sources and sinks, that � is the local fraction of gas bubbles, and
that vf and vg are the phase velocities of the gas and fluid, respectively. Then the
conservation of mass equations for both can be written in local form as

@�

@t
+r · (�vg) = 0,

@(1� �)

@t
+r ·

�
(1� �)vf

�
= 0, (2.1)

where we assume that the gas bubbles are incompressible and do not coalesce. Then,
defining the volume average velocity, or bulk flux of the suspension,

q := �vg + (1� �)vf (2.2)

and the gas-fluid relative velocity vr := vg � vf , we may rewrite the first equation
in (2.1) and replace the second by the sum of both to obtain

@�

@t
+r ·

�
�q + �(1� �)vr

�
= 0, r · q = 0.
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It is assumed that vr = vrez, where ez is the upward-pointing unit vector and vr is
given as a function of � so that the gas drift-flux function is

jg(�) := �(1� �)vr(�) = �vtermV (�). (2.3)

The drift-flux function jg(�) gives the gas flux in a closed column relative to the
column. Here, vterm is the terminal velocity of a single bubble in an unbounded
fluid. As is stated in [38], there exists a number of methods to calculate vterm,
and Wallis’ generalized correlation [41] leading to vterm is recommended, see [38,
Appendix A] for details. This correlation involves additional quantities such as
equilibrium surface tension and the viscosity of the fluid. Its detailed discussion
is beyond the focus of this paper; for the present analysis it su�ces to assume
that vterm is a set constant for a given material and equipment.

Furthermore, in (2.3), V (�) is a dimensionless hindered-bubbling function that
can, for instance, be given by the Richardson-Zaki expression [34]

V (�) = (1� �)nRZ , nRZ � 0. (2.4)

The maximum possible volume fraction of bubbles is �max = 1. Realistic values
nRZ range from nRZ = 2 to nRZ = 3.2 (cf., e.g., [13, 22, 25,31,39]).

Finally, in one space dimension (in the z-direction) and away from sinks or
sources, r · q = 0 reduces to @q/@z = 0, so q will depend on t only, and the
only equation that needs to be solved is the nonlinear first-order conservation law

@�

@t
+

@

@z
j(�, t) = 0, where j(�, t) := q(t)�+ jg(�). (2.5)

Hence, j(�, t) is the total flux of gas. If we denote the total fluid flux by ' :=
(1� �)vf , then (2.2) yields the simple relation q = j + ' between the three fluxes,
which all generally may have any sign.

2.2. Volumetric flows, bulk velocities and flux functions. It is assumed that
the unit has a constant cross-sectional area A, and that concentrations are horizon-
tally constant so that all variables depend on height z and time t only. The unit is
fed at heights z = zW, z = zF and z = zG, with wash water, fluid (feed slurry), and
gas, respectively (see Figure 1), where we assume that zW > zF > zG. The corre-
sponding volumetric flows QW � 0, QF � 0 and QG � 0 are assumed to be given
functions of time, as is the volumetric underflow rate QU � 0. Furthermore, QE is
the resulting e✏uent volumetric overflow, which is assumed to be nonnegative, i.e.,
the mixture is conserved and the vessel is always completely filled with mixture.

The spatially piecewise constant bulk velocity q = q(z, t) is defined by the values
q1(t) to q4(t) in the corresponding four zones in the vessel; see Figure 1. To simplify
notation, we define the velocities qS(t) := QS(t)/A for S 2 {E,F,G,U,W}.

Starting from the bottom of the vessel, we have q1 = �qU, q2 = q1+ qG, etc. and
we obtain the total bulk velocity function

q(z, t) :=

8
>>><

>>>:

q1 = �qU for z < zG,

q2 = qG � qU for zG  z < zF,

q3 = qG + qF � qU for zF  z < zW,

q4 = qG + qF + qW � qU for z � zW.

(2.6)

Hence, we always have qE = q4 � 0 and q1 = �qU  0, whereas q2 and q3 may have
any sign.
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We denote the intervals z > zE and z < zU by the e✏uent and underflow zone,
respectively. During normal operation, zone 1 contains only liquid. Above z = zG
there is a region of bubbles rising with a high velocity up to an upper region of froth
with a high volume fraction of gas; see Figure 1. The large discontinuity between
the bubbly and froth regions is usually located in the interval [zF, zW], either at the
location of one injection point or within a zone. As we will see, discontinuities in �
are possible at every injection point and inside some zones. Usually, zone 4 is small,
and sometimes zG = zF, i.e., gas and feed slurry are injected at the same location.

We assume that in the e✏uent and underflow zones, the gas and the fluid move
at the same velocity, so we set vr := 0, and therefore jg := 0 in these zones. The
total flux function is then defined as

F (z, t,�) :=

8
>>>>>>>><

>>>>>>>>:

jU(�, t) := q1(t)� for z < zU,

j1(�, t) := q1(t)�+ jg(�) for zU  z < zG,

j2(�, t) := q2(t)�+ jg(�) for zG  z < zF,

j3(�, t) := q3(t)�+ jg(�) for zF  z < zW,

j4(�, t) := q4(t)�+ jg(�) for zW  z < zE,

jE(�, t) := q4(t)� for z � zE.

(2.7)

2.3. Feed sources and governing equation in final form. The conservation
law (2.5) is completed by including the feed of material at levels zW, zF and zG at
volume rates QW, QF and QG. The feed mechanisms give rise to singular source
terms that extend (2.5) to the final governing model equation (1.1). The given
gas volume fraction of the three time-dependent feed streams is denoted by �W, �F

and �G, respectively. In agreement to common practice, we assume that either pure
gas or pure liquid is injected through the respective singular sources, so we assume
from now on �G ⌘ 1 and �F = �W ⌘ 0.

2.4. Entropy solutions. Within each zone, the governing equation (1.1), (2.7)
reduces to (2.5), and we consider the Cauchy problem of this equation. A piecewise
smooth function � = �(x, t) is defined to be an entropy solution of the problem if
� is continuously di↵erentiable everywhere with the exception of a finite number of
curves z = zd(t) 2 C1 of discontinuities. At each point (zd(t), t) of discontinuity,
the (non-equal) values �± := �(zd(t)±, t) satisfy the jump condition

z0d(t) = S(�+,��) :=
f(�+)� f(��)

�+ � �� , (2.8)

and the jump entropy condition

S(u,��) � S(�+,��) for all u between �+ and ��. (2.9)

It is well known that entropy solutions in the sense of Oleinik [30] are also the
unique entropy solutions in the sense of Kružkov-type [26] integral inequalities (cf.,
e.g., [24]). On the other hand and as mentioned in Section 1.2, at the five spatial
discontinuities of problem (1.1), a generalized entropy is needed [14, 18]. Since we
only construct steady-state solutions, we review that condition in Section 3.1 for
this purpose, which means less notation than for the dynamic case.

