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Abstract

In this paper we introduce and analyze a mixed virtual element method (mixed-VEM) for a
pseudostress-displacement formulation of the linear elasticity problem with non-homogeneous Diri-
chlet boundary conditions. We follow a previous work by some of the authors, and employ a mixed
formulation that does not require symmetric tensor spaces in the finite element discretization. More
precisely, the main unknowns here are given by the pseudostress and the displacement, whereas
other physical quantities such as the stress, the strain tensor of small deformations, and the rota-
tion, are computed through simple postprocessing formulae in terms of the pseudostress variable.
We first recall the corresponding variational formulation, and then summarize the main mixed-
VEM ingredients that are required for our discrete analysis. In particular, we utilize a well-known
local projector onto a suitable polynomial subspace to define a calculable version of our discrete
bilinear form, whose continuous version requires information of the variables on the interior of each
element. Next, we show that the global discrete bilinear form satisfies the hypotheses required
by the Babuska-Brezzi theory. In this way, we conclude the well-posedness of our mixed-VEM
scheme and derive the associated a priori error estimates for the virtual solutions as well as for the
fully computable projections of them. Furthermore, we also introduce a second element-by-element
postprocessing formula for the pseudostress, which yields an optimally convergent approximation
of this unknown with respect to the broken H(div)-norm. In addition, this postprocessing formula
can also be applied to the postprocessed stress tensor. Finally, several numerical results illustrat-
ing the good performance of the method and confirming the theoretical rates of convergence are
presented.

Key words: pseudostress-displacement formulation, linear elasticity, mixed virtual element method,
a priori error analysis, postprocessing techniques

1 Introduction

The virtual element method (VEM), which was first introduced and analyzed in [4] using the Poisson
problem as a model, arised as a natural consequence of new developments and interpretations of
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the mimetic finite difference method (MFDM). In fact, this new approach features the utilization of
a virtual discrete space defined on a mesh made of convex or non-convex polygonal or polyhedral
elements, along with the incorporation of approximate bilinear and linear forms. More precisely, the
latters, being usually defined in terms of suitably chosen projectors, mimic the respective original
forms, but still provide consistence and stability of the resulting modified discrete scheme. The
concept virtual employed here means that the corresponding basis functions do not need to be known
explicitly, but only the degrees of freedom defining them uniquely on each element are required.
Among its main advantages, it is highlighted the fact that VEM constitutes an extension of the
classical finite element technique to more general meshes, as well as a generalization of the MFDM
to arbitrary degrees of accuracy and continuity properties. Other benefits of VEM, when compared
with finite volume methods, MEDM, and related techniques, refer to the solid mathematical ground
involved, the simplicity of the respective computational implementation, the high order approximation
properties of the virtual element subspaces employed, and the consequent good quality of the numerical
results provided. Furthermore, while the virtual element schemes were originally defined in terms of
projectors that were ad-hoc to the problem under consideration, it is important to remark that a
systematic use of the simple L2-projection operator was recently introduced in [1] and [8].

Further interesting contributions on VEM for boundary value problems in continuum mechanics
include, among others, a stream function-based approach for the classical velocity-pressure formulation
of the Stokes problem in [2], a displacement-based VEM for compressible and nearly incompressible
2D and 3D linear elasticity in [5] and [16], and a VEM based on the Kirchhoff-Love formulation for
linear plate bending problems in [12]. Moreover, regarding the applicability of VEM to nonlinear
models, we highlight that a family of corresponding methods for the two-dimensional Navier-Stokes
equations is introduced and analyzed in [10], which constitutes, up to our knowledge, the first paper
applying this technique to a nonlinear model.

On the other hand, within the context of what are called mixed virtual element methods (mixed-
VEM), that is those based on dual-mixed variational formulations instead of primal or primal-mixed
ones, we stress that the first approach in this direction is introduced and analyzed in [11] by using the
Darcy problem for fluid flow in porous media as a model. Similarly as in [4], polygonal or polyhedral
elements were considered in [11], but only an approximation of the main bilinear form was needed
to obtain a consistent and stable discrete scheme. In addition, taking advantage of the structure of
the exact solution, a projection onto a space of restricted polynomial vector fields is introduced and
employed there. Later on, further extensions of the mixed-VEM are developed in [6], [7], and [13].
In particular, edge and face VEM spaces in 2D and 3D were developed in [6], whereas [7] generalizes
the results of [6] to the case of variable coefficients. In turn, a mixed-VEM for a pseudostress-based
formulation of the Stokes problem is introduced and analyzed in [13]. In this work, the pseudostress
and the velocity are the only unknowns, whereas the pressure is computed via a postprocessing formula.
Thus, a new local projector onto a suitable space of polynomials is presented, which takes into account
the main features of the continuous solution and allows the explicit integration of the terms involving
the deviatoric tensors. The resulting family of local projectors is shown to be uniformly bounded, and
its approximation properties are also established there.

For additional contributions on mixed-VEM for pseudostress-based formulations of boundary value
problems, we begin by referring to [14] where two mixed virtual element methods are proposed for the
two-dimensional Brinkman problem originally studied in [18]. Indeed, following [18], the equilibrium
equation and the incompressibility condition are first used in [14] to eliminate both the velocity and the
pressure, thus yielding the pseudostress as the only unknown of the resulting dual-mixed formulation.
Thus, the aforementioned two schemes are determined by each one of the following projectors: the
particular local one introduced in [13], and the general L2?-orthogonal projection analyzed in [6] (see
also [7]). More recently, the analysis and results from [13] and [14] were extended in [15] to the case



of quasi-Newtonian Stokes flows, for which the problem originally studied in [23] was considered as
a model, and hence, up to our knowledge, [15] constitutes the first work applying mixed-VEM to a
nonlinear problem. While the original unknowns in [15] are given by the pseudostress, the velocity,
and the pressure, the latter is eliminated by using the incompressibility condition, and in order to
handle the nonlinearity involved, the velocity gradient is set as an auxiliary one. Additionally, the
approach from [14] was generalized in [24] to the nonlinear Brinkman model considered in [19], whereas
a mixed-VEM for a pseudostress-velocity formulation of the two-dimensional Navier-Stokes equations
with Dirichlet boundary conditions is proposed and analyzed in [25]. Actually, besides projectors
commonly utilized for related models, the main novelty of the method introduced in [25] is given by
the simultaneous use of VEM and mixed-VEM techniques for approximating the velocity and the
pseudostress, respectively. More precisely, a dual-mixed approach based on the introduction of a
nonlinear pseudostress linking the usual linear one for the Stokes equations and the convective term,
is employed in [25]. In this way, the aforementioned new tensor together with the velocity constitute
the only unknowns of the problem, whereas the pressure is computed via a postprocessing formula.
Finally, concerning the applicability of mixed-VEM to the classical linear elasticity problem, we are
just aware of [3] where a low-order scheme, with a priori symmetric Cauchy stresses, was proposed and
analyzed for the 2D case. In fact, the VEM concept is applied here only to the stress field by using
three traction degrees of freedom per each edge, similarly to the construction of the discrete velocity
field for the Stokes problem in [9], while the displacement field inside each element is essentially
approximated by a rigid body motion.

According to the foregoing discussion, and in order to, on one hand, additionally contribute in the
direction drawn by [13], [14], [15], [24], and [25], and on the other hand, provide an alternative to
the stress-based approach from [3], we now aim to further extend the applicability of the mixed-VEM
to boundary value problems in continuum mechanics, particularly in elasticity. More precisely, we
consider the same pseudostress-displacement formulation introduced and analyzed in [21] (see also
[20]), and develop a new mixed-VEM for the two-dimensional linear elasticity problem with non-
homogeneous Dirichlet boundary conditions. Besides the fact that no symmetry is needed for the
pseudostress, we highlight that the present approach yields much more freedom than [3] for choosing
the virtual element subspace approximating the pseudostress and the piecewise polynomial subspace
where the discrete displacement lives now, which, in turn, allows for rates of convergence of higher
order. Moreover, we remark in advance that the method to be proposed here leads to fully computable
element-by-element postprocessing formulae for the pseudostress as well as for the stress.

