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Abstract

In this work we present and analyse a mixed finite element method for the coupling of fluid flow
with porous media flow. The flows are governed by the Navier—Stokes and the Darcy—Forchheimer
equations, respectively, and the corresponding transmission conditions are given by mass conser-
vation, balance of normal forces, and the Beavers—Joseph—Saffman law. We consider the standard
mixed formulation in the Navier-Stokes domain and the dual-mixed one in the Darcy—Forchheimer
region, which yields the introduction of the trace of the porous medium pressure as a suitable
Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point
strategy, classical results on nonlinear monotone operators and the well-known Schauder and Ba-
nach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi-Raugel and
Raviart—-Thomas elements for the velocities, and piecewise constant elements for the pressures and
the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly
to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, re-
spectively. We show stability, convergence, and a priori error estimates for the associated Galerkin
scheme. Finally, we report some numerical examples confirming the predicted rates of convergence,
and illustrating the performance of the method.
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1 Introduction

The modelling and numerical simulation of incompressible fluid flows in regions partially occupied by
porous media has become a very active research area during the last decades, mostly due to its relevance
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in the fields of natural sciences and engineering branches. In particular, these kind of phenomena can
be found in several applications such as in vuggy porous media appearing in petroleum extraction (see,
e.g., [4,[3]), groundwater system in karst aquifers (see, e.g., [26], [43]), reservoir wellbore (see, e.g.,
[2, 5]), internal ventilation of a motorcycle helmet (see, e.g., [14} [18]), and blood motion in tumors and
microvessels (see, e.g., [45], [51]), to name a few. One of the most popular models utilised to describe
the aforementioned interaction is the Navier—-Stokes/Darcy—Forchheimer (or Navier—Stokes/Darcy,
Stokes/Darcy) model, which consists in a set of differential equations where the Navier-Stokes (or
Stokes) problem is coupled with the Darcy—Forchheimer (or Darcy) model through a set of coupling
equations acting on a common interface, which are given by mass conservation, balance of normal
forces, and the so called Beavers—Joseph—Saffman condition. In [21] 20, [16] 28, [7, 29, 30} 31, 22 [15], and
in the references therein, we can find a large list of contributions devoted to numerically approximate
the solution of this interaction problem, including primal and mixed conforming formulations, as
well as nonconforming methods. At this point we remark that the Navier—Stokes/Darcy—Forchheimer
model is considered when the fluid velocity is higher and the porosity is nonuniform, which holds
when the kinematic forces dominates over viscous forces. We refer the reader to [0 34] 44l [47] for the
derivation and analysis of the Darcy—Forchheimer equations.

Up to the authors’ knowledge, one of the first works in analysing the coupling of Navier—Stokes and
Darcy-Forchheimer equations is [2]. In that work, the authors study the coupling of a 2D reservoir
model with a 1.5D vertical wellbore model, both written in axisymmetric form. The physical problems
are described by the Darcy—Forchheimer and the compressible Navier—Stokes equations, respectively,
together with an exhaustive energy equation. Later on, motivated by the study of the internal ven-
tilation of a motorcycle helmet, a penalization approach was introduced and analysed in [18]. In
particular, the authors consider the velocity and pressure in the whole domain as the main unknowns
of the system, and the corresponding Galerkin approximation employs piecewise quadratic elements
and piecewise linear for the velocity and pressure, respectively. Notice that this method is applied to
both 2D and 3D domains. More recently, in [52] a 3D discrete dynamical system was derived from the
generalized Navier—Stokes equations for incompressible flow with nonlinear drag forces (represented
by Forchheimer terms) in porous media via a Galerkin procedure. We observe that this method can
be employed in subgrid-scale models of synthetic-velocity form for large-eddy simulation of turbulent
flow through porous media.

Furthermore, and concerning simpler related models, we highlight that a conforming mixed method
for the Stokes—Darcy coupled problem has been introduced and analysed in [2§]. In this work, the
velocity-pressure formulation in the Stokes equation and the dual-mixed approach in the Darcy region
is considered, which yields the introduction of the trace of the porous medium pressure as a suitable
Lagrange multiplier. Later on, it was shown in [29] that the use of any pair of stable Stokes and
Darcy elements guarantees the well-posedness of the corresponding Stokes—Darcy Galerkin scheme.
More recently, in [22] the authors extend the results from [28] to the Navier-Stokes/Darcy coupled
problem. Since this coupled system is nonlinear (due to the convective term in the free fluid region),
the analysis of the continuous problem begins with the linearisation of the Oseen problem in the free
fluid domain. This simplified model is then studied by means of the classical Babuska—Brezzi theory,
similarly as it was done for the Stokes—Darcy coupling in [28]. Then, a fixed-point strategy based on the
aforementioned linearisation is associate to the nonlinear coupling, which allows to establish existence
and uniqueness of solution thanks to Schauder’s and Banach’s fixed point theorems, respectively.

According to the above bibliographic discussion, in this paper we aim to extend the results obtained
in [22] 28, 29] to the Navier-Stokes/Darcy—Forchheimer coupled problem. We consider the standard
velocity-pressure formulation for the Navier—Stokes equation and unlike [22], in the porous medium
we consider the Darcy—Forchheimer equation in its dual-mixed formulation. In this way, we obtain



the velocity and the pressure of the fluid in both media as the main unknowns of the coupled system.
Since one of the interface conditions becomes essential, we proceed similarly to [22] 28] and incorporate
the trace of the porous medium pressure as an additional unknown. The well-posedness of both the
continuous and discrete formulations is proved, employing a fixed-point argument and clasical results
on nonlinear monotone operators (see [49, 50]). In particular, for the continuous formulation, under a
smallness data assumption, we prove existence and uniqueness of solution by means of a fixed-point
strategy where the Schauder (for existence) and Banach (for uniqueness) fixed-point theorems are
employed. Using similar arguments (but applying Brower’s fixed-point theorem instead of Shauder’s
for the existence result) we prove the well-posedness of the discrete problem for a specific choice of
discrete space. More precisely, we consider Bernardi-Raugel elements for the velocity in the free
fluid region, Raviart—Thomas elements of lowest order for the filtration velocity in the porous media,
piecewise constants with null mean value for the pressures, and piecewise constant elements for the
Lagrange multiplier on the interface.

The rest of this paper is organised as follows. In Section 2] we introduce the model problem and
derive the variational formulation. Next, in Section [3} we establish that our variational formulation is
well posed. The corresponding Galerkin scheme is introduced and analysed in Section 4} In Section
we derive the corresponding Céa’s estimate and a sub-optimal rate of convergence. Finally, several
numerical examples illustrating the performance of the method, confirming the theoretical sub-optimal
order of convergence and suggesting an optimal rate of convergence, are reported in Section [6]

We end this section by introducing some definitions and fixing some notations. Let O C R",
n € {2,3}, denote a domain with Lipschitz boundary I". For s > 0 and p € [1,+0o0], we denote by
LP(0) and W*P(O) the usual Lebesgue and Sobolev spaces endowed with the norms || - [|r»0y and
| - |lsp:0, Tespectively. Note that WOP(O) = LP(O). If p = 2, we write H*(O) in place of W*2(0),
and denote the corresponding Lebesgue and Sobolev norms by || - |lo,o and || - ||s0, respectively,

and the seminorm by |- |5 0. In addition, we denote by Wa”(I") the trace space of WH?(0) and
1 1
W™ a%(T) the dual space of Wa”(T') endowed with the norms || - |1 . and || - || _1 .p, respectively,
q7 k) q7 I’
with p, ¢ € (1, 400) satisfying 1/p+1/q = 1. By M and M we will denote the corresponding vectorial

and tensorial counterparts of the generic scalar functional space M, and || - ||, with no subscripts,
will stand for the natural norm of either an element or an operator in any product functional space.

Additionally, we recall that H(div; Q) = {w e L2(0) : divw € LQ(O)}, is a standard Hilbert

space in the realm of mixed problems (see, e.g., [I2]). On the other hand, the following symbol for
the L2(I") inner product

(&, N :_/Fa VE, N € LA(T),

1
will also be employed for their respective extension as the duality parity between W™ ¢'?(T") and

WP (T"). Hereafter, when no confusion arises, |- | will denote the Euclidean norm in R™ or R™*".
Furthermore, given a non-negative integer k and a subset S of R™, P.(S) stands for the space of
polynomials defined on S of degree < k. Finally, we employ 0 as a generic null vector, and use C' and
¢, with or without subscripts, bars, tildes or hats, to denote generic positive constants independent of
the discretization parameters, which may take different values at different places.

2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation. For
simplicity of exposition we set the problem in R?. However, our study can be extended to the 3D case



with few modifications, which we will be pointed out appropriately in the paper.

2.1 The model problem

In order to describe the geometry, we let {2 and 2p be two bounded and simply connected polygonal
domains in R? such that QsNINp = X # P and QsNQp = @. Then, let I's := 9N\ X, T'p := I0p\ T,
and denote by n the unit normal vector on the boundaries, which is chosen pointing outward from
Q:=0QsUXUQp and Qg (and hence inward to Qp when seen on ¥). On ¥ we also consider a unit
tangent vector t (see Figure below). The problem we are interested in consists of the movement
of an incompressible viscous fluid occupying 2 which flows towards and from a porous medium Qp
through ¥, where Qp is saturated with the same fluid. The mathematical model is defined by two
separate groups of equations and by a set of coupling terms. In the free fluid domain g, the motion
of the fluid can be described by the incompressible Navier—Stokes equations:

os = —psl+2pe(ug) in Qg, —dives+p(Vug)ug=1_fy in Qg, 2.1)
divug=0 in g, us=0 on I¥g, '
where the unknowns are the fluid velocity ug, the pressure pg, and the Cauchy stress tensor og. In
1
addition, e(ug) := §{Vus + (Vus)t} stands for the strain tensor of small deformations, p is the

viscosity of the fluid, p is the density, and fs € L?(g) is a given external force.

