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Abstract. We study the dynamics of the solution of a non-linear quantum master

equation describing a simple laser under the mean field approximation. The quantum

system is formed by a single mode optical cavity and a set of two level atoms that

are coupled to two reservoirs. First, we establish the existence of a unique regular

stationary state for the non-linear evolution equation under consideration. Second, we

examine the free interaction solutions, i.e., the solutions to the non-linear quantum

master equation that coincide with unitary evolutions generated by the Hamiltonian

resulting from neglecting the interactions between the laser mode, atoms and the bath.

We obtain that a family of non-constant free interaction solutions borns at the regular

stationary state as a relevant parameter, which is denoted by Cb, passes through

the critical value 1. These free interaction solutions yield the periodic solutions of

the Maxwell Bloch equations modeling our physical system in the framework of the

semiclassical laser theory. Third, in case Cb < 1 we deduce that the system converges

exponentially fast to the equilibrium, and so the regular stationary state is a globally

asymptotically stable equilibrium solution. Thus, the quantum system has a Hopf

bifurcation at Cb = 1.

Keywords: open quantum system, mean-field quantum master equation, laser dynamics,

Hopf bifurcation, global attractor, periodic solutions, exponential convergence.
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1. Introduction

This paper develops a physical example of bifurcation in open quantum systems.

Namely, we rigorously analyze the qualitative changes in the dynamics of the solution

‡ Partially supported by FONDECYT Grant 1140411 and BASAL Grant PFB-03.
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to the mean field laser equation

d

dt
ρt = −i

ω

2

[
2 a†a+ σ3, ρt

]
+ 2κ

(
a ρta

† − 1

2
a†aρt −

1

2
ρta
†a

)
+ κ−

(
σ−ρt σ

+ − 1

2
σ+σ−ρt −

1

2
ρt σ

+σ−
)

+ κ+

(
σ+ρt σ

− − 1

2
σ−σ+ρt −

1

2
ρt σ

−σ+

)
+ g

[(
Tr
(
σ−ρt

)
a† − Tr

(
σ+ρt

)
a
)

+
(

Tr
(
a†ρt

)
σ− − Tr (a ρt)σ

+
)
, ρt

]
(1)

as the parameter Cb := 2g2 (κ+ − κ−) /
(
κ (κ+ + κ−)2) varies from ]−∞, 1] to ]1,+∞[.

Here, ω ∈ R, g is a non-zero real number, κ, κ+, κ− > 0, ρt is a non-negative trace-class

operator on `2 (Z+)⊗ C2,

σ+ =

(
0 1

0 0

)
, σ− =

(
0 0

1 0

)
, σ3 =

(
1 0

0 −1

)
,

and the closed operators a†, a on `2 (Z+) are defined by a†en =
√
n+ 1 en+1 for all

n ∈ Z+ and

aen =

{√
n en−1 if n ∈ N

0 if n = 0
,

where (en)n≥0 denotes the standard basis of `2(Z+).

The non-linear quantum master equation (1) reproduces the Dicke-Haken-Lax

model of the laser (see, e.g., Section 3.7.3 of [1], Section V.E of [2] and [3]). Under

the mean field approximation, (1) governs the evolution of a radiation field (with

resonance frequency ω) coupled to a set of identical non-interacting two-level systems

with transition frequency ω (active medium). The field and the atoms interact weakly

with independent reservoirs, causing the photons to leave the resonant mode of the

radiation field at rate 2κ and producing the atoms to spontaneously make downward

and upward transitions at rates κ− and κ+, respectively. The constant g characterizes

the coupling between atoms and the field mode. Using (1) we obtain, formally, the

closed set of first-order differential equations:

d

dt
Tr (a ρt) = − (κ+ iω) Tr (a ρt) + g Tr

(
σ−ρt

)
d

dt
Tr
(
σ−ρt

)
= − (γ + iω) Tr

(
σ−ρt

)
+ g Tr (a ρt) Tr

(
σ3ρt

)
d

dt
Tr
(
σ3ρt

)
= −4g <

(
Tr (a ρt) Tr (σ−ρt)

)
− 2γ

(
Tr
(
σ3ρt

)
− d
) ∀t ≥ 0, (2)

where γ = (κ+ + κ−) /2 and d = (κ+ − κ−) / (κ+ + κ−). In the semiclassical laser

theory, the Maxwell-Bloch equations (2) describe the evolution of the field (i.e.,

Tr (a ρt)), the polarization (i.e., Tr (σ−ρt)) and the population inversion (i.e., Tr (σ3ρt))

of ring lasers like far-infrared NH3 lasers (see, e.g., [4, 5, 6]).

Since the invention of the laser, many experimental and theoretical studies have

been undertaken to investigate qualitative properties of the laser dynamics (see, e.g.,
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[5, 7, 8, 9]). Depending on the operating conditions, lasers can show stable or

unstable behaviors (see, e.g., [8, 10, 11, 12]). Each laser regime has enabled the

development of remarkable applications; for instance, chaotic lasers have been used

in secure communications (see, e.g., [8, 13, 14]) and random number generation (see,

e.g., [8, 14, 15, 16]). Threshold conditions for the instability of the semiclassical laser

equations had been investigated already in the 1960s (see, e.g., [17] and Section 3.4.1

of [7]). In 1975, Haken [18] found an analogy between the Maxwell-Bloch equations for

single-mode lasers and the Lorenz equations. From then on, the qualitative behavior of

semiclassical laser models has been examined in a number of physical papers by using,

for instance, linear stability analysis (see, e.g., [4, 5, 6, 7, 19]). As we recall in Section 2,

the Maxwell-Bloch equations (2) develop periodic solutions from the stable fixed point

(0, 0, d) as Cb crosses 1 (see also, e.g., Section 3.7.3 of [1] and [20]). Therefore, (2)

undergoes a Hopf bifurcation at Cb = 1.

In this paper we determine how the full quantum dynamics described by (1) yields

the bifurcation scenario of (2). Indeed, we prove that (1) has a Hopf bifurcation at

Cb = 1. To the best of our knowledge this is the first time that Hopf bifurcation is

rigorously established at the level of (infinite dimensional) density matrices in the study

of a nonlinear evolution of an open quantum system. In contrast to the semiclassical

approach, full quantum models capture very well quantum effects like coherence,

spontaneous emissions and photon-number statistics (see, e.g., [4]). This motivates the

investigation of the changes in the qualitative behavior of quantum master equations

describing open quantum systems, as well as their mean-field approximations. Another

important motivation comes from the study of the connections between quantum

mechanics and classical chaotic systems, a subject treated in depth by the quantum

chaos theory (see, e.g., [21, 22, 23]).

First, we establish the existence and uniqueness of the regular solution to (1), as well

as we prove the validity of (2) whenever the initial state is regular enough. Previously,

Arnold and Sparber [24] proved the existence and uniqueness of global solutions to a non-

linear quantum master equation involving the Hartree potential by means of semigroup

techniques.

