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Abstract

This paper is devoted to the mathematical and numerical analysis of a mixed-mixed PDE system
describing the stress-assisted diffusion of a solute into an elastic material. The equations of elas-
tostatics are written in mixed form using stress, rotation and displacements, whereas the diffusion
equation is also set in a mixed three-field form, solving for the solute concentration, for its gradient,
and for the diffusive flux. This setting simplifies the treatment of the nonlinearity in the stress-
assisted diffusion term. The analysis of existence and uniqueness of weak solutions to the coupled
problem follows as combination of Schauder and Banach fixed-point theorems together with the
Babuška-Brezzi and Lax-Milgram theories. Concerning numerical discretization, we propose two
families of finite element methods, based on either PEERS or Arnold-Falk-Winther elements for
elasticity, and a Raviart-Thomas and piecewise polynomial triplet approximating the mixed dif-
fusion equation. We prove the well-posedness of the discrete problems, and derive optimal error
bounds using a Strang inequality. We further confirm the accuracy and performance of our methods
through computational tests.

Keywords: A priori error analysis; augmented fully-mixed formulation; stress-diffusion coupling;
finite element methods; fixed-point theory.
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1 Introduction

We are interested in the mathematical and numerical study of a stationary problem representing
diffusion-deformation processes where the stress acts as a coupling variable. So-called stress-assisted
diffusion models (derived from thermodynamic principles and phenomenological arguments in e.g.
[1, 30]) are relevant to numerous applications including diffusion of boron and arsenic in silicon [27],
hydrogen diffusion in metals [36], voiding of aluminum conductor lines in integrated circuits [38],
strain-aging measurements in iron [28], sorption in polymers [32], to name a few. Of special appeal
to us is the study of microscopic electrode damage in lithium ion batteries [5, 11, 22, 26, 34]. When
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lithium diffuses into a secondary particle (an anode made of e.g. silicon), its core expands and its
elastic response, also with that of neighboring particles and the surrounding electrolyte, modify the
diffusive properties inside the medium. If the process is confined inside the anode, then the electric
field is practically constant and the system may be described solely in terms of diffusion and stress.

Regarding the mathematical and numerical analysis of related models, the literature is rather scarce.
Some recent references include homogenization of concentration - electric potential systems [35], multi-
scale analysis of the deterioration of binder in electrodes [15], and a general local-global well-posedness
theory [25]. Differently from these approaches, in [18] we have recently proposed a mixed-primal for-
mulation for stress-assisted diffusion. The model covers the linear elastic regime, it incorporates the
rotation tensor as supplementary variable serving to impose stress symmetry in a weak manner; and
this mixed problem is coupled with a primal formulation for diffusion. Here, in contrast, we consider
an augmented mixed formulation for the diffusion equation and we consider a slightly different set of
boundary conditions, motivated by the specific application into lithium batteries. Similarly to [20],
the concentration gradient and the diffusive flux are incorporated as auxiliary unknowns, which al-
lows us to treat the stress-dependent diffusivity using a dual-mixed setting. In order to apply the
regularity estimates from [18], we augment the formulation with redundant terms arising from a con-
stitutive equation. Next, following the approach introduced in [3], we combine fixed-point arguments,
regularity estimates, the Babuška-Brezzi theory, the Lax Milgram lemma, the Sobolev embedding and
Rellich-Kondrachov theorems, and small data assumptions to establish existence and uniqueness of
solution of the continuous problem. The solvability of the Galerkin scheme follows from the Brouwer
fixed-point theorem and properties of the finite element subspaces. Finally, the convergence analysis
is conducted adapting Strang inequalities, Céa estimates, and using approximation properties of the
finite element spaces.

The rest of the paper is organized as follows. In Section 2 we describe required notation and func-
tional spaces to be employed along the paper. Then, we introduce the model problem and requirements
on the specific constitutive functions. Next, in Section 3 we derive the augmented fully-mixed formu-
lation and establish its well-posedness. The Galerkin scheme and the existence of discrete solution are
then studied in Section 4. In addition, under similar assumptions we deduce error bounds; and we
close in Section 5 with a numerical example that confirms the theoretical rates of convergence, and a
second tests studying the applicability of the discrete formulation in the simulation of 3D microscopic
lithiation processes.

2 The model problem

Let Ω ⊆ Rn, n ∈ {2, 3}, be a given bounded domain with polyhedral boundary ∂Ω = Γ ∪ Σ, with
Γ ∩Σ = ∅ and |Γ|, |Σ| > 0, and denote by ν the outward unit normal vector on Γ. Standard notation
will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖·‖s,Ω and seminorm

| · |s,Ω. In particular, H1/2(∂Ω) is the space of traces of functions of H1(Ω) and H−1/2(∂Ω) denotes its
dual. By M,M we will denote the corresponding vectorial and tensorial counterparts of the generic
scalar functions space M and as usual, | · | denotes both the Euclidean norm in Rn and the Frobenius
norm in Rn×n. Let div τ be the divergence operator acting along the rows of the tensor τ . We recall
that the tensorial H(div) space

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the norm ‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div (τ )‖20,Ω ∀ τ ∈ H(div; Ω), is a Hilbert space.

Let I stand for the identity tensor in Rn×n. For any tensors τ = (τij)i,j=1,n, and ζ = (ζij)i,j=1,n,
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we denote the transpose, trace, tensor product, and deviatoric tensor, respectively, as

τ t := (τij)i,j=1,n, tr(τ ) :=

n∑
i=1

τii τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr(τ )I.

Finally, we will denote by ‖·‖∞,Ω the norm of the Banach space L∞(Ω) as well as of its vectorial
version L∞(Ω).

Let us consider the following system of PDEs, governing the diffusion of a solute interacting with
the motion of an elastic solid occupying the domain Ω:

σ = λ trε(u) I + 2µε(u) in Ω , −divσ = f(φ) in Ω, (2.1)

σ̃ = ϑ(σ)∇φ in Ω , −div σ̃ = g(u) in Ω, (2.2)

u = uD on Γ, σν = 0 on Σ, (2.3)

φ = φD on Σ, σ̃ · ν = 0 on Γ. (2.4)

Equations (2.1) state the constitutive relation and momentum balance for the elasticity equations,
problem (2.2) defines the diffusion equation and diffusive flux, and (2.3)-(2.4) provide a specification
of the boundary treatment on each part of the boundary, where uD ∈ H1/2(Γ) and φD ∈ H1/2(Σ).
The involved quantities and model parameters are the Cauchy solid stress σ, the displacement field u,
the infinitesimal strain tensor ε(u) := 1

2

(
∇u+∇ut

)
, the Lamé constants λ, µ > 0 characterizing the

material, the diffusive flux σ̃, the solute concentration φ, the tensorial diffusivity ϑ : Rn×n → Rn×n,
the vector of body loads f : R→ Rn, and a displacement-dependent source term g : Rn → R. For the
load, source, and diffusivity functions we will require uniform boundedness and Lipschitz continuity,
that is there exist positive constants f1, f2, Lf , g1, g2, Lg, and ϑ1, ϑ2, Lϑ, such that

f1 ≤ |f(s)| ≤ f2, |f(s)− f(t)| ≤ Lf |s− t| ∀ s, t ∈ R, (2.5)

g1 ≤ g(w) ≤ g2, |g(v)− g(w)| ≤ Lg|v −w| ∀v,w ∈ Rn, (2.6)

ϑ1 ≤ |ϑ(τ )| ≤ ϑ2, |ϑ(τ )− ϑ(ζ)| ≤ Lϑ|τ − ζ| ∀ τ , ζ ∈ Rn×n. (2.7)

Additionally, ϑ is of class C1 and uniformly positive definite, the latter meaning that there exists
ϑ0 > 0 such that

ϑ(τ )w ·w ≥ ϑ0|w|2 ∀w ∈ Rn, ∀ τ ∈ Rn×n . (2.8)

Finally, we assume that f(φ) ∈ H1(Ω) for each φ ∈ H1(Ω), and that for each γ ∈ (0, 1) there exists a
constant Cγ > 0 such that g(w) ∈ Hγ(Ω) for each w ∈ Hγ(Ω) and

‖g(w)‖γ,Ω ≤ Cγ ‖w‖γ,Ω . (2.9)

Examples of stress-dependent diffusivity functions and concentration-dependent body loads, though
not all of them satisfying each one of the above described hypotheses, may include exponential func-
tions of the volumetric stress for lithiation of batteries [22], simple polynomial relationships for bio-
logical materials [12], or Carreau-type laws for ϑ, that is

ϑ(σ) = C0 exp(−trσ)I, ϑ(σ) = C0 I + C1σ + C2σ
2, ϑ(σ) = (C0 + C1(1− |σ|2)−1/2)I,

respectively, where C0, C1, C2 are constants, whereas for f linear dependences modelling isotropic
swelling in composite materials [23], saturation-based descriptions for viscous layers [37], or concen-
tration gradient modulations for single-cell mechanics [33] are considered, that is

f(φ) = Cφ, f(φ) = C(1− φ)m−1, f(φ) = C0∇φ ,

respectively, where C ∈ Rn and m > 1.
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3 Weak formulation and solvability analysis

In this section we derive an augmented fully-mixed variational formulation for (2.1)-(2.4) and propose
a fixed-point strategy for its analysis. We show that the fixed-point operator is well-defined and apply
the Schauder’s theorem to prove existence of solution, whereas Banach fixed-point theorem will lead
to uniqueness of solution under small data assumptions.

3.1 The mixed-mixed formulation

According to the zero tractions imposed on Σ and Γ (cf. second relations of (2.3)), we introduce the
spaces

HΣ(div; Ω) :=
{
τ ∈ H(div; Ω) : τν = 0 on Σ

}
and

HΓ(div; Ω) :=
{
τ̃ ∈ H(div; Ω) : τ̃ · ν = 0 on Γ

}
.