Figure 2.1: Sketch of a 2D geometry of our Navier—Stokes/Darcy—Forchheimer model

In the porous medium 2p we consider a nonlinear version of the Darcy problem to approximate
the velocity up and the pressure pp, which is considered when the fluid velocity is higher and the
porosity is nonuniform. More preciselly, we consider the Darcy—Forchheimer equations [47] [44]:

F
HK_IUD + —|uD|uD +Vpp=fp in Qp, divup=g¢gp in Qp, up-n=0 on I'p, (2.2)
P p

where F' represents the Forchheimer number of the porous medium, and K € L*°(Qp) is a symmetric
tensor in Qp representing the intrinsic permeability & of the porous medium divided by the viscosity
i of the fluid. Throughout the paper we assume that there exists Cx > 0 such that

w- K (x)w > Ck|w|?, (2.3)

for almost all x € Qp, and for all w € R%. In turn, as will be explained below, fp and gp are
given functions in L3/ 2(Qp) and L2(2p), respectively. In addition, according to the compressibility



conditions, the boundary conditions on up and ug, and the principle of mass conservation (cf. (2.4])
below), gp must satisfy the compatibility condition:

/ gp = 0.
Qp

Finally, the transmission conditions that couple the Navier—Stokes and the Darcy—Forchheimer models
through the interface 3 are given by

g

Vt-kt

where a4 is a dimensionless positive constant which depends only on the geometrical characteristics of
the porous medium and usually assumes values between 0.8 and 1.2 (see [9, [I8]). The first condition
in is a consequence of the incompressibility of the fluid and of the conservation of mass across
Y. The second transmission condition on ¥ can be decomposed, at least formally, into its normal and
tangential components as follows:

us'n=up-n on % and ogn+ (ug-t)t=—ppn on X, (2.4)

agqp
t-Kt

(osn) -n=—pp and (ogn)-t=— (ug-t) on X. (2.5)

The first equation in corresponds to the balance of normal forces, whereas the second one is
known as the Beavers—Joseph—Saffman condition, which establishes that the slip velocity along ¥ is
proportional to the shear stress long ¥. We refer the reader to [8, Section 3.2] (see also [48] [40]) for
further details on the choice of this interface condition.

2.2 The variational formulation

In this section we proceed analogously to [28, Section 2] and derive a weak formulation of the coupled
problem given by (2.1)), , and (2.4). To this end, let us first introduce further notations and
definitions. In what follows, given x € {S, D}, we set

(p7Q)*3:/ pq, (u,v)*::/ u-v, and (O',T)*::/ o:T,
Qy * *

where, given two arbitrary tensors o and 7, o : T = tr(olr) = 22

ij=1OijTij- Furthermore, in the
sequel we will employ the following Banach space,

H3(div; Qp) = {VD cL3(Qp): divvp € LQ(QD)},
endowed with the norm
3 . 3 /
Vo lers aivap) = (IVDIEaap) + Idivlia,)
and the following subspaces of H'(2s) and H?(div ; Qp), respectively
1 o 1 ) _
HFS(QS) = {Vs ceH (2%): vg=0 on Ps}7
H%D(div;QD) = {VD cH3(div;Qp): vp-n=0 on FD}.

Notice that H3(div;Qp) = H(div;Qp) N L3(Qp), which guarantees that vp - n is well defined for
vp € H%D(div ;Op).



To begin with the derivation of our variational formulation for the Navier-Stokes/Darcy—Forchhei-
mer problem we first proceed similarly to [22] 28] and test the second equation of (2.1) by vy €
H%S(QS), integrate by parts and utilize the second equation of (2.4)) to obtain

2u(e(us), e(vs))s + < s v -t>2 T p(Vus)us, vs)s )

— (ps,divvs)s + (vs-n, Ny = (f,vs)s,

for all vg € H%S(QS), where A is a further unknown representing the trace of the porous medium
pressure on Y, that is A = pp|r. The corresponding space of A will be specified next. In turn, we
incorporate the incompressibility condition divug = 0 in Qg weakly as follows

(gs,divug)s =0  Vgs € L*(Qg). (2.7)

Next, we multiply the first equation of (2.2]) by vp € H%D (div; Qp) and integrate by parts to obtain

SERS

_ F .
(K hap, vp)p + ;(|U—D|U-D7VD)D — (pp,divvp)p — (vp - n, A)s, = (fp, vD)D, (2.8)

for all vp € H%D(div :Qp). Observe that if up € H3(div;Qp) and pp € L?(Qp), then |up|up - vp €
LY(Qp) and pp divvp € L' (Qp), and hence the second and third terms of are well defined, which
justifies the introduction of the spaces H3(div;p) for the derivation of our weak formulation. On
the other hand, we observe that for each vp € H3(div; Qp), the normal trace vp -n : H3(div; Qp) —

W53 (0Qp) is well defined and continuous. In fact, since Wl’%(QD) is continuously embedded into
L2(Qp) then for each ¢ € W%’%@QD) the quantity

(VD -1, E)yo, = /Q v - VA (E) + / 55 (€)div v,

D Qp

is well defined, where (-, ) 5, stands for the duality pairing between W_%’3(8QD) and W33 (0Qp), and
3

Yo ! is the right inverse of the well known trace operator 7o : Wh2 (Qp) — W (0Qp). Furthermore,

as will be explained next at the end of Section vp-n|y € W7%’3(E), which suggests to set W33 (%)
as the appropriate space for the unknown A, that is

A= pD|g S W%’%(E)

Note that, in principle, the space for pp does not allsow enough regularity for the trace A to exist.
However, the solution of (2.2)) has the pressure in W2 (Qp) N L2(Qp).

Finally, we impose the second equation of ([2.2)) and the first equation of ([2.4]) weakly as follows

(gp,divup)p = (9p,¢p)D Yqp € L*(p), (2.9)

and .
(us-n—up - -n,y=0 VEe Wiz (%). (2.10)

As a consequence of the above, we write € := Qg U X U Qp, and define p := psxs + ppxD, with xx
being the characteristic function:
1 in €,
Xx =

0 in Q\Q,



for x € {S, D}, to obtain the variational problem: Find ug € H%S(Qs), p€L3(Q), up € H%D (div; Qp)

and A € W32 (%) such that (2.6)(2.10) hold.

Now, let us observe that if (ug, up,p, A) is a solution of the resulting variational problem, then for
all c € R, (ug,up,p + ¢, A\ + ¢) is also a solution. Then, we avoid the non-uniqueness of ([2.6)—(2.10))
by requiring from now on that p € LZ(Q2), where

L3(0) = {q cIA(Q) /Qq:o}.

In this way, we group the spaces and unknowns as follows:

[

H:=H} (Qs) x H} (div;Qp), Q:=L3(Q) x W2 (X),
u

= (us,up) €H, (p,\)€Q,

and propose the mixed variational formulation: Find (u, (p,\)) € H x Q, such that

[a(us)(u), v] + [b(v), (p,N)] = [f,v] Vv := (vs,vp) € H, 2.1
[b(u), (¢,¢)] = [ (¢,9] V(4,6 <€Q,
where, given wg € H%S(Qs), the operator a(wg) : H — H' is defined by
[a(ws)(u), v] := [As(us), vs] + [Bs(ws)(us), vs] + [Ap(up), vp], (2.12)
with
[As(us),vs] = 2u(e(us), e(vs))s + < 2 gt v - t> :
vV t Kt »
[Bs(ws)(us), vs] = p((Vug)ws,vs)s, (2.13)
e ! F
['AD(UD)vVD] = (K uvaD)D + E (|uD|uD7VD)D7
whereas the operator b : H — Q' is given by
[b(v),(q,8)] := —(divvs,¢)s — (divvp,¢)p + (vs 'n—vp -1, {)y;. (2.14)
In turn, the functionals f and g are defined by
[f7 V] = (fS? VS)S + (fD7 VD)D and [ga (Q7 5)] = _(gDa q>D (215)
In all the terms above, [-,-] denotes the duality pairing induced by the corresponding operators.

2.3 Stability properties

Let us now discuss the stability properties of the operators in (2.13) and (2.14). We begin by observing
that the operators Ag, Bs and b are continuous:

As(us).vsl| < Cagllus g vs e
1Bs(ws)(us), vs]| < pCElIwsllLa s 1.0 Ivsll o, (2.16)
b, (@8] < Cullviull@8la.



where Cj is the continuity constant of the Sobolev embedding from H'(€g) into L*(2g). In turn, from
the definition of Ap (cf. (2.13))), (2.3)), and the triangle and Holder inequalities, we obtain that there
exists L 4, > 0, depending only on pu, p, F, K, and Qp, such that

4D (up) = Ap (VD) (k3 (div 01y (2.17)
< LAD{HUD — Vpllms(iviop) + lup — vollmsdivion) (|’uDHH3(div;QD) + ”VDHH‘%(diV?QD)) }’ |

for all up,vp € H3(div;Qp). In addition, using the Cauchy-Schwarz and Young inequalities, it is
not difficult to see that f and g are bounded, that is, there exist constants cg, cg > 0, such that

€ < ce{IIfs

0,05 T ||fD”L3/2(QD)} (2.18)
and
Igllq < cgllgpllogn (2.19)

which confirm the announced smoothness of fp. On the other hand, from the well known Korn and
Poincaré inequalities (see, e.g., [27]), we easily obtain that there exist a constant ag > 0, depending
only on g, such that

[As(vs), vs] = 2uas||vs|[i oy Vvs € Hpy(Qs). (2.20)

In turn, integrating by parts and assuming that divwg = 0 in Qg, similarly to [22], eq. (29)], we obtain

[Bs(ws) (vs), vs] = ';)/E(ws ‘n)jvsl® Vws,vs € H_ (). (2.21)

Finally, from the definition of Ap (cf. (2.13)) and the inequality (2.3]), we deduce that for a fixed
tp € L3(Qp), there holds

[Ap(up +tp) — Ap(vp + tp),up — vp|

i , F (2.22)
> ;CKHUD = vplloap, + n (Jup + tp|(up + tp) — [vp + tp|(VD + tp), up — VD)pH |

for all up,vp € L3(Qp). Then, thanks to [35, Lemma 5.1], there exist Cp > 0, depending only on
Qp, such that

(Jup + to|(up + tn) — [vp +tp|(VD + tn), up — VD)p, > Cbllun — vb|lEsiay);

which, together with (2.22), and neglecting the first term on the right hand side of (2.22), yields

[Ap(up + tp) — Ap(vp + tp),up — vp] > apllup — VDH%ﬁ(QD) Yup, vp € LS(QD), (2.23)
F
with ap = SD.