The rest of this work is organized as follows. In Section 2 we introduce the boundary value problem
of interest, and recall from [21] its pseudostress-displacement mixed formulation and the associated
well-posedness result. Then, in Section 3 we follow [11], [13], and [14], and introduce and analyze
the virtual element method that will be employed. This includes the assumptions on the polygonal
mesh, the definition of the local virtual element subspaces, the definition of the corresponding discrete
bilinear forms, and certainly the resulting discrete scheme itself. Also, the interpolants and projectors
to be used are introduced here, along with their approximation properties. Finally, a priori error
estimates and corresponding rates of convergence for the approximations of both the pseudostress and
the displacement are derived. Next, in Section 4 we follow [21] and [14], and introduce two different
fully computable approximations for the pseudostress p and the stress o, for which their a priori
error estimates and rates of convergence are also established. In particular, we show that the second
pair of computable approximations lead to optimal rates of convergence in the broken H(div)-norm.
Finally, numerical experiments showing the good performance of the method with different values of
the parameters and polynomial degrees involved, confirming the rates of convergence and illustrating
the acurateness of the approximate solutions, are reported in Section 5.



Notations

We end the present section by providing some notations to be used along the paper, including those
already employed above. Indeed, given a bounded domain Q C R? with boundary T', we let n be
the outward unit normal vector on I'. In addition, standard terminology will be adopted for Lebesgue
spaces LP(€2), p > 1, and Sobolev spaces H*(2), s € R, with norm || - [|so and seminorm | - | q.
In particular, H'/2(I') is the space of traces of functions of H'(Q), and H~/2(T") denotes its dual.
We will denote by M and M, the corresponding vector and tensor counterparts of the generic scalar
functional space M, respectively. Then, letting div (resp. rot) be the usual divergence operator div
(resp. rotational operator rot) acting along the rows of a given tensor, we recall that the spaces

H(div; Q) := {’T cL2(Q) : div(r) e L2(Q)}
and
H(rot; ) = {T cL2(Q) : rot(r) € L2(Q)},
equipped with the usual norms
ITl&va = ITl3o + Idiv(Dlfe V7 € H(div;Q),

and
ITlFotio = ITl6 o + lIrot(Ml5q V7T € H(rot; Q),
are Hilbert spaces. Also, given T := (7;;), ¢ := ((ij) € R**%, we write as usual

2

2
1
d
Tt o= (153) s tr(r) = E_l Tii s T4 o= T—§tr(7')ﬂ, and T:( = E Ti;Cij »

ij=1

where I is the identity matrix of R?*2. Finally, in what follows we employ O to denote a generic null
vector, null tensor or null operator, and use C', with or without subscripts, bars, tildes or hats, to
denote generic constants independent of the discretization parameters, which may take different values
at different places.

2 The elasticity problem and its pseudostress-based formulation

Let Q be a bounded and simply connected polyhedral domain in R? with boundary I'. Our goal is to
determine the displacement u and the stress tensor o of a linear elastic material occupying the region
Q. In other words, given a volume force f € L2(Q) and a Dirichlet datum g € HY?(I), we seck a
symmetric tensor field o and a vector field u such that

o =Ce(u) in Q, div(e) = —f in Q, and u =g on I, (2.1)

where e(u) := $(Vu+ (Vu)®) is the strain tensor of small deformations (symmetric part of the
displacement gradient), and C is the elasticity operator governed by Hooke’s law:

CC o= 2u¢ + Ar(O)T V¢ e L2(Q),

with A, i > 0 being the corresponding Lamé constants.

On the other hand, from [20, 21] we know that the stress-displacement formulation of (2.1) can be
re-written as: find a non-symmetric tensor p (pseudostress) and a vector u (displacement) such that

p=CVu in Q, div(jp) = —f in Q, and u =g on T, (2.2)



where, Cis given by

C¢ = n¢ + A+pt(Q)T V¢ e LA(Q),

and satisfies

~ 1 A+
C'¢i=—4¢ - tr(¢) 1 V¢ e LX(Q). 2.3
¢ M{c (<) } ¢ e 13(0) (23)
Note that the stress o can be expressed in terms of the pseudostress p (see [20, 21]) as
A+ 2u
= v - I. 2.4
o= p+op {%+ﬁﬂ}u@> (2.4

In addition, other physical quantities of interest such as the strain tensor of small deformations e(u)
and the rotation vy := %(V u— (Vu)*) can be computed in terms of the pseudostress p by

1 N 20N+ p) 1
e(u) = o {p +p 2 13 tr(p) 1 and v = 4M(p p).

Now, proceeding as in [20, 21], we arrive at the following mixed variational formulation of (2.2): Find
(p,u) € H x Q such that

a(p77-) + b(Tvu) = (T’I’L,g>p VTGHy
(2.5)

b(p,v) = —/f-v VveQ,

Q
where H := H(div; ), Q := L*(Q), and a : H x H — R and b : H x Q — R are the bilinear forms
A+
,_ 1
a(, ) = /C C:7 = /C 2)\_1_3#)/‘51“(()‘51“(7') V¢, e H, (26)
b(r,v) = /v-div(‘r) VreH, VveQ, (2.7)
Q

and (-,-)r stands from now on for the duality pairing between H~'/2(T") and H'/2(I"). We now define

Hy = {T € H(div: Q) /Qtr(T) - 0} ,

and recall that H = HO @ RI, which means that for any 7 € H, there exist unique elements 79 € Hy
and d := 2|Q‘ Jo tr(7) € R, where |Q] denotes the measure of Q, such that 7 = 79 + d 1. In particular,
taking 7 =1 in the ﬁrst equation of (2.5), we deduce that

/Qtr(p) = (2A+3u)/Fg-n,

which yields p = pg + cl, with py € Hy and the constant c given explicitly by

2)\+3,u/
c = g n. 2.8
00 e 2

In this way, replacing p by the expression p; + cI in (2.5), and similarly as in [20, 21], using that
div(p) = div(p,) and denoting the remaining unknown p, € Hy simply by p from now on, we find
that the dual-mixed variational formulation (2.5) is equivalent to the following saddle point problem:
Find (p,u) € Hy x Q such that

a(p,7) + b(t,u) = (tn,g)r VTeH,

2.9
b(p,v) = —/Qf'v VveQ. (29)



Lemma 2.1. Problems (2.5) and (2.9) are equivalent in the following sense:

i) If (p,u) € H x Q is a solution of (2.5) and p = py + cl for some py € Hy and ¢ € R, then
(pg,u) € Hy x Q is a solution of (2.9).

it) If (py,u) € HoxQ is a solution of (2.9) and p := py+cl with ¢ given by (2.8), then (p,u) € HxQ
is a solution of (2.5).

Proof. See [21, Lemma 2.1]. O

Furthermore, according to the new meaning of p, we deduce from (2.2) and (2.8) that the consti-
tutive equation in (2.2) becomes

C~_1p+ {ﬁ/gn}ﬂ = Vu in Q,
r

whereas the equilibrium equation remains the same, that is

div(p) = —f in Q.
In addition, in terms of the Hy-component of the pseudostress, the stress (cf. (2.4)) is now given by
A+2p A+ /
— t t SR . I. 2.1
o=p+p {2A+3u r(p) o .8 (2.10)

The unique solvability of (2.9) is established as follows.

Theorem 2.1. Assume that f € L2(Q) and g € HY?(I'). Then, there exists a unique solution
(p,u) € Hy x Q to (2.9). In addition, there exists C > 0, independent of A\, such that

lellaive + lulog < C{lfloa + lellar}-

Proof. See [21, Theorem 2.1]. O

3 The mixed virtual element method

In this section we introduce and analyze a mixed virtual element scheme for the equivalent continuous
formulation given by (2.9).

3.1 Basic assumptions

Let {7} }n~0 be a family of decompositions of 2 in polygonal elements. For each K € T}, we denote
its diameter by hx and define, as usual, h := max{hx : K € T}. Furthermore, in what follows we
assume that there exists a constant C'+ > 0 such that for each decomposition 7, and for each K € Tp,
there hold:

a) the ratio between the shortest edge and the diameter hx of K is bigger than C7, and

b) K is star-shaped with respect to a ball B of radius C'yrhg and center xp € K, that is, for each
xg € B, all the line segments joining xg with any x € K are contained in K, or, equivalently,
for each x € K, the closed convex hull of {x} U B is contained in K.