Then we define the space of skew-symmetric tensors

L2
skew(Ω) := {η ∈ L2(Ω) : η + ηt = 0},

and apply the Dirichlet boundary condition for displacements (first relation of (2.3)) to write the
elasticity problem in weak form: find (σ, (u,ρ)) ∈ H1 := HΣ(div; Ω)×

(
L2(Ω)× L2

skew(Ω)
)

such that

a(σ, τ ) + b(τ , (u,ρ)) = G(τ ) ∀ τ ∈ HΣ(div; Ω),

b(σ, (v,η)) = Fφ(v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω),

(3.1)

where a : HΣ(div; Ω) × HΣ(div; Ω) → R and b : HΣ(div; Ω) × (L2(Ω) × L2
skew(Ω)) → R are bilinear

forms defined as

a(ζ, τ ) =
1

2µ

∫
Ω
ζ : τ − λ

2µ(nλ+ 2µ)

∫
Ω

tr(ζ) tr(τ ), b(τ , (v,η)) :=

∫
Ω
v · div τ +

∫
Ω
η : τ ,

for ζ, τ ∈ HΣ(div; Ω) and (v,η) ∈ L2(Ω) × L2
skew(Ω). In turn, the functionals Fφ ∈ H(div; Ω)′ and

G ∈ (L2(Ω)× L2
skew(Ω))′ are given by

G(τ ) := 〈τν,uD〉Γ and Fφ(v,η) := −
∫

Ω
f (φ) · v , (3.2)

for (τ , (v,η)) ∈ H1, where 〈·, ·〉Γ stands for the duality pairing of H−1/2(Γ) and H1/2(Γ).

In turn, defining the concentration gradient t := ∇φ, we can recast the diffusion equation as

σ̃ = ϑ(σ) t in Ω, t = ∇φ in Ω, −div σ̃ = g(u) in Ω,

φ = φD on Σ and σ̃ · ν = 0 on Γ.
(3.3)

We then test the three-field problem (3.3) against s ∈ L2(Ω), τ̃ ∈ HΓ(div; Ω) and ψ ∈ L2(Ω).
Integrating by parts the expression

∫
Ω∇φ · τ̃ and using the Dirichlet boundary condition for φ (2.4),

we arrive at the weak formulation: find (t, σ̃, φ) ∈ L2(Ω)×HΓ(div; Ω)× L2(Ω) such that∫
Ω
ϑ(σ) t · s −

∫
Ω
σ̃ · s = 0 ∀ s ∈ L2(Ω),∫

Ω
τ̃ · t +

∫
Ω
φ div τ̃ = 〈τ̃ · ν, φD〉Σ ∀ τ̃ ∈ HΓ(div; Ω),

−
∫

Ω
ψ div σ̃ =

∫
Ω
ψ g(u) ∀ψ ∈ L2(Ω).

(3.4)
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In view of modifying the regularity properties of the coupled problem, we proceed to enrich the
foregoing equations with the following residual terms:

κ1

∫
Ω
{σ̃ − ϑ(σ) t} · τ̃ = 0 ∀ τ̃ ∈ HΓ(div; Ω),

κ2

∫
Ω

div σ̃ div τ̃ = −κ2

∫
Ω
g(u) div τ̃ ∀ τ̃ ∈ HΓ(div; Ω),

κ3

∫
Ω
{∇φ− t} · ∇ψ = 0 ∀ψ ∈ H1(Ω),

κ4

∫
Σ
φψ = κ4

∫
Σ
φD ψ ∀ψ ∈ H1(Ω),

(3.5)

where κ1, κ2, κ3 and κ4 are positive parameters to be specified later on. We remark that the identities
required in (3.5) are nothing but the constitutive and the equilibrium equations concerning σ̃, along
with the relation defining t, and the Dirichlet boundary condition for φ; all of them tested differently
from (3.4). Instead of (3.4), we will now focus on the following augmented formulation for the diffusion
problem: find (t, σ̃, φ) ∈ H2 := L2(Ω)×HΓ(div; Ω)×H1(Ω) such that

Aσ((t, σ̃, φ), (s, τ̃ , ψ)) = Gu(s, τ̃ , ψ) ∀ (s, τ̃ , ψ) ∈ H2, (3.6)

where

Aσ((t, σ̃, φ), (s, τ̃ , ψ)) :=

∫
Ω
ϑ(σ) t · s−

∫
Ω
σ̃ · s+

∫
Ω
τ̃ · t+

∫
Ω
φ div τ̃ −

∫
Ω
ψ div σ̃

+ κ1

∫
Ω
{σ̃ − ϑ(σ) t} · τ̃ + κ2

∫
Ω

div σ̃ div τ̃ + κ3

∫
Ω
{∇φ− t} · ∇ψ + κ4

∫
Σ
φψ,

(3.7)

and

Gu(s, τ̃ , ψ) := 〈τ̃ · ν, φD〉Σ +

∫
Ω
ψ g(u)− κ2

∫
Ω
g(u) div τ̃ + κ4

∫
Σ
φD ψ. (3.8)

Consequently, we arrive at the following augmented fully-mixed formulation for (2.1)-(2.4): find(
(σ, (u,ρ)), (t, σ̃, φ)

)
∈ H1 ×H2, such that

a(σ, τ ) + b(τ , (u,ρ)) = G(τ ) ∀ τ ∈ HΣ(div; Ω),

b(σ, (v,η)) = Fφ(v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω),

Aσ((t, σ̃, φ), (s, τ̃ , ψ)) = Gu(s, τ̃ , ψ) ∀ (s, τ̃ , ψ) ∈ H2.

(3.9)

3.2 A fixed-point approach

Here we utilize a fixed-point strategy to prove that problem (3.9) is well-posed. Let us first define the
operator S : H1(Ω)→ H1 as

S(φ) := (S1(φ), (S2(φ),S3(φ))) := (σ, (u,ρ)) ∀φ ∈ H1(Ω),

where (σ, (u,ρ)) is the unique solution of (3.1) with the given φ. In turn, we define the operator
S̃ : HΣ(div; Ω)× L2(Ω)→ H2 as

S̃(σ,u) := (S̃1(σ,u), S̃2(σ,u), S̃3(σ,u)) := (t, σ̃, φ) ∀ (σ,u) ∈ HΣ(div; Ω)× L2(Ω),

where (t, σ̃, φ) is the unique solution of (3.6) with the given (σ,u). In this way, by introducing the
operator T : H1(Ω)→ H1(Ω) as

T(φ) := S̃3(S1(φ),S2(φ)) ∀φ ∈ H1(Ω),
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we realize that (3.9) can be rewritten as the fixed-point problem: find φ ∈ H1(Ω) such that

T(φ) = φ. (3.10)

However, we remark in advance that the definition of T will be only in a closed ball of H1(Ω).

In order to analyze the well-posedness of (3.1) and (3.6), we recall from [10] that

H(div; Ω) = H0(div; Ω)⊕ RI, with H0(div; Ω) :=

{
τ ∈ H(div; Ω) :

∫
Ω

tr(τ ) = 0

}
,

which means that for each τ ∈ H(div; Ω) there exist unique

τ 0 := τ −
{

1

n|Ω|

∫
Ω

tr(τ )

}
I ∈ H0(div; Ω) and d :=

1

n|Ω|

∫
Ω

tr(τ ) ∈ R,

such that τ = τ 0 + dI. We also collect the following three technical lemmas, whose proofs can be
found in [10, Prop. 3.1], [17, Lemma 2.2], and [14, Lemma 3.3], respectively.

Lemma 3.1 There exists c1 > 0 such that

c1 ‖τ 0‖20,Ω ≤ ‖τ
d‖20,Ω + ‖div τ‖20,Ω ∀τ = τ 0 + cI ∈ H(div; Ω),

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Lemma 3.2 There exists c2 > 0 such that

c2 ‖τ‖2div;Ω ≤ ‖τ 0‖2div;Ω ∀ τ = τ 0 + cI ∈ HΣ(div; Ω),

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Lemma 3.3 There exists c3 > 0 such that

|ψ|21,Ω + ‖ψ‖20,Σ ≥ c3 ‖ψ‖21,Ω ∀ψ ∈ H1(Ω).

In what follows we show that T has at least one fixed point. Firstly we will prove that the uncoupled
problems defined by S and S̃ are well-posed, where we emphasize that S is defined similarly as in [18],
and therefore we omit parts of the proofs whenever necessary. Our analysis will focus on the uncoupled
problem (3.6) and its repercussion on T. Let us start by recalling the continuity of a and b:

|a(ζ, τ )| ≤ 1

µ
‖ζ‖div;Ω ‖τ‖div;Ω ∀ ζ, τ ∈ HΣ(div; Ω),

|b(τ , (v,η))| ≤ ‖τ‖div;Ω ‖(v,η)‖ ∀ τ ∈ HΣ(div; Ω), ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω).

(3.11)

Furthermore, it is not difficult to see that a is strongly elliptic in the kernel of b. In fact, we denote
the operator induced by the bilinear form b as B, and note that

V := N(B) =
{
τ ∈ HΣ(div; Ω) : div τ = 0 in Ω, τ = τ t in Ω

}
,

from which, we deduce that

a(τ , τ ) ≥ 1

2µ
‖τ d‖20,Ω ≥

c1 c2

2µ
‖τ‖20,Ω = α ‖τ‖2div;Ω ∀ τ ∈ V, (3.12)

where c1 and c2 are the constants provided by Lemmas 3.1 and 3.2, respectively. Additionally, as a
slight modification of the proof of [16, Section 2.4.3], we find that B is surjective. Finally, we observe
that G and Fφ are bounded with

‖G‖ ≤ ‖uD‖1/2,Γ and ‖Fφ‖ ≤ f2|Ω|1/2. (3.13)

This analysis confirms the well-posedness of (3.1), which is abridged in the following lemma.
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Lemma 3.4 For each φ ∈ H1(Ω) the problem (3.1) has a unique solution S(φ) := (σ, (u,ρ)) ∈ H1.
Moreover, there exists cS > 0, independent of φ, such that

‖S(φ)‖H1
= ‖(σ, (u,ρ))‖H1

≤ cS
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
. (3.14)

Proof. It is follows from estimates (3.11)–(3.13) and a direct application of the Babuška-Brezzi theory
(see, e.g. [16], Thm. 2.3). We refer to [18, Lemmma 2.2] for further details. �

In turn, we prove the well-posedness of problem (3.6) with the next result.