3 Analysis of the continuous formulation

In this section we analyse the well-posedness of problem ([2.11f) by means of a fixed-point argument
and classical results on nonlinear monotone operators. To that end we first collect some preliminaries
results and notations that will serve for the forthcoming analysis.



3.1 Preliminaries

First we introduce some definitions that will be utilized next. To this end we let X and Y be reflexive
Banach spaces. Then, we say that a nonlinear operator 7' : X — Y is bounded if 7'(S) is bounded for
each bounded set S C X. In addition, we say that a nonlinear operator T : X — X' is of type M if
up — u, Tu, — f and limsup [Tup, uy] < f(u) imply Tu = f. In turn, we say that T is coercive if

[T, ul
]

Now, we establish the following abstract result taken from [49, Proposition 2.3|, which has been
adapted to our context where the nonlinear operator is defined on a product space X = X x Xo, with
X1 and X5 depending on parameters p; and po, respectively, in place of an space X depending on a
parameter p.

— oo as ||lu|| = oo.

Theorem 3.1 Let X1, X5 andY be separable and reflexive Banach spaces, being X1 and Xo uniformly
convex, set X = X1 x Xo, and let X|, X}, Y, and X' := X{ x X}, be their respective duals. Let
a: X — X' be a nonlinear operator and b: X — Y’ be a linear bounded operator. In turn, we denote
by V' the kernel of b, that is,

V.= {v eX: [bw),q=0 Vge Y}.
Assume that
(i) a is hemi-continuous, that is, for each u,v € X, the real mapping
J:R—=R, t— J(t)=a(u+tv),v]
18 continuous.
(ii) there exist constants v > 0 and p1,p2 > 2, such that
2
law) = aw)llxr < 33 {lhs = vsllx, + s = ilx, (g, + gl ) ).
j=1
for all uw = (ui,uz),v = (vi,v2) € X.

(iii) for fired t € X \ 'V, the operator a(-+1t): V — V' is strictly monotone in the following sense:
there exist a« > 0 and p1,p2 > 2, such that

(a(u+1) = a(+t),u—v] > a{llur — o1}, + luz — vs[1%, }.

for all u = (uy,u2),v = (v1,v2) € V.

(iv) there exists B > 0 such that

b(v),q
sup LD 5 gy vaey
vi)g ||U‘X



Then, for each (f,g) € X' x Y’ there exists a unique (u,p) € X XY such that

a(w), v+ bo)pl = [f0] Yoe X, -
[b(u), q] = [g,q] Vgev.
Moreover, there exists C > 0, depending only on a,~, B,p1, and p2, such that
I(w.p)lxxy < CM(f.g) (32
where
M(F,g) i= max {N (1. 9) P10 N (1,9) 77 N (£, 9). N (£, ) N (.97
and

-1 -1
N(f.9) = Iflx + llglly + gl + lgllyZ + lla(0)l|x-

Proof. We begin by noting that hypothesis (iv) establishes, equivalently, that b is surjective. Then,
given g € Y’ there exists a unique ug € X \ V such that (see [42, Lemma A.1] for details):

1
blug) =g andlugllx < Zllglly- (3.3)

Then, given this u, in X \ V satisfying (3.3), we observe that problem (3.1)) with v € V' leads to: find
u € V, such that
lag(w),v] := [a(u + ug),v] = [f,v] YveV, (3.4)

which suggests to define later on u as u + u,4. In this way, since f —a(u) € °V and hypothesis (iv)
also guarantees that the adjoint operator o’ is an isomorphism from Y into °V, we deduce that there
exists a unique p € Y such that b'(p) = f — a(u) and

ol < 51 @)lx < 5 {17+ lawlx . (35)

Therefore to prove that problem is well posed, in what follows we prove equivalently that a4(-) =
a(- + ug) is bijective on V. We begin by observing that the injectivity of the operator a4(-) follows
straightforwardly from hypothesis (iii). In addition, from hypotheses (i) and (iii) and [50, Chapter II,
Lemma 2.1] it can be readily seen that ag4(-) is an operator of type M. Now, given v = (vi,v2) € V,
and denoting by u?, J = 1,2, the components of u,, we observe that, owing to (ii), (iii) and using the
inequality (a + 0)? < C(q)(a? + b?), with C(q) depending only on ¢, which is valid for all ¢ € [0, +00)
and a,b > 0 [3, Lemma 2.2], there hold

lag@)llx: < llag(®) — ag(O)lx + lag(O)Lx+ = lla(w + ug) — alug)llx + la(ug)lx
2 -
J
<03 Mol + e, (s + s, + ol )} + Bt e
i=1
& 1 2
<O Ll + Il + oyl Il 2} + llaug)
Jj=1

<C

/N

—2 -2 -2 -2
Lot floalli, ™ + lloall, ™ + lludll, ™ + [lusll, )HUIIXJrHa(ug)qu
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and

ag0)so] _ [alo+ ) — a0+ ug)e] | la(ug)e] _ L0l + 2l ]
Mx - llx olx 2 lx

. -1 -1
> Cmin {0l ol } = llatug) I

which clearly show that a, is bounded and coercive on V', respectively. In this way, by applying
[50, Chapter II, Corollary 2.2] it can be readily seen that a4 is surjective on V. Having verified the
bijectivity of a, on V' we deduce that problem is well-posed, or equivalently admits a unique
solution (u,p) = (4 + ug,p) € X x Y. Now, in order to obtain , we proceed similarly to [49,
Proposition 2.3]. In fact, taking v = € V in (3.4)), we have

(0@ +ug) — a(0+ug), @ = [, — [a(uy), @
Then, combining hypothesis (ii) — (iii) and (3.3)), it is clear that
o IR, + l%, < {17 + llatug)llx flilx

-1 -1 ~
< er{Iflb + gl + 918" + 98" + o)l Hialx,

= lla(ug) | x

with ¢; > 0 depending only on +, 8, p1, and p2, which yields

il x < 2max { (QC?N(f,g))“ll (xtr.0) } , (3:6)

where N(f,9) == |fllx: + llglly + g} ™" + llgl2 ™" + la(O)lx-. Tn this way, due to u = @ -+ u,
combining (3.3) and (3.6]), we conclude that
_1 _1
lullx < Wil + ugllx < ez max {N(f, )71, N (f, )71 |, (3.7)

with ¢o > 0 depending only on «,~, 3, p1, and pa. On the other hand, from (3.5) and using again (ii),
we deduce that

-1 -1
Iplly < ea{ 1l + llullx + sl + lluel " + a(0)lx (3.8)
with ¢z > 0 depending only on v and 8. Then, (3.7) and (3.8) conclude the proof. O

We remark that when p; = ps = 2 and ||a(0)||x+ is equal to zero, the previous analysis leads to the
classical estimate

s p) sy < € LI+ llglly- },
with C' > 0, depending only on «,~y, and .

Now, we follow [24, Appendix A] (see also [31], 22]) to recall some preliminary results concerning
boundary conditions and extension operators. We start by recalling that, given vp € H%D (div; Qp),
the boundary condition vp - n = 0 on I'p means

13
(vb 1, Egp(§))yg, =0 V&€ Wsz(I'p),
where Egp : W%’%(FD) — W%’%(GQD) is the extension operator defined by

Eon(6) ::{ g o 1;3 vee WhE(ID),

11



We observe that according to [37, Theorem 1.5.2.3], the operator Ey p is well defined. In turn, similarly
to [24] eq. (A.6)] we can identify the restriction of vp - n to ¥ with an element of W_%’g(Z), namely

(VD 1, €)= (v 1, B (€))gq, VEE WHE(D), (3.9)

where Fy, : W%%(E) — W%’%(OQD) is any bounded extension operator. In addition, analogously to
the proof of [24, Lemma A.2] one can show that for all ¢ € W%’%(aﬂp), there exist unique elements
by, € W32(S) and ¥, € W32 (I'p) such that

¥ = Ex(¢s) + Eop(Yry), (3.10)
and there exist C7,Cy > 0, such that

Cr{lgslls g5+ 16rolls sy <IN 200, < Cofl6slly s+ o lls 5.0, - (3.11)

In fact, although [24] Lemma A.2] is derived for Wl_%’p (0Qp) with p > 2, using a slight modification
of [35, Section 2] one can easily extend the analysis to the case p > 1. Finally, we observe that, since
HY/2 (09g) is continuously embedded into LP(9g) with p > 1, and the trace operator is continuous,
the following inequality holds:

IVslluoes) < IVsliur@as) < Csllvslhyzons < CsCullvsllias  Yvs € Hig(Qs), (3.12)
where C; is the continuity constant of the Sobolev embedding from H'/2(9Qg) into LP(99s), and Cj,

is the norm of the usual trace operator from H!(g) into H'/2(9Qsg).

3.2 A fixed-point approach
We begin the solvability analysis of (2.11]) by defining the operator T : H%s (Qg) — H%S(QS) by
T(ws) :=us Vws € Hp (Qg), (3.13)

where u := (ug,up) € H is the first component of the unique solution (to be confirmed below) of the
nonlinear problem: Find (u, (p,A)) € H x Q, such that

[a(ws)(u), v] + [b(v), (p, \)] = [f,V] Vv € H, 514
[b(u), (¢,¢)] = 8 (9] Y(¢,8eQ
Hence, it is not difficult to see that (u, (p, \)) € HxQ is a solution of ({2.11) if and only if ug € HILS (Qsg)
satisfies: ug € H%S (Qs) and T(ug) = ug. In this way, in what follows we focus on proving

that T possesses a unique fixed-point. However, we remark in advance that the definition of T will
make sense only in a closed ball of H%s (Qg). Before continuing with the solvability analysis of (2.11]),
we first provide the hypotheses under which operator T is well defined.

3.3 Well-definiteness of T

Given wg € HILS (Qg), it is clear that problem has the same structure of the one in Theorem
Therefore, in what follows we apply this result to establish the well-posedness of , or equiva-
lently, the well-definiteness of T. We begin by observing that, thanks to the uniform convexity and
separability of LP(Q) for p € (1,400), each space defining H and Q shares the same properties, which
implies that H and Q are uniformly convex and separable as well.

We continue with the required continuity property of a(wg) for each wg € H%S (Qs).