2.5. Properties of the zone flux functions. We assume that the drift-flux func-
tion jg(�) � 0 is continuously di↵erentiable, satisfies jg(0) = jg(1) = 0, and is
concave-convex with an inflection point �infl 2 (0, 1); see Figure 2. (Drawings have
been made for jg given by (2.3) and (2.4), with vterm = 2.7 and nRZ = 3.2. These
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Figure 2. Flux curves and characteristic concentrations. In these
and other plots, we have used the expression (2.4) with nRZ = 3.2
in the drift-flux function jg.

values are also utilized in [13], where vterm is measured in cm/s.) The form of jg
singles out certain distinguished values of the volume fraction that appear in the
steady-state solution (see Figure 2). The same values appear in the related problem
of continuous sedimentation [16,17].

The functions j1, . . . , j4 and jg have the same inflection point �infl, since they
only di↵er by a linear term. If jk(�) has a zero in (0, 1], which can happen only for
k = 1, 2, 3 and qk < 0, then we denote it by �kZ. If jk(�) < 0 for all � 2 (0, 1], we
set �kZ := 0. We define

q̄ := �j0g(1), ¯̄q := �j0g(�infl),

which are the bulk velocities such that the slope of jk(�) is zero at �max = 1 and
�infl, respectively. To reduce the number of cases to investigate, we assume in this
work that

q̄ = �j0g(1) = 0, (2.10)

in accordance with the common Richardson-Zaki function (2.4). For intermediate
values of qk, i.e., q̄ < qk < ¯̄q, there is a local minimizer �kM of jk(�) (k = 2, 3, 4)
on the right of �infl. Then 0 = j0k(�kM) = j0g(�kM) + qk. To obtain a definition for
all values of qk, we note that the restriction (jg|(�infl,1))

0 is a decreasing function so
that we can define

�kM :=

8
><

>:

1 if qk  q̄,

((jg|(�infl,1)
)0)�1(�qk) if q̄ < qk < ¯̄q,

�infl if qk � ¯̄q.

Given �kM and qk � 0, we define �km as the unique value satisfying

jk(�km) = jk(�kM), 0  �km  �infl.

For qk < ¯̄q, jk(�) assumes a local maximum point at �M
k 2 [0,�infl). Let qneg :=

�j0g(0) be the value below which jk is a decreasing function. For qk  qneg, the
local maximum is �M

k := 0. For qk � ¯̄q, we set �M
k := �infl.

In some instances it is convenient to write out the dependence on q of the flux
function, i.e., jk(�; qk), and of the specific concentrations, e.g., �M

k (qk). The follow-
ing properties follow directly from the definitions above (cf. [16, Lemma 2]).
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Lemma 2.1. The following properties hold:

d

dqk
jk(�kM(qk); qk) = �kM(qk),

d

dqk
jk(�

M
k (qk); qk) = �M

k (qk).

3. Steady-state solutions. In order to completely describe all possible steady
states of model (1.1) (under the assumptions of Section 2.5), we here extract from
the theory of conservation laws with discontinuous flux function [14, 18] what is
necessary to construct steady-state solutions in a neighbourhood of a spatial dis-
continuity.

To start with, we investigate the case when the steady-state solution is constant
�k in zone k = 1, 2, 3, 4, and constant �U and �E in the underflow and e✏uent
zones, respectively. In Section 3.9, we describe the general solution, having also
discontinuities within one or several zones. First, we review the necessary theory
and notation, and then go through the possible couplings between the six zones.

3.1. Construction of steady-state solutions for a conservation law with
discontinuous flux function. We consider the conservation law with discontinu-
ous flux function (1.3). The equation should be interpreted in the weak sense and
we seek steady-state solutions of the form

�(z) =

(
�� if z < 0,

�+ if z > 0,

where �± are constants. The conservation law across z = 0 implies the jump
condition g(��) = f(�+) (see (1.4)). This single equation has two unknowns.
The generalized entropy condition [14] selects the physically relevant solution in a
neighbourhood of z = 0 for a dynamic solution of (1.3) for given initial data at
t = 0. We define the auxiliary functions

f̂(�;�+) :=

8
<

:

min
v2[�,�+]

f(v) if �  �+,

max
v2[�+,�]

f(v) if � > �+,

ǧ(�;��) :=

8
<

:

max
v2[�,��]

g(v) if �  ��,

min
v2[��,�]

g(v) if � > ��

9
=

; = ĝ(��;�).

Since ǧ(·;��) is non-increasing and f̂(·;�+) is non-decreasing, the intersection of the
graphs of these functions occurs at a unique flux value, if there exists an intersection.
For the model of flotation, this is always the case; the proof of this statement can
be made in the same way as for the problem of continuous sedimentation; see [15].

We define the set of possible �-values of the intersection as

�̄ = �̄(�+,��) :=
�
� 2 [0, 1] : f̂(�;�+) = ǧ(�;��)

 

and the corresponding unique flux value ⌘(�+,��) := f̂(�̄;�+). Since we are here
only interested in stationary solutions, the generalized entropy condition can be
stated as

f̂(�+;�+) = ⌘(�+,��) = ǧ(��;��), (3.1)

where we note that f̂(�+;�+) = f(�+) and ǧ(��;��) = g(��).
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Figure 3. The decreasing function |̌U(·;�U) = jU and three pos-
sible cases of graphs of |̂1(·;�1) depending on �1. The intersection
of |̂1(·;�1) and jU defines the possible values in a steady-state so-
lution.

3.2. Couplings at the underflow location z = zU. In a neighbourhood of z =
zU, the PDE (1.1) becomes

@�

@t
+

@

@z
F (z, t,�) = 0,

where

F (z, t,�) =

(
jU(�, t) = q1(t)� if z < zU,

j1(�, t) = q1(t)�+ jg(�) if z > zU.

We now suppress the time dependence and seek possible constant solutions �1 and
�U in the two neighbouring zones so that the entropy condition (3.1) is satisfied.
With the notation of Section 3.1, we have g(�) = jU(�) = q1� and f(�) = j1(�) =
q1�+ jg(�). The task is to find a pair �U and �1 so that the entropy condition (3.1)
is satisfied. This condition now reads

|̂1(�1;�1) = ⌘(�1,�U) = |̌U(�U;�U), (3.2)

where ⌘(�1,�U) denotes the flux value of the intersection of |̌U(·;�U) and |̂1(·;�1).
As jU(�) = �qU� is a linear decreasing function, we have |̌U(·;�U) = jU for any
�U 2 [0, 1]. The function j1 has two monotonicity intervals separated by the maxi-
mum point �M

1 , which leads to the following cases:

(a) �1 2 [0,�M
1 ], see Fig. 3(a). The only possible intersection between |̂1 and |̌U

is �1 = 0; hence �U = 0. Thus, the zero solution on both sides is the only
possible steady-state coupling in this case.