Lemma 3.5 Assume that κ1 ∈
(

0, 2δϑ0
ϑ2

)
and κ3 ∈

(
0, 2δ̃

(
ϑ0 − κ1ϑ2

2δ

))
with δ ∈

(
0, 2

ϑ2

)
, δ̃ ∈ (0, 2),

and κ2, κ4 > 0. Then, for each (σ,u) ∈ HΣ(div; Ω) × L2(Ω), problem (3.6) has a unique solution
S̃(σ,u) = (t, σ̃, φ) ∈ H2. Moreover, there exists c̃S > 0, independent of (σ,u), such that

‖S̃(σ,u)‖H2 = ‖(t, σ̃, φ)‖H2
≤ c̃S

{
‖φD‖1/2,Σ + g2|Ω|1/2

}
. (3.15)

Proof. Firstly, we note from (3.7) that Aσ is a bilinear form. Next, applying Cauchy-Schwarz’s
inequality, the lower bound for ϑ (cf. 2.7), and the trace theorem (with constant c0), we find that

|Aσ((t, σ̃, φ), (s, τ̃ , ψ))| ≤ ϑ2‖t‖0,Ω‖s‖0,Ω + ‖σ̃‖0,Ω ‖s‖0,Ω + ‖τ̃‖0,Ω ‖t‖0,Ω
+ ‖φ‖0,Ω ‖div τ̃‖0,Ω + ‖ψ‖0,Ω ‖div σ̃‖0,Ω + κ1‖σ̃‖0,Ω ‖τ̃‖0,Ω + κ1ϑ2 ‖t‖0,Ω ‖τ̃‖0,Ω
+ κ2‖div σ̃‖0,Ω ‖div τ̃‖0,Ω + κ3|φ|1,Ω|ψ|1,Ω + κ3 ‖t‖0,Ω |ψ|1,Ω + c2

0 κ4 ‖φ‖1,Ω ‖ψ‖1,Ω .

It follows that there exists a positive constant ‖A‖, depending on ϑ2, c0, κ1, κ2, κ3 and κ4, such that

|Aσ((t, σ̃, φ), (s, τ̃ , ψ))| ≤ ‖A‖ ‖(t, σ̃, φ)‖H2
‖(s, τ̃ , ψ)‖H2

∀ (t, σ̃, φ), (s, τ̃ , ψ) ∈ H2, (3.16)

and hence Aσ is bounded independently of (σ,u) ∈ HΣ(div; Ω)×L2(Ω). In turn, we now aim to show
that Aσ is H2-elliptic. To this end, given (s, τ̃ , ψ) ∈ H2, we apply (2.8) and find that

Aσ((s, τ̃ , ψ), (s, τ̃ , ψ)) ≥
∫

Ω
ϑ(σ) s · s+ κ1 ‖τ̃‖20,Ω − κ1ϑ2 ‖s‖0,Ω ‖τ̃‖0,Ω + κ2 ‖div τ̃‖20,Ω

+ κ3|ψ|21,Ω−κ3 ‖s‖0,Ω |ψ|1,Ω + κ4 ‖ψ‖20,Σ

≥ ϑ0 ‖s‖20,Ω + κ1 ‖τ̃‖20,Ω + κ2 ‖div τ̃‖20,Ω −
κ1ϑ2

2δ
‖s‖20,Ω −

κ1ϑ2δ

2
‖τ̃‖20,Ω

+ κ3|ψ|21,Ω −
κ3

2δ̃
‖s‖20,Ω −

κ3δ̃

2
|ψ|21,Ω + κ4 ‖ψ‖20,Σ

=

{(
ϑ0 −

κ1ϑ2

2δ

)
− κ3

2δ̃

}
‖s‖20,Ω + κ1

(
1− ϑ2δ

2

)
‖τ̃‖20,Ω + κ2 ‖div τ̃‖20,Ω

+ κ3

(
1− δ̃

2

)
|ψ|21,Ω + κ4 ‖ψ‖20,Σ .

(3.17)

Then, assuming the stipulated hypotheses on δ, δ̃, κ1, κ2, κ3, κ4 and applying Lemma 3.3, we can define

α̃1 :=

{(
ϑ0 −

κ1ϑ2

2δ

)
− κ3

2δ̃

}
, α̃2 := min

{
κ1

(
1− ϑ2δ

2

)
, κ2

}
, α̃3 := c3 min

{
κ3

(
1− δ̃

2

)
, κ4

}
,

which allows us to deduce from (3.17) that

Aσ((s, τ̃ , ψ), (s, τ̃ , ψ)) ≥ α̃ ‖(s, τ̃ , ψ)‖2 ∀ (s, τ̃ , ψ) ∈ H2, (3.18)
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where α̃ := min {α̃1, α̃2, α̃3} is the ellipticity constant of Aσ. Next, applying Cauchy-Schwarz’s in-
equality and the trace estimates in H(div; Ω) and H1(Ω), with constants 1 and c0, respectively, to
(3.8), we find that there exists a positive constant ‖G̃‖ depending on κ2, κ3 and c0, such that

‖Gu‖ ≤ ‖G̃‖
{
‖φD‖1/2,Σ + g2|Ω|1/2

}
. (3.19)

Finally, a direct application of the Lax-Milgram lemma proves that for each (σ,u) ∈ HΣ(div; Ω) ×
L2(Ω), problem (3.6) has a unique solution S̃(σ,u) = (t, σ̃, φ) ∈ H2. Moreover, a continuous depen-
dence result is given by

‖S̃(σ,u)‖H2 = ‖(t, σ̃, φ)‖H2
≤ 1

α̃
‖Gu‖H′2 ≤ c̃S

{
‖φD‖1/2,Σ + g2|Ω|1/2

}
,

where c̃S :=
‖G̃‖
α̃

, completing the proof. �

Note that the constant α̃ yielding ellipticity of Aσ can be maximized by choosing the parameters
δ, δ̃, κ1, and κ3 as the middle points of their feasible ranges, and by taking κ2 and κ4 so that they
maximize the minima defining α̃2 and α̃3, respectively. Adequate choices are then

δ =
1

ϑ2
, κ1 =

δϑ0

ϑ2
=
ϑ0

ϑ2
2

, δ̃ = 1, κ3 = δ̃

(
ϑ0 −

κ1ϑ2

2δ

)
=
ϑ0

2
,

κ2 = κ1

(
1− δϑ2

2

)
=

ϑ0

2ϑ2
2

, κ4 = κ3

(
1− δ̃

2

)
=
ϑ0

4
,

(3.20)

which yields

α̃1 =
ϑ0

4
, α̃2 =

ϑ0

2ϑ2
2

, α̃3 = c3
ϑ0

4
, and α̃ = min

{
min {c3, 1}

ϑ0

4
,
ϑ0

2ϑ2
2

}
.

We end this section by introducing suitable regularity estimates on S and S̃, exactly as in [18, Section
2.2]. In fact, we concentrate in the case where Ω is a convex polygonal domain and n = 2, recall that
f(ψ) ∈ H1(Ω) for each ψ ∈ H1(Ω), and assume from now on that uD ∈ H3/2+γ(Γ), where γ is the
positive constant whose existence is guaranteed in [9]. Then, applying precisely the estimate given
in [9, eq. (3.9)] and recalling from the constitutive equation that the regularities of the unknowns are
connected, we find that S(ψ) ∈ HΣ(div; Ω) ∩H1+γ(Ω)×H2+γ(Ω)× L2

skew(Ω) ∩H1+γ(Ω).

In turn, for S̃ we note that, for a given par (ζ,w) := (S1(ψ),S2(ψ)) ∈ HΣ(div; Ω) ∩ H1+γ(Ω) ×
H2+γ(Ω) (which denote the first and second components of the unique solution produced by the oper-
ator S), the hypothesis given by relation (2.9) implies in particular that g(w) ∈ Hγ(Ω). Additionally,
we assume that the coefficients ϑ(ζ)ij are in C1+γ(Ω) and φD ∈ H3/2+γ(Σ), then elliptic regularity

results (cf. [21], [29]) guarantee that φ := S̃3(ζ,w) ∈ H2+γ(Ω), and therefore there exists C̃1 > 0 such
that

‖S̃1(ζ,w)‖1+γ,Ω = ‖t‖1+γ,Ω ≤ ‖φ‖2+γ,Ω ≤ C̃1

{
‖φD‖3/2+γ,Σ + ‖g(w)‖γ,Ω

}
. (3.21)

On the other hand, the Sobolev embedding theorem (cf. [24, Thm. A.5]) establishes the continuous
injection iγ : H1+γ(Ω) −→ C0(Ω), with boundedness constant C̃γ . Then, applying (3.21) implies that

‖S̃1(ζ,w)‖∞,Ω = ‖t‖∞,Ω ≤ C̃γ ‖t‖1+γ,Ω ≤ C̃γC̃1

{
‖φD‖3/2+γ,Σ + ‖g(w)‖γ,Ω

}
. (3.22)

Finally, replacing the estimates (2.9) and (3.14) into (3.22), we find that

‖S̃1(ζ,w)‖∞,Ω = ‖t‖∞,Ω ≤ C∞
{
‖φD‖3/2+γ,Σ + ‖uD‖1/2,Γ + f2|Ω|1/2

}
, (3.23)

where C∞ is a positive constant depending on Cγ , cS, C̃γ and C̃1 (cf. (2.9), (3.14), (3.21), (3.22)).
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3.3 Solvability analysis of the fixed-point equation

We now verify the hypotheses of the Schauder fixed-point theorem (see, eg. [13, Thm. 3.7-1]). Before
starting the result to be proved, we restrict T to a ball and show that this operator maps into itself.