As a consequence of the above hypotheses, one can show that each K € 7j, is simply connected, and
that there exists an integer N7 (depending only on C7), such that for each K € 7Ty, dg is bounded
above by Ny



3.2 The virtual element spaces

Given an integer ¢ > 0, we let Py(K) be the space of polynomials defined on K of total degree at
most £. Then, for each integer £ > 0 and for each K € Ty, we follow [6, 7] (see also [14] and [15]) and
consider the following local virtual element subspace of order k

HE .= {’T € H(div; K) NH(rot; K) : 7n|. € Pr(e) Vedgeec K,
(3.1)
div(r) € Pi(K), and rot(r)e Pk_l(K)},

where P_;(K) := {0}, and

6(7) Op 12 — O3y T11 e
rot( 7™ = T .
Oy To2 — Oy To1

We recall here that the virtual subspace H was first introduced in [7] and recently utilized in [14] and
[15] for a pseudostress-based formulation of the linear Brinkman problem, and for a class of nonlinear
Stokes models arising in quasi-Newtonian fluids, respectively.

Next, the corresponding global virtual element subspaces of Hy and Q, are given, respectively, by

Hop = {TGHQZ |k € HE VKeTh}, (3.2)

)

and
Q, = {veQ . vk € PR(K) VKGE}. (3.3)
Then, the Galerkin scheme associated with (2.9) reads: Find (p,u) € Hyp x Qy, such that

a(pp,Th) + b(Th,up) = (mpm,g)r V7 € Hop,

(3.4)
b(pns Vi) = —/Qf'Vh Vv €Qy.

Unfortunately, and similarly as in [11, 13, 14, 15], we will observe in the next section that a(p;,, Th)
cannot be computed explicitly when p,,, 75, belong to Hj 5, and hence a suitable approximation of this
bilinear form, namely ay(,-), is required in order to redefine (3.4).

3.3 The discrete bilinear forms

In this section we define computable discrete versions ay, : Hop x Hpp, — R and b, : Hpp x Q) — R
of the bilinear forms a(-,-) and b(-,-). To this end, we proceed as in [13, Section 4] and observe first
that given (7, vy) € Hop, x Qy, the expression

o(Th,va) = /Vh'diV(Th) = ) / vy, - div(Ty),
Q o

is explicitly calculable since according to the definitions of Hyj and Q; (cf. (3.2) and (3.3)), there
hold v | € Pr(K) and div(7y)|x € Pr(K) on each element K, and hence we just set by := b. On
the contrary, given {j,T) € Hyp, the expression

_ 1 A
a(Cpitr) = /Q Tl = /Q ch:rh—ﬁ /Q 0(Cp) tr(r)

7



is not explicitly calculable since in general ¢; and 7, are not known on each K € T,. In order
to overcome this difficulty, we now introduce a suitable space on which the elements of Hyj will
be projected later on, so that the bilinear form af(-,-) is explicitly computable for these projections.
Indeed, we let PE : L2(K) — P.(K) be the L?(K)-orthogonal projector. That is, given ¢ € L?(K),
PE(¢) is characterized by

/PkK(C)iT = /C:T V1 e Py(K) (3.5)
K K

which, according to [7, Section 3.2] (see also [14, Section 3.1.1]), is explicitly calculable, even when
¢ € HE. In addition, it is straightforward to check from (3.5) with 7 = PF (¢) that

IPElox < lClox V¢ eLXK). (3.6)

Furthermore, the operator ’Pff satisfies the following approximation property (see, e.g. [7, eq. (22)]
or [13, Lemma 3.4]): for each ¢ € H"(K), with 0 < r < k + 1, there holds

16 =PEOlox < ChiglClrx VK €T (3.7)
Now, for each K € Ty, we let a’* : L?(K) x L?(K) — R be the local bilinear form defined by
(¢, T) = / cCi¢:r V¢, T e LA(K), (3.8)
K

whence a (cf. (2.6)) can be rewritten as

a¢,7) = Y d" (k. Tlk) V¢ TELNQ). (3.9)

KeTy

Then, applying the Cauchy-Schwarz inequality and using that 2:\\I§u < %, we find that

el = 1| [ - g [ a@u

1 1

< ;HCIIO,KHTIIO,K + ﬂ||tT(C)||0,KHtT(T)||0,K (3.10)
1 1 2

< = ClloglITllox + = lI€loxliTllox = —lI€llo,xlITlo,x
[ I I

for all ¢, 7 € L2(K). Moreover, replacing ¢ = ¢4 + %tr(C)H in (3.8), and using that ¢4 : 7 = ¢4 : 79,

and tr(¢4) = 0 for all ¢ € L2(K), we arrive at the following equivalent expression for a’:
1
K¢ d. 2
LK
e = o[ it g [ wQuln) Ve e L),

In particular,
1
a(¢.¢) > . ICUx  V¢ELXK), VKET,. (3.11)

In turn, we let ah HK X ]HIK — R be the local discrete bilinear form given for all ¢, T € HK by

ap (¢, 1) = a(PF ), PE(T) + S —Pr(Q), 7 —PL (1), (3.12)



where S¥ : H{f X HhK — R is the bilinear form associated to the nff local degrees of freedom of HhK
(see, e.g, [14, Section 3.2]). More precisely,

SK Zm,K ) i i (T) VC,TEHK, (3.13)

K
where the set {m; rc(T)};*, corresponds to all the K-moments of 7 € HIS (cf. (3.1)), given by (see,
e.g, [14, Section 3.2])

/Tn-q V' qe€Pgle), VedgeeecdK,
[ 7iva Yae P\ {(10F 0.1,
K

/KT L€ V€€ (VP (K))LE NPu(K).

In addition, as in [11, eq. (5.8)], we assume that there exist cg,c; > 0, independent of A and K, such
that

olKlin < S5O < aldlin  VCEHY, VKET,. (3.14)
The following result is a consequence of the properties from the projector ’PkK and (3.14).
Lemma 3.1. For each K € Ty, there holds
a(¢,7) = a(¢,7) V¢eP(K), YTeHF, (3.15)
and there exist positive constants oy, ag, independent of h, X and K, such that
jaz (¢, 7)] < Oél{\lCHo,KHTllo,K + 1€ = PE(Olloxllm — PkK(T)Ilo,K} V(T eHy, (316

and
az || < an(¢,¢) V¢ eEH). (3.17)

Proof. We adapt the proof of [13, Lemma 4.6]. Indeed, we first note that given ¢ € Px(K), it holds

PE(¢) = ¢. Hence, using the definition of a’ (cf. (3.8)), the fact that C~'¢ € Pr(K) (cf. (2.3)) and
(3.5), we deduce, starting from (3.12), that given 7 € H there holds

K¢ = df(CPE(r /c ¢ PE(r /Pk

N /Krzé—lc = /Kg‘lc:r = a"(¢,7),

which proves (3.15). Next, for the boundedness of a,lf we apply the Cauchy-Schwarz inequality, the
estimate (3.10), and the upper bound in (3.14), to obtain

(¢, )| < |5 (PEEC), PE(T))
+ {5 -PEQ). ¢ - PE)Y P {SK(r = PE(),m — PE()}

2
s IPE Ollo.x IPE (Tllo.x + el =P (Olloxllr —Pi (T)llox ¥ ¢, 7 € Hy



which, together with (3.6), imply (3.16) with ay := max{%,cl}. Finally, concerning (3.17), we apply
the lower bound in (3.14) and (3.11), to obtain

1B < 2{IPE B + 16¢ —PEC) i)
< 2 (% |(PE <c>>d\|%,K> + 2 (e - PEOIR 1)
< 20a"(PE(O.PE(C) + - S¥(¢-PEQ)¢ - PEQ) ¥ eEf,
which yields (3.17) with ag := max{2u, 2}~ and completes the proof. O

We end this section by defining, as suggested by (3.9) and (3.12), the global discrete bilinear form
ap : HO,h X H()JL — R by

ap(C.7) == Y af(¢.T) V(T EH,. (3.18)
KeTy

3.4 The mixed virtual element scheme

According to the analysis from the foregoing section, we reformulate the Galerkin scheme (3.4) asso-
ciated with (2.9) as: Find (p,u) € Hp, x Q, such that

an(pp,Th) + b(Th,up) = (Tan,g)r V1 eHyy,
(3.19)
b(ph,vh) = —/Qf- v Vv € Qh'

In what follows we establish the well-posedness of (3.19). We begin the analysis by proving that ay (-, -)
is elliptic in the discrete kernel of b(,-).

Lemma 3.2. Let V), := {¢;, € Hoyp : b(¢y,ve) = 0 YV vy, € Q). Then, there exists o > 0,
independent of h and X, such that

an(Cp, Cp) > «a ||Ch||3iv;9 V¢, €Vp.
Proof. It follows exactly as in [13, Lemma 5.2]. O

The following lemma provides the discrete inf-sup condition for b(-,-).

