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Ernesto Cáceres, Gabriel N. Gatica,
Filander A. Sequeira

PREPRINT 2018-05

SERIE DE PRE-PUBLICACIONES





A mixed virtual element method for a pseudostress-based

formulation of linear elasticity∗
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Abstract

In this paper we introduce and analyze a mixed virtual element method (mixed-VEM) for a
pseudostress-displacement formulation of the linear elasticity problem with non-homogeneous Diri-
chlet boundary conditions. We follow a previous work by some of the authors, and employ a mixed
formulation that does not require symmetric tensor spaces in the finite element discretization. More
precisely, the main unknowns here are given by the pseudostress and the displacement, whereas
other physical quantities such as the stress, the strain tensor of small deformations, and the rota-
tion, are computed through simple postprocessing formulae in terms of the pseudostress variable.
We first recall the corresponding variational formulation, and then summarize the main mixed-
VEM ingredients that are required for our discrete analysis. In particular, we utilize a well-known
local projector onto a suitable polynomial subspace to define a calculable version of our discrete
bilinear form, whose continuous version requires information of the variables on the interior of each
element. Next, we show that the global discrete bilinear form satisfies the hypotheses required
by the Babuška-Brezzi theory. In this way, we conclude the well-posedness of our mixed-VEM
scheme and derive the associated a priori error estimates for the virtual solutions as well as for the
fully computable projections of them. Furthermore, we also introduce a second element-by-element
postprocessing formula for the pseudostress, which yields an optimally convergent approximation
of this unknown with respect to the broken H(div)-norm. In addition, this postprocessing formula
can also be applied to the postprocessed stress tensor. Finally, several numerical results illustrat-
ing the good performance of the method and confirming the theoretical rates of convergence are
presented.

Key words: pseudostress-displacement formulation, linear elasticity, mixed virtual element method,
a priori error analysis, postprocessing techniques

1 Introduction

The virtual element method (VEM), which was first introduced and analyzed in [4] using the Poisson
problem as a model, arised as a natural consequence of new developments and interpretations of
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the mimetic finite difference method (MFDM). In fact, this new approach features the utilization of
a virtual discrete space defined on a mesh made of convex or non-convex polygonal or polyhedral
elements, along with the incorporation of approximate bilinear and linear forms. More precisely, the
latters, being usually defined in terms of suitably chosen projectors, mimic the respective original
forms, but still provide consistence and stability of the resulting modified discrete scheme. The
concept virtual employed here means that the corresponding basis functions do not need to be known
explicitly, but only the degrees of freedom defining them uniquely on each element are required.
Among its main advantages, it is highlighted the fact that VEM constitutes an extension of the
classical finite element technique to more general meshes, as well as a generalization of the MFDM
to arbitrary degrees of accuracy and continuity properties. Other benefits of VEM, when compared
with finite volume methods, MFDM, and related techniques, refer to the solid mathematical ground
involved, the simplicity of the respective computational implementation, the high order approximation
properties of the virtual element subspaces employed, and the consequent good quality of the numerical
results provided. Furthermore, while the virtual element schemes were originally defined in terms of
projectors that were ad-hoc to the problem under consideration, it is important to remark that a
systematic use of the simple L2-projection operator was recently introduced in [1] and [8].

Further interesting contributions on VEM for boundary value problems in continuum mechanics
include, among others, a stream function-based approach for the classical velocity-pressure formulation
of the Stokes problem in [2], a displacement-based VEM for compressible and nearly incompressible
2D and 3D linear elasticity in [5] and [16], and a VEM based on the Kirchhoff–Love formulation for
linear plate bending problems in [12]. Moreover, regarding the applicability of VEM to nonlinear
models, we highlight that a family of corresponding methods for the two-dimensional Navier-Stokes
equations is introduced and analyzed in [10], which constitutes, up to our knowledge, the first paper
applying this technique to a nonlinear model.

On the other hand, within the context of what are called mixed virtual element methods (mixed-
VEM), that is those based on dual-mixed variational formulations instead of primal or primal-mixed
ones, we stress that the first approach in this direction is introduced and analyzed in [11] by using the
Darcy problem for fluid flow in porous media as a model. Similarly as in [4], polygonal or polyhedral
elements were considered in [11], but only an approximation of the main bilinear form was needed
to obtain a consistent and stable discrete scheme. In addition, taking advantage of the structure of
the exact solution, a projection onto a space of restricted polynomial vector fields is introduced and
employed there. Later on, further extensions of the mixed-VEM are developed in [6], [7], and [13].
In particular, edge and face VEM spaces in 2D and 3D were developed in [6], whereas [7] generalizes
the results of [6] to the case of variable coefficients. In turn, a mixed-VEM for a pseudostress-based
formulation of the Stokes problem is introduced and analyzed in [13]. In this work, the pseudostress
and the velocity are the only unknowns, whereas the pressure is computed via a postprocessing formula.
Thus, a new local projector onto a suitable space of polynomials is presented, which takes into account
the main features of the continuous solution and allows the explicit integration of the terms involving
the deviatoric tensors. The resulting family of local projectors is shown to be uniformly bounded, and
its approximation properties are also established there.

For additional contributions on mixed-VEM for pseudostress-based formulations of boundary value
problems, we begin by referring to [14] where two mixed virtual element methods are proposed for the
two-dimensional Brinkman problem originally studied in [18]. Indeed, following [18], the equilibrium
equation and the incompressibility condition are first used in [14] to eliminate both the velocity and the
pressure, thus yielding the pseudostress as the only unknown of the resulting dual-mixed formulation.
Thus, the aforementioned two schemes are determined by each one of the following projectors: the
particular local one introduced in [13], and the general L2-orthogonal projection analyzed in [6] (see
also [7]). More recently, the analysis and results from [13] and [14] were extended in [15] to the case
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of quasi-Newtonian Stokes flows, for which the problem originally studied in [23] was considered as
a model, and hence, up to our knowledge, [15] constitutes the first work applying mixed-VEM to a
nonlinear problem. While the original unknowns in [15] are given by the pseudostress, the velocity,
and the pressure, the latter is eliminated by using the incompressibility condition, and in order to
handle the nonlinearity involved, the velocity gradient is set as an auxiliary one. Additionally, the
approach from [14] was generalized in [24] to the nonlinear Brinkman model considered in [19], whereas
a mixed-VEM for a pseudostress-velocity formulation of the two-dimensional Navier-Stokes equations
with Dirichlet boundary conditions is proposed and analyzed in [25]. Actually, besides projectors
commonly utilized for related models, the main novelty of the method introduced in [25] is given by
the simultaneous use of VEM and mixed-VEM techniques for approximating the velocity and the
pseudostress, respectively. More precisely, a dual-mixed approach based on the introduction of a
nonlinear pseudostress linking the usual linear one for the Stokes equations and the convective term,
is employed in [25]. In this way, the aforementioned new tensor together with the velocity constitute
the only unknowns of the problem, whereas the pressure is computed via a postprocessing formula.
Finally, concerning the applicability of mixed-VEM to the classical linear elasticity problem, we are
just aware of [3] where a low-order scheme, with a priori symmetric Cauchy stresses, was proposed and
analyzed for the 2D case. In fact, the VEM concept is applied here only to the stress field by using
three traction degrees of freedom per each edge, similarly to the construction of the discrete velocity
field for the Stokes problem in [9], while the displacement field inside each element is essentially
approximated by a rigid body motion.

According to the foregoing discussion, and in order to, on one hand, additionally contribute in the
direction drawn by [13], [14], [15], [24], and [25], and on the other hand, provide an alternative to
the stress-based approach from [3], we now aim to further extend the applicability of the mixed-VEM
to boundary value problems in continuum mechanics, particularly in elasticity. More precisely, we
consider the same pseudostress-displacement formulation introduced and analyzed in [21] (see also
[20]), and develop a new mixed-VEM for the two-dimensional linear elasticity problem with non-
homogeneous Dirichlet boundary conditions. Besides the fact that no symmetry is needed for the
pseudostress, we highlight that the present approach yields much more freedom than [3] for choosing
the virtual element subspace approximating the pseudostress and the piecewise polynomial subspace
where the discrete displacement lives now, which, in turn, allows for rates of convergence of higher
order. Moreover, we remark in advance that the method to be proposed here leads to fully computable
element-by-element postprocessing formulae for the pseudostress as well as for the stress.