Lemma 3.6 Let W be the closed and convex subset of H1(Ω) defined by

W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ c̃S

{
‖φD‖1/2,Σ + g2|Ω|1/2

}}
,

where c̃S is the constant given by (3.14). Then T(W ) ⊆W.

Proof. It suffices to recall the definition of T and apply the estimate (3.15). �

The following estimate is key to derive Lipschitz continuity of T. For a proof see [18, Lemma 2.6].

Lemma 3.7 There exists a positive constant CS depending on µ,Lf , α (cf .(2.5), (3.12)) and the inf-
sup constant of b, such that

‖S(φ)− S(ϕ)‖H1
≤ CS ‖φ− ϕ‖0,Ω ∀φ, ϕ ∈ H1(Ω). (3.24)

We are in a position to establish the announced propertie of the operator T.

Lemma 3.8 Let CS be the constant provided by Lemma 3.7. Then, for each φ, ϕ ∈ H1(Ω), there holds

‖T(φ)−T(ϕ)‖1,Ω ≤
CS

α̃

{
Lg(1 + κ2

2)1/2 + Lϑ(1 + κ2
1)1/2‖S̃1(S1(ϕ),S2(ϕ))‖∞,Ω

}
‖φ− ϕ‖0,Ω . (3.25)

Proof. We begin by recalling that T(φ) = S̃3(S1(φ),S2(φ)) and T(ϕ) = S̃3(S1(ϕ),S2(ϕ)) ∀φ, ϕ ∈
H1(Ω). For notational purposes we rename

(σ,u) := (S1(φ),S2(φ)) and (ζ,w) := (S1(ϕ),S2(ϕ)),

where (σ,u), (ζ,w) ∈ HΣ(div; Ω) × L2(Ω). Next, we consider (t, σ̃, φ) := S̃(σ,u) and (r, ζ̃, ϕ) :=
S̃(ζ,w), that is, for each (s, τ̃ , ψ) ∈ H2, one has

Aσ((t, σ̃, φ), (s, τ̃ , ψ)) = Gu(s, τ̃ , ψ) and Aζ((r, ζ̃, ϕ), (s, τ̃ , ψ)) = Gw(s, τ̃ , ψ).

Analogously to the proof of [18, Lemma 2.7], we apply the ellipticity of Aσ (cf. (3.18)) and then, by
adding and subtracting appropiate terms, we find that

α̃‖(t, σ̃, φ)− (r, ζ̃, ϕ)‖2H2

≤ Aσ((t, σ̃, φ), (t, σ̃, φ)− (r, ζ̃, ϕ))−Aσ((r, ζ̃, ϕ), (t, σ̃, φ)− (r, ζ̃, ϕ))

= (Gu −Gw)((t, σ̃, φ)− (r, ζ̃, ϕ)) + (Aζ −Aσ)((r, ζ̃, ϕ), (t, σ̃, φ)− (r, ζ̃, ϕ)).

(3.26)

Using the definition of Aσ,Gu, Cauchy-Schwarz’s inequality, and (2.6),(2.7), we can assert that

|(Gu −Gw)((t, σ̃, φ)− (r, ζ̃, ϕ))| =
∣∣∣∣∫

Ω
(g(u)− g(w))

{
(φ− ϕ)− κ2 div (σ̃ − ζ̃)

}∣∣∣∣
≤ Lg ‖u−w‖0,Ω

{
‖φ− ϕ‖0,Ω + κ2‖div (σ̃ − ζ̃)‖0,Ω

}
≤ Lg(1 + κ2

2)1/2 ‖u−w‖0,Ω ‖(t, σ̃, φ)− (r, ζ̃, ϕ)‖H2 ,

(3.27)
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and

|(Aζ −Aσ)((r, ζ̃, ϕ), (t, σ̃, φ)− (r, ζ̃, ϕ))| =
∣∣∣∣∫

Ω
(ϑ(ζ)− ϑ(σ)) r ·

{
(t− r)− κ1(σ̃ − ζ̃)

}∣∣∣∣
≤ Lϑ ‖σ − ζ‖0,Ω ‖r‖∞,Ω

{
‖t− r‖0,Ω + κ1‖σ̃ − ζ̃‖0,Ω

}
.

≤ Lϑ(1 + κ2
1)1/2 ‖σ − ζ‖0,Ω ‖r‖∞,Ω‖(t, σ̃, φ)− (r, ζ̃, ϕ)‖H2 ,

(3.28)

whence the inequalities (3.26), (3.27) and (3.28) imply that

‖(t, σ̃, φ)− (r, ζ̃, ϕ)‖H2 ≤
1

α̃

{
Lg(1 + κ2

2)1/2 ‖u−w‖0,Ω + Lϑ(1 + κ2
1)1/2 ‖σ − ζ‖0,Ω ‖r‖∞,Ω

}
. (3.29)

Next, according to the definitions given when starting the proof, we can rewrite (3.29) as

‖S̃(S1(φ),S2(φ))− S̃(S1(ϕ),S2(ϕ)‖H2 ≤
1

α̃

{
Lg(1 + κ2

2)1/2 ‖S2(φ)− S2(ϕ)‖0,Ω

+Lϑ(1 + κ2
1)1/2 ‖S1(φ)− S1(ϕ)‖0,Ω ‖S̃1(S1(ϕ),S2(ϕ))‖∞,Ω

}
.

(3.30)

It is important to note here that, when needed, ‖S̃1(S1(ϕ),S2(ϕ))‖∞,Ω can be bounded by (3.23), for
each ϕ ∈ H1(Ω). Finally, applying estimates (3.24) and (3.30), we find that

‖T(φ)−T(ϕ)‖1,Ω = ‖S̃3(S1(φ),S2(φ))− S̃3(S1(ϕ),S2(ϕ))‖1,Ω

≤ 1

α̃
CS

{
Lg(1 + κ2

2)1/2 + Lϑ(1 + κ2
1)1/2‖S̃1(S1(ϕ),S2(ϕ))‖∞,Ω

}
‖φ− ϕ‖0,Ω .

which gives (3.25), completing the proof. �

The next lemma establishes the continuity and compactness of T.

Lemma 3.9 Let W be as in Lemma 3.6. Then T : W →W is continuous and T(W ) is compact.

Proof. It follows straightforwardly from (3.25) and the continuity of ic : H1(Ω)→ L2(Ω) that

‖T(φ)−T(ϕ)‖1,Ω ≤
1

α̃
CS ‖ic‖

{
Lg(1 + κ2

2)1/2 + Lϑ(1 + κ2
1)1/2‖S̃1(S1(ϕ),S2(ϕ))‖∞,Ω

}
‖φ− ϕ‖1,Ω ,

which proves continuity of T. In turn, let {φk}k∈N be a sequence of W , which is clearly bounded.

Then, there exists a subsequence {φ(1)
k }k∈N ⊆ {φk}k∈N and φ ∈ H1(Ω) such that φ

(1)
k

w−→ φ ∈ H1(Ω).

In this way, thanks to the compactness of ic, we deduce that φ
(1)
k → φ ∈ L2(Ω), which, combined with

(3.25), implies that T(φ
(1)
k )→ T(φ) ∈ H1(Ω), and proves the compactness of T(W ). �

We are ready now to prove that (3.10) is well-posed. From Lemmas 3.6 and 3.9, the existence
of solution is merely an application of Schauder’s theorem. Futhermore, assuming that the data is
small enough, we can prove uniqueness of solution. Details of the proof are similar to those available
in [18, Thm. 2.9].

Theorem 3.10 Let W be as in Lemma 3.6. Then, the augmented fully-mixed problem (3.9) has at
least one solution

(
(σ, (u,ρ)), (t, σ̃, φ)

)
∈ H1 ×H2 with φ ∈W , satisfying the bounds

‖(t, σ̃, φ)‖H2 ≤ c̃S
{
‖φD‖1/2,Σ + g2|Ω|1/2

}
,

‖(σ, (u,ρ))‖H1
≤ cS

{
‖uD‖1/2,Γ + f2|Ω|1/2

}
.

Moreover, if the data satisfy

1

α̃
CS

{
Lg(1 + κ2

2)1/2 + Lϑ(1 + κ2
1)1/2C∞

(
‖φD‖3/2+γ,Σ + ‖uD‖1/2,Γ + f2|Ω|1/2

)}
< 1,

then the solution φ is unique in W.
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4 The Galerkin scheme

In this section we introduce and analyze a Galerkin scheme for (3.9). We adopt the discrete analogue of
the fixed-point strategy introduced in Section 3.2 and apply the Brouwer fixed-point theorem to prove
existence of discrete solution. Finally, we establish a priori error estimates. We start by considering
generic finite dimensional subspaces

Hσh ⊆ HΣ(div; Ω), Hu
h ⊆ L2(Ω), Hρh ⊆ L2

skew(Ω), (4.1)

Ht
h ⊆ L2(Ω), Hσ̃

h ⊆ HΓ(div; Ω), and Hφ
h ⊆ H1(Ω), (4.2)

which will be specified later on. Hereafter, h denotes the size of a regular triangulation Th of Ω made
up of triangles K of diameter hK , i.e. h := max {hK : K ∈ Th} . A Galerkin scheme for (3.9) reads:

find (σh, (uh,ρh), th, σ̃h, φh) ∈ Hσh × (Hu
h ×Hρh)×Ht

h ×Hσ̃
h ×Hφ

h such that

a(σh, τ h) + b(τ h, (uh,ρh)) = G(τ h) ∀ τ h ∈ Hσh ,
b(σh, (vh,ηh)) = Fφh(vh,ηh) ∀ (vh,ηh) ∈ Hu

h ×Hρh,

Aσh((th, σ̃h, φh), (sh, τ̃ h, ψh)) = Guh(sh, τ̃ h, ψh) ∀ (sh, τ̃ h, ψh) ∈ Ht
h ×Hσ̃

h ×Hφ
h.