Second, we study the changes in the invariant sets of the mean field laser equation

(1) (namely, stationary and free interaction solutions) as the parameter Cb varies. We

show that

%∞ := |e0〉 〈e0| ⊗
(
d+ 1

2
|e+〉 〈e+|+

1− d
2
|e−〉 〈e−|

)
(3)

is the unique regular stationary state for (1) with ω 6= 0, the physical situation we

are interested in. This invariant solution yields the unique stationary solution of (2).

Moreover, we consider the free interaction solutions to (1) with ω 6= 0, that is, the

solutions of (1) that also satisfy

d

dt
ρt = −i

ω

2

[
2a†a+ σ3, ρt

]
; (4)
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the von Neumann equation (4) describes the evolution of the physical system in absence

of interactions between the laser mode, atoms and the bath. If Cb ≤ 1, then we prove

that %∞ is the unique regular free interaction solution to (1). In case Cb > 1, we obtain

that %∞ splits into %∞ and a family of non-constant free interaction solutions that yield

the periodic solutions of (2). In earlier works, numerical studies of the bifurcation

structure of the steady state density operators of quantum master equations in Gorini-

Kossakowski-Sudarshan-Lindblad form have been carried out, e.g., by [19, 25, 26].

Moreover, the stationary states for infinite-dimensional quantum Markov semigroups

have been treated, e.g., in [27, 28, 29].

Third, we deal with the long time behavior of ρt. We show that ρt evolves toward

%∞ whenever Tr (a ρ0) = Tr (σ−ρ0) = 0. Furthermore, in case Cb < 1, we deduce that

ρt converges exponentially fast to %∞ in the trace norm, and so %∞ is a global attractor

for (1). In previous articles, the exponential convergence to the equilibrium state of

quantum Markov semigroup has been examined in, e.g., [30, 31, 32].

This paper is organized as follows. Section 2 presents relevant properties of (2).

Section 3 is devoted to the main results. Due to its important role in studying (1),

we address in Section 4 the linear quantum master equation resulting from replacing in

(1) the unknown values of Tr (σ−ρt) and Tr (a ρt) by known functions α (t) and β (t).

To this end, we develop basic properties of general linear master equations by using

probabilistic techniques. All proofs are deferred to Section 5.

1.1. Notation

In this article, (h, 〈·, ·〉) is a separable complex Hilbert space whose scalar product 〈·, ·〉 is

linear in the second variable and anti-linear in the first one. The canonical orthonormal

basis of `2(Z+) is denoted by (en)n≥0, as well as e+ =

(
1

0

)
and e− =

(
0

1

)
is the

standard basis of C2. We write D (A) for the domain of A, whenever A is a linear

operator in h. As usual, we set [A,B] = AB − BA in case A,B are linear operators in

h, and N = a†a. If X, Z are normed spaces, then we denote by L (X,Z) the set of all

bounded operators from X to Z and we define L (X) = L (X,X). By L1 (h) we mean the

set of all trace-class operators on h equipped with the trace norm.

Suppose that C is a self-adjoint positive operator in h. For any x, y ∈ D (C)

we define the graph scalar product 〈x, y〉C = 〈x, y〉 + 〈Cx,Cy〉 and the graph norm

‖x‖C =
√
〈x, x〉C . We use the symbol L2 (P, h) to denote the set of all square integrable

random variables from (Ω,F,P) to (h,B (h)), where B (Y) denotes for the set of all Borel

set of the topological space Y. Moreover, L2
C (P, h) stands for the set of all ξ ∈ L2 (P, h)

such that ξ ∈ D (C) a.s. and E
(
‖ξ‖2

C

)
< ∞. We define πC : h→ h by πC(x) = x if

x ∈ D (C) and πC(x) = 0 if x /∈ D (C).

Recall that ω ∈ R, g ∈ R r {0}, and κ, κ+, κ− > 0. To shorten notation, we take

γ = (κ+ + κ−) /2 and d = (κ+ − κ−) / (κ+ + κ−). Then κ− = γ (1− d), κ+ = γ (1 + d)
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and

Cb =
g2 d

κ γ
.

Using κ−, κ+ > 0 we deduce that γ > 0 and d ∈ ]−1, 1[. In what follows, the letter K

denotes generic no-negative constants. We will write K (·) for different non-decreasing

non-negative functions on the interval [0,∞[ when no confusion is possible.

2. Complex Lorenz equations

Taking A (t) = Tr (a ρt), S (t) = Tr (σ−ρt) and D (t) = Tr (σ3ρt) we rewrite (2) as

d

dt
A (t) = − (κ+ iω)A (t) + g S (t)

d

dt
S (t) = − (γ + iω)S (t) + g A (t)D (t)

d

dt
D (t) = −4g <

(
A (t)S (t)

)
− 2γ (D (t)− d)

, (5)

where t ≥ 0, D (t) ∈ R and A (t) , Y (t) ∈ C. The complex Lorenz equation (5) has

received much attention in the physical literature (see, e.g., [20, 33]) due to its important

role in the description of laser dynamics. For completeness, we next present relevant

properties of (5), together with their mathematical proofs.

Theorem 2.1. Suppose that d ∈ ]−1, 1[, ω ∈ R, g ∈ R r {0} and κ, γ > 0. Then, for

every initial condition A (0) ∈ C, S (0) ∈ C, D (0) ∈ R there exists a unique solution

defined on [0,+∞[ to the system (5). Moreover, we have:

• If d < 0, then for all t ≥ 0,

4 |d| |A (t)|2 + 4 |S (t)|2 + (D (t)− d)2

≤ e−2t min{κ,γ} (4 |d| |A (0)|2 + 4 |S (0)|2 + (D (0)− d)2) . (6)

• If d ≥ 0, then for any t ≥ 0,

|A (t)|2 +
g2

γκ
|S (t)|2 +

g2

4γκ
(D (t)− d)2

≤ e
−tmin

{
κ− g

2d
γ
,γ− g

2d
κ

}(
|A (0)|2 +

g2

γκ
|S (0)|2 +

g2

4γκ
(D (0)− d)2

)
.

(7)

• If d ≥ 0 and Cb < 1, then for any t ≥ 0,

|S (t)|2 + (D (t)− d)2 /4 (8)

≤ e−(1−Cb) min{κ,γ}t
(

4κd

γ
|A (0)|2 +

(
4κ

γ
+ 1

)
|S (0)|2 +

(
κ

γ
+

1

4

)
(D (0)− d)2

)
.

• If ω 6= 0, then (A (t) , S (t) , D (t)) = (0, 0, d) is the unique constant solution of (5).

Proof. Deferred to Section 5.1.1.
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In case g2d < κγ, (0, 0, d) is an asymptotically stable equilibrium point of (5); in

fact, from (6) and (7) it follows that A (t), S (t) and D (t)−d converge exponentially fast

to 0 as t goes to +∞. In order to describe periodic solutions of (5) (whenever g2d ≥ κγ),

it is usual to set X (t) = exp (iωt)A (t), Y (t) = exp (iωt)S (t) and Z (t) = D (t)− d for

all t ≥ 0. Thus, (5) is transformed into
X ′ (t) = −κX (t) + g Y (t)

Y ′ (t) = dg X (t)− γ Y (t) + g X (t)Z (t)

Z ′ (t) = −4g<
(
X (t) Y (t)

)
− 2γ Z (t)

. (9)

Using simple algebraic manipulations we now find the equilibrium points of (9).