The rest of this work is organized as follows. In Section 2 we introduce the boundary value problem
of interest, and recall from [21] its pseudostress-displacement mixed formulation and the associated
well-posedness result. Then, in Section 3 we follow [11], [13], and [14], and introduce and analyze
the virtual element method that will be employed. This includes the assumptions on the polygonal
mesh, the definition of the local virtual element subspaces, the definition of the corresponding discrete
bilinear forms, and certainly the resulting discrete scheme itself. Also, the interpolants and projectors
to be used are introduced here, along with their approximation properties. Finally, a priori error
estimates and corresponding rates of convergence for the approximations of both the pseudostress and
the displacement are derived. Next, in Section 4 we follow [21] and [14], and introduce two different
fully computable approximations for the pseudostress ρ and the stress σ, for which their a priori
error estimates and rates of convergence are also established. In particular, we show that the second
pair of computable approximations lead to optimal rates of convergence in the broken H(div)-norm.
Finally, numerical experiments showing the good performance of the method with different values of
the parameters and polynomial degrees involved, confirming the rates of convergence and illustrating
the acurateness of the approximate solutions, are reported in Section 5.
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Notations

We end the present section by providing some notations to be used along the paper, including those
already employed above. Indeed, given a bounded domain Ω ⊆ R2 with boundary Γ, we let n be
the outward unit normal vector on Γ. In addition, standard terminology will be adopted for Lebesgue
spaces Lp(Ω), p > 1, and Sobolev spaces Hs(Ω), s ∈ R, with norm ‖ · ‖s,Ω and seminorm | · |s,Ω.
In particular, H1/2(Γ) is the space of traces of functions of H1(Ω), and H−1/2(Γ) denotes its dual.
We will denote by M and M, the corresponding vector and tensor counterparts of the generic scalar
functional space M, respectively. Then, letting div (resp. rot) be the usual divergence operator div
(resp. rotational operator rot) acting along the rows of a given tensor, we recall that the spaces

H(div; Ω) :=
{
τ ∈ L

2(Ω) : div(τ ) ∈ L2(Ω)
}

and
H(rot; Ω) :=

{
τ ∈ L

2(Ω) : rot(τ ) ∈ L2(Ω)
}
,

equipped with the usual norms

‖τ ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H(div; Ω) ,

and
‖τ‖2rot;Ω := ‖τ‖20,Ω + ‖rot(τ )‖20,Ω ∀ τ ∈ H(rot; Ω) ,

are Hilbert spaces. Also, given τ := (τij), ζ := (ζij) ∈ R2×2, we write as usual

τ t := (τji) , tr(τ ) :=

2∑

i=1

τii , τ d := τ −
1

2
tr(τ ) I , and τ : ζ :=

2∑

i,j=1

τijζij ,

where I is the identity matrix of R2×2. Finally, in what follows we employ 0 to denote a generic null
vector, null tensor or null operator, and use C, with or without subscripts, bars, tildes or hats, to
denote generic constants independent of the discretization parameters, which may take different values
at different places.

2 The elasticity problem and its pseudostress-based formulation

Let Ω be a bounded and simply connected polyhedral domain in R2 with boundary Γ. Our goal is to
determine the displacement u and the stress tensor σ of a linear elastic material occupying the region
Ω. In other words, given a volume force f ∈ L2(Ω) and a Dirichlet datum g ∈ H1/2(Γ), we seek a
symmetric tensor field σ and a vector field u such that

σ = C e(u) in Ω , div(σ) = −f in Ω , and u = g on Γ , (2.1)

where e(u) := 1
2
(∇u + (∇u)t) is the strain tensor of small deformations (symmetric part of the

displacement gradient), and C is the elasticity operator governed by Hooke’s law:

Cζ := 2µ ζ + λ tr(ζ) I ∀ ζ ∈ L
2(Ω) ,

with λ, µ > 0 being the corresponding Lamé constants.

On the other hand, from [20, 21] we know that the stress-displacement formulation of (2.1) can be
re-written as: find a non-symmetric tensor ρ (pseudostress) and a vector u (displacement) such that

ρ = C̃ ∇u in Ω , div(ρ) = −f in Ω , and u = g on Γ , (2.2)
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where, C̃ is given by
C̃ζ := µ ζ + (λ+ µ) tr(ζ) I ∀ ζ ∈ L

2(Ω) ,

and satisfies

C̃−1ζ :=
1

µ

{
ζ −

λ+ µ

2λ+ 3µ
tr(ζ) I

}
∀ ζ ∈ L

2(Ω) . (2.3)

Note that the stress σ can be expressed in terms of the pseudostress ρ (see [20, 21]) as

σ = ρ + ρt −

{
λ+ 2µ

2λ+ 3µ

}
tr(ρ) I . (2.4)

In addition, other physical quantities of interest such as the strain tensor of small deformations e(u)
and the rotation γ := 1

2
(∇u− (∇u)t) can be computed in terms of the pseudostress ρ by

e(u) =
1

2µ

{
ρ + ρt −

2(λ+ µ)

2λ+ 3µ
tr(ρ) I

}
and γ =

1

4µ
(ρ − ρt) .

Now, proceeding as in [20, 21], we arrive at the following mixed variational formulation of (2.2): Find
(ρ,u) ∈ H×Q such that





a(ρ, τ ) + b(τ ,u) = 〈τn ,g〉Γ ∀ τ ∈ H ,

b(ρ,v) = −

∫

Ω

f · v ∀ v ∈ Q ,
(2.5)

where H := H(div; Ω), Q := L2(Ω), and a : H×H → R and b : H×Q → R are the bilinear forms

a(ζ, τ ) :=

∫

Ω

C̃−1ζ : τ =
1

µ

∫

Ω

ζ : τ −
λ+ µ

µ(2λ+ 3µ)

∫

Ω

tr(ζ) tr(τ ) ∀ ζ, τ ∈ H , (2.6)

b(τ ,v) :=

∫

Ω

v · div(τ ) ∀ τ ∈ H , ∀ v ∈ Q , (2.7)

and 〈·, ·〉Γ stands from now on for the duality pairing between H−1/2(Γ) and H1/2(Γ). We now define

H0 :=

{
τ ∈ H(div; Ω) :

∫

Ω

tr(τ ) = 0

}
,

and recall that H = H0 ⊕ R I, which means that for any τ ∈ H, there exist unique elements τ 0 ∈ H0

and d := 1
2|Ω|

∫
Ω
tr(τ ) ∈ R, where |Ω| denotes the measure of Ω, such that τ = τ 0 + d I. In particular,

taking τ = I in the first equation of (2.5), we deduce that
∫

Ω

tr(ρ) = (2λ+ 3µ)

∫

Γ

g · n ,

which yields ρ = ρ0 + c I, with ρ0 ∈ H0 and the constant c given explicitly by

c :=
2λ+ 3µ

2|Ω|

∫

Γ

g · n . (2.8)

In this way, replacing ρ by the expression ρ0 + c I in (2.5), and similarly as in [20, 21], using that
div(ρ) = div(ρ0) and denoting the remaining unknown ρ0 ∈ H0 simply by ρ from now on, we find
that the dual-mixed variational formulation (2.5) is equivalent to the following saddle point problem:
Find (ρ,u) ∈ H0 ×Q such that





a(ρ, τ ) + b(τ ,u) = 〈τn ,g〉Γ ∀ τ ∈ H0 ,

b(ρ,v) = −

∫

Ω

f · v ∀ v ∈ Q .
(2.9)
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Lemma 2.1. Problems (2.5) and (2.9) are equivalent in the following sense:

i) If (ρ,u) ∈ H × Q is a solution of (2.5) and ρ = ρ0 + c I for some ρ0 ∈ H0 and c ∈ R, then
(ρ0,u) ∈ H0 ×Q is a solution of (2.9).

ii) If (ρ0,u) ∈ H0×Q is a solution of (2.9) and ρ := ρ0+c I with c given by (2.8), then (ρ,u) ∈ H×Q

is a solution of (2.5).

Proof. See [21, Lemma 2.1].

Furthermore, according to the new meaning of ρ, we deduce from (2.2) and (2.8) that the consti-
tutive equation in (2.2) becomes

C̃−1ρ +

{
1

2|Ω|

∫

Γ

g · n

}
I = ∇u in Ω ,

whereas the equilibrium equation remains the same, that is

div(ρ) = −f in Ω .

In addition, in terms of the H0-component of the pseudostress, the stress (cf. (2.4)) is now given by

σ = ρ + ρt −

{
λ+ 2µ

2λ+ 3µ
tr(ρ)−

λ+ µ

|Ω|

∫

Γ

g · n

}
I . (2.10)

The unique solvability of (2.9) is established as follows.

Theorem 2.1. Assume that f ∈ L2(Ω) and g ∈ H1/2(Γ). Then, there exists a unique solution
(ρ,u) ∈ H0 ×Q to (2.9). In addition, there exists C > 0, independent of λ, such that

‖ρ‖div;Ω + ‖u‖0,Ω ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. See [21, Theorem 2.1].

3 The mixed virtual element method

In this section we introduce and analyze a mixed virtual element scheme for the equivalent continuous
formulation given by (2.9).

3.1 Basic assumptions

Let {Th}h>0 be a family of decompositions of Ω in polygonal elements. For each K ∈ Th, we denote
its diameter by hK and define, as usual, h := max{hK : K ∈ Th}. Furthermore, in what follows we
assume that there exists a constant CT > 0 such that for each decomposition Th and for each K ∈ Th,
there hold:

a) the ratio between the shortest edge and the diameter hK of K is bigger than CT , and

b) K is star-shaped with respect to a ball B of radius CT hK and center xB ∈ K, that is, for each
x0 ∈ B, all the line segments joining x0 with any x ∈ K are contained in K, or, equivalently,
for each x ∈ K, the closed convex hull of {x} ∪B is contained in K.

As a consequence of the above hypotheses, one can show that each K ∈ Th is simply connected, and
that there exists an integer NT (depending only on CT ), such that for each K ∈ Th, dK is bounded
above by NT .
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3.2 The virtual element spaces

Given an integer ℓ ≥ 0, we let Pℓ(K) be the space of polynomials defined on K of total degree at
most ℓ. Then, for each integer k ≥ 0 and for each K ∈ Th, we follow [6, 7] (see also [14] and [15]) and
consider the following local virtual element subspace of order k

H
K
h :=

{
τ ∈ H(div;K) ∩H(rot;K) : τn|e ∈ Pk(e) ∀ edge e ∈ ∂K ,

div(τ ) ∈ Pk(K) , and rot(τ ) ∈ Pk−1(K)
}
,

(3.1)

where P−1(K) := {0}, and

rot(τ ) :=

(
∂x1

τ12 − ∂x2
τ11

∂x1
τ22 − ∂x2

τ21

)
∀ τ ∈ H .