(4.3)

In order to address the well-posedness of (4.3), we proceed analogously as in Section 3.2 and apply

a fixed-point strategy. In fact, we define the operator Sh : Hφ
h → Hσh × (Hu

h ×Hρh) as

Sh(φh) := (S1,h(φh), (S2,h(φh),S3,h(φh))) := (σh, (uh,ρh)) ∀φh ∈ Hφ
h,

where (σh, (uh,ρh)) is the unique solution of

a(σh, τ h) + b(τ h, (uh,ρh)) = G(τ h) ∀ τ h ∈ Hσh ,
b(σh, (vh,ηh)) = Fφh(vh,ηh) ∀ (vh,ηh) ∈ Hu

h ×Hρh,
(4.4)

with Fφh being defined by (3.2) with φ = φh. In turn, we introduce S̃h : Hσh ×Hu
h → Ht

h ×Hσ̃
h × Hφ

h

as

S̃h(σh,uh) := (S̃1,h(σh,uh), S̃2,h(σh,uh), S̃3,h(σh,uh)) := (th, σ̃h, φh) ∀ (σh,uh) ∈ Hσh ×Hu
h ,

where (th, σ̃h, φh) is the unique solution of

Aσh((th, σ̃h, φh), (sh, τ̃ h, ψh)) = Guh(sh, τ̃ h, ψh) ∀ (sh, τ̃ h, ψh) ∈ Ht
h ×Hσ̃

h ×Hφ
h, (4.5)

with Aσh and Guh being defined by (3.7) with σ = σh and (3.8) with u = uh, respectively. In this

way, by introducing the operator Th : Hφ
h → Hφ

h as Th(φh) := S̃3,h(S1,h(φh),S2,h(φh)) ∀φh ∈ Hφ
h, we

realize that (4.3) can be rewritten as the fixed-point problem: find φh ∈ Hφ
h such that

Th(φh) = φh. (4.6)

Analogously to the continuous case, we first study the well-posedness of Sh and S̃h, and hence the well-
definiteness of Th. To this end we proceed as in [18, Section 3.2] and incorporate further hypotheses
on the discrete spaces Hσh ,Hu

h and Hρh. Let Vh be the discrete kernel of b given by

Vh :=
{
τ h ∈ Hσh : b(τ h, (vh,ηh)) = 0 ∀ (vh,ηh) ∈ Hu

h ×Hρh
}
,

and assume the following discrete inf-sup conditions:
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(H.0) There exists a constant α1 > 0, independent of h, such that

sup
τh∈Vh
τh 6=0

a(σh, τ h)

‖τ h‖div;Ω

≥ α1 ‖σh‖div;Ω ∀σh ∈ Vh. (4.7)

(H.1) There exists a constant β1 > 0, independent of h, such that

sup
τh∈H

σ
h

τh 6=0

b(τ h, (vh,ηh))

‖τ h‖div;Ω

≥ β1 ‖(vh,ηh)‖L2(Ω)×L2
skew(Ω) ∀ (vh,ηh) ∈ Hu

h ×Hρh. (4.8)

Deriving well-posedness of the discrete problem (4.4) results as a straightforward application of the
discrete Babuška-Brezzi theory. Firstly, the operators related to a and b, and the functionals G and
Fφh are all bounded on subspaces of the corresponding continuous spaces. Next, the inf-sup conditions
are given by (H.0) and (H.1). The unique solvability of (4.4) is abridged in the following lemma.

Lemma 4.1 For each φh ∈ Hφ
h, problem (4.4) has a unique solution Sh(φh) := (σh, (uh,ρh)) ∈

Hσh × (Hu
h × Hρh). Moreover, there exists C̃ > 0, depending on µ, α1 and β1 (cf .(4.7), (4.8)), but

independent of φh and h, such that

‖Sh(φh)‖H1
= ‖(σh, (uh,ρh))‖H1

≤ C̃
{
‖uD‖1/2,Γ + f2|Ω|1/2

}
.

Regard to problem S̃ we state next the discrete analogue of Lemma 3.5.

Lemma 4.2 Assume that κ1 ∈
(

0, 2δϑ0
ϑ2

)
and κ3 ∈

(
0, 2δ̃

(
ϑ0 − κ1ϑ2

2δ

))
with δ ∈

(
0, 2

ϑ2

)
, δ̃ ∈ (0, 2),

and κ2, κ4 > 0. Then, for each (σh,uh) ∈ Hσh ×Hu
h , problem (4.5) has a unique solution S̃h(σh,uh) =

(th, σ̃h, φh) ∈ Ht
h ×Hσ̃

h ×Hφ
h. Moreover, with the constant c̃S provided by Lemma 3.5, there holds

‖S̃h(σh,uh)‖H2 = ‖(th, σ̃h, φh)‖H2
≤ c̃S

{
‖φD‖1/2,Σ + g2|Ω|1/2

}
. (4.9)

Proof. We first observe that for each (σh,uh) ∈ Hσh ×Hu
h , the operator Aσh is bounded and elliptic

on Ht
h ×Hσ̃

h × Hφ
h with the same constants ‖A‖ and α̃ from Lemma 3.5. In addition, G̃uh restricted

to Ht
h × Hσ̃

h × Hφ
h is bounded as in (3.19) with uh in place of u. Therefore, the result is a direct

application of the Lax-Milgram lemma. �

We notice in advance that, instead of the regularity estimates employed in the continuous case (not
applicable in the present discrete case), we simply utilize properties of the discrete subspaces chosen.
In what follows, we verify the hypotheses of the Brouwer fixed-point theorem (see, e.g. [13, Thm.
9.9-2]) to prove that (4.6) has at least one fixed point.

Lemma 4.3 Let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ c̃S
{
‖φD‖1/2,Σ + g2|Ω|1/2

}}
. Then Th(Wh) ⊆Wh.

Proof. It is basically an application of the definition of Th and the estimate (4.9). �

Lemma 4.4 There exists C > 0 depending on µ,Lf , α1 and β1 (cf .(2.5), (4.7), (4.8)) such that

‖Sh(φh)− Sh(ϕh)‖H ≤ C ‖φh − ϕh‖0,Ω ∀φh, ϕh ∈ Hφ
h.

Proof. See [18, Lemma 3.4]. �
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Lemma 4.5 For each (σh,uh), (ζh,wh) ∈ Hσh ×Hu
h , there holds

‖S̃h(σh,uh)− S̃h(ζh,wh)‖H2

≤ 1

α̃

{
Lg(1 + κ2

2)1/2 ‖uh −wh‖0,Ω + Lϑ(1 + κ2
1)1/2‖S̃1,h(ζh,wh)‖∞,Ω ‖σh − ζh‖0,Ω

}
.

(4.10)

Proof. Proceeding as in [18, Lemma 3.5], given (σh,uh), (ζh,wh) ∈ Hσh ×Hu
h , we let (th, σ̃h, φh) =

S̃h(σh,uh) and (rh, ζ̃h, ϕh) = S̃(ζh,wh). Then, analogously to the proof of Lemma 3.8, we get

α̃‖(t, σ̃, φ)− (r, ζ̃, ϕ)‖2H2

≤
{
Lg(1 + κ2

2)1/2 ‖uh −wh‖0,Ω + Lϑ(1 + κ2
1)1/2‖rh‖∞,Ω ‖σh − ζh‖0,Ω

}
‖φh − ϕh‖0,Ω .

Since the elements of Ht
h are piecewise polynomials (to be specified later on) it follows that ‖rh‖∞,Ω <

+∞, and hence the foregoing equation yields (4.10). Futher details are ommited. �

As a consequence of the above Lemmas, we can state the Lipschitz continuity of T.

Lemma 4.6 Assume that C is as in Lemma 4.4. Then, for each φh, ϕh ∈ Hφ
h, there holds

‖Th(φh)−Th(ϕh)‖1,Ω

≤ C

α̃

{
Lg(1 + κ2

2)1/2 + Lϑ(1 + κ2
1)1/2‖S̃1,h(S1,h(ϕ),S2,h(ϕ))‖∞,Ω

}
‖φh − ϕh‖0,Ω .

Proof. It suffices to recall that Th(φh) = S̃3,h(S1,h(φh),S2,h(φh)) for φh ∈ Hφ
h and apply Lemmas 4.3,

4.4 and 4.5. �

At this point, we are able to state the main result of this section.

Theorem 4.7 Let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ c̃S
{
‖φD‖1/2,Σ + g2|Ω|1/2

}}
. Then (4.3) has at least

one solution (σh, (uh,ρh), th, σ̃h, φh) ∈ Hσh × (Hu
h × Hρh) ×Ht

h ×Hσ̃
h × Hφ

h with φh ∈ Wh, and there
holds

‖(th, σ̃h, φh)‖H2 ≤ c̃S
{
‖φD‖1/2,Σ + g2|Ω|1/2

}
, (4.11)

‖(σh, (uh,ρh))‖H1
≤ C̃

{
‖uD‖1/2,Γ + f2|Ω|1/2

}
. (4.12)

Proof. After using Lemmas 4.3 and 4.6, the result is a straightforward consequence of Brouwer’s
fixed-point theorem. In turn, bounds (4.11) and (4.12) follow from Lemmas 4.2 and 4.1, respectively.
�

In what follows, we derive an error estimate for (4.3). For this purpose, we consider in what follows(
(σ, (u,ρ)), (t, σ̃, φ)

)
∈ H1 × H2, with φ ∈ W , and (σh, (uh,ρh), th, σ̃h, φh) ∈ Hσh × (Hu

h × Hρh) ×
Ht
h ×Hσ̃

h × Hφ
h, with φh ∈ Wh, be the solutions of (3.9) and (4.3), respectively. We seek an upper

bound for
‖(σ, (u,ρ), t, σ̃, φ)− (σh, (uh,ρh), th, σ̃h, φh)‖ ,

for which, we suggest to estimate ‖(σ, (u,ρ))− (σh, (uh,ρh))‖ and ‖(t, σ̃, φ)−(th, σ̃h, φh)‖, separately.
With this goal in mind, we first rearrange (3.9) and (4.3) as follows

a(σ, τ ) + b(τ , (u,ρ)) = G(τ ) ∀ τ ∈ HΣ(div; Ω),

b(σ, (v,η)) = Fφ(v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω),

a(σh, τ h) + b(τ h, (uh,ρh)) = G(τ h) ∀ τ h ∈ Hσh ,
b(σh, (vh,ηh)) = Fφh(vh,ηh) ∀ (vh,ηh) ∈ Hu

h ×Hρh

(4.13)
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and

Aσ((t, σ̃, φ), (s, τ̃ , ψ)) = Gu(s, τ̃ , ψ) ∀ (s, τ̃ , ψ) ∈ H2,

Aσh((th, σ̃h, φh), (sh, τ̃ h, ψh)) = Guh(sh, τ̃ h, ψh) ∀ (sh, τ̃ h, ψh) ∈ Ht
h ×Hσ̃

h ×Hφ
h.