12



Lemma 3.2 Given wg € H%S (Qs), the operator a(ws) is hemi-continuous in H.

Proof. For fixed wg € H%s (Qg), u = (ug,up), and v = (vg, vp) € H, we introduce the real function
J : R — R defined by

J(t) = [a(ws)(u+tv),v] = [As(us + tvg), vs]
+  [Bs(ws)(ug + tvs), vs] + [Ap(up + tvp), vp].

Then, the hemi-continuity of a(wg), that is the continuity of J, follows straightforwardly from the
linearity and continuity of Ag and Bg(wg) and from [34, Proposition 3]. We omit further details. O

We continue our analysis with the verification of hypothesis (ii) of Theorem

Lemma 3.3 Let wg € H%S(Qs). Then, there exists v > 0, depending on Caq and L, (cf. (2.16)),
(2.17) ), such that

la(ws)(w) = a(ws)(v) [ < 7{ (1 + w105 [us = vsllvas + 100 = VD s(aiv )
o 11up = VD e i) (110 e a0 + VD (e ) ) §

for allu = (us,up),v = (vg,vp) € H.

Proof. The result follows straightforwardly from the definition of a(wg) (cf. (2.12))), the triangle
inequality, and the stability properties (2.16) and (2.17]). We omit further details. O

Now, let us look at the kernel of the operator b, that is

Vi={veH: D) (68 =0 aecQq}l. (3.15)
According to the definition of b (cf. ), we observe that v = (vg,vp) € V if and only if
(divvs, q)s + (divvp,¢)p =0 Vg € L§(Q)

and .
(vg-n—vp -n§)y=0 Ve Ws2(X).

In this way, noting that L2(Q2) = L(Q2) ® R, and taking ¢ € R in the latter equation, we deduce that
(divvs,q)s + (divvp,¢)p =0 Vg € L*(Q),

which implies
divvg=0 in Qg and divvp=0 in Qp. (3.16)

In the following result we provide the assumptions under which operator a(wg) satisfies hypothesis

(iii) of Theorem
Lemma 3.4 Let wg € H%s (Qs) such that divwg = 0 in Qg and

2uag

_ 1
pCRC 10

Iws - nllos <
Then, for each t € H\ V|, the nonlinear operator a(wg)( - +1t) is strictly monotone on 'V (cf. (3.15)) ).
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Proof. Let t := (ts,tp) € H\ 'V fixed, and let wg € H}, < (€2s) as indicated. Then, according to [2-12),
the linearity of Ag and Bs(wg), the identity (3.16) and the stabilities properties ([2.20)) and ({2. 23|) we
find that

[a(ws)(u + t) — a(ws) (v + t),u — v] > 2as|u

+ aplup — vbllgs gy 0p) + [Bs(Ws)(us — vs), us — v,

for all u,v € V. In addition, similarly to [22] Lemma 2], we deduce from ({2.21)), applying Cauchy—
Schwarz’s inequality and (3.12)) with p = 4, that

CLC?
< P20 ws - mflos [lus — v g

’[BS(WS)(US —vs),us — vg]| <
which implies

[a(ws)(u+t) —a(ws)(v+t),u—v]

2 CZ
3
> {QMas — %HWS n|o, E}HUS - VSH1 Qs T ap|lup — VD||H3(div;QD)'
Consequently, the hypothesis (3.17) and the foregoing inequality imply

falws) (1 £) — a(ws)(v + )1~ v] > ol [Jus — vs [ 0, + 15 ~ VDl |
for all u,v € V, with a(Q2) := min {uas, aD} independent of wg. O
We remark that, similarly to the strict monotonicity of a(wg)(-+t) on V with t € H\ V fixed,

using ([2.23) with tp = 0 € L3(Q2p), we deduce that

a(ws) (u) — a(ws)(v). 1~ v] > (@) Jus — vs o, + 1D — Vb e ) (3.18)
for all u,v € H with div (up — vp) =0 in Qp.

We end the verification of the hypotheses of Theorem [3.1] by proving the continuous inf-sup condition
for b. To that end, we adapt the proof of [28, Lemma 2.1] to the present case, using similar results
from [31, Lemma 3.3] and [22, Lemma 1] to handle the mixed boundary conditions on 0Qp.

Lemma 3.5 There exists 5 > 0 such that

b(v), (¢, ¢

5(0.6) = sup PO S gy o)1 vig.o) e Q. (3.19)
veH [v]a
v#0

Proof. Let (¢,€) € Q. Since g € L3(9), it is well known (see, e.g., [33, Corollary 2.4]) that there exists
z € H{(Q) such that divz = —¢ in Q and ||z[1,0 < ¢/|q]lo.q- Setting v := (Vs, Vp) with V,, = z|q, for
* € {S,D}, we find that Vs -n = Vp - n on ¥, and using the continuous embedding from H*(Qp) into
L3(2p), we obtain ||[V||g < @l|z|l1.0 < ¢llq/lo.q, whence

b@, @O g

S(q,6) > — = ——
1V la Il

> cillgllo0- (3.20)
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On the other hand, given ¢ € W*%’?’(E), we define n € W*%’?’(BQD) as
13
<T]7IU’>GQD = <¢7,LLE>E VI‘L € W2 (aQD)a

where uy € W%%(E) is given by the decomposition (3.10). It is not difficult to see that

(1, Bop(p))gn, =0 Vp€ W5'2(I'p), (3.21)
13
(1, Ex(#))oap = (0:9)y Yo € War2(X), (3.22)
and
19011 500 < ClISI_1 v (3.23)

Next, we set vp := Vz in Qp, with z € WH3(Qp) being the unique solution of the boundary value
problem (see [32] for details):

1
—Az = ~p] (M 1)so, in Qp, Vz-m=n on Ip, (z1)p=0.
D
It follows that divvp = \TIDI (n, 1>BQD € Py(2p), vp - n =1 on 0Qp, and using (3.23)) we find that

b llrsai i) < €Il g0, < ClOll_1 4z (3.24)

In addition, using (3.9)), (3.21]) and (3.22]), we deduce that

(VD n,{)y = (vp ' m, EZ(§)>6QD = ("77EE(§)>39D = (¢, &)x,

and
~ 13
(Vb 1, Eon(p)gn, = (1 Eop(p)gg, =0 Vo€ Wa2(I'p).

The latter means that vp € H%D(div ;Qp). In this way, defining v := (0, vp) € H, we obtain, thanks

to (3.23) and (3.24), that

sog o PO [0:05+ gy 0100, (010
8 =2 1Vl V0[5 (aiv 1020
= CQM—cguqum
R YN o

which, considering that ¢ € W_%’?’(E) is arbitrary, yields

S(4:€) = c2ll€lls 5.5 — esllalloo- (3.25)
Then, combining (3.20) and ([3.25|) we easily obtain that
C1C2
>
S(Q)g) - c1 _’_03”5”%,%;27
which, together with (3.20]), completes the proof with § depending on c1, co and cs. O

We are now in position of establishing the well-definiteness of T. To that end, and in order to
simplify the subsequent analysis, given wg € H%S (Qg) we first note that ||a(wg)(0)|/mr = 0, and then,
by considering p; = 2 and pa = 3 in Theorem [3.1] we introduce the following notation

M(fs, fp, gp) := max {N(fs, fp, gp) /%, N (fs, fo, gp), N (s, fD,gD)2}, (3.26)
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with
N(fs, o, gp) := [fsllo.as + 1o llrsr2(ap) + llgpllo.an + llap 3oy -

The main result of this section is established now.

Theorem 3.6 Let wg € H%S(QS) such that divwg = 0 in Qg and

2uas

Wg - n < ———
H S H07E — pCthCSZ’

and let fs € L2(Qs), fp € L3/2(Qp) and gp € L2(Qp). Then, [3.14) has a unique solution (u, (p,\)) €
H x Q, with u := (ug,up), which allows to define T(wg) := ug. Moreover, there exists a constant
cr > 0, independent of the solution, such that

IT(ws)]|

1Las = llusllas < [I(w, () llxq < ex M(fs, fp, 9p)- (3.27)

Proof. 1t follows from Lemmas [3.4H3.5| and a straightforward application of Theorem [3.1] In turn,
estimate (3.27) is a direct consequence of (3.2)) (cf. Theorem [3.1) and (2.18) - (2.19). O

3.4 Solvability analysis of the fixed-point equation

In this section we proceed analogously to [22], Section 2.4] (see also [13],[15]) and establish the existence
of a fixed-point of operator T (cf. ) by means of the well known Schauder fixed-point theorem
and a sufficiently small data assumption. In addition, under a more restrictive small data assumption,
the uniqueness of solution is also established by means of the Banach fixed-point theorem. We begin
by recalling the first of the aforementioned results (see, e.g., [I7, Theorem 9.12-1(b)]).

Theorem 3.7 Let W be a closed and convex subset of a Banach space X, and let T : W — W be a

continuous mapping such that T(W') is compact. Then T has at least one fized-point.

The verification of the hypotheses of Theorem is provided in what follows. To this aim, we start
by introducing the set

W .= {VS € H%S(Qs) : divvg=0 in Qg and |[vs]i,0s < CT/\/l(fS,fD,gD)}. (3.28)

Then, assuming that (cf. (3.26])):

2uas

M(fs, fp, < ——a3 499
(S D gD) CTpC?rCSQ

(3.29)

with e the positive constant satisfying (3.27)), it is not difficult to see that T is well defined from W
to W. In fact, given wg € W, from ([3.29)) we deduce that

2uag
pCRCe

[ws - nllox < Cul[wsll1,05 < (3.30)

which together with Theorem [3.6] proves that T is well defined. In this way, we obtain the following
result.

Lemma 3.8 Let W be the closed ball defined by (3.28)) and assume that the data satisfy (3.29). Then
there holds T(W) C W.
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We continue with the following result providing an estimate needed to derive next the required
continuity and compactness properties of the operator T (cf. (3.13)).