We recall here that the virtual subspace HK
h was first introduced in [7] and recently utilized in [14] and

[15] for a pseudostress-based formulation of the linear Brinkman problem, and for a class of nonlinear
Stokes models arising in quasi-Newtonian fluids, respectively.

Next, the corresponding global virtual element subspaces of H0 and Q, are given, respectively, by

H0,h :=
{
τ ∈ H0 : τ |K ∈ H

K
h ∀ K ∈ Th

}
, (3.2)

and

Qh :=
{
v ∈ Q : v|K ∈ Pk(K) ∀ K ∈ Th

}
. (3.3)

Then, the Galerkin scheme associated with (2.9) reads: Find (ρ,u) ∈ H0,h ×Qh such that





a(ρh, τ h) + b(τ h,uh) = 〈τ hn ,g〉Γ ∀ τ h ∈ H0,h ,

b(ρh,vh) = −

∫

Ω

f · vh ∀ vh ∈ Qh .
(3.4)

Unfortunately, and similarly as in [11, 13, 14, 15], we will observe in the next section that a(ρh, τ h)
cannot be computed explicitly when ρh, τ h belong to H0,h, and hence a suitable approximation of this
bilinear form, namely ah(·, ·), is required in order to redefine (3.4).

3.3 The discrete bilinear forms

In this section we define computable discrete versions ah : H0,h × H0,h → R and bh : H0,h ×Qh → R
of the bilinear forms a(·, ·) and b(·, ·). To this end, we proceed as in [13, Section 4] and observe first
that given (τ h,vh) ∈ H0,h ×Qh, the expression

b(τ h,vh) :=

∫

Ω

vh · div(τ h) =
∑

K∈Th

∫

K
vh · div(τ h) ,

is explicitly calculable since according to the definitions of H0,h and Qh (cf. (3.2) and (3.3)), there
hold vh|K ∈ Pk(K) and div(τ h)|K ∈ Pk(K) on each element K, and hence we just set bh := b. On
the contrary, given ζh, τ h ∈ H0,h, the expression

a(ζh, τ h) :=

∫

Ω

C̃−1ζh : τ h =
1

µ

∫

Ω

ζh : τ h −
λ+ µ

µ(2λ+ 3µ)

∫

Ω

tr(ζh) tr(τ h)
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is not explicitly calculable since in general ζh and τ h are not known on each K ∈ Th. In order
to overcome this difficulty, we now introduce a suitable space on which the elements of H0,h will
be projected later on, so that the bilinear form a(·, ·) is explicitly computable for these projections.
Indeed, we let PK

k : L2(K) → Pk(K) be the L
2(K)-orthogonal projector. That is, given ζ ∈ L

2(K),
P

K
k (ζ) is characterized by

∫

K
P

K
k (ζ) : τ =

∫

K
ζ : τ ∀ τ ∈ Pk(K) (3.5)

which, according to [7, Section 3.2] (see also [14, Section 3.1.1]), is explicitly calculable, even when
ζ ∈ H

K
h . In addition, it is straightforward to check from (3.5) with τ = P

K
k (ζ) that

‖PK
k (ζ)‖0,K ≤ ‖ζ‖0,K ∀ ζ ∈ L

2(K) . (3.6)

Furthermore, the operator P
K
k satisfies the following approximation property (see, e.g. [7, eq. (22)]

or [13, Lemma 3.4]): for each ζ ∈ H
r(K), with 0 ≤ r ≤ k + 1, there holds

‖ζ −P
K
k (ζ)‖0,K ≤ C hrK |ζ|r,K ∀ K ∈ Th . (3.7)

Now, for each K ∈ Th, we let aK : L2(K)× L
2(K) → R be the local bilinear form defined by

aK(ζ, τ ) :=

∫

K
C̃−1ζ : τ ∀ ζ, τ ∈ L

2(K) , (3.8)

whence a (cf. (2.6)) can be rewritten as

a(ζ, τ ) :=
∑

K∈Th

aK(ζ|K , τ |K) ∀ ζ, τ ∈ L
2(Ω) . (3.9)

Then, applying the Cauchy-Schwarz inequality and using that λ+µ
2λ+3µ < 1

2
, we find that

|aK(ζ, τ )| =
1

µ

∣∣∣∣
∫

K
ζ : τ −

λ+ µ

2λ+ 3µ

∫

K
tr(ζ) tr(τ )

∣∣∣∣

≤
1

µ
‖ζ‖0,K‖τ‖0,K +

1

2µ
‖tr(ζ)‖0,K‖tr(τ )‖0,K

≤
1

µ
‖ζ‖0,K‖τ‖0,K +

1

µ
‖ζ‖0,K‖τ‖0,K =

2

µ
‖ζ‖0,K‖τ‖0,K

(3.10)

for all ζ, τ ∈ L
2(K). Moreover, replacing ζ = ζd + 1

2
tr(ζ) I in (3.8), and using that ζd : τ = ζd : τ d,

and tr(ζd) = 0 for all ζ ∈ L
2(K), we arrive at the following equivalent expression for aK :

aK(ζ, τ ) =
1

µ

∫

K
ζd : τ d +

1

2(2λ+ 3µ)

∫

K
tr(ζ) tr(τ ) ∀ ζ, τ ∈ L

2(K) ,

In particular,

aK(ζ, ζ) ≥
1

µ
‖ζd‖20,K ∀ ζ ∈ L

2(K) , ∀ K ∈ Th . (3.11)

In turn, we let aKh : HK
h ×H

K
h → R be the local discrete bilinear form given for all ζ, τ ∈ H

K
h by

aKh (ζ, τ ) := aK(PK
k (ζ), PK

k (τ )) + SK(ζ −P
K
k (ζ), τ −P

K
k (τ )) , (3.12)
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where SK : HK
h × H

K
h → R is the bilinear form associated to the nK

k local degrees of freedom of HK
h

(see, e.g, [14, Section 3.2]). More precisely,

SK(ζ, τ ) :=

nK
k∑

i=1

mi,K(ζ)mi,K(τ ) ∀ ζ, τ ∈ H
K
h , (3.13)

where the set {mi,K(τ )}
nK
k

i=1 corresponds to all the K-moments of τ ∈ H
K
h (cf. (3.1)), given by (see,

e.g, [14, Section 3.2])

∫

e
τn · q ∀ q ∈ Pk(e) , ∀ edge e ∈ ∂K ,

∫

K
τ : ∇q ∀ q ∈ Pk(K) \ {(1, 0)t, (0, 1)t} ,

∫

K
τ : ξ ∀ ξ ∈ (∇Pk+1(K))⊥ ∩ Pk(K) .

In addition, as in [11, eq. (5.8)], we assume that there exist c0, c1 > 0, independent of λ and K, such
that

c0 ‖ζ‖
2
0,K ≤ SK(ζ, ζ) ≤ c1 ‖ζ‖

2
0,K ∀ ζ ∈ H

K
h , ∀ K ∈ Th . (3.14)

The following result is a consequence of the properties from the projector PK
k and (3.14).

Lemma 3.1. For each K ∈ Th, there holds

aKh (ζ, τ ) = aK(ζ, τ ) ∀ ζ ∈ Pk(K) , ∀ τ ∈ H
K
h , (3.15)

and there exist positive constants α1, α2, independent of h, λ and K, such that

|aKh (ζ, τ )| ≤ α1

{
‖ζ‖0,K‖τ‖0,K + ‖ζ −P

K
k (ζ)‖0,K‖τ −P

K
k (τ )‖0,K

}
∀ ζ, τ ∈ H

K
h , (3.16)

and
α2 ‖ζ

d‖20,K ≤ aKh (ζ, ζ) ∀ ζ ∈ H
K
h . (3.17)

Proof. We adapt the proof of [13, Lemma 4.6]. Indeed, we first note that given ζ ∈ Pk(K), it holds
P

K
k (ζ) = ζ. Hence, using the definition of aK (cf. (3.8)), the fact that C̃−1ζ ∈ Pk(K) (cf. (2.3)) and

(3.5), we deduce, starting from (3.12), that given τ ∈ H
K
h there holds

aKh (ζ, τ ) = aK(ζ,PK
k (τ )) =

∫

K
C̃−1ζ : PK

k (τ ) =

∫

K
P

K
k (τ ) : C̃−1ζ

=

∫

K
τ : C̃−1ζ =

∫

K
C̃−1ζ : τ = aK(ζ, τ ) ,

which proves (3.15). Next, for the boundedness of aKh we apply the Cauchy-Schwarz inequality, the
estimate (3.10), and the upper bound in (3.14), to obtain

|aKh (ζ, τ )| ≤ |aK(PK
k (ζ), PK

k (τ ) )|

+
{
SK(ζ −P

K
k (ζ), ζ −P

K
k (ζ))

}1/2 {
SK(τ −P

K
k (τ ), τ −P

K
k (τ ))

}1/2

≤
2

µ
‖PK

k (ζ)‖0,K‖PK
k (τ )‖0,K + c1‖ζ −P

K
k (ζ)‖0,K‖τ −P

K
k (τ )‖0,K ∀ ζ, τ ∈ H

K
h ,

9



which, together with (3.6), imply (3.16) with α1 := max{ 2
µ , c1}. Finally, concerning (3.17), we apply

the lower bound in (3.14) and (3.11), to obtain

‖ζd‖20,K ≤ 2
{
‖(PK

k (ζ))d‖20,K + ‖(ζ −P
K
k (ζ))d‖20,K

}

≤ 2µ

(
1

µ
‖(PK

k (ζ))d‖20,K

)
+

2

c0

(
c0‖ζ −P

K
k (ζ)‖20,K

)

≤ 2µaK(PK
k (ζ),PK

k (ζ)) +
2

c0
SK(ζ −P

K
k (ζ), ζ −P

K
k (ζ)) ∀ ζ ∈ H

K
h ,

which yields (3.17) with α2 := max{2µ, 2
c0
}−1, and completes the proof.