(4.14)

Next, we recall from [31, Thm. 11.2 and 11.1] two instrumental results. First, a Strang inequality for
saddle point problems where continuous and discrete formulations differ only in the functional. This
will be applied to (4.13). Second, the standard Strang Lemma for elliptic problems, which fits (4.14).

Lemma 4.8 Let H,Q be Hilbert spaces, let a : H ×H → R and b : H ×Q → R be bounded bilinear
forms satisfying the Babuška-Brezzi theory, and let F ∈ H ′ and G ∈ Q′. Let {Hh}h>0 and {Qh}h>0

be sequences of finite-dimensional subspaces of H and Q, respectively. Suppose that a, b satisfy the
hypotheses of the discrete Babuška-Brezzi theory uniformly on Hh and Qh, that is, there exist positive
constants α̂ and β̂ independent of h, such that

sup
ψh∈Hh
ψh 6=0

a(ψh,ψh)

‖ψh‖H
≥ α̂ ‖ψh‖H ∀ψh ∈ Vh and sup

ψh∈Hh
τh 6=0

b(ψh, µh)

‖ψh‖H
≥ β̂ ‖µh‖Q ∀µh ∈ Qh,

where Vh denotes the discrete kernel of b. Moreover, for each h > 0, consider functionals Fh ∈ H ′h
and Gh ∈ Q′h. Then, there exists a constant CST dependent only on ‖a‖ , ‖b‖ , α̂ and β̂ such that if
(ϕ, λ) ∈ H ×Q and (ϕh, λh) ∈ Hh ×Qh satisfy the problems

a(ϕ,ψ) + b(ψ, λ) = F (ψ) ∀ ψ ∈ H,
b(ϕ, µ) = G(µ) ∀ µ ∈ Q,

and

a(ϕh, ψh) + b(ψh, λh) = Fh(ψh) ∀ ψh ∈ Hh,

b(ϕh, µh) = Gh(µh) ∀ µh ∈ Qh,

respectively, then for each h > 0, there holds

‖ϕ− ϕh‖H + ‖λ− λh‖Q ≤ CST

 inf
ψh∈Hh
ψh 6=0

‖ϕ− ψh‖H + inf
µh∈Qh
µh 6=0

‖λ− µh‖Q

+ sup
φh∈Hh
φh 6=0

|F (φh)− Fh(φh)|
‖φh‖H

+ sup
ηh∈Qh
ηh 6=0

|G(ηh)−Gh(ηh)|
‖ηh‖H

 .

Lemma 4.9 Let H be a Hilbert space, F ∈ H ′ and a : H ×H → R be a bounded and elliptic bilinear
form. In addition, let {Hh}h>0 be a sequence of finite dimensional subspaces of H and for each h > 0
consider a bounded bilinear form ah : Hh×Hh → R and a functional Fh ∈ H ′h. Asume that the family
{ah}h>0 is uniformly elliptic, that is, there exists a constant α > 0, independent of h, such that

ah(vh, vh) ≥ α ‖vh‖2H ∀ vh ∈ Hh, ∀h > 0.

In turn, let u ∈ H and uh ∈ Hh such that

a(u, v) = F (v) ∀ v ∈ H and ah(uh, vh) = Fh(vh) ∀ vh ∈ Hh.
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Then, for each h > 0 there holds

‖u− uh‖H

≤ C̃ST

 sup
wh∈Hh
wh 6=0

|F (wh)− Fh(wh)|
‖wh‖H

+ inf
vh∈Hh
vh 6=0

‖u− vh‖V + sup
wh∈Hh
wh 6=0

|a(vh, wh)− ah(vh, wh)|
‖wh‖H


 .

where C̃ST := α−1 max{1, ‖a‖}.

From now on, we denote as usual

dist
(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)

:= inf
(τh,(vh,ηh))∈Hσh×(Huh×H

ρ
h)
‖(σ, (u,ρ))− (τ h, (vh,ηh))‖H1

,

and
dist

(
(t, σ̃, φ),Ht

h ×Hσ̃
h ×Hφ

h

)
:= inf

(sh,τ̃h,ψh)∈Hth×H
σ̃
h×Hφh

‖(t, σ̃, φ)− (sh, τ̃ h, ψh)‖H2 .

Next, a straightforward application of Lemma 4.8 yields the following result concerning a priori esti-
mates for ‖(σ, (u,ρ))− (σh, (uh,ρh))‖ . Details of the proof can be found in [18, Lemma 3.10].

Lemma 4.10 There exists a constant CST > 0, depending on µ, α1 and β1 (cf . (4.7), (4.8)), such that

‖(σ, (u,ρ))− (σh, (uh,ρh))‖H1

≤ CST

{
dist

(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)

+ Lf ‖φ− φh‖0,Ω
}
.

(4.15)

In turn, we apply Lemma 4.9 to the pair (4.14) to obtain an estimate for ‖(t, σ̃, φ)− (th, σ̃h, φh)‖.

Lemma 4.11 Let C̃ST := α̃−1 max{1, ‖A‖}, where ‖A‖ and α̃ are the boundedness and ellipticity
constants, respectively, of the bilinear form Aσ (cf . (3.16), (3.18)). Then, there holds

‖(t, σ̃, φ)− (th, σ̃h, φh)‖H2
≤ C̃ST

{
(1 + 2 ‖A‖) dist

(
(t, σ̃, φ),Ht

h ×Hσ̃
h ×Hφ

h

)
+Lg(1 + κ2

2)1/2 ‖u− uh‖0,Ω + Lϑ(1 + κ2
1)1/2 ‖σ − σh‖0,Ω ‖t‖∞,Ω

}
.

(4.16)

Proof. A straightforward application of Lemma 4.11 to the context (4.14), gives

‖(t, σ̃, φ)− (th, σ̃h, φh)‖H2

≤ C̃ST

 sup
(rh,ζ̃h,ϕh)∈H

t
h
×Hσ̃

h
×H

φ
h

(rh,ζ̃h,ϕh)6=0

|Gu(rh, ζ̃h, ϕh)−Guh(rh, ζ̃h, ϕh)|
‖(rh, ζ̃h, ϕh)‖

+ inf
(sh,τ̃h,ψh)∈H

t
h
×Hσ̃

h
×H

φ
h

(sh,τ̃h,ψh)6=0

‖(t, σ̃, φ)− (sh, τ̃ h, ψh)‖

+ sup
(rh,ζ̃h,ϕh)∈H

t
h
×Hσ̃

h
×H

φ
h

(rh,ζ̃h,ϕh)6=0

|Aσ((sh, τ̃ h, ψh), (rh, ζ̃h, ϕh))−Aσh((sh, τ̃ h, ψh), (rh, ζ̃h, ϕh))|
‖(rh, ζ̃h, ϕh)‖


 .

(4.17)
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Then, proceeding analogously as in the proof of Lemma 3.8, we deduce that

sup
(rh,ζ̃h,ϕh)∈H

t
h
×Hσ̃

h
×H

φ
h

(rh,ζ̃h,ϕh)6=0

|Gu(rh, ζ̃h, ϕh)−Guh(rh, ζ̃h, ϕh)|
‖(rh, ζ̃h, ϕh)‖

≤ Lg(1 + κ2
2)1/2 ‖u− uh‖0,Ω . (4.18)

In turn, in much the same way as [4, Lemma 5.2], we add and subtract suitable terms to write

Aσ((sh, τ̃ h, ψh), (rh, ζ̃h, ϕh))−Aσh((sh, τ̃ h, ψh), (rh, ζ̃h, ϕh))

= Aσ((sh, τ̃ h, ψh)− (t, σ̃, φ), (rh, ζ̃h, ϕh)) + (Aσ −Aσh)((t, σ̃, φ), (rh, ζ̃h, ϕh))

+Aσh((t, σ̃, φ)− (sh, τ̃ h, ψh), (rh, ζ̃h, ϕh)),

thus, the estimates for the first and third terms follow by applying the boundedness (3.16), whereas
for the second one, we find that

(Aσ −Aσh)((t, σ̃, φ), (rh, ζ̃h, ϕh)) =

∫
Ω

(ϑ(σ)− ϑ(σh)) t · (rh − κ1ζ̃h)

≤ Lϑ(1 + κ2
1)1/2 ‖σ − σh‖0,Ω ‖t‖∞,Ω ‖(rh, ζ̃h, ϕh)‖,

whence, we deduce that

sup
(rh,ζ̃h,ϕh)∈H

t
h
×Hσ̃

h
×H

φ
h

(rh,ζ̃h,ϕh)6=0

|Aσ((sh, τ̃ h, ψh), (rh, ζ̃h, ϕh))−Aσh((sh, τ̃ h, ψh), (rh, ζ̃h, ϕh))|
‖(rh, ζ̃h, ϕh)‖

≤ 2 ‖A‖ ‖(t, σ̃, φ)− (sh, τ̃ h, ψh)‖+ Lϑ(1 + κ2
1)1/2 ‖σ − σh‖0,Ω ‖t‖∞,Ω .