Lemma 3.3. Let Hyp and Q) be the virtual subspaces given by (3.2) and (3.3). Then, there exists
B > 0, independent of h and X, such that

b(Th, vn
sup Mrn, ¥u) > Bllvalloe  YvieQ,. (3.20)
raeHo p | Thldivio
T #0
Proof. See [13, Lemma 5.3]. 0

The unique solvability and stability of the actual Galerkin scheme (3.19) is established next.

Theorem 3.1. There exists a unique (py,,up) € Hop % Qy, solution of (3.19), and there exists a
positive constant C, independent of h and X\, such that

lonllaive + lunlloe < C{lfloa + lghyr}-
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Proof. The boundedness of aj, : Hop x Hpp, — R with respect to the norm || - [|giv.o of H(div; Q)
follows directly from (3.18), (3.16), and (3.6). In turn, it is quite clear that b : Hyj x Q; — R is also
bounded. Hence, thanks to Lemmas 3.2 and 3.3, a straightforward application of the Babuska-Brezzi
theory completes the proof. O

3.5 The a priori error analysis

We now aim to derive the corresponding a priori error estimates for (3.19) and (2.9). For this purpose,
we need the approximation properties of the virtual element subspaces involved. Thus, letting

Hj(Q) = {T € H(div;Q) : 7|x e H'(K) VK €T},

we now introduce the interpolation operator I : H} () — Hoj, (see [7, 14]), which, given T € H} (2),
is characterized by the following identities:

0 = /(T_HZ(T))"'Q V qe€ Pgle), Vedge e € Ty,

e

0 = /K(T—HZ(T)):Vq VqePr(K)\{(1,0)%(0,1)*}, VK eT,,

0 = /K(T—HQ(T)):g VéEe (VP (KT NPu(K), VYKET,.

Furthermore, we can show (see, e.g, [14, eq. (3.8)]) by using the above identities that
div(ITi(r)) = Pr(div(r)), (3.21)

where P} : L%(Q) — Q, is the L?(Q)-orthogonal projector. Also, note that Pl (v)|x = P (v|f) for
each K € Ty, and for all v € L*(Q), where PF : L?(K) — Py(K) is the local orthogonal projector.
Hence, for each v € H"(Q), with 0 <7 < k+ 1, there holds (see, e.g. [7, eq. (22)] or [13, Lemma 3.4])

v =Ptk = V=P @)llox < Chix|vlxk Y EKET,. (3.22)

In addition, the operator I1} satisfies the following approximation properties (see [7, eq. (28)]): for
each 7 € H"(K), with 1 <r < k + 1, there holds

|7 =T (T)|lo.x < Chye |7l VKeTh, (3.23)

and for each 7 € H} (Q) such that div(r) € H"(2), with 0 < r < k + 1, there holds

|div(T — T} (T)|ox < Chy|div(T)|,x VYV KET,. (3.24)

In particular, note that (3.24) follows easily from (3.21) and (3.22).

Next, recalling the L2(K)-orthogonal projector PE : L2(K) — P.(K) defined by (3.5), we denote
by ’Pﬁ its global counterpart, that is, given ¢ € L?(2), we let

Pl = PEClk)  YEKET,.
Then, we have the following main result.

Theorem 3.2. Let (p,u) € HyxQ and (py,, up) € Hy p x Qy, be the unique solutions of the continuous
and discrete schemes (2.9) and (3.19), respectively, and assume that p € H}(2). Then, there exist
positive constants Cv, Cs, independent of h and X\, such that

lo=puloe < Ci{le—1p)loe + lo—Phe)los} (3.25)

11



ldiv(p— pp)loe = lldivip —T(p)oe. (3.26)

and
lu-wilhe < Gllo-1@loa + lo-Ph@lon + lu-Piwle}. (27

Proof. We adapt the proof of [13, Theorem 5.2] (see also [14, Theorem 5.2]). Indeed, first note from

lp=puloe < o =1 P)oe + ldnloe (3.28)

that we only need to estimate & := I1}(p) — p;, € Hop. To this end, observe from (3.21) and the
second equation of (3.19) that div(II}(p)) = P (div(p)) = Pp(—f) = div(py,), which establishes that
1, € Vy, (cf. Lemma 3.2) and gives (3.26). Next, applying Lemma 3.2, adding and subtracting P}(p),
using the first equations of (3.19) and (2.9), and employing (3.15), we find that

al|0nldiva < an(0r,0n) = an(Ii(p).81) — an(py,dn)
= ap(I}(p) — P1(p),dn) + an(PL(p),dr) — (5pm.)r
= ap(}(p) — P (p), 6n) + an(PL(p),6n) — a(p, b))

= > {al (1) = PEp).51) — (o= PE(p).01)}
KeTy

In addition, from (3.16) and (3.10), together with (3.6), we obtain

alldnlde < a1 ) {IIHZ‘(P)—Pff(p)\lo,KII%IIo,K
KET,

+ 111 (p) = PE{TT(0) o 18 — P (60 o |

2
+ = e —PE @ lo.xldnllox
K ke,

which yields
Sullaive < C{lo—Pholloa + 1) - Phelon + IT(e) ~ PHILR) lon} - (329
with C' := %max{oq, %} Next, adding and subtracting p, we deduce that
T(p) = Pi)lloe < =1 (P)log + llp = Pip)log- (3.30)

In turn, adding and subtracting p — P} (p), and employing again the boundedness of P} (cf. (3.6)),
we get

112 (p) — PP o < o =T (P)oo + o — Prp)loo + |Pr{p -1 p) Hoe

< 2|lp=110(p)loa + lo—Prp)oo- (3.31)

In this way, replacing (3.30) and (3.31) back into (3.29), and then the resulting estimate back into
(3.28), we arrive at (3.25). On the other hand, concerning the error ||u — upllo.o, we begin by using
the triangle inequality,

lu—uploe < Ju=PiWloe + [Pr(w) - uslloo- (3.32)

12



Next, taking v, := Pf(u) — uy, € Qy, in the discrete inf-sup condition (3.20), we have

1 b(Tp, Pl(u) — uy,
IPr(u) —uplloe < = sup (T, Py (w) ) (3.33)
B ety ), 71 |ldivie
T}L#O

It follows, employing the definition of P! : L*(Q) — Q,, (L?(€2)-orthogonal projector), the fact that
Ty € Hyj, implies div(7y) € Qy,, the first equations of (2.9) and (3.19), and (3.15), that

(Th,Pk ) —uy) /Pk ~div(ty) — b(Tp,uy) = b(Tp,u) — b(Tp,up)

= ah(pthh) - a(p77-h) = Z {ahK(ph_PkK(p)vTh) + ahK(PkK(p)vTh) - aK(p7Th)}
KeTy,

= > {ak(en=PE@.Th) — alo~PE(p) )}

KeTy

which, using that aX (cf. (3.16)), a® (cf. (3.10)) and PL (cf. (3.6)) are bounded, gives

b(rn Phw) —w) < C{lp=PiPlloe + llon—PhP)loa + lon = Phenllos flimallos-

Therefore, replacing the above identity in (3.33) yields

1P ~wilon < S{lo—Ph@loa + low—Pio)loa + lion—Phlen)lon} - (334
Thus, adding and subtracting p, we readily get

lon — PrP)lloe < llp—pulloe + o —Pre)loo- (3.35)

Similarly, adding and subtracting p — ’PZ (p), and utilizing once again the boundedness of ’PkK (cf.
(3.6)), we obtain

lp = pulloe + e =Pielog + [Pie—pu)loe
2/lp = pulloe + o —Pip)log- (3.36)

Finally, the estimate (3.27) follows after putting (3.32), (3.34), (3.35), (3.36), and (3.25) together. [

lon — Pz(Ph)Ho,ﬂ <
<

Having established the a priori error estimates for our unknowns, we now provide the corresponding
rates of convergence.

Theorem 3.3. Let (p,u) € HyxQ and (py,,up) € Hy p % Qy, be the unique solutions of the continuous
and discrete schemes (2.9) and (3.19), respectively. Assume that for some r € [1,k + 1] there hold
plk € H'(K), div(p)|x € H'(K), and ulx € H'(K) for each K € Ty. Then, there ezist positive
constants Cv, Co, independent of h and X\, such that

lo = pullaivo < C1i" 3 {lphc + |div(p)l }
KeTy

and

lu—upllon < Cob” > {’P\r,K + \u’nK}'
KeTy,

Proof. It follows from a straightforward application of the approximation properties provided by
(3.7), (3.22), (3.23) and (3.24), to the terms on the right-hand sides of (3.25), (3.26) and (3.27). O
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4 Computable approximations of p and o

In this section we introduce fully computable approximations of p and o, and establish the corre-
sponding a priori error estimates and consequent rates of convergence.