We end this section by defining, as suggested by (3.9) and (3.12), the global discrete bilinear form
ah : H0,h ×H0,h → R by

ah(ζ, τ ) :=
∑

K∈Th

aKh (ζ, τ ) ∀ ζ, τ ∈ H0,h . (3.18)

3.4 The mixed virtual element scheme

According to the analysis from the foregoing section, we reformulate the Galerkin scheme (3.4) asso-
ciated with (2.9) as: Find (ρ,u) ∈ H0,h ×Qh such that





ah(ρh, τ h) + b(τ h,uh) = 〈τ hn ,g〉Γ ∀ τh ∈ H0,h ,

b(ρh,vh) = −

∫

Ω

f · vh ∀ vh ∈ Qh .
(3.19)

In what follows we establish the well-posedness of (3.19). We begin the analysis by proving that ah(·, ·)
is elliptic in the discrete kernel of b(·, ·).

Lemma 3.2. Let Vh := {ζh ∈ H0,h : b(ζh,vh) = 0 ∀ vh ∈ Qh}. Then, there exists α > 0,
independent of h and λ, such that

ah(ζh, ζh) ≥ α ‖ζh‖
2
div;Ω ∀ ζh ∈ Vh .

Proof. It follows exactly as in [13, Lemma 5.2].

The following lemma provides the discrete inf-sup condition for b(·, ·).

Lemma 3.3. Let H0,h and Qh be the virtual subspaces given by (3.2) and (3.3). Then, there exists
β > 0, independent of h and λ, such that

sup
τh∈H0,h

τh 6=0

b(τ h, vh)

‖τ h‖div;Ω
≥ β ‖vh‖0,Ω ∀ vh ∈ Qh . (3.20)

Proof. See [13, Lemma 5.3].

The unique solvability and stability of the actual Galerkin scheme (3.19) is established next.

Theorem 3.1. There exists a unique (ρh,uh) ∈ H0,h × Qh solution of (3.19), and there exists a
positive constant C, independent of h and λ, such that

‖ρh‖div;Ω + ‖uh‖0,Ω ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.
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Proof. The boundedness of ah : H0,h × H0,h → R with respect to the norm ‖ · ‖div;Ω of H(div; Ω)
follows directly from (3.18), (3.16), and (3.6). In turn, it is quite clear that b : H0,h ×Qh → R is also
bounded. Hence, thanks to Lemmas 3.2 and 3.3, a straightforward application of the Babuška-Brezzi
theory completes the proof.

3.5 The a priori error analysis

We now aim to derive the corresponding a priori error estimates for (3.19) and (2.9). For this purpose,
we need the approximation properties of the virtual element subspaces involved. Thus, letting

H
1
h(Ω) :=

{
τ ∈ H(div; Ω) : τ |K ∈ H

1(K) ∀ K ∈ Th
}
,

we now introduce the interpolation operator Πh
k : H1

h(Ω) → H0,h (see [7, 14]), which, given τ ∈ H
1
h(Ω),

is characterized by the following identities:

0 =

∫

e

(
τ −Πh

k(τ )
)
n · q ∀ q ∈ Pk(e) , ∀ edge e ∈ Th ,

0 =

∫

K

(
τ −Πh

k(τ )
)
: ∇q ∀ q ∈ Pk(K) \ {(1, 0)t, (0, 1)t} , ∀ K ∈ Th ,

0 =

∫

K

(
τ −Πh

k(τ )
)
: ξ ∀ ξ ∈ (∇Pk+1(K))⊥ ∩ Pk(K) , ∀ K ∈ Th .

Furthermore, we can show (see, e.g, [14, eq. (3.8)]) by using the above identities that

div(Πh
k(τ )) = Ph

k (div(τ )) , (3.21)

where Ph
k : L2(Ω) → Qh is the L2(Ω)-orthogonal projector. Also, note that Ph

k (v)|K = PK
k (v|K) for

each K ∈ Th and for all v ∈ L2(Ω), where PK
k : L2(K) → Pk(K) is the local orthogonal projector.

Hence, for each v ∈ Hr(Ω), with 0 ≤ r ≤ k+1, there holds (see, e.g. [7, eq. (22)] or [13, Lemma 3.4])

‖v− Ph
k (v)‖0,K = ‖v− PK

k (v)‖0,K ≤ C hrK |v|r,K ∀ K ∈ Th . (3.22)

In addition, the operator Πh
k satisfies the following approximation properties (see [7, eq. (28)]): for

each τ ∈ H
r(K), with 1 ≤ r ≤ k + 1, there holds

‖τ −Πh
k(τ )‖0,K ≤ C hrK |τ |r,K ∀ K ∈ Th , (3.23)

and for each τ ∈ H
1
h(Ω) such that div(τ ) ∈ Hr(Ω), with 0 ≤ r ≤ k + 1, there holds

‖div(τ −Πh
k(τ ))‖0,K ≤ C hrK |div(τ )|r,K ∀ K ∈ Th . (3.24)

In particular, note that (3.24) follows easily from (3.21) and (3.22).

Next, recalling the L
2(K)-orthogonal projector PK

k : L2(K) → Pk(K) defined by (3.5), we denote
by P

h
k its global counterpart, that is, given ζ ∈ L

2(Ω), we let

P
h
k(ζ)|K := P

K
k (ζ|K) ∀ K ∈ Th .

Then, we have the following main result.

Theorem 3.2. Let (ρ,u) ∈ H0×Q and (ρh,uh) ∈ H0,h×Qh be the unique solutions of the continuous
and discrete schemes (2.9) and (3.19), respectively, and assume that ρ ∈ H

1
h(Ω). Then, there exist

positive constants C1, C2, independent of h and λ, such that

‖ρ − ρh‖0,Ω ≤ C1

{
‖ρ−Πh

k(ρ)‖0,Ω + ‖ρ −P
h
k(ρ)‖0,Ω

}
, (3.25)
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‖div(ρ− ρh)‖0,Ω = ‖div(ρ−Πh
k(ρ))‖0,Ω , (3.26)

and

‖u− uh‖0,Ω ≤ C2

{
‖ρ−Πh

k(ρ)‖0,Ω + ‖ρ−P
h
k(ρ)‖0,Ω + ‖u− Ph

k (u)‖0,Ω

}
. (3.27)

Proof. We adapt the proof of [13, Theorem 5.2] (see also [14, Theorem 5.2]). Indeed, first note from

‖ρ − ρh‖0,Ω ≤ ‖ρ −Πh
k(ρ)‖0,Ω + ‖δh‖0,Ω , (3.28)

that we only need to estimate δh := Πh
k(ρ) − ρh ∈ H0,h. To this end, observe from (3.21) and the

second equation of (3.19) that div(Πh
k(ρ)) = Ph

k (div(ρ)) = Ph
k (−f) = div(ρh), which establishes that

δh ∈ Vh (cf. Lemma 3.2) and gives (3.26). Next, applying Lemma 3.2, adding and subtracting P
h
k(ρ),

using the first equations of (3.19) and (2.9), and employing (3.15), we find that

α ‖δh‖
2
div;Ω ≤ ah(δh, δh) = ah(Π

h
k(ρ), δh) − ah(ρh, δh)

= ah(Π
h
k(ρ)−P

h
k(ρ), δh) + ah(P

h
k(ρ), δh) − 〈δhn,g〉Γ

= ah(Π
h
k(ρ)−P

h
k(ρ), δh) + ah(P

h
k(ρ), δh) − a(ρ, δh)

=
∑

K∈Th

{
aKh (Πh

k(ρ)−P
K
k (ρ), δh) − aK(ρ−P

K
k (ρ), δh)

}
.

In addition, from (3.16) and (3.10), together with (3.6), we obtain

α ‖δh‖
2
div;Ω ≤ α1

∑

K∈Th

{
‖Πh

k(ρ)−P
K
k (ρ)‖0,K‖δh‖0,K

+ ‖Πh
k(ρ)−P

K
k

{
Πh

k(ρ)
}
‖0,K‖δh −P

K
k (δh)‖0,K

}

+
2

µ

∑

K∈Th

‖ρ−P
K
k (ρ)‖0,K‖δh‖0,K ,

which yields

‖δh‖div;Ω ≤ C
{
‖ρ−P

h
k(ρ)‖0,Ω + ‖Πh

k(ρ)−P
h
k(ρ)‖0,Ω + ‖Πh

k(ρ)−P
h
k

{
Πh

k(ρ)
}
‖0,Ω

}
. (3.29)

with C := 2
α max{α1,

1
µ}. Next, adding and subtracting ρ, we deduce that

‖Πh
k(ρ)−P

h
k(ρ)‖0,Ω ≤ ‖ρ−Πh

k(ρ)‖0,Ω + ‖ρ−P
h
k(ρ)‖0,Ω . (3.30)

In turn, adding and subtracting ρ −P
h
k(ρ), and employing again the boundedness of Ph

k (cf. (3.6)),
we get

‖Πh
k(ρ)−P

h
k

{
Πh

k(ρ)
}
‖0,Ω ≤ ‖ρ−Πh

k(ρ)‖0,Ω + ‖ρ −P
h
k(ρ)‖0,Ω + ‖Ph

k

{
ρ−Πh

k(ρ)
}
‖0,Ω

≤ 2 ‖ρ −Πh
k(ρ)‖0,Ω + ‖ρ −P

h
k(ρ)‖0,Ω . (3.31)