(4.19)

Finally, by replacing (4.18)-(4.19) into (4.17), we get (4.16), which ends the proof. �

Now, to derive the Céa estimate for the total error we combine Lemmas 4.10 and 4.11. To this end,
and for notational convenience, we introduce the following constants

C1 := CST C̃ST Lg (1 + κ2
2)1/2, C2 := CST C̃STC∞ Lϑ (1 + κ2

1)1/2, C3 := C̃ST (1 + 2 ‖A‖).

Next we replace the bounds for ‖u− uh‖0,Ω and ‖σ − σh‖0,Ω into (4.16), and apply from (3.23) that

‖t‖∞,Ω ≤ C∞
{
‖φD‖3/2+γ,Σ + ‖uD‖1/2,Γ + f2|Ω|1/2

}
.

We then perform algebraic manipulations to find that

‖(t, σ̃, φ)− (th, σ̃h, φh)‖H2

≤
{
C1 + C2

(
‖φD‖3/2+γ,Σ + ‖uD‖1/2,Γ + f2|Ω|1/2

)}
dist

(
(σ, (u,ρ),Hσ

h × (Hu
h ×Hρ

h)
)

+ Lf

{
C1 + C2

(
‖φD‖3/2+γ,Σ + ‖uD‖1/2,Γ + f2|Ω|1/2

)}
‖(t, σ̃, φ)− (th, σ̃h, φh)‖

+ C3 dist
(

(t, σ̃, φ),Ht
h ×Hσ̃

h ×Hφ
h

)
(4.20)

Consequently, we can establish the following result which provides the complete Céa estimate.

Theorem 4.12 Suppose that the data satisfy

Lf

{
C1 + C2

(
‖φD‖3/2+γ,Σ + ‖uD‖1/2,Γ + f2|Ω|1/2

)}
<

1

2
.

Then, there exist positive constants C4 and C5 independent of h, such that

‖(σ, (u,ρ))− (σh, (uh,ρh))‖H1
+ ‖(t, σ̃, φ)− (th, σ̃h, φh)‖H2

≤ C4 dist
(
(σ, (u,ρ)),Hσh × (Hu

h ×Hρh)
)

+ C5 dist
(

(t, σ̃, φ),Ht
h ×Hσ̃

h ×Hφ
h

)
.

(4.21)
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Proof. It follows straightfowardly from (4.15) and (4.20). �

We now specify finite element subspaces satisfying (4.1)-(4.2) and the discrete inf-sup conditions
(H.0)-(H.1). Given an integer k ≥ 0, for each K ∈ Th we let Pk(K) be the space of polynomial
functions on K of degree ≤ k and define the local Raviart-Thomas space of order k as

RTk(K) := Pk(K)⊕ Pk(K)x

where Pk(K) = [Pk(K)]2, and x is the generic vector in R2. Let bK be the element bubble function
defined as the unique polynomial in Pk+1(K) vanishing on ∂K with

∫
K bK = 1. Then, for each K ∈ Th

we consider the bubble space of order k, defined by

Bk(K) := Pk(K)

(
∂bK
∂x2

,−∂bK
∂x1

)
.

One option to approximate stress, displacement and rotation is the classical PEERS elements [6]:

Hσh := {τ h ∈ HΣ(div; Ω) : τ h|K ∈ RTk(K)⊕Bk(K) ∀K ∈ Th} ,
Hu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

Hρh :=
{
ηh ∈ L2

skew(Ω) : ηh ∈ C(Ω) and ηh|K ∈ Pk+1(K) ∀K ∈ Th
}
.

(4.22)

We could also employ the Arnold-Falk-Winther (AFW, [8]) elements for the elasticity unknowns:

Hσh := {τ h ∈ HΣ(div; Ω) : τ h|K ∈ BDMk+1(K) ∀K ∈ Th} ,
Hu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

Hρh :=
{
ηh ∈ L2

skew(Ω) : ηh|K ∈ Pk(K) ∀K ∈ Th
}
,

(4.23)

and recall that both PEERS and AFW satisfy (H.0) and (H.1) (cf. [6, Lemma 4.4], [7, Thm. 11.9]).

In turn, we define the approximating spaces for the concentration gradient, diffusive flux and solute
concentration as piecewise polynomials of degree ≤ k, Raviart-Thomas elements of order k, and
Lagrange finite elements up to degree k + 1, respectively:

Ht
h :=

{
th ∈ L2(Ω) : th|K ∈ Pk(K) ∀K ∈ Th

}
,

Hσ̃
h := {τ̃ h ∈ HΓ(div; Ω) : τ̃ h|K ∈ RTk(K) ∀K ∈ Th} ,

Hφ
h := {ψh ∈ C(Ω) ψh|K ∈ Pk+1(K) ∀K ∈ Th} .

(4.24)

Approximation properties of the spaces in (4.22),(4.23), (4.24) can be found in e.g. [10,16]. They can
be combined with the Céa estimate (4.21) and the assumption of adequately small data, to produce
the theoretical rates of convergence of (4.3), summarized in what follows.

Theorem 4.13 In addition to the hypotheses of Theorems 3.10, 4.7 and 4.12, assume that there
exists s > 0 such that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ Hs(Ω), ρ ∈ Hs(Ω), t ∈ Hs(Ω), σ̃ ∈ Hs(Ω),
div σ̃ ∈ Hs(Ω) and φ ∈ H1+s(Ω). Then, there exists C̃ > 0, independent of h, such that, with the finite
element subspaces defined by either (4.22) or (4.23) and (4.24), there holds

‖(σ, (u,ρ))− (σh, (uh,ρh))‖H1
+ ‖(t, σ̃, φ)− (th, σ̃h, φh)‖H2

≤ C̃hmin{s,k+1}
{
‖σ‖s,Ω

+ ‖divσ‖s,Ω + ‖u‖s,Ω + ‖ρ‖s,Ω + ‖t‖s,Ω + ‖σ̃‖s,Ω + ‖div σ̃‖s,Ω + ‖φ‖1+s,Ω

}
.
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Augmented BDM1 −P0 − P0 −RT0 −P0 − P1 scheme

N h e(σ) r(σ) e(u) r(u) e(ρ) r(ρ)
129 0.7071 1.36202 - 2.115e-02 - 5.612e-02 -
465 0.3536 0.71603 0.9276 1.045e-02 1.0180 2.647e-02 1.0840
1761 0.1768 0.36244 0.9823 5.083e-03 1.0390 1.258e-02 1.0730
6849 0.0883 0.18184 0.9950 2.512e-03 1.0170 6.143e-03 1.0340
27009 0.0441 0.09102 0.9984 1.252e-03 1.0050 3.048e-03 1.0110
107265 0.0221 0.04552 0.9994 6.252e-04 1.0010 1.520e-03 1.0030

e(t) r(t) e(σ̃) r(σ̃) e(φ) r(φ) iter
3.947e-02 - 1.352e-01 - 4.391e-02 - 5
2.293e-02 0.7834 7.375e-02 0.8744 2.458e-02 0.8372 5
1.197e-02 0.9383 3.765e-02 0.9700 1.318e-02 0.8992 5
6.053e-03 0.9833 1.891e-02 0.9933 6.802e-03 0.9541 5
3.035e-03 0.9957 9.466e-03 0.9985 3.442e-03 0.9828 5
1.519e-03 0.9989 4.734e-03 0.9996 1.728e-03 0.9942 5

Augmented BDM2 −P1 − P1 −RT1 −P1 − P2 scheme

N h e(σ) r(σ) e(u) r(u) e(ρ) r(ρ)
337 0.7071 0.40398 - 5.723e-03 - 1.350e-02 -
1265 0.3536 0.10652 1.9230 1.471e-03 1.9600 3.423e-03 1.9800
4897 0.1768 0.02701 1.9800 3.718e-04 1.9850 8.692e-04 1.9770
19265 0.0883 0.00677 1.9950 9.323e-05 1.9960 2.189e-04 1.9900
76417 0.0441 0.00169 1.9990 2.333e-05 1.9990 5.486e-05 1.9960
304385 0.0221 0.00042 2.0000 5.833e-06 2.0000 1.373e-05 1.9990

e(t) r(t) e(σ̃) r(σ̃) e(φ) r(φ) iter
1.360e-02 - 4.501e-02 - 1.487e-02 - 5
4.028e-03 1.7506 1.285e-02 1.8080 4.311e-03 1.7860 5
1.059e-03 1.9270 3.323e-03 1.9520 1.153e-03 1.9020 5
2.692e-04 1.9760 8.381e-04 1.9870 2.986e-04 1.9500 5
6.773e-05 1.9910 2.100e-04 1.9970 7.598e-05 1.9740 5
1.697e-05 1.9960 5.254e-05 1.9990 1.917e-05 1.9870 5

Table 1: Example 1: Convergence history and Picard iteration count for the augmented BDMk+1 −
Pk − Pk −RTk −Pk − Pk+1 approximations with k = 0, 1. Here N stands for the number of degrees
of freedom associated to the each triangulation Th.

5 Numerical results

In this section we present some examples illustrating the performance of our augmented fully-mixed
scheme (4.3), and confirming the rates of convergence provided by Theorem 4.13. These numerical
results also include examples in which some of the data do not necessarily satisfy all the hypotheses
required, thus confirming the potentiality of the method proposed, and also evidencing that only
technical limitations are preventing us from extending our theoretical analysis to more general cases.
Our implementation is based on the FEniCS library [2]. In turn, a Picard algorithm with tolerance
of 1e-6 on the `∞-norm of the residual has been employed for the fixed-point problem (4.6). For the
diffusion sub-problem in Examples 2 and 3 we have utilized the variational formulation (3.4) applying
a fixed-point on σ and t; and σ and φ, respectively. There we have also considered Raviart-Thomas
elements of order k for the flux and the concentration gradient, and piecewise polynomials of degree
≤ k for the concentration (see the method developed in [19]).