(b) �1 2 (�M
1 , 1], see Fig. 3(b1) and (b2). If �1 2 (�M

1 ,�1Z), the middle plot
shows that the only possible intersection is, as in the previous case, �1 =
0, but is outside the interval of definition of �1, i.e., there is no possible
steady state with �1 2 (�M

1 ,�1Z). If �1 2 [�1Z, 1] (right plot), then there is
always a possible intersection between |̂1(·;�1) and |̌U(·;�U) satisfying (3.2).
Consequently, the possible steady states satisfy �1 2 [�1Z, 1] and �U 2 [0, 1].

We conclude this subsection by stating the possible steady-state values in the
underflow and the first zone:

�U 2 [0, 1], �1 2 {0} [ [�1Z, 1]. (3.3)
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3.3. Couplings at the e✏uent location z = zE. Here, jE(�) = qE� is an in-
creasing linear function. The procedure is analogous to the coupling at z = zU.
In fact, this case is the same as the one at the underflow level in the problem of
continuous sedimentation. Details can be found in [15, Section 9], and we state here
directly the possible steady-state values in zone 4 and the e✏uent zone:

�4 2 [0,�4m] [ [�4M, 1], �E 2 [0, 1]. (3.4)

3.4. Couplings at z = zG. In a neighbourhood of z = zG, the PDE (1.1) is

@�

@t
+

@

@z

�
(1�H(z))j1(�, t) +H(z)j2(�, t)

�
= qG(t)�G(t)�(z � zG),

which, with �G(t) ⌘ 1, is formally equivalent to

@�

@t
+

@

@z

�
(1�H(z))(j1(�, t) + qG(t)) +H(z)j2(�, t)

�
= 0.

The flux functions to consider for the steady-state coupling are thus

j1(�) + qG = jg(�)� qU�+ qG for z < zG,

j2(�) = jg(�) + (qG � qU)� for z > zG,

which intersect only at � = 1, and the entropy condition is

|̂2(�2;�2) = ⌘(�1,�2) = |̌1(�1;�1) + qG.

We have q1 = �qU  0, but q2 may have any sign. We will make a main division
depending on the sign of q2. From (3.3), we know that a steady state in zone 1
satisfies �1 2 {0} [ [�1Z, 1]. These two intervals should be coupled with the three
monotonicity intervals of j2, which are separated by �M

2 and �2M. We will get
conditions on qG in the subcases.

Remark 1. In the division into subcases further on, we will sometimes let such
overlap in the following way. Instead of having disjoint intervals defining two sub-
cases, e.g., �2 2 [0,�M

2 ] and �2 2 (�M
2 ,�2M), the second subcase will instead be

�2 2 [�M
2 ,�2M]. This overlap will reduce the number of conditions in terms of in-

equalities. Then the same steady-state solution can occur in two subcases, but the
final number of steady-state solutions is not a↵ected.

1. Case G1: q1  0  q2.
(a) �1 = 0, �2 2 [0,�M

2 ]; see Fig. 4(a). A necessary condition for a steady-
state solution is

j2(�
M
2 ) � qG. (G)

(b) �1 = 0, �2 2 [�M
2 ,�2M]; see Fig. 4(b). A necessary condition for a steady-

state solution is (G).
(c) �1 = 0, �2 2 (�2M, 1]; see Fig. 4(c). The only possible solution is �2 = 1

when q1 = 0.
(d) �1 2 [�1Z, 1], �2 2 [0,�M

2 ]; see Fig. 4(d). The only possible steady-state
solution satisfies �2 = �M

2 < �1.
(e) �1 2 [�1Z, 1], �2 2 (�M

2 ,�2M); see Fig. 4(e). A steady-state coupling is
possible with �2  �1 with equality if and only if q1 = q2, i.e., qG = 0.

(f) �1 2 [�1Z, 1], �2 2 [�2M, 1]; see Fig. 4(f). The only possible coupling is
�1 = �2 = 1.

2. Case G2: q1  q2  0.
(a) �1 = 0, �2 2 [0,�M

2 ]; see Fig. 5(a). The same as Case G1(a) with condi-
tion (G).
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Figure 4. Case G1: q1  0  q2. Possible steady-state values for
zones 1 and 2. The gas injection velocity is set to qG = 0.2 in all
subplots except for (d) where it is 0.35.

(b) �1 = 0, �2 2 [�M
2 , 1]; see Fig. 5(b1) and (b2). As in Case G1(b) a

necessary condition is (G). The largest value in zone 2 is �2 = �2Z and
then q1 = q2, i.e., qG = 0, see plot (b2).

(c) �1 2 [�1Z, 1], �2 2 [0,�M
2 ]; see Fig. 5(c). The same as Case G1(d):

�2 = �M
2 < �1.

(d) �1 2 [�1Z, 1], �2 2 (�M
2 , 1]. Solution exists with either a positive, see

Fig. 5(d1) or a negative flux (d2).

3.5. Couplings at z = zF. We derive the possible constant steady states in zones 2
and 3 considering their coupling at z = zF. This is the most complicated case where
both bulk velocities, hence both fluxes, can be either positive or negative. Since
there is no injection of bubbles, �F = 0, the fluxes to consider are

j2(�) = q2�+ jg(�), z < zF,

j3(�) = q3�+ jg(�), z > zF,

where q2 = qG�qU  qG+qF�qU = q3. We require that the entropy condition (3.1)
holds, which now reads

|̂3(�3;�3) = ⌘(�3,�2) = |̌2(�2;�2). (3.5)

We now study the possible intersections between |̌2(·;�2) and |̂3(·;�3) and make
a division into three main cases F1–F3 depending on the signs of the two bulk
velocities q2 and q3. Subdivisions are then made according to the intervals of mono-
tonicity of the flux functions j2 and j3, which give qualitatively di↵erent intersec-
tions of |̌2(·;�2) and |̂3(·;�3) because of their strictly monotone parts and plateaus.
Some cases will be empty, i.e., no steady-state solution is possible and this may
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Figure 5. Case G2: q1  q2  0. Possible steady-state values for
zones 1 and 2. The value of qG is set to qG = 0.2 except for plot
(b2), where it is 0.

depend on q2 and q3. When a steady-state solution is possible, it always satisfies
j2(�2) = j3(�3).

1. Case F1: 0  q2  q3.
(a) �2 2 [0,�M

2 ], �3 2 [0,�M
3 ]; see Fig. 6(a). In this case there is a possible

intersection point between |̌2(·;�2) and |̂3(·;�3). We have q2  q3 ,
�3  �2.