4.1 Convergent approximations of p and o in the L*-norm
We follow [13, 14] and set the approximation of p given by

Pn = Pilon)- (4.1)

Then, in what follows we show that p; and p;, share the same rates of convergence given by Theorem
3.3 with respect to the norm || - [|g,n.

Lemma 4.1. There exists a positive constant C, independent of h and X, such that
lo=puloa < C{lo-1pP)loa + llp =P} (4:2)

Proof. Similarly as in [13, Theorem 5.4], we add and subtract p;, to obtain
lp = Bulloe < llp = pulloe + llow —Pilen)log -

Then, using (3.36) and (3.25), we arrive at (4.2) and complete the proof. O

Next, as suggested by the identity (2.10), we approximate the symmetric tensor field o by the
postprocessing formula

~ ~ ~ A+2u A p / }
oy = + vt tr - -n o I, 4.3
R R £ TR ey (43
Hence, using (2.10) and the fact that 2):\123‘2 < 1, we readily find that
o —anlloe < 4llp—Pplloq, (4.4)

which shows that the a priori error estimate for ||o — o/on follows from that of ||p — pyllo.o (cf.
Lemma 4.1). Moreover, the following theorem provides the corresponding rates of convergence.

Theorem 4.1. Let (p,u) € Hyx Q and (py,up) € Hp j x Qy, be the unique solutions of the continuous
and discrete schemes (2.9) and (3.19), respectively. In addition, let o be the stress tensor given by
(2.10) and let p;, and o} be the discrete approximations introduced in (4.1) and (4.3), respectively.
Assume that for some r € [1,k + 1] there holds p|x € H"(K) for each K € Ty,. Then, there exists a
positive constant C, independent of h and A, such that

lp=Bullog + llo —Gulloa < Ch™ Y lplx-
KeT,

Proof. It is clear from (4.4) and Lemma 4.1 that

lo=Billoo + llo = nloa < C{llo=T(p)log + o - P},

which, together with the approximation properties (3.7) and (3.23), complete the proof. ]
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4.2 Convergent approximations of p and o in the broken H(div)-norm

Some preliminary numerical experiments confirm that the rates of convergence of the errors

1/2 1/2
{ Z ”p_ th?liv;K} ;and { Z HU - Uh”aiv;K}

KeTy KeTy

are smaller, by a power of h, than the ones associated to ||o — allo.0 and ||p — pylloo. This fact
has motivated the construction of new, improved, approximations to the tensors p and o, having
better rates of convergence with respect to the broken H(div)-norm. In order to do this, we follow
the postprocessing techniques presented in [14, 15, 20, 21]. Indeed, given K € Ty, and denoting the
usual H(div; K)-inner product by (-, -)div;x, we define p, | := p}; ;¢ € Pry1(K) and 67}, |k := 6}, i €
Piy1(K), as the solutions of the local problems

(Ph.rc» Th)divik = /K,T)h CTh — /Kf' div(t,) V71 €Prp(K), (4.5)
and
(Oh k> Th)divik = /K&h CTh — /Kf' div(ry) V71, € Pra(K), (4.6)

where both identities above have taken advantage of the fact that div(p) = div(e) = —f. In turn,
we could have replaced in both right-hand sides the term — [, f- div(7r,) by [} div(py) - div(Ty),
with p;, € Hp, given by the discrete scheme (3.19). These alternative choices yield the same rate of
convergence, but we prefer to use —f instead of div(py,), as this gives precisely the exact value of the
divergence of p and o.

The following result provides the global rates of convergence for pj and o7J.

Theorem 4.2. Let (p,u) € Hyx Q and (py,up) € Hpj x Qy, be the unique solutions of the continuous
and discrete schemes (2.9) and (3.19), respectively. In addition, let o be the stress tensor given by
(2.10) and let py,, &, Py, and &}, be the discrete approzimations introduced in (4.1), (4.3), (4.5) and
(4.6), respectively. Assume that for somer € [1,k~+1] there hold p|i € H"(K) and div(p)|x € H"(K)
for each K € Ty. Then, there exists a positive constant C, independent of h and X\, such that

1/2 1/2
{ Z Hp—ﬁZHﬁiv;K} + { Z HU—GZH&V;K} < Ch" Z {\P’r,K + \diV(P)\r,K}-

KeTy KeTy KeTy,

Proof. It follows similarly as in [14, Theorem 4.4] and [21, Theorem 3.3]. O

5 Numerical results

In this section we present some numerical results illustrating the performance of the mixed virtual
element scheme (3.19), introduced and analyzed in Section 3. For all the computations we consider
the specific virtual element subspaces Hyj and Q,, given by (3.2) and (3.3) with £ € {0,1,2}. In
addition, and similarly as in [14] and [17], the zero integral mean condition for tensors in the space
Hy 4 is imposed via a real Lagrange multiplier. Concerning the decompositions of 2 employed in
our computations, we follow [14] and consider uniform triangles, distorted squares and quasi-uniform
hexagons as decompositions of the domain.
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We begin by introducing some notations. In what follows, NV stands for the total number of degrees
of freedom (unknowns) of (3.19). In this case, we have that

N = 2(k+1) x {# of edges in T} + (3k+1)(k+2) x {# of elements in 75} + 1.

In turn, the individual errors for all the unknowns are given by

e(p) = lp=ppllo,  e() = lu—upoe, elo) = llo—anla,
1/2 1/2
k112 ~x 12
= { Z ”p_pZHdiv;K} and  e(o”) = { Z ”U_UZHdiv;K} )
KeTh KeTh

where py,, o1, pr, and o are computed according to (4.1), (4.3), (4.5), and (4.6), respectively. Then,
we define the experimental rates of convergence

S 1 COVEI0)
T T og(h/m)

where e and e’ denote the corresponding errors for two consecutive meshes with sizes h and A/,
respectively. The numerical results presented below were obtained using a MATLAB code, where the
corresponding linear systems were solved using its instruction “\” as main solver.

Next, we recall that given the Young modulus F and the Poisson ratio v of an isotropic linear
elastic solid, the corresponding Lamé parameters are defined as
E Ev

ST R (T

In the examples below, we follow [17, 21, 22] by fixing E = 1 and taking v € {0.3000, 0.4900, 0.4999},
and summarize the values of p and A in the following table:

v 7 A
0.3000 || 0.3846 0.5769
0.4900 || 0.3356 16.4430
0.4999 || 0.3333 | 1666.4444

It is important to remark here that the cases v = 0.4900 and v = 0.4999 correspond to materials
showing nearly incompressible behaviour.

In what follows, we take the domain © to be either the unit square (0,1)? or the L-shaped domain
(—1,1)%\ [0,1])%, and choose f and g so that the Poisson ratio v and the exact solution u are given as
follows:

FExample Q v u(z1, 22)
1 Unit square | 0.4900 < iloI;((2277Trill)) Z?Egiiig )
2 L-shaped | 0.3000 < ::;Ezg >
3 Unit square | 0.4999 | z129(1 — 21)(1 — 29)e”™ 72 < 1 >
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where r := \/a:% + x% and 0 := arctan (i—i) in Example 2. Note that the solution of Example 2 is
singular at the origin, so that we should expect high gradients around the origin.

In Tables 5.1 up to 5.3, we summarize the convergence history of the mixed virtual element scheme
(3.19) applied to Example 1. We notice there that the rate of convergence O(h**!) predicted by
Theorems 3.3, 4.1 and 4.2 (when r = k+ 1) is attained for all the unknowns for this smooth example,
for triangular as well as for quadrilateral and hexagonal meshes. In particular, these results confirm
that our postprocessed stress o} improves in one power the non-satisfactory order provided by the first
approximation o, with respect to the broken H(div)-norm. In addition, as observed in the seventh
column of Tables 5.1—5.3, the convergence of e(u) is a bit faster than expected, which seems a special
behaviour of this particular solution u. Next, in Tables 5.4 up to 5.6, we provide the convergence
history of Example 2. In this case, and because of the singularity at the origin of the exact solution,
the theoretical orders of convergence are not attained. In fact, it is easy to show that u belong to
H°/3(Q), whence p, o € H¥3(Q) and div(p) = div(e) € H™Y/3(Q). Thus, thanks to Theorems 3.3,
4.1 and 4.2, we can explain the a priori estimates in Tables 5.4—5.6 for p, u, o and also for e(p*)
and e(o*). Finally, the convergence history for Example 3 is presented in Tables 5.7 up to 5.9, where
we obtained the same results as in Example 1. Furthermore, we remark here that Example 3 used
v = 0.4999, which as mentioned in advance, corresponds to materials showing nearly incompressible
behaviour. Nonetheless, our mixed-VEM scheme (3.19) seems to be able to solve this problem without
difficulties.