Example 1. In our first numerical test we take the unit square as computational domain Ω = (0, 1)2,
the boundary ∂Ω = Γ ∪ Σ, with Σ := {0} × (0, 1) ∪ (0, 1) × {1} and Σ := ∂Ω\Γ, and choose the
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(a) (b) (c)

(d) (e) (f)

Figure 1: Example 1: Lowest-order approximation of stress magnitude |σh| (a), displacement magni-
tude |uh| (b), relevant component of the rotation ρh (c), gradient of concentration |th| (d), diffusive
flux |σ̃h| (e), and solute concentration φh (f). All fields are plotted on the deformed domain.

following manufactured exact solutions and coupling terms to (3.9):

u =

(
d1 cos(πx1) sin(πx2) +

x21(1−x2)2

2λ

−d1 sin(πx1) cos(πx2) +
x31(1−x2)3

2λ

)
, σ = λ trε(u) I + 2µε(u) , ρ = ∇u− ε(u),

φ = (1− x1)2 x1 (1− x2)x2
2, t = ∇φ, σ̃ = ϑ(σ) t,

ϑ(σ) = (D0 +D1(1− |σ|2)−0.5) I, f(φ) = d2

(
cos(φ)
− sin(φ)

)
, g(u) = 2 +

1

1 + |u|2
.

(5.1)

We note that the tensorial difussivity, body load and diffusive source terms satisfy (2.5)-(2.7) and
(2.8). Moreover, the elasticity and diffusion equations are considered non-homogeneous and the extra
source terms are chosen according to (5.1). This treatment does not compromise the continuous and
discrete analysis, as the smoothness of the exact solution provides right-hand sides with terms in
L2(Ω), thus only requiring a slight modification of the functionals in the variational formulation. The
Lamé constants λ = Eν/(1 + ν)−1(1 − 2ν)−1 and µ = E/(2 + 2ν) are computed using the values
E = 10 and ν = 0.3 [39]. The remaining model parameters are given by: d1 = 0.05, d2 = 0.1,
D0 = 1.0, D1 = 0.1, and according to (3.20), the stabilization parameters are taken as κ1 = ϑ0/ϑ

2
2,

κ2 = ϑ0/2ϑ
2
2, κ3 = ϑ0/2 and κ4 = ϑ0/4. The convergence of the approximate solutions is assessed by

computing errors in the respective norms and experimental rates, that we define as usual

e(σ) = ‖σ − σh‖div;Ω , e(u) = ‖u− uh‖0,Ω , e(ρ) = ‖ρ− ρh‖0,Ω , e(t) = ‖t− th‖0,Ω ,

e(σ̃) = ‖σ̃ − σ̃h‖div;Ω , e(φ) = ‖φ− φh‖1,Ω , r(·) = log(e(·)/ê(·))[log(h/ĥ)]−1,

where e, ê denote errors computed on two consecutive meshes of sizes h, ĥ, respectively. We choose the
finite element spaces (4.23) and (4.24), that is BDMk+1−Pk−Pk−RTk−Pk−Pk+1 approximations
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(a) (b) (c)

Figure 2: Example 2. Approximation of different functions ϑ(σ) varying the σ11 component (a),
normalized L2-norm for σh and th, `∞-norm for uh and number of Picard iterations needed for
different values of β with E=100 (b), and normalized L2-norm for σh, th and σ̃h for five different
values of α (c).

with k = 0 and k = 1. Errors and decay rates are summarized in Table 1, where we observe that
optimal convergence O(hk+1) is attained for all fields in their relevant norms. These findings are in
agreement with the bounds given by Theorem 4.13. In all cases, five Picard steps were required to
reach the desired tolerance. Sample solutions are displayed in Figure 1.

Example 2. Next we concentrate on the simulation of microscopic lithiation of an anode. Details on
model derivation and physical considerations can be found, for instance, in [11, 26, 35]. The domain
consists of a truncated sphere of radius 10µm, representing the silicon core of a secondary particle
(see Figure 3(a)), which we discretize using an unstructured mesh of 104913 tetrahedral elements.
We assume that the face of the truncated sphere which is closest to the plane x1 = 0 (denoted Γ)
is in contact with a region of electrolyte, that is, the zone between the sphere and the surrounding
cube. On Γ we set zero-flux of lithium and also consider that the anode has an external layer that
does not permit displacement of the body, so there we set u = 0. On the remainder of the boundary
Σ = ∂Ω \ Γ, we prescribe a maximum lithium concentration φ = φmax with φmax= 26390, as well as
σν = βφIν, where β is a parameter to be specified later on. We assume that the source term is zero,
and the diffusivity is specified as ϑ(σ) = D0I + D1σ with D0 = 1.2e-21 m2s−1, D1 = 3.9e-14 m2s−1,
and the elastic material properties of silicon are E = 60GPa and ν = 0.25. Following the referenced
models, here the total stress contains a contribution due to lithium concentration. More specifically,
we consider σtot = σ−βφI, with β = Ω̂(3λ+2µ)/3, where Ω̂ = 4.926e-6 m3 mol−1 is the partial molar
volume. The balance of momentum is then −divσ = −β∇φ, or equivalently −divσtot = 0 and the
zero traction boundary condition can be recast as σtotν = 0 on Σ.

In order to have a model with fewer chemical and physical parameters, and also to accommodate
a model with adimensional units, we proceed to rescale the strong form of the governing equations
and testing different deformation regimes to match the expected values found in the literature. We
introduce the following parameters: the intrinsic size of the domain L = 1.6e-5 m2, ∇∗ = ∇/L,
div∗ = div/L, φ∗ = φ/φmax, u∗ = u/L and σ∗ = L2σ. Thus, taking D0 =1.0e-2D1L

2, we reduce the
parameters D0, D1, β, Ω̂ given above to only β∗ = βφmax/L

2 and α = 1.0e-2D1L
2φmax. Making abuse

of notation, we rename β∗ by β, u∗ by u, and so on. The proper scaling of the parameters implies
that the baseline case corresponds to β = 5.0e1 and α = 1.0e-3.

Figure 3(i) illustrates the sharp transition between high and low concentrations as lithium diffuses
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(a)

214 4270.40 640.30

.

(b)

0.12 0.250.00 0.37

.

(c)

-2 2-5.98 6.03

r12

(d)

0 2.6-3.90 3.93

r13

(e)

-0.1 0-0.18 0.12

.

(f)

0.95 1.90.00 2.85

.

(g)

0.00089 0.00182.8e-06 2.7e-03

.

(h)

0.892 0.9730.79 1.03

.

(i)

Figure 3: Example 2. Schematic representation of domain boundaries on a secondary particle silicone
anode (a), lowest-order approximation of stress magnitude |σh| (b), displacement magnitude |uh|
(c), rotation components (d,e,f), concentration gradient |th| (g), diffusive flux |σ̃h| (h), and solute
concentration φh (i).

from Σ into the secondary particle. In addition, Figure 3(c) shows more pronounced displacements near
Σ (which is precisely the region where the silicon is fully lithiated), and the particle swelling is indeed
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(a)

0.069 0.130.00 0.20

.

(b)

13 260.00 39.63

.

(c)

13 260.00 39.74

.

(d)

4.3 8.60.00 12.93

.

(e)

0.017 0.0330.00 0.05

.

(f)

1.e-04 2.e-040.0e+00 3.0e-04

.

(g)

0.9968 1.0049.89e-01 1.01e+00

.

(h)

Figure 4: Example 3: Geometry for a perforated cylindrical particle (a), approximate displacement
magnitude (b), magnitude of the rows of the approximate Cauchy stress (c,d,e), concentration gradient
(f), diffusive flux (g), and concentration (h) shown on a clipped geometry.

influenced by the lithium gradient distribution. The stress-assisted diffusion mechanism together with
the dilation-dependent source term, also contribute to maintain maximum lithium concentration near
Σ. This two-way coupling effect implies in turn that the lithium concentration is less important in
regions where the secondary particle is clamped.

In Figure 2 we show three different constitutive relations defining ϑ as a function of the first
component of the Cauchy stress tensor. The first and third specifications correspond to the functions
used in this test and in the accuracy example, respectively, whereas the second relationship has been
used in [12] in the context of biological materials. Depending on the values attained by the stress,
one could then easily derive the values of the augmentation constants. On the other hand, in Figures
2(b) and 2(c) we report a study on the influence of different values of the coupling constants β and α
into the norms of selected solution fields for the elasticity and diffusion problems. We remark that the
`∞-norm of uh is practically invariant to moderate values of β, but it increases abruptly when this
parameter approaches 70. Furthermore, the L2-norm of the stress increases linearly with β. As this
constant drives the intensity of the deformation as well as the coupling strength, we also observe an
increase in the Picard iteration count (where we stress that all fields are normalized). We also observe

22



an increase of the L2-norm of the concentration gradient with respect to α, while for smaller values
of α the method produces higher values of the L2-norm of σ̃.

Example 3. In our last example we test a similar model defined on a perforated cylindrical particle
(see a sketch in Figure 4(a)). The outer and inner radii of the bases are 5µm and 1µm, respectively,
and the height of the cylinder is 25µm. We discretize the domain using an unstructured mesh of
101907 tetrahedral elements. We consider that the particle is clamped on the inner wall ΓI, while
zero lithium fluxes is prescribed on ΓB ∪ ΓI. Also, we fix a maximum lithium concentration on ΓO,
whereas zero traction will be imposed on ΓB ∪ ΓO. We let E = 10GPa, ν = 0.3 and Ω̂ = 3.497e-6
m3 mol−1. The diffusive source is zero and the diffusivity tensor and body load source are given by
ϑ(σ) = αI+ α2σ+ α3σ2 and f(φ) = βrφ, respectively, where r is the radial vector r = (x, y, 0)t and
α, β are the adimensional parameters given in Example 2, assuming the values α = 5.0e-3 and β = 75.

Figure 4 shows the approximate solutions, indicating that the cylindrical particle deforms on the
faces and outer radius and having a more important displacement on the faces. Finally, as in Example
2, we observe that the lithium concentration induces the swelling of the cylindrical particle, however
as on the faces ΓB we now have zero-traction and zero concentration flux conditions coexisting, the
lithium concentration is no longer maximal on the outer radius.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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