Lemma 3.9 Let W be the closed ball defined by (3.28) and assume that the data satisfy (3.29)). Then,

_ Cs _ _ -
[T(ws) — T(ws)ll1,05 < ZTSHT(WS)HLQS [ws — WsllLaag) VWws,Ws € W. (3.31)

Proof. Given wg,wg € W, we let ug := T(wg) and ug := T(wg). According to the definition of T,
it follows that

[a(ws)(u), v] + [b(v), (p, )] = [f,V] Vv € H,
[b(u), (¢, )] = [8(¢,8] v(g,¢)€Q,
and ~
[a(ws)(w), v] + [b(v), (p,N)] = [f,V] Vv € H,
[b(), (¢,¢)] = 8 (9] V(g8 eQ
Then, recalling the definition of a(wg) (cf. (2.12))) and subtracting both problems we obtain
[a(ws)(u) —a(ws) (@), v] + [b(v), (0 =5, A = N)] = 0
[b(u—1), (g, )] =0

for all (v,(q,£)) € H x Q. In particular, taking v=u—1u,g=p—pand £ = X — X in the latter
system, the first equation becomes

[a(wg)(u) —a(wg)(u),u—u] =0. (3.32)

Hence, adding and substracting Bs(ws)(ug) in the second term of the left-hand side of (3.32)), using
the fact that u—u € V (cf. (3.16])), and the strict monotonicity of a(wg) (cf. (3.18])), it follows that

pas|lus — is|[2 g, < [a(ws)(u) — a(ws) (@), u — @] = [Bs(Ws — wg)(iis), us — fis].
In this way, the continuity of Bg (cf. (2.16))) gives from the foregoing equation
pasllus — U7 o, < pCsllws — Ws|lpa(og) 0s]l1.0s [lus — sl 0,

which yields the result. O

Owing to the above analysis, we establish now the announced properties of the operator T.
Lemma 3.10 Assume that the estimate (3.29) holds. Then T has at least one fixed-point in W.

Proof. The required result follows straightforwardly from estimate (3.31]), the continuity of the Sobolev
embedding from H!(fg) into L#(s), and the Schauder theorem. We omit further details and refer to
[22, Lemma 5]. O

Under a more restrictive assumption on the data, in what follows we prove that T has exactly one
fixed-point by means of the well known Banach fixed-point theorem.
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Lemma 3.11 Let fs € L%(Qg), fp € L3/2(Qp) and gp € L?(Qp), such that

M(fs, fp, gp) <, (3.33)

pos 1 2
ri=——min{ —5, ——7 /.
cTp Cg C’SZCt3r

where

Then, T has a unique fired-point.

Proof. The result follows straightforwardly from (3.31)), the continuity of the compact injection from
HY(Qs) into L*(Qg), the fact that T(W) C W, and the constraint (3.33)). O

We are now in position of establishing the main result of this section.

Theorem 3.12 Let fs € L2(Qg), fp € L3/2(Qp) and gp € L?(Qp). Assume that holds. Then
the problem admits a solution (u,(p,\)) € H x Q. In addition, if it is assumed that
holds, then the solution is unique. In any case, there exists a constant cr > 0 (cf. ), independent
of the solution, such that

[(a, (p, ) lHxq < cxM(fs, fp, gp)- (3.34)

Proof. The existence and uniqueness of solution of problem (2.11)) follows by recalling the definition
of operator T and combining Lemmas and In addition, it is clear that the estimate (3.34))

is consequence of ([3.27)). O

4 The Galerkin scheme

In this section we introduce the Galerkin scheme of problem ([2.11)) and analyse its well-posedness.

4.1 Discrete setting

Let 7;LS and 771D be respective triangulations of the domains €2g and Qp formed by shape-regular
triangles of diameter hr and denote by hg and hp their corresponding mesh sizes. Assume that they
match on X so that 7}, := 7;LSU7;LD is a triangulation of 2 := QgUXUQp. Hereafter h := max {hs, hD}.
For each T € T,” we consider the local Raviart-Thomas space of the lowest order [46]:

RTo(T) = span{ (1,0, (0,1), (z1,22) }.
In addition, for each T € T,° we denote by BR(T') the local Bernardi-Raugel space (see [10, 33]):
BR(T) := [P\(T)* @ Span{n2773n17771773n2, 771772113}7

where {m, 792, 773} are the baricentric coordinates of T', and {nl, no, 113} are the unit outward normals
to the opposite sides of the corresponding vertices of T. Hence, we define the following finite element
subspaces:

H,(Qg) = {v cH!(Qs): v|r€BR(T), VTe 7;?}
H,(Qp) = {v € H3(div:Op):  v|r € RTo(T), VT e 7;?},
Ln(Q) = {a€L(Q): qlr €Po(T), VT €T},
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Then, the finite element subspaces for the velocities and pressure are, respectively,
Hj,re(Qs) = Hu(Qs) NHp (Qs),
Hh,FD (QD) = Hy, (QD) N H%D (diV ; QD),
Lmo(Q) = Lh(Q) N L(Z)(Q)

Next, for introducing the finite element subspace of W%%(E), we denote by Y the partition of X
inherited from 7;LD (or 7;15), which is formed by edges e of length he, and set hy := max {he te€ Eh}.

1 1
In turn, since the space [[ oy, W' 5P (e) coincides with W'~ »?(3), without extra conditions when
1 < p < 2 [37, Theorem 1.5.2.3-(a)] (see also [38, Proposition 1.4.3] and [36, Section 2] for the 3D
case), it can be readily seen that a conforming finite element subspace for Wis (X) can be defined by

Ap(%) := {fh X >R &le €Poe) Vedgeece Zh}.

Notice that this space coincides with the set of discrete normal traces on ¥ of Hy(Q2p). Notice also
that since 7;LS and 7;LD match on X, there holds Ay, < min {hs, hD}.

In this way, grouping the unknowns and spaces as follows:
Hy, == Hyrg(2s) X Hyrp (2p),  Qp i= Lio(R2) x Ap(X),
w, := (usp,upp) € Hp,  (Pr, An) € Qn,

where pp, := ps pXxs + Pp,pXD, our Galerkin scheme for (2.11) reads: Find (up, (pn, An)) € Hp x Qp,
such that

lap(ug p)(un), va] + [b(vn), (pr. Aw)] = [f,va] Vv = (vsp, VD) € Hp,

[b(un), (qn, &n)] = g (g &) Y(an &) € Qn.

(4.1)

Here, aj(wsyp) : Hy, — HJ is the discrete version of a(wg) (with wg; € Hjpp(f2s) in place of
wg € HILS(QS)), which is defined by

[an(wsp) (un), vi] == [As(us ), vs n] + [BE(Wsn) (us p), Vsl + [Ap(app), v al, (4.2)
where BgL (wg,p) is the well-known skew-symmetric convection form [53):
[B&(wsp)(usp), vs.p] i= p((Vus p)ws n, vsn)s + g(div WS hUS , VS h)S;

for all ug p, vs n, Ws , € Hp g (€2s). Observe that integrating by parts, similarly to (2.21f), there holds

[BE(Ws 1) (Vsp)s Ven] = g/(w&h n)vspl? >0 Vwsp, v € Hyrg(Qs). (4.3)
>

Moreover, proceeding as for Bg (cf. (2.16))), it is easy to see that for all wgj, ugp,vsy € Hp rg(Qg),
there holds

[1BE(ws 1) (s 1), Vs.al| < Callws s ..l Vsl (4.4)

with Cy := pC§ (1 + g)
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Now, let Ilg : H%S(Qs) — Hj, 14 (Q2s) be the Bernardi-Raugel interpolation operator [10], which

is linear and bounded with respect to the H!(Qg)-norm. In this regard, we recall that, given v €
H%S(QS), there holds

/Hs(v) ‘n = /V -n for each edge e of 7,5, (4.5)

and hence
(divIIs(v),qn)s = (divv,qn)s  Van € Lp(). (4.6)

Equivalently, if Ps denotes the L?(£2g)-orthogonal projection onto the restriction of Lj,(£2) to Qg, then
the relation (4.6) can be written as

Ps(div (Ig(v))) = Ps(divv) Vv € Hp (). (4.7)

On the other hand, let IIp : HY(Qp) — Hy(2p) be the well-known Raviart-Thomas interpolation
operator. We recall that, given v € H'(Qp), this operator is characterized by

/HD(V) ‘n= /v -n for each edge e of T;°, (4.8)
which implies that

(divIIp(v), gn)p = (divv,gn)p  Van € Li(€2). (4.9)

Equivalently, if Pp denotes the L?(Qp)-orthogonal projection onto the restriction of Ly(2) to Qp,
then the relation (4.9) can be written as

div (IIp(v)) = Pp(divv) Vv € HY(Qp). (4.10)

At this point we recall, according to [23, Sections 1.2.7 and 1.4.7] (see also [12, Chapter III.3.3]),
that the Raviart-Thomas operator IIp is also well defined for all v € V4V (Qp) := {v e LP(Qp) :

divv € LS(QD)}, with p > 2 and s > g, % = % + %, since the local space V4V (T) coincides with

WU(T) when t > nQTfLQ, for each T € 7;1D. In particular, considering n = 2, p = 3, and s = 2, we

deduce that IIp can be applied to functions in H?(div; 2p). We will use this fact later on in the proof
of the discrete inf-sup condition of b.
4.2 Well-posedness of the discrete problem

In this section, analogously to the analysis of the continuous problem, we apply a fixed-point argument
to prove the well-posedness of the Galerkin scheme (4.1]). To that end, we now let T}, : Hj pg (Qg) —
H), 1 (Qg) be the discrete operator defined by

Th(WS,h) =ugp Vwgy € Hh,FS(QS>7 (4.11)

where uy, := (ugn,up ) € Hy, is the first component of the unique solution (to be confirmed below)
of the discrete nonlinear problem: Find (up, (pp, An)) € Hp X Qp, such that

[an(ws,n)(un), va] + [b(Vh), (Pr, An)] = [f, Vi Vvy, € Hy,

[b(up), (qn,&n)] = [& (an: &)l Y(an,&n) € Qn.

(4.12)
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Then, similarly as for the continuous case, the Galerkin scheme (4.1) can be rewritten, equivalently,
as the fixed-point problem: Find ugj € Hj, pg(€2s) such that

Th(us ) = us p.