Theorem 2.2. Let the hypotheses of Theorem 2.1 hold. In case Cb ≤ 1, (0, 0, 0) is the

unique equilibrium point of (9). If Cb > 1, then the unique constant solutions of (9) are

(X (t) , Y (t) , Z (t)) = (0, 0, 0) and the family{
X (t) = z

√
γ

2κg2
(dg2 − γκ), Y (t) = z

√
γκ

2g4
(dg2 − γκ), Z (t) =

γκ

g2
− d : |z| = 1

}
.

Proof. Deferred to Section 5.1.2.

According to Theorems 2.1 and 2.2 we have that (5) has a Hopf bifurcation at

Cb = 1, because periodic solutions of (5) arise from the stable fixed point (0, 0, d) as Cb

crosses 1.

3. Quantum Hopf bifurcation

This section presents the main results of the paper. We start by recalling that a density

operator % is C-regular if, roughly speaking, C%C is a trace-class operator, where C is

a suitable reference operator (see, e.g., [34, 35]).

Definition 3.1. Suppose that C is a self-adjoint positive operator in h. An operator

% ∈ L1 (h) is called density operator iff % is a non-negative operator with unit trace. The

non-negative operator % ∈ L (h) is said to be C-regular iff % =
∑

n∈I λn |un〉〈un| for some

countable set I, summable non-negative real numbers (λn)n∈I and collection (un)n∈I of

elements of D (C), which together satisfy:
∑

n∈I λn ‖Cun‖
2 < ∞. Let L+

1,C (h) denote

the set of all C-regular density operators in h.

Next, we establish the existence and uniqueness of the regular solution to (1). We

also obtain a Ehrenfest-type theorem describing the evolution of the mean values of the

observables a+ a†, σ− + σ+ and σ3.

Definition 3.2. Let C be a self-adjoint positive operator in h. A family (ρt)t≥0

of operators belonging to L+
1,C (h) is called C-weak solution to (1) iff the function

t 7→ Tr (aρt) is continuous and for all t ≥ 0 we have

d

dt
Tr (Aρt) = Tr (AL? (ρt) ρt) ∀A ∈ L (h) ,
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where

L? (%̃) % = − iω

2

[
2a†a+ σ3, %

]
+ 2κ

(
a %a† − 1

2
a†a%− 1

2
%a†a

)
+κ−

(
σ−% σ+ − 1

2
σ+σ−%− 1

2
% σ+σ−

)
+ κ+

(
σ+% σ− − 1

2
σ−σ+%− 1

2
% σ−σ+

)
+g
[
Tr
(
σ−%̃

)
a† − Tr

(
σ+%̃

)
a, %
]

+ g
[
Tr
(
a†%̃
)
σ− − Tr (a %̃)σ+, %

]
.

Theorem 3.1. Suppose that % ∈ L+
1,Np (`2 (Z+)⊗ C2), with p ∈ N. Then, there exists

a unique Np-weak solution (ρt)t≥0 to (1) with initial datum %. Moreover, the Maxwell-

Bloch equations (2) hold.

Proof. Deferred to Section 5.3.

We now ensure the existence and uniqueness of the regular invariant state for (1)

provided that ω 6= 0. This stationary state yields the stationary solution of (2), which

is Tr (aρt) = Tr (σ−ρt) = 0 and Tr (σ3ρt) = d.

Definition 3.3. Consider a C-regular density operator %. We say that % is a stationary

state for (1) iff t 7→ % is a constant C-weak solution to (1).

Theorem 3.2. Let the density operator %∞ be defined by (3). Then %∞ is a stationary

state for (1). Moreover, in case ω 6= 0, %∞ is the unique N-regular density operator

which is a stationary state for (1).

Proof. Deferred to Section 5.4.

We turn our attention to the regular solutions of (1) that are also unitary evolutions

generated by the Hamiltonian ω
2

(2N + σ3), which arises from neglecting the interactions

between the laser mode, atoms and the bath.

Definition 3.4. Assume that (ρt)t≥0 is a C-weak solution to (1). We call (ρt)t≥0 free

interaction solution to (1) if and only if

ρt = exp
(
−i
ω

2

(
2N + σ3

)
t
)
%0 exp

(
i
ω

2

(
2N + σ3

)
t
)

∀t ≥ 0.

Remark 3.1. If (ρt)t≥0 is a N-regular free interaction solution to (1), then (ρt)t≥0 also

satisfies the quantum master equation

d

dt
ρt = −i

ω

2

[
2a†a+ σ3, ρt

]
.

Consider (1) with ω 6= 0. The following theorem asserts that a family of non-

constant free interaction solutions borns at the regular stationary state as Cb passes

through the bifurcation value 1. These free interaction solutions yield the periodic

solutions of (2) whenever Cb > 1.

Notation 3.1. The coherent vector associated with ζ ∈ C is defined by

e (ζ) =
∑
n≥0

ζnen/
√
n!,

where (en)n≥0 denotes the canonical orthonormal basis of `2(Z+).
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Theorem 3.3. Let ω 6= 0. Take Cb = dg2/ (γκ). If Cb ≤ 1, then (1) does not have non-

constant N-regular free interaction solution. In case Cb > 1 all non-constant N-regular

free interaction solutions to (1) are:

e
− γ

2(Cb−1)
2g2

∣∣∣∣e(γ√Cb − 1√
2g

e−i(ωt−θ)
)〉〈

e

(
γ
√
Cb − 1√

2g
e−i(ωt−θ)

)∣∣∣∣⊗(
1
2

(
1 + d

Cb

)
e−i(ωt−θ) κγ√

2g2

√
Cb − 1

ei(ωt−θ) κγ√
2g2

√
Cb − 1 1

2

(
1− d

Cb

) )
,

where θ is any real number belonging to [0, 2π[.

Proof. Deferred to Section 5.5.

Remark 3.2. Suppose that ω 6= 0. According to the proof of Theorem 3.3 we have that

the unique constant N-regular free solution to (1) is described by (3).

Remark 3.3. The non-constant N-regular free interaction solutions of (1) are periodic.

Consider the complex Lorenz equation (5) with initial condition A (0) = S (0) = 0

and D (0) ∈ R. Using A (0) = S (0) = 0 we obtain A (t) = S (t) = 0 for all

t ≥ 0, and so d
dt

(D (t)− d) = −2γ (D (t)− d). In the language of the Maxwell-

Bloch equations (2), Tr (a ρt) = Tr (σ−ρt) = 0 and Tr (σ3ρt) evolves toward d in case

Tr (a ρ0) = Tr (σ−ρ0) = 0. Theorem 3.4 below provides a full quantum explanation for

this long time behavior.

Theorem 3.4. Let % be a N-regular density operator in `2 (Z+) ⊗ C2 such that

Tr (a %) = Tr (σ−%) = 0. Suppose that (ρt)t≥0 is the N-weak solution to (1) with initial

state %. Then Tr (a ρt) = Tr (σ−ρt) = 0 for all t ≥ 0, and

Tr (|ρt − %∞|) ≤ 12 exp (−γt) (1 + |d|) + 4 exp (−κt)
√

Tr (%N) ∀t ≥ 0, (10)

with %∞ defined by (3).