(b) �2 2 (�M
2 ,�2M), �3 2 [0,�M

3 ]. The flux value of the intersection of |̌2 and
|̂3 is ⌘ = j2(�M

2 ) = |̌2(�M
2 ;�2). Since this case requires �M

2 < �2, (3.5) is
not satisfied and there is no possible stationary solution.

(c) �2 2 [�2M, 1], �3 2 [0,�M
3 ]; see Fig. 6(c). The only possibility for the

plateau of |̌2(·;�2) to intersect the increasing part of |̂3(·;�3) is that the
plateau lies above the value of the local maximum of j2. In other words,
this case is empty unless the following condition is satisfied:

j2(1) � j2(�
M
2 ). (FI)

(d) �2 2 [0,�M
2 ], �3 2 (�M

3 ,�3M]; see Fig. 6(d). For (3.5) to be satisfied, two
plateaus are involved in the intersection. A necessary condition for this
is that the flux value of the local maximum of j2 is larger than or equal
to the flux value of the local minimum of j3, i.e.,

j2(�
M
2 ) � j3(�3M). (FII)

(e) �2 2 [�M
2 ,�2M), �3 2 (�M

3 ,�3M]. An intersection occurs between the
decreasing part of |̌2(·;�2) and the plateau of |̂3(·;�3) only if (FII) holds.
We have q2  q3 , �2  �3.
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Figure 6. Case F1: 0  q2  q3. Possible steady-state values for
zones 2 and 3. In the special case q2 = q3, the diagonal plots (a),
(e) and (i) are the only ones where �2 = �3 occurs.

(f) �2 2 [�2M, 1], �3 2 (�M
3 ,�3M]. Two plateaus are necessarily involved in

the intersection, which occurs only if the following condition is satisfied:

j2(1) � j3(�3M). (FIII)

(g) �2 2 [0,�M
2 ], �3 2 (�3M, 1]. The intersection occurs at the flux level

j3(�3M) = |̂3(�3M;�3). However, �3 = �3M is not allowed in this subcase,
so (3.5) is not satisfied and this case is therefore empty.

(h) �2 2 (�M
2 ,�2M), �3 2 (�3M, 1]. This case is empty with the same motiva-

tion as in subcase (g).
(i) �2 2 [�2M, 1], �3 2 [�3M, 1]. Similarly to subcase (f), a steady-state

solution is possible only if (FIII) holds. We have q2  q3 , �2  �3.
2. Case F2: q2  0  q3. We use the same principle of subdivision as in

Case F1. However, when q2  0, the local minimizer of j2(·; q2) is �2M = 1, so
the domain of j2(·; q2) consists of two disjoint intervals where j2 is monotone.
Together with the three intervals of j3, we get six subcases.
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0 0.5 1
-0.2

0

0.2

0.4
(a)

23

0 0.5 1
-0.2

0

0.2

0.4
(b)

0 0.5 1
-0.2

-0.1

0

0.1

0.2

0.3

(c)

0 0.5 1
-0.2

-0.1

0

0.1

0.2

0.3

(d)

0 0.5 1
-0.2

-0.1

0

0.1

0.2

0.3

(e)

0 0.5 1
-0.2

-0.1

0

0.1

0.2

0.3

(f)

Figure 7. Case F2, q2  0  q3: Possible intersections and steady
states for zones 2 and 3.

(a) �2 2 [0,�M
2 ], �3 2 [0,�M

3 ]. As can be seen in Fig. 7(a), there is always
a possible intersection between |̌2(·;�2) and |̂3(·;�3). We have either
q2 < q3 , �3 < �2, or q2 = q3 = 0 , �2 = �3. This subcase is thus
similar to Case F1(a).

(b) �2 2 (�M
2 , 1], �3 2 [0,�M

3 ]. This case is empty with analogous arguments
as in Case F1(b).

(c) �2 2 [0,�M
2 ], �3 2 (�M

3 ,�3M]. The intersection of |̌2(·;�2) and |̂3(·;�3)
is qualitatively the same as in Case F1(d) and (e) and the steady state
represented in Fig. 7(c) is possible only if (FII) holds.

(d) �2 2 (�M
2 , 1], �3 2 (�M

3 ,�3M]. By analogy with subcase (c), (FII) has to
be satisfied.

(e) �2 2 [0,�M
2 ], �3 2 (�3M, 1]. This case is analogous to Case F1(g), and is

consequently empty.
(f) �2 2 (�M

2 , 1], �3 2 (�3M, 1]. Analogous to Case F1(h) and empty case.
3. Case F3: q2  q3  0. In this case �2M = �3M = 1, so there are only four

subcases with the maximum point of each flux function as the point of division
of two monotonicity intervals.
(a) �2 2 [0,�M

2 ], �3 2 [0,�M
3 ]. This is qualitatively the same as Case F2(a)

with steady-state solution possible.
(b) �2 2 (�M

2 , 1], �3 2 [0,�M
3 ]. This case is empty with analogous arguments

as in Case F1(b) or F2(b) (no plot is shown).
(c) �2 2 [0,�M

2 ], �3 2 (�M
3 , 1]. There is a possible intersection only at a

non-negative flux value. Then bubbles flow upwards and we have �3 2
[�M

3 ,�3Z], see Fig. 8(c).
(d) �2 2 (�M

2 , 1], �3 2 (�M
3 , 1]. Intersection may occur at a positive or neg-

ative flux value (bubbles moving downwards or upwards), see Fig. 8(d1)
and (d2), respectively.
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Figure 8. Case F3, q2  q3  0. Possible intersections and
steady-state values for zones 2 and 3. (d1) and (d2) correspond
to positive and negative intersection flux values in subcase (d),
respectively.

3.6. Couplings at z = zW. Since �W = 0, the fluxes to consider for the entropy
condition are |̌3(·;�3) and |̂4(·;�4). From (3.4) we know that only �4 2 [0,�4m] [
[�4M, 1] are possible steady states in zone 4. In these two intervals, j4 is increasing
and we combine these intervals with the three monotone parts of j3.