In this way, in what follows we focus on analysing the existence and uniqueness of such a fixed-point,
for which we require the following discrete version of Theorem

Theorem 4.1 In addition to the spaces and operators defined in Theorem let X1 p, Xop and Yy, be
finite dimensional subspaces of X1, Xa, and Y, respectively, and set Xj, = X1, xXo C X 1= X7 x Xo.
In addition, let V}, be the discrete kernel of b, that is,

Vy, = {vh € Xp: [b(vn),qn] =0 Vg € Yh}‘
Assume that

(i) a is hemi-continuous from Xy, to Xj, that is, for each u,v € X}, the real mapping
J:R=>R, t— Jt)=la(u+tv),v]
18 continuous.

(ii) there exist constants 5y > 0 and p1,p2 > 2, such that

pj—2
‘Xj(HUj,h”Xj + HUj7hHXj> }’

2
latun) = a(en)llx: <7D {lluzn = vinllx, + s = vin
j=1

for all up, = (w1 p,uzp), vh = (Vih, v2n) € Xn.

(iii) for fized ty € VhJ- = X, \ Vi, the operator a(-+1tp,) : Vi, = V). is strictly monotone, that is, there
exists a > 0 and p1,pa > 2, such that
p2 }
Xo [

la(up + tn) — a(vn + th), un — vn] > a{ lurn = vl + llugn — van
for all up, = (uy p,uz,p), vn = (V1,4,v2,1) € Vi
(iv) there exists 3 > 0 such that

[b(vn), 4]

v EXp ||Uh||X
VR #0

> Bllanlly  Van € Ya.

Then, for each (f,g) € X' x Y’ there exists a unique (up,pp) € Xp X Yy, such that
[a(un),vn] + [b(vn), pr] = [f,vn] Yon € Xp,
[b(un), an] = [9:qn] Van € Y.

Moreover, there exists C > 0, depending only on &, 7, E,pl, and ps, such that
”(uhvph)”XXY S CM(f7 g)a

where

M(F.g) = max { N (£,0) 7 N(F.0) 3T N (£.0). N(J. ) N (1,905 ),
and
N(F.0) = 1l + gl + gl + gl + )l

21



Proof. It reduces to a simple application of Theorem to the present discrete setting. U

Similarly to the analysis developed in Section in what follows we provide suitable assumptions
under which problem is well posed or equivalently T}, is well defined. For this purpose, we must
verify that the operators defining the discrete problem satisfy the hypotheses of Theorem
We begin with the hemi-continuity of a,.

Lemma 4.2 Given wg ), € H}l FS(QS), the operator ay(ws ) is hemi-continuous in Hy,.

Proof. The proof follows analogously to the proof of Lemma by using now the linearity and
continuity of B%(ws ) (in addition to those of As). O

Now we verify that hypothesis (ii) of Theorem holds.

Lemma 4.3 Let wg, € Hy g (Q2s). Then, there exists 7 > 0, depending on C 4 and L 4, (cf. (2.16]),
(2.17) ), such that

la(wsn)(un) —a(ws p)(va) |l < ﬁ{(l + [wsnlln0s)lusn — vsnllios + [[upn — vooullEs @iviop)
+ llup = Vo,alsaiviop) (D 4l @i -0p) + VDAl @ivan )

f01" all up = (uS,h, uD7h),v = (VS,h;VD,h) c H.

Proof. Similarly to the continuous case, the result follows straightforwardly from the definition of

ap(wsp) (cf. (4.2)), the triangle inequality, and the stability properties (2.16f), (2.17) and (4.4). We

omit further details. O

Now, we proceed to establish the strict monotonicity of aj(ws ) on the discrete kernel of b:

V), = {Vh = (vs,n,vpn) € Hy oo [b(vi), (an,6n)] =0 V(gn. &) € Qh}7 (4.13)

for suitable wg , € Hj g (Q2g). Observe that, similarly to the continuous case, vy, € Vy, if and only if

(divvs h,qn)s + (divvp p,qn)p =0 Vi € Ly o(Q),

and
(Vsh n—vpp -n,&)y =0 VE € Ap(Y),

which, in particular, imply that
(diVVle,qh)S =0 Vg, € Lh(Qs) and diVVD7h =0 in Qp, (4.14)

where Lj,(€g) is the set of functions of Lp(£2) restricted to 2g. Then, the announced result is as
follows.

Lemma 4.4 Let wsj € Hy, pg(2s) such that

2uag
pCRCe

[ws,n - nllos < (4.15)

Then, for fized t, € Hy \ V},, the nonlinear operator an(wsp)(-+ty) is strictly monotone on Vy, (cf.
@13)).
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Proof. The proof follows analogously to the proof of Lemma Further details are omitted. O

We continue by adapting the results provided in |28, Section 4] to our domain and spaces configu-
ration to prove that b satisfies the corresponding discrete inf-sup condition. We start by establishing
the following two preliminary lemmas.

Lemma 4.5 There exists 61 > 0, independent of h, such that for all (qn, &) € Qn, there holds

[b(v), (qn, )] > &

Sn(qn,&n) = sup 1€all1 5.5 = llgnllo.0- (4.16)
vihEH) thHH 372
v #0
Proof. Let &, € Ap(Z) C W3'3(X), &, # 0. Since
@5 > = [l
Sllp — = 1 3.5
st 19 gas
5#0
we deduce that there exists ¢ € W_%’?’(E)\{O} such that
~ 1 ~
(6.6n) = 1011 s léulls 5.5 (4.17)

Next, exactly as we did in the proof of Lemmaﬁ we “extend” ¢ € W_%’?’(E) ton e W_%’3(8QD) by
~ 13
s ihony, = (Goum) e WHE(00p),

where uy, € W%%(Z) is given by the decomposition (3.10|). Then, proceeding again as in the second
part of the proof of Lemma we find vp € H?F’D (div; Qp) satisfying vp - n = n on dQp, and (cf.
(3.24))

%0 ety < s so0n < CIFI_L 5.

which, combined with (4.17)), implies

(VD 1, &)y = (VD 1, Ex(&n))oa, = (1 Es(én))aq, = <(Z’ §h>2 (4.18)

1
> 2OHVDHH3 div;Qp) ”gh” %

1
3’
On the other hand, given vp € H3(div; Qp), the properties of IIp (cf. ({#.8), (.9)) and [25, Lemma 3.2
allow to establish that

0 n.8)s = [ (To(vo) w6 € An(E) (1.19)
and

1T (vD) |13 (aiv ;00) < CpllvD w3 (divop)- (4.20)

Thus, defining vp p, := IIp(Vp) € Hy rpy (2p), and then using (4.18), (4.19)), and (4.20)), we obtain

(VDh -1, &)y, ‘ 1 ‘ (Vb -1, &)y

> Cillénlls s .5 (4.21)

= = I TE TR — 1
HVDJLHH3(diV;QD) CD ||VDHH3(diV;QD) 37
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Finally, setting v}, := (0,Vp ;) € Hp, we deduce that

Sn(gn,&p) == sup [b(vh), (an. €n)] ‘[b(vh)>(Qha§h)]‘

vieH,  |[valu - IValla
vh;éO
‘ (Vph -1, &) 5 — (div VD,h,Qh)D‘ ) (VDu -1, &)y ’
= = > = —llarlloq
”VD,h||H3(diV;QD) ||vD,hHH3(diV;QD)
which, together with (4.21]), imply (4.16|) and complete the proof. O

Lemma 4.6 There exists Co > 0, independent of h, such that for all (qn,&n) € Qp, there holds

Shlgn &) = sup VA (an:En)]

vheH), [vallm
v, #0

> Collgnllo.0- (4.22)

Proof. The proof follows similarly to the first part of the proof of Lemma In fact, given (qn,&n) €
Qy, we recall that g, € L3(2) and apply again [33, Corollary 2.4] to deduce that there exists z € H} ()
such that

divz=—¢, in Q and |z|10 < clgnloe- (4.23)

Then, we let z, := z|q, for x € {S,D} and observe that zg = zp on X, which implies that
(zg —zp) - n=0 on X.

Hence, defining z;, := (2s4,2p,), with zg; = Ig(zs) and zpj = IIp(zp), we observe from (4.5)),
(4.8), and the fact that 7718 and T,” match on ¥, that

((ZS,h — ZD,h) . n7§h>2 = <(ZS — ZD) . n,§h>2 = 0 (424)

In addition, since z = 0 on N2 := I's U I'p, it is clear that z, € Hj, and therefore, thanks to the
continuity of IIg and the estimate (4.20]), we obtain that

I1znl1 < Cllgnlloq, (4.25)
with C' > 0 independent of h. Finally, from the identities and , it can be readily seen that
divzp, = —qp, in (4.26)

which, together with and , yield

b(vy), , b(z,), , 1
sup [b(vh), (gn&n)] > [b(z), (gn: &n)] > Lignllos,
vieH,  [vallm 1 zn|e
Vh7£0
which concludes the proof. O

Owing to Lemmas and now we are in position of establishing the full discrete inf-sup
condition of b.

Lemma 4.7 There exists 5 > 0, independent of h, such that for all (qn, &) € Qp there holds
b(vy), 7
Sh(qn,&n) == sup [b(vn), (gn: &n)]

viEeHy, valla
vy #0

> Bl (ans &)l q- (4.27)
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Proof. 1t follows straightforwardly from the estimates (4.16) and (4.22]). O

The following result establishes the well-definiteness of operator T},

Theorem 4.8 Let wgp, € Hy 1 (Q2s) such that

2uas
pC.C%

[wWsn-mfjox < (4.28)

and assume that fs € L%(Qg), fp € L3/2(QD) and gp € L?(Qp). Then there exists a unique ugy €
Hj, 1 (Qg) such that Tp(wsp) = us . Moreover, there exists a constant ¢x > 0, independent of the
solution, such that

I Th(ws p)ll1,0s = Jusnllios < [(an, (Pr, An))lHxQ < e M(fs, b, gp). (4.29)

Proof. Similarly to the continuous case, and noticing that the well-definiteness of T}, is equivalent to
the well-posedness of problem (4.12)), the result is a direct consequence of Lemmas and
and Theorem O

Having verified the well-definiteness of operator T, now we are in position of establishing the main
result of this section, namely, the well-posedness of problem (|4.1)).