Proof. Deferred to Section 5.6.

Let Cb < 1. From Section 2 it follows that (0, 0, d) is an asymptotically stable

equilibrium solution of the the Maxwell-Bloch equations (2). Indeed, limt→+∞Tr (aρt) =

0, limt→+∞Tr (σ−ρt) = 0, and limt→+∞Tr (σ3ρt) = d. Next, we show that ρt converges

to the stationary state (3) with exponential rate, and so %∞ attracts all N -regular

density operators. Moreover, we get the limiting behavior of the mean values of N -

bounded operators like N ⊗ (σ+ + σ−).

Theorem 3.5. Let (ρt)t≥0 be the N-weak solution to (1) with ω 6= 0 and initial datum

ρ0 ∈ L+
1,N (`2 (Z+)⊗ C2). Suppose that Cb = d g2/ (γ κ) < 1. Then

Tr (|ρt − %∞|) ≤ Ksys (|g|) exp (−δsys t) ∀t ≥ 0, (11)

where %∞ is given by (3),

δsys =

{
min {κ, γ} /2 if d < 0

(1− Cb) min {κ, γ} /3 if d ≥ 0
,
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and Ksys (·) is a non-decreasing non-negative function depending on Tr (ρ0N) and the

parameters d, κ and γ. If max
{
‖Ax‖2 , ‖A? x‖2} ≤ K ‖x‖2

N for all x ∈ D (N), then for

all t ≥ 0 we have∣∣∣∣Tr (ρtA)− d+ 1

2
〈e0 ⊗ e+, A e0 ⊗ e+〉 −

1− d
2
〈e0 ⊗ e−, A e0 ⊗ e−〉

∣∣∣∣
≤ K̃sys (|g|) exp (−δsys t) ,

(12)

where K̃sys (·) is a non-decreasing non-negative function depending on A, Tr (ρ0N), d,

κ and γ.

Proof. Deferred to Section 5.7.

4. Linear quantum master equations

4.1. General linear quantum master equations

This subsection addresses the well-posedness of the non-autonomous linear quantum

master equation

d

dt
ρt = G (t) ρt + ρtG (t)∗ +

∞∑
k=1

Lk (t) ρtLk (t)∗ t ≥ 0, (13)

where ρt is a density operator in h and G (t) , L1 (t) , L2 (t) , . . . are linear operators in

h satisfying (on appropriate domain) G (t) = −iH (t) − 1
2

∑∞
`=1 L` (t)∗ L` (t) with H (t)

self-adjoint operator in h. Similar to [35], we will obtain basic properties of (13) with

the help of the linear stochastic evolution equation in h:

Xt (ξ) = ξ +

∫ t

0

G (s)Xs (ξ) ds+
∞∑
`=1

∫ t

0

L` (s)Xs (ξ) dW `
s , (14)

where W 1,W 2, . . . are real valued independent Wiener processes on a filtered complete

probability space
(
Ω,F, (Ft)t≥0 ,P

)
. Suppose that the density operator ρ0 is C-regular.

According to Theorem 3.1 of [35] we have ρ0 = E |ξ〉〈ξ| for certain ξ ∈ L2
C (P, h). We set

ρt := E |Xt (ξ)〉 〈Xt (ξ)| , (15)

where we use Dirac notation and Xt (ξ) is the unique strong C-solution of (14) (see

Definition 4.1). Then ρt is a C-regular density operator (see [35] for details).

Hypothesis 1. There exists a self-adjoint positive operator C in h such that D (C) ⊂
D (G (t)) and D (C) ⊂ D (L` (t)) for all t ≥ 0, and G (·) ◦ πC and L` (·) ◦ πC are

measurable as functions from ([0,∞[× h,B ([0,∞[× h)) to (h,B (h)).

Definition 4.1. Assume Hypothesis 1. Let I be either [0,∞[ or [0, T ], with T ∈ R+.

By strong C-solution of (14) with initial condition ξ, on the interval I, we mean an

h-valued adapted process (Xt (ξ))t∈I with continuous sample paths such that for all t ∈ I:
E ‖Xt (ξ)‖2 ≤ K (t)E ‖ξ‖2, Xt (ξ) ∈ D (C) a.s., sups∈[0,t] E ‖CXs (ξ)‖2 <∞, and

Xt (ξ) = ξ +

∫ t

0

G (s) πC (Xs (ξ)) ds+
∞∑
`=1

∫ t

0

L` (s)πC (Xs (ξ)) dW `
s a.s.
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The following theorem, which extends Theorem 4.4 of [35] to the non-autonomous

context, asserts that ρt given by (15) is a regular solution to (13).

Definition 4.2. Let C be a self-adjoint positive operator in h. A family (ρt)t≥0 of

C-regular density operators is called C-weak solution to (13) if and only if

d

dt
Tr (Aρt) = Tr

(
A

(
G (t) ρt + ρtG (t)∗ +

∞∑
`=1

L` (t) ρtL` (t)∗
))

(16)

for all A ∈ L (h) and t ≥ 0.

Hypothesis 2. Suppose that C satisfies Hypothesis 1, together with:

(H2.1) For any t ≥ 0 and x ∈ D (C), ‖G (t)x‖2 ≤ K (t) ‖x‖2
C .

(H2.2) For any t ≥ 0 and x ∈ D (C), 2< 〈x,G (t)x〉+
∑∞

`=1 ‖L` (t)x‖2 = 0.

(H2.3) For any initial datum ξ ∈ L2
C (P, h), (14) has a unique strong C-solution on any

bounded interval.

(H2.4) There exist functions f0, f1, . . . : [0,∞[ × [0,∞[ → [0,∞[ such that: (i) fk is

bounded on bounded subintervals of [0,∞[ × [0,∞[; (ii) lims→t fk (s, t) = 0; and

(iii) for all s, t ≥ 0 and x ∈ D (C) we have ‖G (s)x−G (t)x‖2 ≤ f0 (s, t) ‖x‖2
C and

‖L` (s)x− L` (t)x‖2 ≤ f` (s, t) ‖x‖2
C.

Theorem 4.1. Let Hypotheses 1 and 2 hold. Assume that %0 be C-regular, and that

G (t) , L1 (t), L2 (t), . . . are closable for all t ≥ 0. Then ρt given by (15) is a C-weak

solution to (13). Moreover, for all t ≥ 0 we have

ρt = ρ0 +

∫ t

0

(
G (s) ρs + ρsG (s)∗ +

∞∑
`=1

L` (s) ρsL` (s)∗
)
ds, (17)

where we understand the above integral in the sense of Bochner integral in L1 (h).

Proof. Deferred to Section 5.2.1.

Remark 4.1. Sufficient conditions for the regularity of the solution to the linear

stochastic Schödinger equation (14) (i.e., Hypothesis 2.3) are given, for instance, in

[36, 37, 38].

4.2. Adjoint quantum master equations

The next theorem introduces the operator Tt (A) that describes the evolution of the

observable A at time t in the Heisenberg picture. Roughly speaking, the maps

A 7→ Tt (A) is the adjoint operator of the application % 7→ ρt, where ρt is defined

by (15).