1. Case W1: 0  q3  q4.
(a) �3 2 [0,�M

3 ], �4 2 [0,�4m]; see Fig. 9(a).
(b) �3 2 (�M

3 ,�3M), �4 2 [0,�4m] is an empty case (no plot is shown).
(c) �3 2 [�3M, 1], �4 2 [0,�4m] is an empty case (no plot is shown).
(d) �3 2 [0,�M

3 ], �4 2 [�4M, 1]; see Fig. 9(d). Necessarily, �4 = �4M holds.
Another necessary condition for this steady state is that the flux value of
the local maximum of j3 is larger than or equal to the flux value of the
local minimum of j4, i.e.,

j3(�
M
3 ) � j4(�4M). (WI)

(e) �3 2 [�M
3 ,�3M), �4 2 [�4M, 1]; see Fig. 9(e). In this case �4 = �4M and

the necessary condition is (WI).
(f) �3 2 [�3M, 1], �4 2 [�4M, 1]; see Fig. 9(f). This case is empty unless the

following condition holds:

j3(1) � j4(�4M). (WII)
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Figure 9. Case W1: 0  q3  q4. Possible steady-state values for
zones 3 and 4. Subcases (b) and (c) are not plotted since they are
empty cases.

2. Case W2: q3  0  q4. The conclusions are the same as in Case W1.

3.7. Operating charts for bulk velocities. The di↵erent necessary conditions
on the fluxes that have appeared in the derivation of possible steady states can be
visualized in operating charts. These are two-dimensional diagrams involving the
bulk velocities at an injection point.

Condition (G) can be written as

qG  j2(�
M
2 (q2); q2), (G)

where the dependence on q2 is written out as in Lemma 2.1. This lemma gives
that j2(�M

2 (q2); q2) is an increasing function of intermediate (normal) values of q2
and otherwise constant (for q2 < qneg and q2 > ¯̄q). Its graph, and consequently the
region in (q2, qG)-space where (G) is satisfied, are shown in Fig. 10(a). In Fig. 10(b),
the corresponding region in (qU, qG)-space is shown. This has been obtained by the
linear mapping of the curve qG = j2(�M

2 (q2); q2) (since qU = qG � q2):
(

qU = j2(�
M
2 (q2); q2)� q2,

qG = j2(�
M
2 (q2); q2).

We will now do the same for the coupling at z = zF and conditions (FI)–(FIII).
These lead to overlapping regions in the (q2, q3)-plane leading to di↵erent numbers
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Figure 10. Operating charts in which condition (G) is satisfied
in (a) (q2, qG)-plane and (b) (qU, qG)-plane.

Figure 11. Operating charts in which conditions (FI)–(FIII) are
satisfied in (a) (q2, q3)-plane (where q3 � q2 holds) and (b) (qG, qF)-
plane. The value qneg = �2.6941 is not shown in these and further
plots. In the latter plot, the scale of the horizontal axis is adjusted
with respect to the previously chosen fixed value qSSU .

of possible steady states in di↵erent regions. In Fig. 11, the regions are shadowed
in which (FI) (red), (FII) (blue) and (FIII) (grey) hold.

To obtain these regions, we define the following functions with respect to condi-
tions (FI)–(FII):

hI(q2) := j2(1; q2)� j2(�
M
2 (q2); q2) = q2 � j2(�

M
2 (q2); q2),

hII(q2, q3) := j2(�
M
2 (q2); q2)� j3(�3M(q3); q3).
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These functions are continuously di↵erentiable by Lemma 2.1. The following lemma
gives the qualitative properties of the boundaries of the regions.

Lemma 3.1. There exists a unique q̃ 2 (0, ¯̄q) and a unique continuously di↵eren-

tiable function h̃II such that q̃ = j3(�3M(q̃); q̃) and the following hold:

(FI) , hI(q2) = 0 , q2 = q̃, (3.6)

(FII) , hII(q2, q3) � 0 , q3  h̃II(q2), (3.7)

(FIII) , q2 � j3(�3M(q3); q3), (3.8)

h̃II(q2) =

8
><

>:

0 if q2  qneg,

increasing if qneg < q2 < ¯̄q,

q2 if q2 � qneg,

j3(�3M(q3); q3) =

8
><

>:

q3 if q3  q̄,

increasing if q̄ < q3 < ¯̄q,

jg(�infl) + q3�infl if q3 � ¯̄q.

Proof. Using Lemma 2.1, we get

h0
I(q2) = 1� �M

2 > 0,

hI(0) = �j2(�
M
2 (0); 0) = �jg(�

M
2 (0)) < 0,

hI(¯̄q) = j2(1; ¯̄q)� j2(�infl; ¯̄q) > 0,

where the last inequality follows from the fact that j2(·; ¯̄q) is an increasing function.
Hence, hI is a continuous increasing function and (3.6) follows. For condition (FII),
we have (by means of Lemma 2.1)

@hII

@q2
= �M

2 (q2) = 0 , q2 = qneg,

@hII

@q3
= ��3M(q3) < 0 for all q3.

Since the latter derivative is always non-zero, the implicit function theorem implies
the existence of a continuously di↵erentiable function h̃II satisfying

hII

�
q2; h̃II(q2)

�
= 0 for all q2,

h̃0
II(q2) = �@hII/@q2

@hII/@q3
= 0 , q2 = qneg.

For q2  qneg and q3 = 0, we have

hII(q2, 0) = j2(0; q2)� j3(1; 0) = 0� 0 = 0 ) h̃II(q2) = 0,

and for q3 = q2 � ¯̄q, we have

hII(q2, q2) = j2(�infl; q2)� j3(�infl; q2) = �infl(q2 � q2) = 0 ) h̃II(q2) = q2,

Condition (FIII) can directly be rewritten by using the identity j2(1; q2) = q2.
Hence, the boundary of the region where condition (FIII) holds is given by the
curve j3(�3M(q3); q3), and its properties follow from Lemma 2.1 and the definition
of �3M(q3). Finally, the definition of q̃ gives that

j3(�
M
3 (q̃); q̃)� q̃ = j2(�

M
2 (q̃); q̃)� q̃ = hI(q̃) = 0.



19

Figure 12. Operating charts in which conditions (WI)–(WII) are
satisfied in (a) (q3, q4)-plane and (b) (qF, qW)-plane. In the latter
plot, the scale of the horizontal axis is adjusted with respect to the
previously chosen fixed values qSSU and qSSG .

As we did for the gas injection point, we now transform the boundary curves of
conditions (FI)–(FIII) from the (q2, q3)-plane to the (qG, qF)-plane with the linear
mapping (

qG = qSSU + q2,

qF = q3 � q2.
,

(
qG � qSSU = q2,

qF = q3 � q2.

This mapping depends on the chosen steady-state value of qU, denoted by qSSU , from
the chart in Fig. 10(b). For a given value of qSSU , we therefore use the scale qG� qSSU
on the horizontal axis; see Fig. 11(b).

For the coupling at z = zW, we note that conditions (WI) and (WII) are the
same as conditions (FII) and (FIII) except for the zone index increased by one.
Hence, the analogous statements of Lemma 3.1 hold, except for those involving q̃.
We can draw the operating chart in the (q3, q4)-plane, and with the mapping

(
qF = qSSU � qSSG + q3,

qW = q4 � q3,
,

(
qF � (qSSU � qSSG ) = q3,

qW = q4 � q3,

the chart in the (qF, qW)-plane, where the steady-state values qSSU and qSSG have been
chosen from the previous operating charts; see Fig. 12.