We end this paper by displaying some components of the approximate solutions for the three
examples, in Figures 5.1 to 5.6. They all correspond to those obtained with the first mesh of each
kind (triangles, quadrilaterals and hexagons, respectively) and for the polynomial degree k = 2. Here
we use the notations py, = (pn.ij)ij=1,2, Oh = (Onij )ij=1,2, and up = (up;)i=1,2-
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T N [ e ] s rw ]| s o) | ) )| sl@) (o)
0.0643 4929 1.98¢e+1 —— | 8.6le-1 —— | 2.68e+1 —— | 9.27e+1 —— 9.44e+1 ——
0.0488 8527 1.48e+1 1.06 | 5.10e-1  1.90 | 2.03e+1 1.00 | 7.03e+1 1.00 | 7.17e+1 1.00
0.0248 | 32719 7.36e-0 1.03 | 1.37e-1 194 | 1.03e+1 1.00 | 3.58e+1 1.00 3.65e+1 1.00
0.0166 | 72591 4.92e-0 1.01 | 6.35e-2 193 | 6.91e-0 1.00 | 2.40e+1 1.00 | 2.45e+1 1.00
0.0129 | 121441 3.79e-0 1.01 | 3.89e-2 1.90 5.34e-0 1.00 | 1.85e+1 1.00 1.89e+1 1.00
0.0643 | 17601 9.58e-1 —— | 1.68e-2 —— 1.15e-0 —_— 5.09e-0 —_— 5.13e-0 —_—
0.0488 | 30509 5.62e-1 1.93 | 7.73e-3 2.81 6.86e-1 1.88 2.94e-0 1.99 2.96e-0 1.99
0.0248 | 117421 1.49e-1 1.96 | 1.17e-3  2.80 1.86e-1 1.93 7.62e-1 2.00 7.70e-1 1.99
0.0166 | 260781 6.76e-2 1.98 | 4.0le-4 2.67 | 8.49e-2 1.97 3.43e-1 2.00 3.47e-1 2.00
0.0129 | 436481 4.05e-2 1.99 | 2.09e-4 2.54 5.09e-2 1.98 2.05e-1 2.00 2.07e-1 2.00
0.0643 | 36081 3.79e-2 —— | 4.68¢-4 —— 4.08e-2 —— 2.05e-1 —— 2.06e-1 ——
0.0488 | 62583 1.66e-2  3.00 | 1.60e-4 3.88 1.78e-2 3.00 8.97e-2 3.00 8.99e-2 3.00
0.0248 | 241111 2.18e-3 3.00 | 1.30e-5 3.71 2.34e-3 3.00 1.18e-2 3.00 1.19e-2 3.00
0.0166 | 535671 6.58e-4  3.00 | 3.26e-6 3.46 | 7.07e-4  3.00 3.57e-3 3.00 3.58e-3 3.00
0.0129 | 896721 3.04e-4  3.00 | 1.39e-6 3.31 3.26e-4  3.00 1.65e-3 3.00 1.65e-3 3.00
Table 5.1: Example 1, history of convergence using triangles.

L N [ e )| s | eo) @) | o) )| e) ()
0.0716 5521 1.56e+1 —— | 7.16e-1 —— | 1l.6le+1 —— | 9.24e+1 —— 9.25e+1 ——
0.0537 9761 1.08e+1 1.28 | 3.73e-1  2.27 | 1.09e+1 1.35 | 6.67e+1 1.13 6.68e+-1 1.13
0.0286 | 34051 5.31e-0 1.13 | 9.70e-2 2.14 5.29e-0 1.16 | 3.40e+1 1.07 | 3.40e+1 1.07
0.0195 73041 3.56e-0 1.04 | 4.54e-2 199 3.53e-0 1.05 | 2.29e+1 1.03 2.29e+1 1.03
0.0148 | 126731 2.69e-0 1.02 | 2.70e-2  1.87 2.66e-0 1.03 | 1.73e+1 1.02 1.73e+1 1.02
0.0716 18241 8.87e-1 —— | 1.60e-2 —— 8.84e-1 —— 5.64e-0 - 5.63e-0 -
0.0537 | 32321 4.53e-1 2.34 | 6.36e-3  3.21 4.50e-1 2.35 2.89e-0 2.32 2.89e-0 2.32
0.0286 | 113101 1.14e-1 2.20 | 9.55e-4  3.02 1.13e-1 2.20 7.29e-1 2.19 7.29e-1 2.19
0.0195 | 242881 5.10e-2 2.10 | 3.37e-4  2.72 5.05e-2 2.10 3.27e-1 2.09 3.27e-1 2.09
0.0148 | 421661 2.89e-2 2.06 | 1.69e-4  2.50 2.86e-2 2.06 1.85e-1 2.06 1.85e-1 2.06
0.0716 | 36361 4.08e-2 —— | 3.55e-4 —— 4.04e-2 —— 2.43e-1 - 2.43e-1 -
0.0537 | 64481 1.45e-2 3.60 | 1.04e-4 4.27 1.44e-2 3.60 8.77e-2 3.54 8.77e-2 3.54
0.0286 | 225901 1.73e-3 3.38 | 9.41e-6 3.82 1.72e-3 3.38 1.07e-2 3.34 1.07e-2 3.34
0.0195 | 485321 5.08e-4  3.20 | 2.55e-6 3.41 5.03e-4 3.20 3.17e-3 3.18 3.17e-3 3.18
0.0148 | 842741 2.14e-4  3.14 | 1.04e-6  3.25 2.12e-4 3.14 1.34e-3 3.12 1.34e-3 3.12

Table 5.2: Example 1, history of convergence using quadrilaterals.

L N [ e )| s | o) @) | o) )| el) ()
0.0414 8147 1.25e+1 —— | 3.29e-1 —— | 1.2de+1 —— | 7.76e+1 —_— 7.75e+1 ——
0.0319 13563 9.56e-0 1.03 | 2.0le-1 191 9.51e-0 1.03 | 6.00e+1 0.99 6.00e+-1 0.99
0.0235 24579 7.01e-0 1.02 | 1.11e-1  1.93 6.95e-0 1.03 | 4.43e+1 0.99 4.43e+1 0.99
0.0167 | 48603 4.95e-0 1.01 | 5.83e-2 1.88 | 4.91e-0 1.01 | 3.14e+1 1.00 3.14e+1 1.00
0.0124 | 88637 3.65e-0 1.01 | 3.40e-2 1.79 3.63e-0 1.01 | 2.33e+1 1.00 2.33e+1 1.00
0.0414 | 24437 4.97e-1 —— | 6.80e-3 —— 4.93e-1 —— 3.15e-0 —— 3.15e-0 ——
0.0319 | 40757 2.96e-1 1.99 | 3.27e-3 282 2.94e-1 2.00 1.88e-0 1.98 1.88e-0 1.98
0.0235 73733 1.61e-1 2.00 | 1.41e-3  2.75 1.60e-1 2.00 1.03e-0 1.99 1.03e-0 1.99
0.0167 | 145805 8.10e-2 2.00 | 5.72e-4  2.63 8.02e-2 2.00 5.17e-1 1.99 5.17e-1 1.99
0.0124 | 266089 4.44e-2 2.00 | 2.71e-4  2.48 | 4.40e-2 2.00 2.83e-1 2.00 2.83e-1 2.00
0.0414 | 46835 1.55e-2 —— | 1.48e-4 —— 1.61e-2 —— 8.90e-2 —— 8.91e-2 ——
0.0319 | 78175 7.16e-3 2.98 | 5.63e-5 3.72 7.43e-3 2.97 4.11e-2 2.98 4.11e-2 2.98
0.0235 | 141319 2.87e-3 2.99 | 1.86e-5 3.63 2.98e-3 2.99 1.65e-2 2.99 1.65e-2 2.99
0.0167 | 279457 1.02e-3 299 | 5.62¢-6 3.48 1.06e-3 2.99 5.89e-3 2.99 5.90e-3 2.99
0.0124 | 510153 4.16e-4  2.99 | 2.06e-6 3.33 | 4.33e-4 2.99 2.39e-3 3.00 2.40e-3 3.00