Hypothesis 3. Let Hypothesis 1 hold, together with Conditions H2.1 and H2.3. Suppose

that
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(H3.1) For all t ≥ 0 and x ∈ D (C),

2< 〈x,G (t)x〉+
∞∑
`=1

‖L` (t)x‖2 ≤ K (t) ‖x‖2 .

Theorem 4.2. Assume that Hypothesis 1 and Conditions H2.1 and H2.3 holds.

Consider A ∈ L (h). Then, for every t ≥ 0 there exists a unique Tt (A) ∈ L (h) for

which:

〈x, Tt (A) y〉 = E 〈Xt (x) , AXt (y)〉 ∀x, y ∈ D (C) . (18)

Moreover, supt∈[0,T ] ‖Tt (A)‖ <∞ for all T ≥ 0.

Proof. Deferred to Section 5.2.2.

Theorem 4.3 below shows that Tt (A) is the unique possible solution of the adjoint

quantum master equation

d

dt
Tt (A) = Tt (A)G (t) +G (t)∗ Tt (A) +

∞∑
k=1

Lk (t)∗ Tt (A)Lk (t) . (19)

Thus, we generalize Theorem 2.2 of [35] to the non-autonomous framework.

Theorem 4.3. Let Hypothesis 3 hold, and let Tt (A) be as in Theorem 4.2 with

A ∈ L (h). Assume that (At)t≥0 is a family of operators belonging to L (h) such that

A0 = A, sups∈[0,t] ‖As‖L(h) <∞, and

d

dt
〈x,Aty〉 = 〈x,AtG (t) y〉+ 〈G (t)x,Aty〉+

∞∑
`=1

〈L` (t)x,AtL` (t) y〉 (20)

for all x, y ∈ D (C). Then At = Tt (A) for all t ≥ 0.

Proof. Our assertion can be be proved in much the same way as Theorem 2.2 of [35]

(see Section B).

Remark 4.2. In the autonomous case, [35, 39] obtain sufficient conditions for Tt (A)

defined by (18) to be solution of (19). Using semigroup methods, [34, 40, 41, 42] show

the existence and uniqueness of solutions to (13) and (19), in the semigroup sense.

In order to check Condition H2.3 we establish the following extension of Theorem

2.4 of [36].

Hypothesis 4. Suppose that C satisfies Hypothesis 1, together with:

(H4.1) For any t ≥ 0 and x ∈ D (C), ‖G (t)x‖2 ≤ K (t) ‖x‖2
C .

(H4.2) For every ` ∈ N there exists a non-decreasing function K` : [0,∞[ → [0,∞[

satisfying ‖L` (t)x‖2 ≤ K` (t) ‖x‖2
C for all x ∈ D (C) and t ≥ 0.

(H4.3) There exists a non-decreasing function α : [0,∞[ → [0,∞[ and a core D1 of C2

such that for any x ∈ D1 we have

2<
〈
C2x,G (t)x

〉
+
∞∑
`=1

‖CL` (t)x‖2 ≤ α (t) ‖x‖2
C ∀t ≥ 0.
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(H4.4) There exists a non-decreasing function β : [0,∞[→ [0,∞[ and a core D2 of C such

that

2< 〈x,G (t)x〉+
∞∑
`=1

‖L` (t)x‖2 ≤ β (t) ‖x‖2 ∀t ≥ 0 and ∀x ∈ D2.

Theorem 4.4. In addition to Hypothesis 4, we assume that ξ ∈ L2
C (P, h) is F0-mea-

surable. Then (14) has a unique strong C-solution (Xt (ξ))t≥0 with initial condition ξ.

Moreover,

E ‖CXt (ξ)‖2 ≤ K (t)
(
E ‖Cξ‖2 + E ‖ξ‖2) .

Proof. The same proof of Theorem 2.4 of [36] works for this theorem.

Remark 4.3. We will apply Theorem 4.3 to the case: L1 =
√

2κa†, L2 =
√
γ (1− d)σ+,

L3 =
√
γ (1 + d)σ− and G (t) = iH (t)− 1

2

∑3
`=1 L`L

∗
` with

H (t) =
ω

2

(
2a†a+ σ3

)
+ ig

(
α (t) a† − α (t)a

)
+ ig

(
β (t)σ− − β (t)σ+

)
.

Since G (t) + G (t)∗ +
∑3

`=1 L
∗
`L` = 4κ2I + 2γ2 (1 + d2)σ3, Condition H2.4 of Theorem

2.4 of [36] does not apply to this case. Theorem 4.4 given above asserts that Theorem

2.4 of [36] still hods if we replace the assumption H2.4 of [36] by Hypothesis H4.4.

4.3. Auxiliary linear quantum master equation

This subsection is devoted to the linear evolution equation obtained by replacing in

(1) the unknown functions t 7→ g Tr (σ−ρt) and t 7→ g Tr (a ρt) by general functions

α, β : [0,∞[→ C. More precisely, we study the linear quantum master equation

d

dt
ρt = Lh? ρt +

[
α (t) a† − α (t)a+ β (t)σ− − β (t)σ+, ρt

]
, (21)

where ρt ∈ L+
1 (`2(Z+)⊗ C2),

Lh? % =

[
− iω

2

(
2a†a+ σ3

)
, %

]
+ 2κ

(
a %a† − 1

2
a†a%− 1

2
%a†a

)
+ γ(1− d)

(
σ−% σ+ − 1

2
σ+σ−%− 1

2
% σ+σ−

)
+ γ(1 + d)

(
σ+% σ− − 1

2
σ−σ+%− 1

2
% σ−σ+

)
,

(22)

d ∈ ]−1, 1[, ω ∈ R and κ, γ > 0. Though the open quantum system (21) deserves

attention in its own right, our main objective is to develop key tools for proving the

results of Section 3. First, combining Theorems 4.1, 4.3 and 4.4 we obtain the existence

and uniqueness of the regular solution to (21).
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Theorem 4.5. Consider (21) with α, β : [0,∞[ → C continuous. Let % be Np-regular,

where p ∈ N. Then, there exists a unique Np-weak solution (ρt)t≥0 to (21) with initial

datum ρ0 = %. Moreover, for any t ≥ 0 we have

ρt = ρ0 +

∫ t

0

(
Lh? ρs +

[
α (s) a† − α (s)a+ β (s)σ− − β (s)σ+, ρs

])
ds, (23)

where the integral of (23) is understood in the sense of Bochner integral in L1 (h).

Proof. Deferred to Section 5.2.3.

Using the Ehrenfest-type theorem given in [36] we describe the evolution of

Tr (ρt a), Tr (ρt σ
−), Tr (ρt σ

3) and Tr (ρtN) by means of a system of ordinary differential

equations.

Theorem 4.6. Under the assumptions of Theorem 4.5,

d

dt
Tr (ρt a) = − (κ+ iω) Tr (ρt a) + α (t) , (24a)

d

dt
Tr
(
ρt σ

−) = − (γ + iω) Tr
(
ρt σ

−)+ β (t) Tr
(
ρt σ

3
)
, (24b)

d

dt
Tr
(
ρt σ

3
)

= −2
(
β (t) Tr

(
ρtσ
−)+ β (t) Tr (ρtσ−)

)
− 2γ

(
Tr
(
ρtσ

3
)
− d
)
, (24c)

and

d

dt
Tr (ρtN) = −2κ Tr (ρtN) + 2<

(
α (t) Tr (ρt a)

)
. (25)

Proof. Deferred to Section 5.2.4.