It seems logical that, when working with steady states, it is necessary to re-
strict the amount of gas, fluid or water pumped into the tank. Moreover, from the
desliming point of view, situations as huge quantities of fluid leaving at the top of
the column, loosening the froth or washing it in excess, or gas bubbles flowing down
and out of the tank through the bottom tailings underflow, are not convenient.
Conditions (G), (FI)–(FIII) and (WI)–(WII) set a theoretical upper limit for the
values of qG, qF and qW, respectively, for a fixed given value of qSSU , as Figures 10–12
show. For instance, Fig 11(b) shows that, if we want any condition (FI)–(FIII) to
be satisfied, for qG � qSSU 2 [�0.1, 0.9], we should set qF < 0.7.
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�U �1 �2 �3 �4 �E

0

[0,�M
2 ]⇤

[0,�M
3 ]

[0,�4m]

(G)

[�1Z, 1]
�4M

0

(�M
2 ,�2M]

(�M
3 ,�3M] (WI)

(G) (FII)

�j1(�1)

qU [�1Z, 1]

j4(�4)

qE

0

1

[0,�M
3 ] [0,�4m]

(q1 = 0)
(FI)

�4M
(�M

3 ,�3M]
(WI)

(FIII)

1 [�3M, 1] �4M

(FIII) (WII)

Table 1. Collection of possible steady states for the flotation col-
umn when q2 = qG � qU � 0. (⇤)When �1 2 [�1Z, 1] then �2 = �M

2 .

3.8. Tables and visualization of steady states. Whereas the operating charts
in Section 3.7 give an overview on how to choose the bulk velocities with respect to
conditions for certain steady-state couplings at the points of injection and outlets,
we here collect in Tables 1 and 2 all possible steady-state combinations between
these couplings for the cases q3 � q2 � 0 and q2 < 0, respectively. Some of the
couplings made locally, for example for �2 and �3 in Section 3.5, do not appear in
the tables because they are not possible when taking into account also the couplings
with �1 and �4. The tables should be read o↵ as follows. A possible steady-state
solution with constant concentration in each zone is obtained by connecting adjacent
rectangles passing only over vertical lines (and no corners), from the left column �U

to the right �E.
Table 2 shows the possible steady states when q2 < 0 and the sign restrictions of

q3 are given in the table. The appearance of conditions (G), (FI), etc. in the tables
means that the corresponding steady state is possible only if the corresponding
conditions are satisfied. As can be seen in the first and the last columns of the
tables, the values of �U and �E are uniquely given by the chosen value of �1 and
�4, respectively. Also notice that, although in the derivation of the cases we allow
the intervals of definition of �i to overlap, we don’t do it in the construction of the
tables, to avoid the appearance of a possible steady state more than once and keep
the tables as simple as possible.

3.9. Steady states having discontinuities within zones. Despite the diversity
of possible steady states with a constant value in each zone, which are categorized
in Tables 1 and 2, there exist further steady states with possible stationary discon-
tinuities within the zones. For example, in zone 1, the constant solutions �1 = 0
and �1Z have the same flux value, i.e., j1(0) = j1(�1Z). This means that there may
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�U �1 �2 �3 �4 �E

[0,�M
3 ]

[0,�4m]

0

(G) (�M
3 ,�3M]

[0,�M
2 ]⇤ (FII)

q3 � 0

[�1Z, 1] (�M
3 ,�3Z]

�j1(�1)

qU
q3  0 �4M

j4(�4)

qE

0
(�M

3 ,�3M] (WI)

(G)
(FII)

(�M
2 ,�2Z] q3 � 0

[�1Z, 1]
(�M

3 ,�3Z]

q3  0

Table 2. Collection of possible steady-states for the flotation col-
umn when q2 = qG � qU < 0. (⇤)When �1 2 [�1Z, 1] then �2 = �M

2 .

be a stationary discontinuity from �1 = 0 below to �1Z above the discontinuity,
which may be located anywhere in the interval (zU, zG), since the entropy condi-
tion (2.9) is satisfied. If such a discontinuity exists in zone 1, then the value �1Z

can be coupled with admissible values of �2 according to Table 1 or 2.
In the same way, stationary discontinuities from a lower to a higher value are

possible in zones 2, 3 and 4 for all bulk velocities qk that imply that the drift-flux
function in the zone is not monotone; hence, qk > qneg should hold. Analogously,
there may be discontinuities from higher gas volume fraction below a standing
discontinuity than above, if the drift flux has its local minimum point �kM(qk) 2
(�infl, 1), which is equivalent to qk 2 (q̄, ¯̄q). We are satisfied with giving examples
of such discontinuities in Section 5.

4. Numerical method. For the discretization of the model, we follow the proce-
dure made in [3] for the sedimentation process in a clarifier-thickener.

We subdivide the tank into N internal layers, or cells, and four external layers,
two at the top and two at the bottom, corresponding to the overflow and underflow
zones, respectively, each of them with depth �z = 1/N . We let �i(t) ⇡ �(zi, t)
denote the average of the exact solution over layer i, i.e. (zi�1, zi), at time t, i.e.,

�i(t) :=
1

�z

Z zi

zi�1

�(z, t) dz.

For each layer i, we use the balance law corresponding to (1.1) to obtain

d�i

dt
= �F (zi, t,�i)� F (zi�1, t,�

i�1)

�z
+

1

�z

X

S2{G,F,W}

Z zi

zi�1

qS�S�(z � zS) dz,

(4.1)
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where the flux F (z, t,�) is defined by (2.7). This is approximated by Godunov’s
numerical flux [23], which is

Fi := Fi(�
i,�i+1, t) =

8
<

:

min
�i��i+1

jk(�) if �i  �i+1,

max
�i����i+1

jk(�) if �i > �i+1,
(4.2)

where k 2 {E, 1, 2, 3, 4,U} denotes the present zone of the vessel (k depends on i).
We define the indices iG, iF, iW to indicate that the gas inlet is located in the layer
(ziG�1 , ziG), and the fluid and wash water inlets in (ziF�1, ziF) and (ziW�1, ziW),
respectively. For instance, the numerical fluxes Fi between layers (ziG�1, ziG) and
(ziF�1, ziF) will be computed using the function j2(�).

Substituting the numerical fluxes into the exact version of the conservation law
(4.1), we get the following method-of-lines formula:

d�i

dt
= �Fi � Fi�1

�z
+

X

S2{W,F,G}

qS�S

�z
�i,iS , (4.3)

where �i,iS = 1 if i = iS and 0 otherwise. Because of the Godunov flux, the
following is valid. For given piecewise constant (in each cell) initial data at t = 0,
equation (4.3) is in fact exact for the cell average �j(t) of the solution of PDE (1.1)
for small times until any wave from a cell boundary hits another cell boundary.