Table 5.3: Example 1, history of convergence using hexagons.
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D N [ <@ ] s ][ e0) (@) ] elp) (o) | elc) (o)
0.1179 4417 5.05e-2 —— | 4.70e-2 —— | 6.39e-2 —— | 2.03e-0 —— 2.03e-0 ——
0.0786 9865 3.89e-2  0.64 | 3.14e-2 1.00 | 4.95e-2 0.63 | 2.32¢-0 -0.33 | 2.32¢-0 -0.33
0.0429 | 32935 2.62e-2  0.65 | 1.71le-2  1.00 | 3.35e-2  0.64 | 2.84e-0 -0.33 | 2.84e-0 -0.33
0.0289 | 72423 2.03e-2  0.65 | 1.15e-2  1.00 | 2.59e-2 0.65 | 3.24e-0 -0.33 | 3.24e-0 -0.33
0.0218 | 127271 1.68e-2  0.66 | 8.68e-3 1.00 | 2.16e-2  0.65 | 3.56e-0 -0.33 | 3.56e-0 -0.33
0.1179 15745 2.13e-2 —— | 1.16e-3 —— | 2.92e-2 —— 1.89¢-0 —— 1.89¢-0 ——
0.0786 | 35281 1.63e-2  0.67 | 5.96e-4 1.64 | 2.23e-2 0.67 | 2.16e-0 -0.33 | 2.16e-0 -0.33
0.0429 | 118141 1.09e-2  0.67 | 2.21e-4 1.64 | 1.49e-2 0.67 | 2.64e-0 -0.33 | 2.64e-0 -0.33
0.0289 | 260093 || 8.34e-3 0.67 | 1.15e-4 1.64 | 1.14e-2 0.67 | 3.02¢e-0 -0.33 | 3.02¢e-0 -0.33
0.0218 | 457341 || 6.91e-3 0.67 | 7.27e-5 1.64 | 9.48e-3 0.67 | 3.32e-0 -0.33 | 3.32¢e-0 -0.33
0.1179 | 32257 1.57e-2 —— | 4.07e-4 —— | 2.12e-2 —— 1.79e-0 —— 1.79e-0 ——
0.0786 | 72361 1.20e-2  0.67 | 2.08e-4 1.65 | 1.62e-2 0.67 | 2.05e-0 -0.33 | 2.05e-0 -0.33
0.0429 | 242551 || 7.99e-3 0.67 | 7.67e-5 1.65 | 1.08e-2 0.67 | 2.51le-0 -0.33 | 2.51le-0 -0.33
0.0289 | 534199 || 6.14e-3 0.67 | 4.0le-5 1.64 | 8.30e-3  0.67 | 2.86e-0 -0.33 | 2.86e-0 -0.33
0.0218 | 939511 || 5.09e-3 0.67 | 2.53e-5 1.63 | 6.87e-3 0.67 | 3.14e-0 -0.33 | 3.14e-0  -0.33

Table 5.4: Example 2, history of convergence using triangles.

D N [ <@ ] s ][ e0) (@) ] elp) (o) | elc) (o)
0.1667 2689 5.14e-2 —— | 6.64e-2 —— | 7.58e-2 —— | 2.16e-0 —— 2.16e-0 ——
0.0927 8889 3.37e-2  0.72 | 3.38e-2 1.15 | 4.88e-2  0.75 | 2.56e-0 -0.29 | 2.56e-0 -0.29
0.0478 | 33627 2.16e-2  0.67 | 1.67e-2 1.06 | 3.10e-2  0.69 | 3.20e-0 -0.34 | 3.20e-0 -0.34
0.0321 74241 1.67e-2  0.66 | 1.12e-2 1.02 | 2.38e-2 0.67 | 3.68e-0 -0.35 | 3.68e-0 -0.35
0.0239 | 133817 || 1.37e-2 0.66 | 8.27e-3 1.02 | 1.96e-2 0.66 | 4.08¢e-0 -0.35 | 4.08¢e-0 -0.35
0.1667 8833 2.93e-2 —— | 2.21e-3 —— | 4.31le-2 —— | 2.24e-0 —— 2.24e-0 —_—
0.0927 | 29393 1.88e-2 0.76 | 7.43e-4 1.86 | 2.75e-2 0.76 | 2.65e-0 -0.29 | 2.65e-0 -0.29
0.0478 | 111629 || 1.19e-2 0.69 | 2.41le-4 1.70 | 1.74e-2  0.69 | 3.33e-0 -0.34 | 3.33e-0 -0.34
0.0321 | 246785 || 9.15e-3  0.67 | 1.27e-4 1.63 | 1.33e-2 0.67 | 3.82e-0 -0.35 | 3.83e-0 -0.35
0.0239 | 445137 || 7.52e-3  0.66 | 7.90e-5 1.60 | 1.10e-2  0.67 | 4.24e-0 -0.35 | 4.24e-0 -0.35
0.1667 17569 217e-2  —— | 9.88¢-4 —— | 3.14e-2 —— | 2.32¢-0 —— 2.32e-0 ——
0.0927 | 58609 1.40e-2  0.75 | 3.67e-4 1.69 | 2.03e-2 0.74 | 2.74e-0 -0.28 | 2.74e-0  -0.28
0.0478 | 222913 || 8.86e-3 0.69 | 1.31le-4 1.55 | 1.29e-2  0.68 | 3.44e-0 -0.34 | 3.44e-0 -0.34
0.0321 | 493057 || 6.80e-3  0.67 | 7.25e-5 1.49 | 9.93e-3  0.67 | 3.96e-0 -0.35 | 3.96e-0 -0.35
0.0239 | 889585 || 5.59e-3  0.67 | 4.72e-5 1.45 | 8.17e-3  0.67 | 4.40e-0 -0.35 | 4.40e-0 -0.35

Table 5.5: Example 2, history of convergence using quadrilaterals.

D N [ <@ ] s ]| e0) (@) ] elp) (o) | elc) (o)
0.0672 9243 3.66e-2 —— | 3.55e-2 —— | 5.04e-2 —— | 3.16e-0 —_— 3.16e-0 —_—
0.0385 | 25483 2.63e-2  0.60 | 2.14e-2 091 | 3.63e-2 0.59 | 3.74e-0 -0.31 | 3.74e-0 -0.31
0.0275 | 49787 2.11e-2  0.65 | 1.53e-2 1.00 | 2.91e-2 0.65 | 4.19e-0 -0.33 | 4.19e-0 -0.33
0.0214 | 82155 1.79e-2  0.66 | 1.19e-2 1.00 | 2.47e-2 0.65 | 4.55e-0 -0.33 | 4.55e-0 -0.33
0.0170 | 129563 || 1.54e-2 0.66 | 9.45e-3 1.00 | 2.12¢-2 0.66 | 4.91e-0 -0.33 | 4.91e-0 -0.33
0.0672 | 27725 1.86e-2 —— | 6.63e-4 —— | 2.63e-2 —— | 3.41e-0 —— 3.41e-0 ——
0.0385 | 76445 1.32e-2  0.61 | 2.87e-4 1.50 | 1.87e-2 0.61 | 4.04e-0 -0.31 | 4.04e-0 -0.31
0.0275 | 149357 || 1.06e-2 0.67 | 1.65e-4 1.64 | 1.49e-2  0.67 | 4.52e-0 -0.33 | 4.52¢-0 -0.33
0.0214 | 246461 || 8.95e-3 0.67 | 1.10e-4 1.64 | 1.26e-2 0.67 | 4.92¢e-0 -0.33 | 4.92¢e-0 -0.33
0.0170 | 388685 || 7.68e-3 0.67 | 7.5le-5 1.64 | 1.08e-2 0.67 | 5.31e-0 -0.33 | 5.31e-0 -0.33
0.0672 | 53137 1.50e-2 —— | 2.89¢-4 —— | 2.0le-2 —— | 3.68e-0 —_— 3.68e-0 —_—
0.0385 | 146517 || 1.07e-2 0.61 | 1.36e-4 1.36 | 1.43e-2 0.61 | 4.36e-0 -0.31 | 4.36e-0 -0.31
0.0275 | 286265 || 8.52¢-3  0.67 | 8.34e-5 1.45 | 1.14e-2 0.67 | 4.88¢-0 -0.33 | 4.88¢-0 -0.33
0.0214 | 472381 || 7.21e-3  0.67 | 5.83e-5 1.43 | 9.68e-3  0.67 | 5.30e-0 -0.33 | 5.30e-0 -0.33
0.0170 | 744977 || 6.18e-3 0.67 | 4.21e-5 1.41 | 8.30e-3 0.67 | 5.72e-0 -0.33 | 5.72¢e-0 -0.33