In this way, replacing (3.30) and (3.31) back into (3.29), and then the resulting estimate back into
(3.28), we arrive at (3.25). On the other hand, concerning the error ‖u − uh‖0,Ω, we begin by using
the triangle inequality,

‖u− uh‖0,Ω ≤ ‖u− Ph
k (u)‖0,Ω + ‖Ph

k (u)− uh‖0,Ω . (3.32)

12



Next, taking vh := Ph
k (u)− uh ∈ Qh in the discrete inf-sup condition (3.20), we have

‖Ph
k (u)− uh‖0,Ω ≤

1

β
sup

τh∈H0,h

τh 6=0

b(τ h,P
h
k (u)− uh)

‖τ h‖div;Ω
. (3.33)

It follows, employing the definition of Ph
k : L2(Ω) → Qh (L2(Ω)-orthogonal projector), the fact that

τh ∈ H0,h implies div(τ h) ∈ Qh, the first equations of (2.9) and (3.19), and (3.15), that

b(τ h,P
h
k (u)− uh) =

∫

Ω

Ph
k (u) · div(τ h) − b(τ h,uh) = b(τ h,u) − b(τ h,uh)

= ah(ρh, τ h) − a(ρ, τ h) =
∑

K∈Th

{
aKh (ρh −P

K
k (ρ), τ h) + aKh (PK

k (ρ), τ h) − aK(ρ, τ h)
}

=
∑

K∈Th

{
aKh (ρh −P

K
k (ρ), τ h) − a(ρ−P

K
k (ρ), τ h)

}
,

which, using that aKh (cf. (3.16)), aK (cf. (3.10)) and P
K
k (cf. (3.6)) are bounded, gives

b(τ h,P
h
k (u)− uh) ≤ C

{
‖ρ −P

h
k(ρ)‖0,Ω + ‖ρh −P

h
k(ρ)‖0,Ω + ‖ρh −P

h
k(ρh)‖0,Ω

}
‖τ h‖0,Ω .

Therefore, replacing the above identity in (3.33) yields

‖Ph
k (u)− uh‖0,Ω ≤ C

{
‖ρ−P

h
k(ρ)‖0,Ω + ‖ρh −P

h
k(ρ)‖0,Ω + ‖ρh −P

h
k(ρh)‖0,Ω

}
. (3.34)

Thus, adding and subtracting ρ, we readily get

‖ρh −P
h
k(ρ)‖0,Ω ≤ ‖ρ − ρh‖0,Ω + ‖ρ −P

h
k(ρ)‖0,Ω . (3.35)

Similarly, adding and subtracting ρ − P
h
k(ρ), and utilizing once again the boundedness of PK

k (cf.
(3.6)), we obtain

‖ρh −P
h
k(ρh)‖0,Ω ≤ ‖ρ− ρh‖0,Ω + ‖ρ−P

h
k(ρ)‖0,Ω + ‖Ph

k(ρ− ρh)‖0,Ω

≤ 2 ‖ρ − ρh‖0,Ω + ‖ρ−P
h
k(ρ)‖0,Ω . (3.36)

Finally, the estimate (3.27) follows after putting (3.32), (3.34), (3.35), (3.36), and (3.25) together.

Having established the a priori error estimates for our unknowns, we now provide the corresponding
rates of convergence.

Theorem 3.3. Let (ρ,u) ∈ H0×Q and (ρh,uh) ∈ H0,h×Qh be the unique solutions of the continuous
and discrete schemes (2.9) and (3.19), respectively. Assume that for some r ∈ [1, k + 1] there hold
ρ|K ∈ H

r(K), div(ρ)|K ∈ Hr(K), and u|K ∈ Hr(K) for each K ∈ Th. Then, there exist positive
constants C1, C2, independent of h and λ, such that

‖ρ− ρh‖div;Ω ≤ C1 h
r
∑

K∈Th

{
|ρ|r,K + |div(ρ)|r,K

}
,

and
‖u− uh‖0,Ω ≤ C2 h

r
∑

K∈Th

{
|ρ|r,K + |u|r,K

}
.

Proof. It follows from a straightforward application of the approximation properties provided by
(3.7), (3.22), (3.23) and (3.24), to the terms on the right-hand sides of (3.25), (3.26) and (3.27).
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4 Computable approximations of ρ and σ

In this section we introduce fully computable approximations of ρ and σ, and establish the corre-
sponding a priori error estimates and consequent rates of convergence.

4.1 Convergent approximations of ρ and σ in the L
2-norm

We follow [13, 14] and set the approximation of ρ given by

ρ̂h := P
h
k(ρh) . (4.1)

Then, in what follows we show that ρh and ρ̂h share the same rates of convergence given by Theorem
3.3 with respect to the norm ‖ · ‖0,Ω.

Lemma 4.1. There exists a positive constant C, independent of h and λ, such that

‖ρ − ρ̂h‖0,Ω ≤ C
{
‖ρ−Πh

k(ρ)‖0,Ω + ‖ρ −P
h
k(ρ)‖0,Ω

}
. (4.2)

Proof. Similarly as in [13, Theorem 5.4], we add and subtract ρh to obtain

‖ρ− ρ̂h‖0,Ω ≤ ‖ρ− ρh‖0,Ω + ‖ρh −P
h
k(ρh)‖0,Ω .

Then, using (3.36) and (3.25), we arrive at (4.2) and complete the proof.

Next, as suggested by the identity (2.10), we approximate the symmetric tensor field σ by the
postprocessing formula

σ̂h := ρ̂h + (ρ̂h)
t −

{
λ+ 2µ

2λ+ 3µ
tr(ρ̂h)−

λ+ µ

|Ω|

∫

Γ

g · n

}
I . (4.3)

Hence, using (2.10) and the fact that λ+2µ
2λ+3µ < 1, we readily find that

‖σ − σ̂h‖0,Ω ≤ 4 ‖ρ − ρ̂h‖0,Ω , (4.4)

which shows that the a priori error estimate for ‖σ − σ̂h‖0,Ω follows from that of ‖ρ − ρ̂h‖0,Ω (cf.
Lemma 4.1). Moreover, the following theorem provides the corresponding rates of convergence.

Theorem 4.1. Let (ρ,u) ∈ H0×Q and (ρh,uh) ∈ H0,h×Qh be the unique solutions of the continuous
and discrete schemes (2.9) and (3.19), respectively. In addition, let σ be the stress tensor given by
(2.10) and let ρ̂h and σ̂h be the discrete approximations introduced in (4.1) and (4.3), respectively.
Assume that for some r ∈ [1, k + 1] there holds ρ|K ∈ H

r(K) for each K ∈ Th. Then, there exists a
positive constant C, independent of h and λ, such that

‖ρ − ρ̂h‖0,Ω + ‖σ − σ̂h‖0,Ω ≤ C hr
∑

K∈Th

|ρ|r,K .

Proof. It is clear from (4.4) and Lemma 4.1 that

‖ρ− ρ̂h‖0,Ω + ‖σ − σ̂h‖0,Ω ≤ C
{
‖ρ−Πh

k(ρ)‖0,Ω + ‖ρ−P
h
k(ρ)‖0,Ω

}
,

which, together with the approximation properties (3.7) and (3.23), complete the proof.
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4.2 Convergent approximations of ρ and σ in the broken H(div)-norm

Some preliminary numerical experiments confirm that the rates of convergence of the errors

{ ∑

K∈Th

‖ρ − ρ̂h‖
2
div;K

}1/2

, and

{ ∑

K∈Th

‖σ − σ̂h‖
2
div;K

}1/2

are smaller, by a power of h, than the ones associated to ‖σ − σ̂h‖0,Ω and ‖ρ − ρ̂h‖0,Ω. This fact
has motivated the construction of new, improved, approximations to the tensors ρ and σ, having
better rates of convergence with respect to the broken H(div)-norm. In order to do this, we follow
the postprocessing techniques presented in [14, 15, 20, 21]. Indeed, given K ∈ Th, and denoting the
usual H(div;K)-inner product by (·, ·)div;K , we define ρ̂⋆

h |K := ρ̂⋆
h,K ∈ Pk+1(K) and σ̂⋆

h |K := σ̂⋆
h,K ∈

Pk+1(K), as the solutions of the local problems

(ρ̂⋆
h,K , τ h)div;K =

∫

K
ρ̂h : τh −

∫

K
f · div(τ h) ∀ τh ∈ Pk+1(K) , (4.5)

and

(σ̂⋆
h,K , τ h)div;K =

∫

K
σ̂h : τh −

∫

K
f · div(τ h) ∀ τh ∈ Pk+1(K) , (4.6)

where both identities above have taken advantage of the fact that div(ρ) = div(σ) = −f. In turn,
we could have replaced in both right-hand sides the term −

∫
K f · div(τ h) by

∫
K div(ρh) · div(τ h),

with ρh ∈ H0,h given by the discrete scheme (3.19). These alternative choices yield the same rate of
convergence, but we prefer to use −f instead of div(ρh), as this gives precisely the exact value of the
divergence of ρ and σ.

The following result provides the global rates of convergence for ρ̂⋆
h and σ̂⋆

h.