Theorem 4.9 Let Wy, be the compact conver subset of H,117FS (Qs) defined by
Wi={ven € H) 1o (Q0) + IIvsallios < ar M(fs, fo, g0) }. (4.30)
Assume that the data fs, fp, and gp satisfy

M(fs, fp, gp) < T, (4.31)

where

- 2uasg . 1 1

7= —— min , ;
and ¢p > 0 is the constant in (4.29). Then, there exists a unique (up, (pn, An)) € Hp X Qp solution
to (4.1), which satisfies ug ), € Wy, and

|(up, (Pr, An))|lExq < e M(fs, fp, gp). (4.32)

Proof. We first observe thanks to (4.29)), that assumption (4.31]) guarantees that Tj(W}) C Wy,
Next, proceeding analogously to the proof of Lemma the assumption (4.31]) implies the estimate

pas|Tr(wsp) — Ta(Wsp)llF g < [an(Wsn)(un) — an(wsp) (Ah), up, — U]
= [BY (W — wsp)(Us 1), us p — Us p),
which, together with the continuity of BZ (see (d.4))) leads to

pC3(2+?2)

20 | Th(Wsn)ll1,08lWsh — Wsall10s (4.33)

ITh(wsh) — Trh(Wsp)llos <
thus proving the continuity of T}. Then, the existence result follows from the Brower fixed-point
theorem. Moreover, from (4.33)) and the fact that T\ (wg ) belongs to Wy, it is easy to see that T},
is a contraction mapping if and only if (4.31)) holds, which due to the Banach fixed-point theorem,
implies the uniqueness of solution. In turn, the a priori estimate (4.32]) follows directly from (4.29)). O
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5 A priori error analysis

Now we establish the corresponding Céa estimate and the theoretical rate of convergence of the
Galerkin scheme (4.1). To that end, we first introduce some notations and state some previous
results. We begin by defining the set

Hf = {Vh = (Vs n,vpp) € Hy o [b(vy), (an,&n)] = (8, (4w )] Y(an, &) € Qh}7

which is clearly noempty, since (4.27) holds. Also, it is not difficult to see that, due to the inf-sup
condition (4.27)), the following inequality holds (cf. [27, Theorem 2.6|, [49, Théoreme 2.1}):

. Cv) .
inf |lu—vplua < <1+~ inf [ju—vp|u. (5.1)
vpeHE B/ va€HR

In turn, in order to simplify the subsequent analysis, we write eyy = us — ug, €y, = Up — Up p,
ep = p—ph, and ex = A — A, As usual, for a given v, = (Vg ;,Vp ) € Hi and (g, &p,) € Qn, we
shall then decompose these errors into

eug - 6us + Tlusa euD — 611]:) + TluD7 ep = 51) + npa e/\ - 5)\ + 77)\7 (52)
with
Oug =US —Vsh, Mug =VSh—USh, Oup =UD—VDh, Ny, = VDh — UDp, (5.3)
0p=D—qp, Np=70qn — Ph, Ox =A=&,, m=& — .
Finally, since the exact solution ug € H%S (Qg) satisfies divug = 0 in g, we have
[BE (ug)(us), v p] = [Bs(us)(us), vs ] Vvs € Hyrg(Qs).
Consequently, the following Galerkin orthogonality property holds:
[As(eus), vsn] + [BE(us)(us), vs n] — [BE(us ) (usp), vs u
+ [Ap(up) — Ap(up ), vp,n] + [b(Vn), (ep,ex)] = 0 (5.4)
[b(eUS?euD)v (Qh7€h)] =0
for all v, := (vsn,vp,n) € Hy and (gn, &) € Qp.
We now establish the main result of this section.
Theorem 5.1 Let fs € L2(Qg), fp € L3/%(Qp) and gp € L*(Op), such that
1 . ~
M(f87fDagD) < §m1n {/r'??n}a (55)

where r and T are the constants defined in Lemma and Theorem[4.9], respectively. Let (u, (p,\)) :=

((us,up), (p,A)) € H x Q and (up, (pr, A\n)) = ((ugn,up ), (Pn, An)) € Hyp x Qp be the unique
solutions of the continuous and discrete problems (2.11)) and (4.1), respectively. Then there exists
C > 0, independent of h and the continuous and discrete solutions, such that

[ (a, (p, N)) = (un, (Pr, \n))llHXQ

. ) . = (5.6)
< C max < inf (||u—vh|\H+|yu—vh||H)+ inf ||(p,>\)—(qh,fh)|Q> .

i€{2,3} vihE€H, (an.€n)EQR
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Proof. In what follows we adapt the proof of [22] Theorem 5] to the present case. To do that, we let

Vh - (Vs,hva,h) S H% and (qhagh) S Qh7 and deﬁne 61137 61.1]37 (51)75)\7771157 nuD7np7 and X, as in "
In addition, we recall that thanks to assumption (5.5)), it follows that us € W and ug;, € Wy, (cf.

(3.28]) and (4.30)), which implies (cf. Theorems and [£.9):

||uD”H3(div;QD)7 ||uS||1,QS < CTM(fsafDagD)7

[up p 3 (diviop) [uskllies < er M(fs, fb, gp)- >0
In turn, since uy, vy, € H®, we observe that
(Mag> Mup) =V — up € Vi (5.8)
According to the above, we first note that for all vg ) € Hj, g (€2g), there holds
B4 (us)(us), vs u] — [BE(us p)(us p), vs ] = [BE(eus) (us), v u] + [BE(us p)(€us); vs 4] 59)

= [B&(us n)(Myg), Vs ) + R(Vsp),

with
R(vsn) = [BE(us p)(8ug), vsn] + [BE(6ug)(us), vs ] + [BE (11ug) (us), Vs u).

Then, adding and subtracting suitable terms in the first equation of (5.4) with vi, = (1,4, Mu,) € Vi
(cf. (5.8)), and observing that [b(n,g, My ), (7, 71)] = 0, we obtain

[ay(usn)(Vh) — ap(us,p)(up), v — uy
= [AS(5US)7 nus] - R(Ir,us> - [AD(HD) - AD(VD,h)a Ir]uD] - [b(lrlus?nuD)v (5177 5)\)]

Hence, proceeding analogously to the proof of Lemma using the continuity of Ag, BQ and b (cf.

(2.16) and (4.4])), and inequality (2.17)), we deduce that

03 g 12 s + @l s e s

< {CAS + Csk<||us,h|

s + sl ) Pldusllnoslimug .05 + Cacllus .m0,

Lo { (14 2D 55 v 209 ) 18 e 2) + 1180 [ ) 1 s i)
+ Coll(Mug: M) 1]l 8,30

which, together with (5.7) and assumption (5.5)), implies that there exists C' > 0, depending only on
parameters, data and other constants, all of them independent of h, such that

1
10 11 = € 1§ (168 it + B )+ 1Ge0) ™'} (6.10)

In this way, from (5.2)), (5.10)), and the triangle inequality, we obtain

I(euss eup)llm < [[(Gus, dup) 1 + | (Mg My 11

~ , A (5.11)
<@ e { (1Guss G o+ GG, s+ 150001 ) ™ |-
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In turn, to estimate e, and ey we observe that from the discrete inf-sup condition (4.27)), the first
equation of (5.4), and the first equation of (5.9)), there holds

3 [b(vh), (p,m)] [b(vh), (ep, ex)] — [b(Vh), (0p, 63)]
ﬂ”(np?n)\)”Q < vslelll-)lh [vala - vflelflh valla

vp#0 vp#0

_ sup — [AS<eus)’VS,h] + [Bg(eus)(us)avs,h] + [BQ(US,h)(euS)NS,h]
vp€Hy thHH
v, 7#0
N [Ap(up) — Ap(up,r), vo,n] + [P(Vh), (Jp, 63)]
[valla '

Then, the continuity of Ag, B%, and b (cf. (2:16) and (£4)), and the inequality (2.17), imply

Bllnps )l < {Caas + Cu(luslh.as + s allos ) leus

1,05
+ L.AD{l + ||uD||H3(diV;QD) + HuD,hHHS(diV;QD)}HeuD||H3(div;QD) + Cb”((spv 5>\)HQ7

which, together with assumption (5.5)), inequalities (5.7]) and (5.11)), yield

%
10l <  m { (1Bl + 1B o) + 15 00) ) -

Thus, from (5.2)), the triangle inequality, and the foregoing bound, we obtain

A

lepella < 11(dp: a\)llQ + 111, )l @

(5.12)

IN

1
~ ) i—1
7 s { (1B )l + 1B B M + 1 00)l10) ™' |

where ¢ > 0 is independent of h. Therefore, recalling that v, € H% and (g, A\») € Q) are arbitrary,

(5.11) and (5.12) give

I((€ug; €up), (ep: ex)) 1 q

1
i—1
<O max {( it (= valla o+ Ju = vili) + it 03~ (a6l }

i€{2,3} v,€HE (qn-€n)EQR

which, together with (5.1]), concludes the proof. O

Now, in order to provide the theoretical rate of convergence of the Galerkin scheme (4.1)), we recall
the approximation properties of the subspaces involved (see, e.g., [10 23] 25| 27]). Note that each one
of them is named after the unknown to which it is applied later on.

(AP}®) For each vg € H?(g), there holds
[vs = Hs(vs)lli0s < Chllvs|i2,05-

(AP}?) For each vp € W3(Qp) with divvp € H!(Qp), there holds

v — T (vb) less vy < Ch{ Ivpllnsan + divvplliap }-
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(AP?) For each ¢ € H'(Q2) N L3(Q), there exists gj, € Ly o(€2) such that
lg — anllo,o < Chligll1,0-

(AP?) For each ¢ € Wl’%(E), there exists &, € Ap(X) such that

S Ch2/3H§H1 EBE

1€ =&l 3, 2

We remark that the sub-optimal approximation property (AP%) follows from the fact that W3+2 ()
is the interpolation space with index 1/3 between Wl’%(E) and L3/2(%) (cf. [II, Corollary 3.2-(a)]),
and from the estimate [|{—&p[13/2(5) < C’hHﬁHL%;Z, which is valid for all { € le%(E) and &, := Px (&),
with Py, being the L?(X)-orthogonal projection onto Ay, (X) (cf. [23, Proposition 1.135]). In fact, given
e wL3 (3) there exists a constant C' > 0, depending on ¥, such that

1€ — &nl

1-1/3 1/3
1o < ellé = Galsi €1 s < CHPIEN 5.

where we have used the fact that &, is piecewise constant and then || — &,

3 o < 3w,
1,%;2 = CHf’ 1,%;2

The following theorem provides the theoretical sub-optimal rate of convergence of the Galerkin
scheme (4.1)), under suitable regularity assumptions on the exact solution.