We now deal with the long time behavior of (21) in case α (t) and β (t) are constant

functions.

Theorem 4.7. Let (ρt)t≥0 be the N-weak solution of (21) with α (t) ≡ α ∈ C,

β (t) ≡ β ∈ C and a N-regular density operator as initial datum. Then

Tr
(∣∣ρt − %f∞ ⊗ %a∞∣∣) ≤ 12 e−γt (1 + |d|) + e−κt

(
2 |α|√
κ2 + ω2

+ 4
√

Tr (%0N)

)
, (26)

where

%f∞ = exp

(
− |α|2

κ2 + ω2

)∣∣∣∣e( α

κ+ iω

)〉〈
e

(
α

κ+ iω

)∣∣∣∣
with e (z) given by Notation 3.1, and

%a∞ =

 1
2

+
d(γ2+ω2)

2(γ2+ω2+2|β|2)
dβ(γ−iω)

γ2+ω2+2|β|2

dβ̄(γ+iω)

γ2+ω2+2|β|2
1
2
− d(γ2+ω2)

2(γ2+ω2+2|β|2)

 .

Proof. Deferred to Section 5.2.5.
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According to Theorem 4.5 we have that
d

dt
ρht (%) = Lh? ρht (%)

ρh0 (%) = %
(27)

has a unique Np-weak solution whenever % ∈ L+
1,Np (`2(Z+)⊗ C2), where p ∈ N. From

Theorems 4.1 and 4.3 of [35] it follows that the family of bounded linear operators(
ρht : L+

1,N (`2(Z+)⊗ C2)→ L1 (`2(Z+)⊗ C2)
)
t≥0

can be extended uniquely to a one-

parameter semigroup of contractions
(
ρht (·)

)
t≥0

on L1 (`2(Z+)⊗ C2), which indeed is

a C0-semigroup as the next theorem shows.

Theorem 4.8. The family
(
ρht
)
t≥0

is a strongly continuous semigroup on bounded linear

operators on L1 (`2(Z+)⊗ C2). Moreover, for any N-regular density operator % we have

Tr
(∣∣ρht (%)− %∞

∣∣) ≤ 12 e−γt (1 + |d|) + 4 e−κt
√

Tr (%N), (28)

where %∞ is defined by (3).

Proof. Deferred to Section 5.2.6.

We also establish a variation of constants formula for (21), which plays a key role

in studying the long time behavior of (21) in case Cb < 1.

Theorem 4.9. Let α, β : [0,∞[→ C be continuous functions. Assume that (ρt)t≥0 is a

N-weak solution of (21). Then, for all t ≥ s ≥ 0 we have

ρt = ρht−s (ρs) +

∫ t

s

ρht−u

([(
α (u) a† − α (u)a

)
+
(
β (u)σ− − β (u)σ+

)
, ρu

])
du, (29)

where ρh (·) is given by (27).

Proof. Deferred to Section 5.2.7.

5. Proofs

5.1. Proofs of theorems from Section 2

5.1.1. Proof of Theorem 2.1

Proof of Theorem 2.1. Fix A (0) ∈ C, S (0) ∈ C and D (0) ∈ R. Since (5) is an ordinary

differential equation with locally Lipschitz coefficients, (5) has a unique solution defined

on a maximal interval [0, T [ (see, e.g., [43]).

For all t ∈ [0, T [, we set X (t) = exp (iωt)A (t), Y (t) = exp (iωt)S (t) and

Z (t) = D (t)− d. Thus, (5) becomes (9), and so

d

dt
|X (t)|2 = 2<

(
X ′ (t)X (t)

)
= −2κ |X (t)|2 + 2g<

(
Y (t)X (t)

)
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and
d

dt
|Y (t)|2 = 2dg<

(
X (t)Y (t)

)
− 2γ |Y (t)|2 + 2g Z (t)<

(
X (t)Y (t)

)
d

dt
Z (t)2 = −4γZ (t)2 − 8g Z (t)<

(
X (t)Y (t)

) .

Hence,

4
d

dt
|Y (t)|2 +

d

dt
Z (t)2 = 8dg<

(
X (t)Y (t)

)
− 8γ |Y (t)|2 − 4γZ (t)2 . (30)

Suppose, for a moment, that d < 0. Then

−4d
d

dt
|X (t)|2 + 4

d

dt
|Y (t)|2 +

d

dt
Z (t)2 = 8dκ |X (t)|2 − 8γ |Y (t)|2 − 4γZ (t)2 .

This gives

d

dt

(
−4d |X (t)|2 + 4 |Y (t)|2 + (Z (t))2)

≤ −min {2κ, 2γ}
(
−4d |X (t)|2 + 4 |Y (t)|2 + Z (t)2) ,

which implies

4 |d| |X (t)|2 + 4 |Y (t)|2 + Z (t)2

≤ exp (−2t min {κ, γ})
(
4 |d| |X (0)|2 + 4 |Y (0)|2 + Z (0)2) (31)

for any t ∈ [0, T [.

On the other hand, assume that d ≥ 0. Combining

d

dt
|X (t)|2 +

g2

4γκ

(
4
d

dt
|Y (t)|2 +

d

dt
Z (t)2

)
= 2g

(
1 +

g2d

γκ

)
<
(
X (t)Y (t)

)
− 2κ |X (t)|2 − 2

g2

κ
|Y (t)|2 − g2

κ
Z (t)2

with 2<
(
X (t) g

κ
Y (t)

)
≤ |X (t)|2 + g2

κ2
|Y (t)|2 we obtain

d

dt

(
|X (t)|2 +

g2

γκ
|Y (t)|2 +

g2

4γκ
Z (t)2

)
≤
(
−κ+

g2d

γ

)
|X (t)|2 +

(
−γ +

g2d

κ

)
g2

γκ
|Y (t)|2 − 4γ

g2

4γκ
Z (t)2 .

Therefore, for all t ∈ [0, T [ we have

d

dt

(
|X (t)|2 +

g2

γκ
|Y (t)|2 +

g2

4γκ
Z (t)2

)
≤ −min

{
κ− g2d

γ
, γ − g2d

κ

}(
|X (t)|2 +

g2

γκ
|Y (t)|2 +

g2

4γκ
Z (t)2

)
.
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This yields

|X (t)|2 +
g2

γκ
|Y (t)|2 +

g2

4γκ
Z (t)2

≤ e
−tmin

{
κ− g

2d
γ
,γ− g

2d
κ

}(
|X (0)|2 +

g2

γκ
|Y (0)|2 +

g2

4γκ
Z (0)2

)
.

(32)

Suppose that T < +∞. According to (31) and (32) we have that

‖(A (t) , S (t) , D (t))‖ < K, where K > 0 and t ∈ [0, T [. This contradicts the property

limt→T ‖(A (t) , S (t) , D (t))‖ = ∞. Therefore, T = +∞. Moreover, (31) and (32) lead

to (6) and (7), respectively.