Using an explicit Euler step for the approximation of the time derivative and the
CFL condition

�t

✓
max
0�1

|j0k(�)|+ max
k2{U,1,2,3,4,E}

|qk|
◆

 �z, (4.4)

we obtain the following fully discrete method for �i,n ⇡ �i(tn), where the upper
index n stands for evaluation at time t = tn:

�i,n+1 = �i,n +
�t

�z

"
�Fn

i + Fn
i�1 +

X

S2{W,F,G}

qnS�
n
S�i,iS

#
, i = �1, . . . , N + 2.

5. Numerical examples. The examples here demonstrate the dynamic and steady-
state behaviour of a flotation column and we use dimensionless numbers. The drift-
flux function jg(�) = vterm�(1 � �)3.2 has been applied. We chose vterm = 2.7 in
agreement with [13]. Furthermore, the height of the vessel is one and we have placed
the injection points equidistantly: zG = 0.25, zF = 0.5 and zW = 0.75.

5.1. Examples 1 and 2: transition between steady states. First, we define
an initial set of velocities for the inlets and the outlets. In order to maximize the
number of possible steady states, and also satisfying conditions (G), (FII), (FIII),
(WI) and (WII), we use the operating charts in Figures 10–12 to first choose qU =
0.1 and qG = 0.2, and then qF = 0.1 and qW = 0.0353, which satisfy j1(�1) + qG =
j4(�4M). With these values, the velocities in the column are

q(z, t) =

8
>>><

>>>:

q1 = �0.1 for z < zG,

q2 = 0.1 for zG  z < zF,

q3 = 0.2 for zF  z < zW,

q4 = 0.2353 for z � zW,
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Figure 13. Examples 1 and 2: possible steady states with �1 = 0
for initial data corresponding to Figures 15(a)–(d).

and hence qU = q1 = �0.1 and qE = q4 = 0.2353. With these values, there are eight
possible steady states with a constant volume fraction in each zone. A detailed
description of them is provided by Figures 13–15.

In addition to the volume fractions �k, k 2 {U, 1, 2, 3, 4,E}, Figure 15 shows the
gas and fluid fluxes (jk and 'k) in each zone k represented by red and blue arrows,
respectively. In all eight cases, the gas flux is zero below z = zG, since j1(�1) = 0,
and equal to the constant value j4(�4M) above. The flux of water in zone k is then
'k = qk � jk(�k).

Let us now run two simulations.

Example 1. Initially, we consider a column filled with only fluid, i.e., �(z, 0) = 0 for
all z, and we start pumping gas, fluid and wash water into it, with the velocities
stated above. The gas rises fast and reaches the top of the vessel in a short time;
see Figure 16, which shows the time evolution of the gas concentration. As it can
be seen in Figure 17(a), at t = 1.5, the first steady state, see Figure 15(a), has been
reached. Then we close the top of the vessel by setting qE = 0 and qU = �0.3353
and let the gas accumulate at the top until t = 3, see Figure 17(b), when we open
the top again (the previous values are used). As can be seen in Figures 17(c) and
(d), after opening the top, a discontinuity arises within zone 3 between the fluid
and wash water inlets, and becomes stationary at z ⇡ 0.55; see the explanation
in Section 3.9. The new steady state is thus not among the eight ones shown in
Figure 15, but can be seen as combination of cases (b) and (c) of both Figures 13
and 15.
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Figure 14. Examples 1 and 2: Possible steady states with �1 2
[�1Z, 1] for initial data corresponding to Figures 15(e)–(h).

Example 2. Figures 18 and 19 show the results when we close the top of the tank
for a longer period, in this case until t = 4.0. Then, still another steady state is
reached, namely the intermediate one of Figure 15(d) and (h) having a discontinuity
in zone 1. The flux of gas is zero in zone 1, which means that there is a region of
bubbles standing still with the concentration � ⇡ 0.65 just below the gas inlet
zG = 0.25.

5.2. Example 3: overloaded tank. We now define an initial set of velocities for
the inlets and the outlets for which no steady state with �1 = 0 is possible. Conse-
quently, the system is overloaded and gas has to leave also through the underflow,
so that �1 > 0. The velocities in the column chosen are

q(z, t) =

8
>>><

>>>:

q1 = �0.1 for z < zG,

q2 = 0.1 for zG  z < zF,

q3 = 0.15 for zF  z < zW,

q4 = 0.17 for z � zW,

and hence qU = q1 = �0.1 and qE = q4 = 0.17. A detailed description of the
possible steady states is provided by Figure 20.

As in Examples 1 and 2, we start with a column filled with only fluid, i.e.,
�(z, 0) = 0 for all z, and we start pumping gas, fluid and wash water into it, with
the velocities stated above. In Figure 21, we can see how the gas rises and reaches
the top of the column in a short time. A steady state, corresponding to case (d) in
Figure 20, has been reached by t = 20, as it can be seen in Figure 21(d). Clearly
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Figure 15. Examples 1 and 2: possible steady states with gas
(red) and fluid (blue) fluxes.

5

Time [t]

0

0.2

Height [z]

0.4

1

G
a

s 
co

n
c.

 [
]

0.75

0.6

0.5 0

0.8

0.25

1

0

1

0.75

H
e

ig
h

t 
[z

]

0.5

0.25

0

Time [t]

0 1
0

2 3 4 5

0.5

G
a

s 
co

n
c.

 [
]

1

Figure 16. Example 1: time evolution of gas concentration from
di↵erent angles.

this is not an acceptable set of parameters for the desliming process: an unnecessary
excess of gas is flowing downwards and leaving the tank through the bottom.

5.3. Example 4: desliming. A flotation column is generally operated so that
there are two regions: one with bubbles (intermediate gas volume fraction) and one
with froth. In the bubbly region, usually in zone 2 and sometimes the lower part
of zone 3, the hydrophobic particles of the pulp slurry attach to the air bubbles. In
the froth region, located above the bubbly region, further enrichment takes place
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Figure 17. Example 1: gas concentration profiles for (a) t = 1.5,
(b) t = 3, (c) t = 5 and (d) t = 20.
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Figure 18. Example 2: time evolution of gas concentration from
di↵erent angles.
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Figure 19. Example 2: gas concentration profiles for (a) t = 1.5,
(b) t = 4, (c) t = 5 and (d) t = 20.

and the foam is e�cient for promoting water rejection. The injection of wash water
into the foam assists with rejection of entrained slimes. This is, however, e↵ective
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Figure 20. Example 3: possible steady states for initial data in Example 3.
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Figure 21. Example 3: gas concentration profiles for (a) t = 1.5,
(b) t = 5, (c) t = 10 and (d) t = 20.

only if the wash water flows downwards through the foam and bubbly regions, as
stated by Dickinson and Galvin in [13]. Then the the foam is washed properly. In
all steady states of Experiment 1, the wash water flows upwards.