Theorem 5.2 Let fs € L2(Qg),fp € L3%(Qp) and gp € L3(Qp), such that (5.5) holds. Let

(u, (p,N) := ((us,up), (p,A)) € Hx Q and (up, (pn, An)) = ((Ush,uppn), (Pr, An)) € Hp x Qp be
the unique solutions of the continuous and discrete problems (2.11)) and (4.1)), respectively, and as-

sume that ug € H2(Qg), up € WH3(Qp), divup € HY(Qp), p € HY(Q), and X € WL%(E). Then,
there exists C > 0, independent of h and the continuous and discrete solutions, such that

[(u, (p, A)) — (ap, (Pr, An))|HXQ < Chl/?’ig{l%} { (HUSHZQS + [[upl1,3;0p + [[divup|l1,0p
’ (5.13)

1
i—1
+ [[us]l3 o + [uplff 5.0, + ldivup|i o, + Iple + IMHl,g;z> }

Proof. 1t suffices to apply Theorem and the approximation properties of the discrete subspaces.
We omit further details. O

6 Numerical results

In this section we present some examples illustrating the performance of our mixed finite element
scheme on a set of quasi-uniform triangulations of the corresponding domains. Our implemen-
tation is based on a FreeFem++ code [39], in conjunction with the direct linear solver UMFPACK
[19].

In order to solve the nonlinear problem (4.1, given wp € H{_(div;p) we introduce the Géateaux
derivative associated to Ap (cf. (2.13)), i.e.,

DAp(wp)(up, vp) := % ——, WD 'VD> ;

_ F F
(K 1llD,VD)D + — (Jwpjup, vp)p + — <
p p D

|wp|
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for all up,vp € H%D (div;Qp). In this way, we propose the Newton-type strategy: Given ug =

(ug,hquD,h) € Hy, p) € Lpo(Q) and A) € Ap(X), for m > 1, find u* = (ug',,upyy,) € Hy, i €
Lpo(2) and AJ* € Ap(X), such that

[As(ug,), vs,p) + [BE(ug, ) (ud), vsp] + [BE(ugy) (g 1), vsal + DAp (ug ;) (ui . vo,h)

+ [b(va), (o7 A1) = [BE(ugs ) (ug ), vsal + f (I3 B voun )+ [£.va) (6.1)
[b(u;'), (gn,&n)] = (8 (an, &n)]

for all Vi = (VS,hva,h) c Hh and (qh,fh) < Qh.
In all the numerical experiments below, the iterations are terminated once the relative error of the
entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

7 — coeff™||;2

||coeﬂ'erl II;2

|coe

< tol,

where || - ||;2 is the standard /2-norm in RV, with N denoting the total number of degrees of freedom
defining the finite element subspaces Hy, and Qy,, and tol is a fixed tolerance chosen as tol = 1E — 06.
For each example shown below we simply take u) = (0, (0.1,0)) and (p?,A\?) = 0 as initial guess. As
usual, the individual errors are denoted by:

e(us) = |lus —usplli,os,  e(up) = |lup — up nllEs(diviop):

e(ps) := [lps — psulloos, e®p) = llpp — poalloap,  €(A) = IX = Anlls/z(s)-

Notice that we considered [|A — Ap||ps/2(s) in place of [[A — Ap[1 5.5, because of the last norm is not
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computable. Notice also that ||A — /\hHLg/Q(Z) satisfice the sub-optimal rate of convergence ([5.13)).
Next, we define the experimental rates of convergence

gy o )/ s) - og(e(up) /¢ up)

YT loglhs/hg) T og(hn/hy)
loglelps)/€ps)  loglelpn)/€pp)) ) log(e(N)/€(N)
") = Pogthsy TP T T logn/m) YT Tloglhe/ )

where h, and R/ (x € {S,D,X}) denote two consecutive mesh sizes with their respective errors e and
e/, respectively.

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we choose the parameters p = 1, p =1, ag = 1, K = [, and K = [. In addition, the
condition fQ pp, = 0 is imposed via a penalization strategy.

Example 1: Tombstone-shaped domain without source in the porous media.

In our first example we consider a semi-disk-shaped fluid domain coupled with a porous unit square,
ie., Qg := {(561,562) : 22 4 (12 — 0.5)% < 0.5%, 29 > 0.5} and Qp := (—0.5,0.5)2. We consider the
Forchheimer number F = 1 and the data fg, fp, and gp, are adjusted so that the exact solution in the
tombstone-shaped domain 2 = Qg U ¥ U p is given by the smooth functions
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B 7 cos(mxy) sin(maz) i
us(z1,22) = < —7sin(mry) cos(mrz) > s

up (21, 79) = msin(mxe) exp(zy) n Op.
cos(mxa) exp(xy)
p«(21,x2) = sin(mxy) sin(rzy) in €, with x € {S,D}.

Notice that the source of the porous media is gp = 0. Notice also that this solution satisfies ug - n =
up - n on X. However, the Beavers—Joseph—Saffman condition (cf. ) is not satisfied, the Dirichlet
boundary condition for the Navier—Stokes velocity on I's and the Neumann boundary condition for
the Darcy—Forchheimer velocity on I'p are both non-homogeneous. In this way, the right-hand side of
the resulting system must be modified accordingly.

Example 2: Rectangle domain with a Kovasznay solution.

In our second example we consider a rectangular domain Q = Qg U X U Qp, with Qg := (—0.5,1.5) x
(0,0.5) and Qp := (—0.5,1.5) x (—0.5,0). We consider the Forchheimer number F' = 1 and the data
fg, fp, and gp, are adjusted so that the exact solution in the rectangle domain 2 is given by the smooth
functions

1 — exp(wzy) cos(2mx2)
w . in Qg,
— exp(wx1) sin(2mxg)

m

uS(x17x2) = (
2

. (acl + 0.5)(%‘1 — 1.5) eXp(:L'Q) .
up (21, 22) = < (x2 + 2)(222 4+ 1) exp(x1) ) in O,

1
(1, 22) = 5 exp(2wzr1) +po in £, with x € {S,D},

and
—8n2

ol 1672

The constant pg is such that fQ p = 0. Notice that (ug, ps) is the well known analytical solution for the
Navier—Stokes problem obtained by Kovasznay in [41], which presents a boundary layer at {—0.5} x
(—0.5,0.5). Notice also that in this example both the conservation of mass and the Beavers—Joseph—
Saffman boundary conditions (cf. ) are not satisfied and the right-hand side of the resulting
system must be modified accordingly.

w

Example 3: 2D Helmet-shaped domain with different Forchheimer numbers.

In our last example we focus on the performance of the iterative method with respect to the
Forchheimer number F'. To that end, and motivited by [14], Section 2], we consider a 2D Helmet-shaped
domain. More precisely, we considere the domain Q = Qg U X U Qp, where Qp := (—1,1) x (—0.5,0)
and Qg = (—1,—0.75) x (0,1.25) U Qg1 U (—0.5,0.5) x (0,0.25) U g2 U (0.75,1) x (0,1.25), with

Qg = {(xl,xg) Dz + 0.5)2 + (29 — 0.5)2 > 0.25%, —0.75 < 21 < —0.5, 29 > 0}

and
Qg0 := {(xl,xg) (21— 0.5)% + (22 — 0.5)% > 0.25%, 0.5 < 21 < 0.75, x5 > 0}.

31



The data fg, fp, and gp, are chosen so that the exact solution in the 2D Helmet-shaped domain 2 is
given by the smooth functions

[ —sin(27xy) cos(2mxa) .
us($1,$2)—< cos(2mx1) sin(2mxs) in s,

_( sin(2mxy) exp(x2) :
up (21, 72) = ( sin(2mxs) exp(z1) i Cp,
pe(1,x2) = sin(mxy) exp(z2) +po  in ., with x € {S,D}.

The constant pg is such that fQ p = 0. Notice that, this solution satisfies ug-n = up - n on X and
up -n = 0 on I'p. However, the Beavers-Joseph-Saffman condition (cf. ) is not satisfied and the
Dirichlet boundary condition for the Navier—Stokes velocity on I's is non-homogeneous and therefore
the right-hand side of the resulting system must be modified accordingly.

In Tables and [6.4] we summarise the convergence history for a sequence of quasi-uniform tri-
angulations, considering the finite element spaces introduced in Section and solving the nonlinear
problem , which require around eight, six and nine Newton iterations for the Examples 1, 2 and
3, respectively. We observe that the sub-optimal rate of convergence O(hl/ 3) provided by Theorem
is attained in all the cases. Even more, the numerical result suggest that there exist a way to prove
optimal rate of convergence O(h). In Table we show the behaviour of the iterative method
as a function of the Forchheimer number F, considering different mesh sizes h := max {hs, hD}, and
a tolerance tol = 1E — 06. Here we observe that the higher the parameter F' the higher the number of
iterations as it occurs also in the Newton method for the Navier-Stokes/Darcy-Forchheimer coupled
problem. Notice also that when F' = 0 the Darcy—Forchheimer equations reduce to the classical linear
Darcy equations and as expected the iterative Newton method is faster.

On the other hand, the velocity components, velocity streamlines and pressure field in the whole
domain of the approximate solutions for the three examples are displayed in Figures and
All the figures were obtained with 588445, 858658, and 883963 degrees of freedom for the Examples
1, 2, and 3, respectively. In particular, we can observe in Figure [6.1] that the second components of
ug and up coincide on Y as expected, and hence, the continuity of the normal components of the
velocities on Y is preserved. In turn, we can see that the velocity streamlines are higher in the Darcy—
Forchheimer domain. Moreover, it can be seen that the pressure is continuous in the whole domain
and preserves the sinusoidal behaviour. Next, in Figure [6.2| we observe that the pressure presents a
boundary layer at {—0.5} x (—0.5,0.5) as expected. Finally, similarly to Figure in Figure we
can also observe the continuity of the normal components of the velocities on X since their second
components coincide on the interface.
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Table 6.3: ExaMPLE 3, Convergence behavior of the iterative method (6.1) with respect to the
Forchheimer number F'.
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