We now assume that d ≥ 0 and Cb := g2 d/ (κ γ) < 1. Since

2<
(
X (t)Y (t)

)
=

4 d g

γ
<
(
X (t)

γ

2 d g
Y (t)

)
≤ 2 d g

γ
|X (t)|2 +

γ

2 d g
|Y (t)|2 ,

from (30) it follows

d

dt

(
4 |Y (t)|2 + Z (t)2) =

8d2g2

γ
|X (t)|2 − 3

2
γ
(
4 |Y (t)|2 + Z (t)2) .

Hence,

4 |Y (t)|2 + Z (t)2 ≤ e−
3
2
γ t
(
4 |Y (0)|2 + Z (0)2)+

8d2g2

γ
e−

3
2
γ t

∫ t

0

e
3
2
γ s |X (s)|2 ds.

As g2 d/ (κ γ) < 1, according to (7) we have

d |X (t)|2 ≤ e−(1−Cb) min{κ,γ}t
(
d |A (0)|2 + |S (0)|2 +

1

4
(D (0)− d)2

)
,

and so

4 |Y (t)|2 + Z (t)2 ≤ e−
3
2
γ t
(
4 |Y (0)|2 + Z (0)2)+

8d2g2

γ
e−

3
2
γ t

∫ t

0

e
3
2
γ s |X (s)|2 ds

≤ e−
3
2
γ t
(
4 |Y (0)|2 + Z (0)2)+ 8κ e−

3
2
γ t

∫ t

0

e
3
2
γ sd |X (s)|2 ds.

Using that 3γ/2− (1− Cb) min {κ, γ} > γ/2 yields

4 |Y (t)|2 + Z (t)2 ≤ e−
3
2
γ t
(
4 |Y (0)|2 + Z (0)2)

+
16κ

γ

(
d |A (0)|2 + |S (0)|2 +

1

4
(D (0)− d)2

)(
e−(1−Cb) min{κ,γ}t − e−

3
2
γ t
)
.

This gives (8).

Let (A (t) , S (t) , D (t)) = (A, S,D) be a constant solution of (5). Then

− (κ+ iω)A+ g S = 0, (33a)

− (γ + iω) S + g A D = 0, (33b)

−4g <
(
A S

)
− 2γ (D − d) = 0. (33c)
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Combining (33a) with (33b) we deduce that

A
(
− (γ + iω) (κ+ iω) + g2 D

)
= 0. (34)

Using ω 6= 0 and κ, γ > 0 we get (γ + iω) (κ+ iω) /∈ R. Since D ∈ R,

− (γ + iω) (κ+ iω) + g2 D 6= 0,

and so (34) yields A = 0. From (33a)-(33c) we obtain S = 0 and D = d.

5.1.2. Proof of Theorem 2.2

Proof of Theorem 2.2. Suppose that (X (t) , Y (t) , Z (t)) = (X, Y, Z) ∈ C × C × R
satisfies (9). Then 

−κX + g Y = 0

dg X − γ Y + g X Z = 0

−4g<
(
X Y

)
− 2γ Z = 0

,

which is equivalent to the system

Y =
κ

g
X, (35a)

X

(
dg − κγ

g
+ g Z

)
= 0, (35b)

|X|2 = − γ

2κ
Z (35c)

From (35b) we get X = 0 or Z = κγ/ (g2)−d. In the former case, (35a) and (35c) yields

Y = Z = 0. In the latter case, dg2 − γκ ≥ 0 and |X|2 = γ (dg2 − κγ) / (2κg2).

5.2. Proofs of theorems from Section 4

5.2.1. Proof of Theorem 4.1 The proof of Theorem 4.1 follows from combining Lemma

5.2, given below, with the arguments used in the proof of Theorem 4.4 of [35] (see Section

A). First, we get the weak continuity of the map t 7→ AXt (ξ) in case A is relatively

bounded by C.

Lemma 5.1. Let Condition H2.3 of Hypothesis 2 hold. Suppose that ξ ∈ L2
C (P, h) and

A ∈ L ((D (C) , ‖·‖C) , h). Then, for any ψ ∈ L2 (P, h) and t ≥ 0 we have

lim
s→t

E 〈ψ,AXs (ξ)〉 = E 〈ψ,AXt (ξ)〉 . (36)

Proof. Consider a sequence of non-negative real numbers (sn)n satisfying sn → t as

n → +∞. Since ((Xsn (ξ) , AXsn (ξ) , CXsn (ξ)))n is a bounded sequence in L2 (P, h3),

where h3 = h× h× h, there exists a subsequence
(
sn(k)

)
k

such that(
Xsn(k) (ξ) , AXsn(k) (ξ) , CXsn(k) (ξ)

)
−→k→∞ (Y, U, V ) (37)
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weakly in L2 (P, h3). Define M = {(η,Aη, Cη) : η ∈ L2
C (P, h)}. Thus,(

Xsn(k) (ξ) , AXsn(k) (ξ) , CXsn(k) (ξ)
)
∈M ∀k ∈ N.

Since M is a linear manifold of L2 (P, h3) closed with respect to the strong topology (see,

e.g., proof of Lemma 7.15 of [35]), (37) implies (Y, U, V ) ∈M (see, e.g., Section III.1.6

of [44]). Using E
(
sups∈[0,t+1] ‖Xs (ξ)‖2) <∞, together with the dominated convergence

theorem we obtain that E
∥∥∥Xsn(k) (ξ)−Xt (ξ)

∥∥∥2

→ 0 as k → +∞. Hence Y = Xt (ξ),

and so U = AXt (ξ). Therefore, AXsn(k) (ξ) converges to AXt (ξ) weakly in L2 (P, h).

Lemma 5.2. Assume Hypothesis 2, together with ξ ∈ L2
C (P, h) and A ∈ L (h). Then,

t 7→ Lk (t)Xt (ξ) is continuous as a map from [0,+∞[ to L2 (P, h). Moreover,

t 7→ E 〈G (t)Xt (ξ) , AXt (ξ)〉+ E 〈Xt (ξ) , AG (t)Xt (ξ)〉

+
∞∑
`=1

E 〈L` (t)Xt (ξ) , AL` (t)Xt (ξ)〉

is a continuous function.