Table 5.6: Example 2, history of convergence using hexagons.
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D N s [ s T | e(0) @) | ep) ()| elc) x(o)
0.0643 4929 1.6de+1 —— | 6.74e-1 —— | 2.28e+1 —— | 4.37e+1 —_— 4.65e+1 ——
0.0488 8527 1.24e+1 1.01 | 3.91e-1 197 | 1.73e+1 0.99 | 3.32e+1 1.00 3.53e+1 1.00
0.0248 | 32719 6.28e-0 1.01 | 1.02e-1 1.99 8.83e-0 1.00 | 1.69e+1 1.00 1.80e+1 1.00
0.0166 | 72591 4.20e-0 1.00 | 4.60e-2 199 | 5.93e-0 1.00 | 1.13e+1 1.00 1.20e+1 1.00
0.0129 | 121441 3.24e-0 1.00 | 2.75e-2  2.00 | 4.58e-0 1.00 8.73e-0 1.00 9.31e-0 1.00
0.0643 17601 3.16e-1 —— | 5.34e-3 —— 3.54e-1 —— 7.04e-1 —— 7.21e-1 ——
0.0488 | 30509 1.83e-1 1.98 | 2.34e-3 298 2.05e-1 1.97 4.06e-1 2.00 4.16e-1 1.99
0.0248 | 117421 4.78e-2 1.99 | 3.11e-4 299 5.38e-2 1.98 1.05e-1 2.00 1.08e-1 2.00
0.0166 | 260781 2.16e-2 1.99 | 9.42e-5 299 2.43e-2 1.99 4.74e-2 2.00 4.86e-2 2.00
0.0129 | 436481 1.29e-2 1.99 | 4.36e-5 2.99 1.46e-2 1.99 2.83e-2 2.00 2.90e-2 2.00
0.0643 | 36081 2.58e-3 —— | 2.73e-5 —— 2.58e-3 —_— 1.73e-3 —_— 1.74e-3 —_—
0.0488 | 62583 1.13e-3 3.00 | 9.05e-6  4.00 1.13e-3 3.00 7.57e-4 3.00 7.59e-4 3.00
0.0248 | 241111 1.48e-4  3.00 | 6.09e-7  3.99 1.48e-4 3.00 9.96e-5 3.00 1.00e-4 3.00
0.0166 | 535671 4.48e-5  3.00 | 1.24e-7 3.98 | 4.48e-5 3.00 3.00e-5 3.00 3.02e-5 3.00
0.0129 | 896721 2.07e-5 3.00 | 4.45e-8 3.97 2.07e-5 3.00 1.39e-5 3.00 1.39e-5 3.00

Table 5.7: Example 3, history of convergence using triangles.

D N s [ e | e(0) @) | o) (@) | o0 x(o)
0.0716 5521 1.91e+1 —— | 9.06e-1 —— | 1.99e+1 —— | 5.42e+1 —— 5.44e+1 ——
0.0537 9761 1.35e+1 1.20 | 4.69e-1 2.29 | 1.38e+1 1.26 | 3.91le+1 1.13 3.92e+1 1.14
0.0286 | 34051 6.70e-0 1.12 | 1.19e-1  2.18 6.74e-0 1.14 | 1.98e+1 1.08 1.98e+1 1.08
0.0195 73041 4.47e-0 1.06 | 5.31e-2 210 | 4.48e-0 1.07 | 1.33e+1 1.04 1.33e+1 1.04
0.0148 | 126731 3.36e-0 1.04 | 3.0le-2 2.06 3.36e-0 1.04 | 1.00e+1 1.03 1.00e+1 1.03
0.0716 18241 5.22e-1 —— | 7.03e-3 —— 5.26e-1 —— 1.34e-0 —— 1.35e-0 ——
0.0537 | 32321 2.72e-1 2.27 | 2.68e-3 3.35 2.73e-1 2.28 6.94e-1 2.30 6.95e-1 2.30
0.0286 | 113101 6.92e-2 2.18 | 3.49e-4 3.24 6.93e-2 2.18 1.77e-1 2.18 1.77e-1 2.18
0.0195 | 242881 3.10e-2 2.10 | 1.05e-4 3.13 3.10e-2 2.10 7.95e-2 2.09 7.95e-2 2.09
0.0148 | 421661 1.75e-2 2.07 | 4.49e-5  3.08 1.75e-2 2.07 4.50e-2 2.06 4.50e-2 2.06
0.0716 | 36361 8.87e-3 —— | 3.27e-5 —— 8.88e-3 —— 7.51e-3 —— 7.53e-3 —_—
0.0537 | 64481 3.21e-3 3.54 | 7.77e-6  5.00 3.21e-3 3.54 2.69e-3 3.57 2.70e-3 3.57
0.0286 | 225901 3.99e-4  3.32 | 3.65e-7 4.86 | 3.99e-4  3.32 3.30e-4 3.34 3.30e-4 3.34
0.0195 | 485321 1.19e-4  3.16 | 6.29e-8  4.59 1.19e-4 3.16 9.80e-5 3.17 9.80e-5 3.17
0.0148 | 842741 5.03e-5 3.11 | 1.92e-8 4.30 5.03e-5 3.11 4.15e-5 3.11 4.15e-5 3.11

Table 5.8: Example 3, history of convergence using quadrilaterals.

D N s [ @ | e(0) @) | ep) ()| elo) x(o)
0.0414 8147 1.50e+1 —— | 4.07e-1 —— | 1l.5le+1 —— | 4.44e+1 —_— 4.45e+1 —_—
0.0319 13563 1.16e+1 0.99 | 2.45e-1 1.95 | 1.17e+1 0.99 | 3.44e+1 0.99 3.44e+1 0.99
0.0235 | 24579 8.54e-0 1.00 | 1.34e-1 199 | 8.57e-0 1.01 | 2.54e+1  0.99 | 2.54e+1 0.99
0.0167 | 48603 6.05e-0 1.00 | 6.73e-2  1.99 | 6.07e-0 1.00 | 1.81e+1  0.99 1.81e+1 1.00
0.0124 | 88637 4.48e-0 1.00 | 3.70e-2 1.99 | 4.49e-0 1.00 | 1.34e+1 1.00 1.34e+1 1.00
0.0414 | 24437 3.01le-1 —— | 3.24e-3 —— 3.02e-1 —— 7.85e-1 —— 7.85e-1 ——
0.0319 | 40757 1.81e-1 1.97 | 1.51e-3 293 1.81e-1 1.97 4.70e-1 1.98 4.70e-1 1.98
0.0235 73733 9.84e-2 1.99 | 6.10e-4 297 | 9.85e-2 1.99 2.56e-1 1.99 2.56e-1 1.99
0.0167 | 145805 4.96e-2 1.99 | 2.19e-4 297 | 4.96e-2 1.99 1.29e-1 1.99 1.29e-1 1.99
0.0124 | 266089 2.72e-2 1.99 | 8.98e-5 297 2.73e-2 1.99 7.07e-2 2.00 7.07e-2 2.00
0.0414 | 46835 4.04e-3 —— | 1.94e-5 —— 4.45e-3 —— 3.53e-3 —— 4.00e-3 ——
0.0319 | 78175 1.87e-3 2.97 | 6.89e-6  3.98 2.06e-3 2.97 1.64e-3 2.97 1.85e-3 2.97
0.0235 | 141319 7.48e-4  2.99 | 2.04e-6 3.98 8.27e-4 2.99 6.55e-4 2.99 7.43e-4 2.99
0.0167 | 279457 2.67e-4  2.99 | 5.18e-7 3.99 2.96e-4 2.99 2.34e-4 2.99 2.66e-4 2.99
0.0124 | 510153 1.09e-4 2,99 | 1.56e-7  3.99 1.20e-4 2.99 9.52e-5 2.99 1.08e-4 2.99

Table 5.9: Example 3, history of convergence using hexagons.
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Figure 5.1: Example 1, pj 11 (top), pn,12 (center) and up; (bottom), using k& = 2 and the first mesh

of each kind (columns).
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