Theorem 4.2. Let (ρ,u) ∈ H0×Q and (ρh,uh) ∈ H0,h×Qh be the unique solutions of the continuous
and discrete schemes (2.9) and (3.19), respectively. In addition, let σ be the stress tensor given by
(2.10) and let ρ̂h, σ̂h, ρ̂

⋆
h, and σ̂⋆

h be the discrete approximations introduced in (4.1), (4.3), (4.5) and
(4.6), respectively. Assume that for some r ∈ [1, k+1] there hold ρ|K ∈ H

r(K) and div(ρ)|K ∈ Hr(K)
for each K ∈ Th. Then, there exists a positive constant C, independent of h and λ, such that

{
∑

K∈Th

‖ρ− ρ̂⋆
h‖

2
div;K

}1/2

+

{
∑

K∈Th

‖σ − σ̂⋆
h‖

2
div;K

}1/2

≤ C hr
∑

K∈Th

{
|ρ|r,K + |div(ρ)|r,K

}
.

Proof. It follows similarly as in [14, Theorem 4.4] and [21, Theorem 3.3].

5 Numerical results

In this section we present some numerical results illustrating the performance of the mixed virtual
element scheme (3.19), introduced and analyzed in Section 3. For all the computations we consider
the specific virtual element subspaces H0,h and Qh given by (3.2) and (3.3) with k ∈ {0, 1, 2}. In
addition, and similarly as in [14] and [17], the zero integral mean condition for tensors in the space
H0,h is imposed via a real Lagrange multiplier. Concerning the decompositions of Ω employed in
our computations, we follow [14] and consider uniform triangles, distorted squares and quasi-uniform
hexagons as decompositions of the domain.
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We begin by introducing some notations. In what follows, N stands for the total number of degrees
of freedom (unknowns) of (3.19). In this case, we have that

N := 2(k + 1)× {# of edges in Th} + (3k + 1)(k + 2)× {# of elements in Th} + 1 .

In turn, the individual errors for all the unknowns are given by

e(ρ) := ‖ρ− ρ̂h‖0,Ω , e(u) := ‖u− uh‖0,Ω , e(σ) := ‖σ − σ̂h‖0,Ω ,

e(ρ⋆) :=

{
∑

K∈Th

‖ρ− ρ̂⋆
h‖

2
div;K

}1/2

and e(σ⋆) :=

{
∑

K∈Th

‖σ − σ̂⋆
h‖

2
div;K

}1/2

,

where ρ̂h, σ̂h, ρ̂
⋆
h, and σ̂⋆

h are computed according to (4.1), (4.3), (4.5), and (4.6), respectively. Then,
we define the experimental rates of convergence

r(·) :=
log
(
e(·) / e′(·)

)

log(h/h′)
,

where e and e
′ denote the corresponding errors for two consecutive meshes with sizes h and h′,

respectively. The numerical results presented below were obtained using a MATLAB code, where the
corresponding linear systems were solved using its instruction “\” as main solver.

Next, we recall that given the Young modulus E and the Poisson ratio ν of an isotropic linear
elastic solid, the corresponding Lamé parameters are defined as

µ :=
E

2(1 + ν)
and λ :=

Eν

(1 + ν)(1− 2ν)
.

In the examples below, we follow [17, 21, 22] by fixing E = 1 and taking ν ∈ {0.3000, 0.4900, 0.4999},
and summarize the values of µ and λ in the following table:

ν µ λ

0.3000 0.3846 0.5769

0.4900 0.3356 16.4430

0.4999 0.3333 1666.4444

It is important to remark here that the cases ν = 0.4900 and ν = 0.4999 correspond to materials
showing nearly incompressible behaviour.

In what follows, we take the domain Ω to be either the unit square (0, 1)2 or the L-shaped domain
(−1, 1)2 \ [0, 1]2, and choose f and g so that the Poisson ratio ν and the exact solution u are given as
follows:

Example Ω ν u(x1, x2)

1 Unit square 0.4900

(
sin(2πx1) cos(2πx2)
cos(2πx1) sin(2πx2)

)

2 L-shaped 0.3000

(
r2/3 sin(θ)

−r2/3 cos(θ)

)

3 Unit square 0.4999 x1x2(1− x1)(1− x2)e
x1+x2

(
1
1

)
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where r :=
√

x21 + x22 and θ := arctan
(
x2

x1

)
in Example 2. Note that the solution of Example 2 is

singular at the origin, so that we should expect high gradients around the origin.

In Tables 5.1 up to 5.3, we summarize the convergence history of the mixed virtual element scheme
(3.19) applied to Example 1. We notice there that the rate of convergence O(hk+1) predicted by
Theorems 3.3, 4.1 and 4.2 (when r = k+1) is attained for all the unknowns for this smooth example,
for triangular as well as for quadrilateral and hexagonal meshes. In particular, these results confirm
that our postprocessed stress σ⋆

h improves in one power the non-satisfactory order provided by the first
approximation σh with respect to the broken H(div)-norm. In addition, as observed in the seventh
column of Tables 5.1−5.3, the convergence of e(u) is a bit faster than expected, which seems a special
behaviour of this particular solution u. Next, in Tables 5.4 up to 5.6, we provide the convergence
history of Example 2. In this case, and because of the singularity at the origin of the exact solution,
the theoretical orders of convergence are not attained. In fact, it is easy to show that u belong to
H5/3(Ω), whence ρ,σ ∈ H

2/3(Ω) and div(ρ) = div(σ) ∈ H−1/3(Ω). Thus, thanks to Theorems 3.3,
4.1 and 4.2, we can explain the a priori estimates in Tables 5.4−5.6 for ρ, u, σ and also for e(ρ⋆)
and e(σ⋆). Finally, the convergence history for Example 3 is presented in Tables 5.7 up to 5.9, where
we obtained the same results as in Example 1. Furthermore, we remark here that Example 3 used
ν = 0.4999, which as mentioned in advance, corresponds to materials showing nearly incompressible
behaviour. Nonetheless, our mixed-VEM scheme (3.19) seems to be able to solve this problem without
difficulties.

We end this paper by displaying some components of the approximate solutions for the three
examples, in Figures 5.1 to 5.6. They all correspond to those obtained with the first mesh of each
kind (triangles, quadrilaterals and hexagons, respectively) and for the polynomial degree k = 2. Here
we use the notations ρh = (ρh,ij)i,j=1,2, σh = (σh,ij )i,j=1,2, and uh = (uh,i)i=1,2.
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k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.0643 4929 1.98e+1 −− 8.61e-1 −− 2.68e+1 −− 9.27e+1 −− 9.44e+1 −−

0.0488 8527 1.48e+1 1.06 5.10e-1 1.90 2.03e+1 1.00 7.03e+1 1.00 7.17e+1 1.00
0 0.0248 32719 7.36e-0 1.03 1.37e-1 1.94 1.03e+1 1.00 3.58e+1 1.00 3.65e+1 1.00

0.0166 72591 4.92e-0 1.01 6.35e-2 1.93 6.91e-0 1.00 2.40e+1 1.00 2.45e+1 1.00
0.0129 121441 3.79e-0 1.01 3.89e-2 1.90 5.34e-0 1.00 1.85e+1 1.00 1.89e+1 1.00

0.0643 17601 9.58e-1 −− 1.68e-2 −− 1.15e-0 −− 5.09e-0 −− 5.13e-0 −−

0.0488 30509 5.62e-1 1.93 7.73e-3 2.81 6.86e-1 1.88 2.94e-0 1.99 2.96e-0 1.99
1 0.0248 117421 1.49e-1 1.96 1.17e-3 2.80 1.86e-1 1.93 7.62e-1 2.00 7.70e-1 1.99

0.0166 260781 6.76e-2 1.98 4.01e-4 2.67 8.49e-2 1.97 3.43e-1 2.00 3.47e-1 2.00
0.0129 436481 4.05e-2 1.99 2.09e-4 2.54 5.09e-2 1.98 2.05e-1 2.00 2.07e-1 2.00

0.0643 36081 3.79e-2 −− 4.68e-4 −− 4.08e-2 −− 2.05e-1 −− 2.06e-1 −−

0.0488 62583 1.66e-2 3.00 1.60e-4 3.88 1.78e-2 3.00 8.97e-2 3.00 8.99e-2 3.00
2 0.0248 241111 2.18e-3 3.00 1.30e-5 3.71 2.34e-3 3.00 1.18e-2 3.00 1.19e-2 3.00

0.0166 535671 6.58e-4 3.00 3.26e-6 3.46 7.07e-4 3.00 3.57e-3 3.00 3.58e-3 3.00
0.0129 896721 3.04e-4 3.00 1.39e-6 3.31 3.26e-4 3.00 1.65e-3 3.00 1.65e-3 3.00

Table 5.1: Example 1, history of convergence using triangles.

k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.0716 5521 1.56e+1 −− 7.16e-1 −− 1.61e+1 −− 9.24e+1 −− 9.25e+1 −−

0.0537 9761 1.08e+1 1.28 3.73e-1 2.27 1.09e+1 1.35 6.67e+1 1.13 6.68e+1 1.13
0 0.0286 34051 5.31e-0 1.13 9.70e-2 2.14 5.29e-0 1.16 3.40e+1 1.07 3.40e+1 1.07

0.0195 73041 3.56e-0 1.04 4.54e-2 1.99 3.53e-0 1.05 2.29e+1 1.03 2.29e+1 1.03
0.0148 126731 2.69e-0 1.02 2.70e-2 1.87 2.66e-0 1.03 1.73e+1 1.02 1.73e+1 1.02

0.0716 18241 8.87e-1 −− 1.60e-2 −− 8.84e-1 −− 5.64e-0 −− 5.63e-0 −−

0.0537 32321 4.53e-1 2.34 6.36e-3 3.21 4.50e-1 2.35 2.89e-0 2.32 2.89e-0 2.32
1 0.0286 113101 1.14e-1 2.20 9.55e-4 3.02 1.13e-1 2.20 7.29e-1 2.19 7.29e-1 2.19