To achieve a proper wash, the flux of water in zone 3, and consequently in
zones 1 and 2, should be negative, while in zone 4, it should remain relatively
small. We set qU = 0.11 and qG = 0.1, and choose qF = 0.05 and qW = 0.0714,
satisfying j1(�1) + qG = j4(�4M) to ensure that the steady state with the higher
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Figure 22. Example 4: Steady state with gas (red) and fluid
(blue) fluxes for a desliming test.

concentration of bubbles in zone 4, and hence the most ideal scenario for desliming,
can be achieved. With these values, the average bulk velocities in the vessel are the
following:

q(z, t) =

8
>>><

>>>:

q1 = �0.11 for z < zG,

q2 = �0.01 for zG  z < zF,

q3 = 0.04 for zF  z < zW,

q4 = 0.1114 for z � zW,

hence qU = �0.11 and qE = 0.1114. The bulk velocity in zone 2 is negative and
relatively small compared with the velocity in zone 1. Figure 22 shows the steady
state with maximum concentration of gas in zones 2, 3 and 4 for the conditions
given, along with the gas and water fluxes in each zone. Despite the bulk velocity
in zone 3 is positive, most of the wash water injected at z = zW flows downwards
through zone 3, with '3 = �0.06, while the flux of fluid flowing up in zone 4 and
the e✏uent zone remains small, '4 = 0.0114, compared with the flux of fluid in
other zones.

6. Conclusions. The present work has shown how the available drift-flux theory
for flotation columns, to the authors’ knowledge so far utilized in the engineering
literature for stationary analyses only, can be combined with results coming from
the mathematical and numerical analysis of conservation laws with discontinuous
flux to obtain a model for transient simulations as well as prediction of steady states.

The well-posedness established in [10] for the problem of continuous sedimen-
tation, which has one flux discontinuity, covers the case here with flotation with
several (but finite number of) discontinuities. In [10], a Kružkov-type of entropy
condition was used together with a crossing condition for the fluxes for the proof
of uniqueness. It is worth noting that the flux discontinuities within the present
model do satisfy this condition. The entropy condition used here implies, however,
the Kružkov-type and uniqueness is obtained without the crossing condition [18].

One-dimensional models such as the one treated herein are easier to solve than
multi-dimensional multiphase flow models, and may be useful to model a flotation
cell within plant-wide simulators [2]. Nevertheless, for practical use, the present
model should be improved and refined in future work. Some suggested directions
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of future work are as follows. Starting with a property of the model in its present
formulation, we recall that the present analysis is limited to drift flux functions jg
that satisfy (2.10), i.e., that have a horizontal tangent at � = 1, for which the
Richardson-Zaki expression (2.3), (2.4) is the most common example. Results of
the steady-state analysis will be more complicated, but can be obtained by similar
techniques to those of Section 3, whenever q̄ = �j0g(1) > 0. To underline that this
case is relevant for investigation we mention that Pal and Masliyah [31] come to
the conclusion that the Richardson-Zaki expression (2.4), with q̄ = 0, is suitable
with nRZ = 2.39. However, their Figures 10 and 11, displaying drift flux data
obtained by their own experiments and from the literature, including those obtained
within the froth region, strongly indicate that a function jg with q̄ > 0 is more
suitable. In fact, in their next paper [32] they modify the expression for V to
V (�) = 0.8(1� �) exp(�2.9�2.1), such that indeed �j0g(1) = 0.8 exp(�2.9) > 0.

With respect to the hydrodynamical setup of the flotation column and its con-
ceptual counterpart as drawn in Figure 1, we mention that Vandenberghe et al. [39]
propose an interesting recirculation: according to their Figure 1, mixture is sucked
from the column at a determined level, aerated, and re-injected at another position.
The extraction of material at a given rate but whose composition is part of the
solution gives rise to a singular sink term whose mathematical treatment is more
involved than that of a singular source term (as those appearing in (1.1)). The
basic di�culty is that the sink term cannot be incorporated into the flux function;
rather, the sink is represented by a new non-conservative transport term (see [6]).

In several instances, our analyses invoke available mathematical and numeri-
cal results for clarifier-thickener models. If sediment compressibility is included in a
clarifier-thickener model, an e↵ect that arises if the solid-liquid suspension is floccu-
lated, then the governing equation for such models features an additional strongly
degenerating di↵usion term [10] whose appropriate treatment, roughly speaking,
arises from handling it as part of the convective flux. Such a term may also be mo-
tivated in the application to flotation in future works: for instance, Narsimhan [29]
derives such a term to account for gradual compressibility of the foam layer that
is caused by flow of liquid through a network of plateau borders due to gravita-
tional and capillary forces [29]. On the other hand, Stevenson et al. [37] propose a
convection-di↵usion model for the transport of gangue in flotation froth.

Clearly, an obvious shortcoming of the present description, although it is in line
with the cited treatments of literature [13, 22, 25, 27, 31, 32, 38, 39, 43, 44], is that it
does not explicitly model the transport and settling of solid particles. It would be
highly desirable to extend the model by solids phases, for example of hydrophobic
and hydrophilic particles (of minerals and gangue material), and to include their
attachment to bubble and transport via the liquid and gas components. The likely
outcome of such a description is a convection-di↵usion-reaction system with discon-
tinuous flux akin to a recently advanced model of continuous sedimentation with
reactions [4]. On the other hand, several gas or solid phases representing size classes
that segregate and form areas of di↵erent composition can be included, and lead to
first-order hyperbolic systems of conservation laws with discontinuous flux, under
determined circumstances (see, e.g., [11] and the references cited in that paper).

Within the present work the emphasis has been on the construction of stationary
solutions. The numerical scheme utilized, Godunov’s scheme with suitable modi-
fications to handle the flux discontinuities (see Section 4), is monotone provided
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that �t and �z satisfy the CFL condition (4.4), and therefore delivers approxi-
mate solutions that converge to the unique entropy solution of the problem (1.1),
(1.2). However, formally second-order accurate solvers are possible for instance by
techniques of variable extrapolation, see e.g. [7, 9].
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2

MA)

PRE-PUBLICACIONES 2017

2017-15 Daniele Boffi, Lucia Gastaldi, Rodolfo Rodŕıguez, Ivana Sebestova: A
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finite element method for the Boussinesq problem with temperature-dependent viscosity
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