0.0195 242881 5.10e-2 2.10 3.37e-4 2.72 5.05e-2 2.10 3.27e-1 2.09 3.27e-1 2.09
0.0148 421661 2.89e-2 2.06 1.69e-4 2.50 2.86e-2 2.06 1.85e-1 2.06 1.85e-1 2.06

0.0716 36361 4.08e-2 −− 3.55e-4 −− 4.04e-2 −− 2.43e-1 −− 2.43e-1 −−

0.0537 64481 1.45e-2 3.60 1.04e-4 4.27 1.44e-2 3.60 8.77e-2 3.54 8.77e-2 3.54
2 0.0286 225901 1.73e-3 3.38 9.41e-6 3.82 1.72e-3 3.38 1.07e-2 3.34 1.07e-2 3.34

0.0195 485321 5.08e-4 3.20 2.55e-6 3.41 5.03e-4 3.20 3.17e-3 3.18 3.17e-3 3.18
0.0148 842741 2.14e-4 3.14 1.04e-6 3.25 2.12e-4 3.14 1.34e-3 3.12 1.34e-3 3.12

Table 5.2: Example 1, history of convergence using quadrilaterals.

k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.0414 8147 1.25e+1 −− 3.29e-1 −− 1.24e+1 −− 7.76e+1 −− 7.75e+1 −−

0.0319 13563 9.56e-0 1.03 2.01e-1 1.91 9.51e-0 1.03 6.00e+1 0.99 6.00e+1 0.99
0 0.0235 24579 7.01e-0 1.02 1.11e-1 1.93 6.95e-0 1.03 4.43e+1 0.99 4.43e+1 0.99

0.0167 48603 4.95e-0 1.01 5.83e-2 1.88 4.91e-0 1.01 3.14e+1 1.00 3.14e+1 1.00
0.0124 88637 3.65e-0 1.01 3.40e-2 1.79 3.63e-0 1.01 2.33e+1 1.00 2.33e+1 1.00

0.0414 24437 4.97e-1 −− 6.80e-3 −− 4.93e-1 −− 3.15e-0 −− 3.15e-0 −−

0.0319 40757 2.96e-1 1.99 3.27e-3 2.82 2.94e-1 2.00 1.88e-0 1.98 1.88e-0 1.98
1 0.0235 73733 1.61e-1 2.00 1.41e-3 2.75 1.60e-1 2.00 1.03e-0 1.99 1.03e-0 1.99

0.0167 145805 8.10e-2 2.00 5.72e-4 2.63 8.02e-2 2.00 5.17e-1 1.99 5.17e-1 1.99
0.0124 266089 4.44e-2 2.00 2.71e-4 2.48 4.40e-2 2.00 2.83e-1 2.00 2.83e-1 2.00

0.0414 46835 1.55e-2 −− 1.48e-4 −− 1.61e-2 −− 8.90e-2 −− 8.91e-2 −−

0.0319 78175 7.16e-3 2.98 5.63e-5 3.72 7.43e-3 2.97 4.11e-2 2.98 4.11e-2 2.98
2 0.0235 141319 2.87e-3 2.99 1.86e-5 3.63 2.98e-3 2.99 1.65e-2 2.99 1.65e-2 2.99

0.0167 279457 1.02e-3 2.99 5.62e-6 3.48 1.06e-3 2.99 5.89e-3 2.99 5.90e-3 2.99
0.0124 510153 4.16e-4 2.99 2.06e-6 3.33 4.33e-4 2.99 2.39e-3 3.00 2.40e-3 3.00

Table 5.3: Example 1, history of convergence using hexagons.
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k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.1179 4417 5.05e-2 −− 4.70e-2 −− 6.39e-2 −− 2.03e-0 −− 2.03e-0 −−

0.0786 9865 3.89e-2 0.64 3.14e-2 1.00 4.95e-2 0.63 2.32e-0 -0.33 2.32e-0 -0.33
0 0.0429 32935 2.62e-2 0.65 1.71e-2 1.00 3.35e-2 0.64 2.84e-0 -0.33 2.84e-0 -0.33

0.0289 72423 2.03e-2 0.65 1.15e-2 1.00 2.59e-2 0.65 3.24e-0 -0.33 3.24e-0 -0.33
0.0218 127271 1.68e-2 0.66 8.68e-3 1.00 2.16e-2 0.65 3.56e-0 -0.33 3.56e-0 -0.33

0.1179 15745 2.13e-2 −− 1.16e-3 −− 2.92e-2 −− 1.89e-0 −− 1.89e-0 −−

0.0786 35281 1.63e-2 0.67 5.96e-4 1.64 2.23e-2 0.67 2.16e-0 -0.33 2.16e-0 -0.33
1 0.0429 118141 1.09e-2 0.67 2.21e-4 1.64 1.49e-2 0.67 2.64e-0 -0.33 2.64e-0 -0.33

0.0289 260093 8.34e-3 0.67 1.15e-4 1.64 1.14e-2 0.67 3.02e-0 -0.33 3.02e-0 -0.33
0.0218 457341 6.91e-3 0.67 7.27e-5 1.64 9.48e-3 0.67 3.32e-0 -0.33 3.32e-0 -0.33

0.1179 32257 1.57e-2 −− 4.07e-4 −− 2.12e-2 −− 1.79e-0 −− 1.79e-0 −−

0.0786 72361 1.20e-2 0.67 2.08e-4 1.65 1.62e-2 0.67 2.05e-0 -0.33 2.05e-0 -0.33
2 0.0429 242551 7.99e-3 0.67 7.67e-5 1.65 1.08e-2 0.67 2.51e-0 -0.33 2.51e-0 -0.33

0.0289 534199 6.14e-3 0.67 4.01e-5 1.64 8.30e-3 0.67 2.86e-0 -0.33 2.86e-0 -0.33
0.0218 939511 5.09e-3 0.67 2.53e-5 1.63 6.87e-3 0.67 3.14e-0 -0.33 3.14e-0 -0.33

Table 5.4: Example 2, history of convergence using triangles.

k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.1667 2689 5.14e-2 −− 6.64e-2 −− 7.58e-2 −− 2.16e-0 −− 2.16e-0 −−

0.0927 8889 3.37e-2 0.72 3.38e-2 1.15 4.88e-2 0.75 2.56e-0 -0.29 2.56e-0 -0.29
0 0.0478 33627 2.16e-2 0.67 1.67e-2 1.06 3.10e-2 0.69 3.20e-0 -0.34 3.20e-0 -0.34

0.0321 74241 1.67e-2 0.66 1.12e-2 1.02 2.38e-2 0.67 3.68e-0 -0.35 3.68e-0 -0.35
0.0239 133817 1.37e-2 0.66 8.27e-3 1.02 1.96e-2 0.66 4.08e-0 -0.35 4.08e-0 -0.35

0.1667 8833 2.93e-2 −− 2.21e-3 −− 4.31e-2 −− 2.24e-0 −− 2.24e-0 −−

0.0927 29393 1.88e-2 0.76 7.43e-4 1.86 2.75e-2 0.76 2.65e-0 -0.29 2.65e-0 -0.29
1 0.0478 111629 1.19e-2 0.69 2.41e-4 1.70 1.74e-2 0.69 3.33e-0 -0.34 3.33e-0 -0.34

0.0321 246785 9.15e-3 0.67 1.27e-4 1.63 1.33e-2 0.67 3.82e-0 -0.35 3.83e-0 -0.35
0.0239 445137 7.52e-3 0.66 7.90e-5 1.60 1.10e-2 0.67 4.24e-0 -0.35 4.24e-0 -0.35

0.1667 17569 2.17e-2 −− 9.88e-4 −− 3.14e-2 −− 2.32e-0 −− 2.32e-0 −−

0.0927 58609 1.40e-2 0.75 3.67e-4 1.69 2.03e-2 0.74 2.74e-0 -0.28 2.74e-0 -0.28
2 0.0478 222913 8.86e-3 0.69 1.31e-4 1.55 1.29e-2 0.68 3.44e-0 -0.34 3.44e-0 -0.34

0.0321 493057 6.80e-3 0.67 7.25e-5 1.49 9.93e-3 0.67 3.96e-0 -0.35 3.96e-0 -0.35
0.0239 889585 5.59e-3 0.67 4.72e-5 1.45 8.17e-3 0.67 4.40e-0 -0.35 4.40e-0 -0.35

Table 5.5: Example 2, history of convergence using quadrilaterals.

k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.0672 9243 3.66e-2 −− 3.55e-2 −− 5.04e-2 −− 3.16e-0 −− 3.16e-0 −−

0.0385 25483 2.63e-2 0.60 2.14e-2 0.91 3.63e-2 0.59 3.74e-0 -0.31 3.74e-0 -0.31
0 0.0275 49787 2.11e-2 0.65 1.53e-2 1.00 2.91e-2 0.65 4.19e-0 -0.33 4.19e-0 -0.33

0.0214 82155 1.79e-2 0.66 1.19e-2 1.00 2.47e-2 0.65 4.55e-0 -0.33 4.55e-0 -0.33
0.0170 129563 1.54e-2 0.66 9.45e-3 1.00 2.12e-2 0.66 4.91e-0 -0.33 4.91e-0 -0.33

0.0672 27725 1.86e-2 −− 6.63e-4 −− 2.63e-2 −− 3.41e-0 −− 3.41e-0 −−

0.0385 76445 1.32e-2 0.61 2.87e-4 1.50 1.87e-2 0.61 4.04e-0 -0.31 4.04e-0 -0.31
1 0.0275 149357 1.06e-2 0.67 1.65e-4 1.64 1.49e-2 0.67 4.52e-0 -0.33 4.52e-0 -0.33

0.0214 246461 8.95e-3 0.67 1.10e-4 1.64 1.26e-2 0.67 4.92e-0 -0.33 4.92e-0 -0.33
0.0170 388685 7.68e-3 0.67 7.51e-5 1.64 1.08e-2 0.67 5.31e-0 -0.33 5.31e-0 -0.33

0.0672 53137 1.50e-2 −− 2.89e-4 −− 2.01e-2 −− 3.68e-0 −− 3.68e-0 −−

0.0385 146517 1.07e-2 0.61 1.36e-4 1.36 1.43e-2 0.61 4.36e-0 -0.31 4.36e-0 -0.31
2 0.0275 286265 8.52e-3 0.67 8.34e-5 1.45 1.14e-2 0.67 4.88e-0 -0.33 4.88e-0 -0.33

0.0214 472381 7.21e-3 0.67 5.83e-5 1.43 9.68e-3 0.67 5.30e-0 -0.33 5.30e-0 -0.33
0.0170 744977 6.18e-3 0.67 4.21e-5 1.41 8.30e-3 0.67 5.72e-0 -0.33 5.72e-0 -0.33

Table 5.6: Example 2, history of convergence using hexagons.
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k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.0643 4929 1.64e+1 −− 6.74e-1 −− 2.28e+1 −− 4.37e+1 −− 4.65e+1 −−

0.0488 8527 1.24e+1 1.01 3.91e-1 1.97 1.73e+1 0.99 3.32e+1 1.00 3.53e+1 1.00
0 0.0248 32719 6.28e-0 1.01 1.02e-1 1.99 8.83e-0 1.00 1.69e+1 1.00 1.80e+1 1.00

0.0166 72591 4.20e-0 1.00 4.60e-2 1.99 5.93e-0 1.00 1.13e+1 1.00 1.20e+1 1.00
0.0129 121441 3.24e-0 1.00 2.75e-2 2.00 4.58e-0 1.00 8.73e-0 1.00 9.31e-0 1.00

0.0643 17601 3.16e-1 −− 5.34e-3 −− 3.54e-1 −− 7.04e-1 −− 7.21e-1 −−

0.0488 30509 1.83e-1 1.98 2.34e-3 2.98 2.05e-1 1.97 4.06e-1 2.00 4.16e-1 1.99
1 0.0248 117421 4.78e-2 1.99 3.11e-4 2.99 5.38e-2 1.98 1.05e-1 2.00 1.08e-1 2.00

0.0166 260781 2.16e-2 1.99 9.42e-5 2.99 2.43e-2 1.99 4.74e-2 2.00 4.86e-2 2.00
0.0129 436481 1.29e-2 1.99 4.36e-5 2.99 1.46e-2 1.99 2.83e-2 2.00 2.90e-2 2.00

0.0643 36081 2.58e-3 −− 2.73e-5 −− 2.58e-3 −− 1.73e-3 −− 1.74e-3 −−

0.0488 62583 1.13e-3 3.00 9.05e-6 4.00 1.13e-3 3.00 7.57e-4 3.00 7.59e-4 3.00
2 0.0248 241111 1.48e-4 3.00 6.09e-7 3.99 1.48e-4 3.00 9.96e-5 3.00 1.00e-4 3.00

0.0166 535671 4.48e-5 3.00 1.24e-7 3.98 4.48e-5 3.00 3.00e-5 3.00 3.02e-5 3.00
0.0129 896721 2.07e-5 3.00 4.45e-8 3.97 2.07e-5 3.00 1.39e-5 3.00 1.39e-5 3.00

Table 5.7: Example 3, history of convergence using triangles.

k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.0716 5521 1.91e+1 −− 9.06e-1 −− 1.99e+1 −− 5.42e+1 −− 5.44e+1 −−

0.0537 9761 1.35e+1 1.20 4.69e-1 2.29 1.38e+1 1.26 3.91e+1 1.13 3.92e+1 1.14
0 0.0286 34051 6.70e-0 1.12 1.19e-1 2.18 6.74e-0 1.14 1.98e+1 1.08 1.98e+1 1.08

0.0195 73041 4.47e-0 1.06 5.31e-2 2.10 4.48e-0 1.07 1.33e+1 1.04 1.33e+1 1.04
0.0148 126731 3.36e-0 1.04 3.01e-2 2.06 3.36e-0 1.04 1.00e+1 1.03 1.00e+1 1.03

0.0716 18241 5.22e-1 −− 7.03e-3 −− 5.26e-1 −− 1.34e-0 −− 1.35e-0 −−

0.0537 32321 2.72e-1 2.27 2.68e-3 3.35 2.73e-1 2.28 6.94e-1 2.30 6.95e-1 2.30
1 0.0286 113101 6.92e-2 2.18 3.49e-4 3.24 6.93e-2 2.18 1.77e-1 2.18 1.77e-1 2.18

0.0195 242881 3.10e-2 2.10 1.05e-4 3.13 3.10e-2 2.10 7.95e-2 2.09 7.95e-2 2.09
0.0148 421661 1.75e-2 2.07 4.49e-5 3.08 1.75e-2 2.07 4.50e-2 2.06 4.50e-2 2.06

0.0716 36361 8.87e-3 −− 3.27e-5 −− 8.88e-3 −− 7.51e-3 −− 7.53e-3 −−

0.0537 64481 3.21e-3 3.54 7.77e-6 5.00 3.21e-3 3.54 2.69e-3 3.57 2.70e-3 3.57
2 0.0286 225901 3.99e-4 3.32 3.65e-7 4.86 3.99e-4 3.32 3.30e-4 3.34 3.30e-4 3.34

0.0195 485321 1.19e-4 3.16 6.29e-8 4.59 1.19e-4 3.16 9.80e-5 3.17 9.80e-5 3.17
0.0148 842741 5.03e-5 3.11 1.92e-8 4.30 5.03e-5 3.11 4.15e-5 3.11 4.15e-5 3.11

Table 5.8: Example 3, history of convergence using quadrilaterals.

k h N e(ρ) r(ρ) e(u) r(u) e(σ) r(σ) e(ρ⋆) r(ρ⋆) e(σ⋆) r(σ⋆)

0.0414 8147 1.50e+1 −− 4.07e-1 −− 1.51e+1 −− 4.44e+1 −− 4.45e+1 −−

0.0319 13563 1.16e+1 0.99 2.45e-1 1.95 1.17e+1 0.99 3.44e+1 0.99 3.44e+1 0.99
0 0.0235 24579 8.54e-0 1.00 1.34e-1 1.99 8.57e-0 1.01 2.54e+1 0.99 2.54e+1 0.99

0.0167 48603 6.05e-0 1.00 6.73e-2 1.99 6.07e-0 1.00 1.81e+1 0.99 1.81e+1 1.00
0.0124 88637 4.48e-0 1.00 3.70e-2 1.99 4.49e-0 1.00 1.34e+1 1.00 1.34e+1 1.00

0.0414 24437 3.01e-1 −− 3.24e-3 −− 3.02e-1 −− 7.85e-1 −− 7.85e-1 −−

0.0319 40757 1.81e-1 1.97 1.51e-3 2.93 1.81e-1 1.97 4.70e-1 1.98 4.70e-1 1.98
1 0.0235 73733 9.84e-2 1.99 6.10e-4 2.97 9.85e-2 1.99 2.56e-1 1.99 2.56e-1 1.99

0.0167 145805 4.96e-2 1.99 2.19e-4 2.97 4.96e-2 1.99 1.29e-1 1.99 1.29e-1 1.99
0.0124 266089 2.72e-2 1.99 8.98e-5 2.97 2.73e-2 1.99 7.07e-2 2.00 7.07e-2 2.00

0.0414 46835 4.04e-3 −− 1.94e-5 −− 4.45e-3 −− 3.53e-3 −− 4.00e-3 −−

0.0319 78175 1.87e-3 2.97 6.89e-6 3.98 2.06e-3 2.97 1.64e-3 2.97 1.85e-3 2.97
2 0.0235 141319 7.48e-4 2.99 2.04e-6 3.98 8.27e-4 2.99 6.55e-4 2.99 7.43e-4 2.99

0.0167 279457 2.67e-4 2.99 5.18e-7 3.99 2.96e-4 2.99 2.34e-4 2.99 2.66e-4 2.99
0.0124 510153 1.09e-4 2.99 1.56e-7 3.99 1.20e-4 2.99 9.52e-5 2.99 1.08e-4 2.99

Table 5.9: Example 3, history of convergence using hexagons.
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Figure 5.1: Example 1, ρh,11 (top), ρh,12 (center) and uh,1 (bottom), using k = 2 and the first mesh
of each kind (columns).
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Figure 5.2: Example 1, σh,11 (top), σh,12 (center) and σh,22 (bottom), using k = 2 and the first mesh
of each kind (columns).
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Figure 5.3: Example 2, ρh,21 (top), uh,1 (center) and uh,2 (bottom), using k = 2 and the first mesh of
each kind (columns).
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Figure 5.4: Example 2, σh,11 (top), σh,12 (center) and σh,22 (bottom), using k = 2 and the first mesh
of each kind (columns).
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Figure 5.5: Example 3, ρh,12 (top), ρh,21 (center) and uh,2 (bottom), using k = 2 and the first mesh
of each kind (columns).
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Figure 5.6: Example 3, σh,11 (top), σh,12 (center) and σh,22 (bottom), using k = 2 and the first mesh
of each kind (columns).
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