Proof. Suppose that (tn)n is a sequence of non-negative real numbers satisfying tn → t

as n → +∞. By E
(
sups∈[0,t+1] ‖Xs (ξ)‖2) < ∞ (see, e.g., Th. 4.2.5 of [45]), using

the dominated convergence theorem gives E ‖Xtn (ξ)−Xt (ξ)‖2 −→n→+∞ 0, and hence

AXtn (ξ) −→n→∞ AXt (ξ) in L2 (P, h). For any ψ ∈ L2 (P, h),

|E 〈ψ,G (s)Xs (ξ)〉 − E 〈ψ,G (t)Xt (ξ)〉|
≤ E ‖ψ‖ ‖G (s)Xs (ξ)−G (t)Xs (ξ)‖+ |E 〈ψ,G (t)Xs (ξ)〉 − E 〈ψ,G (t)Xt (ξ)〉| ,

and so combining Lemma 5.1 with E ‖G (s)Xs (ξ)−G (t)Xs (ξ)‖2 ≤ f0 (s, t)E ‖Xs (ξ)‖2
C

yields

lim
s→t

E 〈ψ,G (s)Xs (ξ)〉 = E 〈ψ,G (t)Xt (ξ)〉 . (38)

Therefore

lim
n→∞

E 〈G (tn)Xtn (ξ) , AXtn (ξ)〉 = E 〈G (t)Xt (ξ) , AXt (ξ)〉 (39)

(see, e.g., Section III.1.7 of [44]). Analysis similar to that in (38) shows

lim
s→t

E 〈ψ,L` (s)Xs (ξ)〉 = E 〈ψ,L` (t)Xt (ξ)〉 ,

and hence

L` (tn)Xtn (ξ) −→n→∞ L` (t)Xt (ξ) weakly in L2 (P, h) . (40)

According to (39) with A replaced by A∗ we have that t 7→ E 〈A∗Xt (ξ) , G (t)Xt (ξ)〉
is a continuous function, then so is t 7→ E 〈Xt (ξ) , AG (t)Xt (ξ)〉. Moreover, taking A =

I in (39) we deduce that E< 〈Xtn (ξ) , G (tn)Xtn (ξ)〉 →n→∞ E< 〈Xt (ξ) , G (t)Xt (ξ)〉.
Applying Condition H2.2 we now get

∞∑
`=1

E ‖L` (tn)Xtn (ξ)‖2 −→n→∞

∞∑
`=1

E ‖L` (t)Xt (ξ)‖2 . (41)
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Combining (40) and (41) yields

lim sup
n→∞

E ‖L` (tn)Xtn (ξ)‖2 ≤ E ‖L` (t)Xt (ξ)‖2

(see, e.g., proof of Lemma 7.16 of [35] for details) which, together with (40), implies

that L` (tn)Xtn (ξ) converges strongly in L2 (P, h) to L` (t)Xt (ξ) as n→∞. Therefore,

t 7→ L` (t)Xt (ξ) is continuous as a function from [0,+∞[ to L2 (P, h).

Using Condition H2.2 we obtain that
∑n

`=1 E 〈L` (t)Xt (ξ) , AL` (t)Xt (ξ)〉 converges

to
∑∞

`=1 E 〈L` (t)Xt (ξ) , AL` (t)Xt (ξ)〉 as n→∞ uniformly on any finite interval. Since

E 〈L` (tn)Xtn (ξ) , AL` (tn)Xtn (ξ)〉 −→n→∞ E 〈L` (t)Xt (ξ) , AL` (t)Xt (ξ)〉 ,

the map t 7→
∑∞

`=1 E 〈L` (t)Xt (ξ) , AL` (t)Xt (ξ)〉 is continuous.

5.2.2. Proof of Theorem 4.2

Proof of Theorem 4.2. For any x, y ∈ D (C) we set [x, y] = E 〈Xt (x) , AXt (y)〉.
According to Definition 4.1 we have

|[x, y]| = |E 〈Xt (x) , AXt (y)〉| ≤ K (t) ‖A‖ ‖x‖ ‖y‖ ∀x, y ∈ D (C) .

Since D (C) is dense in h, [·, ·] can be extended uniquely to a sesquilinear form [·, ·] over

h×h satisfying |[x, y]| ≤ K (t) ‖A‖ ‖x‖ ‖y‖ for any x, y ∈ h. Hence, there exists a unique

bounded operator Tt (A) on h such that |[x, y]| = 〈x, Tt (A) y〉 for all x, y in h. Moreover,

‖Tt (A)‖ ≤ K (t) ‖A‖.

5.2.3. Proof of Theorem 4.5

Proof of Theorem 4.5. Throughout the proof, we consider the following operators in

h = `2(Z+)⊗ C2:

H (t) =
ω

2

(
2a†a+ σ3

)
+ i
(
α (t) a† − α (t)a

)
+ i
(
β (t)σ− − β (t)σ+

)
L1 =

√
2κ a, L2 =

√
γ (1− d)σ−, L3 =

√
γ (1 + d)σ+

G (t) = −iH (t)− 1

2

3∑
`=1

L∗`L`

. (42)

First, we will find a Np-weak solution to (21). To this end, we will verify that

C = Np satisfies Hypothesis 2. Since L2, L3 ∈ L (h), L1, L
∗
1L1 are relatively bounded

with respect to N , and ‖H (t)x‖2 ≤ K max (|α (t)| , |β (t)|) ‖x‖N for all x ∈ D (N), C

fulfills Condition H2.1 of Hypothesis 2. According to (42) we have

2< 〈x,G (t)x〉+
∞∑
`=1

‖L` (t)x‖2 = 0 ∀x ∈ D (N) ,

and hence Condition H2.2 holds. Condition H2.4 follows from the continuity of α, β.
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In order to check Condition H2.3, we denote by D the set of all x ∈ h such that

x (n, η) := 〈en ⊗ eη, x〉 is equal to 0 for all combinations of n ∈ Z+ and η = ± except a

finite number. Consider x ∈ D. A careful computation yields

2<
〈
N2px,G (t)x

〉
+

3∑
`=1

‖NpL`x‖2

=
∑

k∈Z+,η=±

2<
(
α (t)x (k, η)x (k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)
+

∑
k∈Z+,η=±

2κ |x (k, η)|2 k
(
(k − 1)2p − k2p

)
.

(43)

Since ∑
k∈Z+,η=±

2<
(
α (t)x (k, η)x (k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)
≤ 2 |α (t)|

∑
k∈Z+,η=±

|x (k, η)| |x (k + 1, η)|φ (k)

≤ 2 |α (t)|
∑

k∈Z+,η=±

|x (k, η)|2 φ (k)

with φ (k) =
√
k + 1

(
(k + 1)2p − k2p

)
=
√
k + 1

∑2p−1
j=0

(
2p

j

)
kj,∑

k∈Z+,η=±

2<
(
α (t)x (k, η)x (k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)
≤ |α (t)|K

∑
k∈Z+,η=±

|x (k, η)|2
(
1 + k2p−1/2

)
.

(44)

Combining (43) with (44) we get

2<
〈
N2px,G (t)x

〉
+

3∑
`=1

‖NpL`x‖2 ≤ K |α (t)| ‖x‖2
Np ,

and so Condition H4.3 of Hypothesis 4 holds because D is a core of Np. Then, applying

Theorem 2.4 of [36] (see also Theorem 4.4) gives Condition H2.3, together with

E ‖Xt (ξ)‖2
Np ≤ K (t)E ‖ξ‖2

Np ; (45)

here and subsequently, Xt (ξ) is the strong Np-solution of (14) with G (t), L1, L2, L3

given by (42) and initial condition ξ ∈ L2
Np (P, h). Thus, G (t), L1, L2, L3, described by

(42), satisfy Hypothesis 2 with C = Np.

According to Theorem 3.1 of [35] we have that % = E |ξ〉〈ξ| for certain ξ ∈ L2
Np (P, h).

Using Theorem 4.1 we obtain that ρt := E |Xt (ξ)〉 〈Xt (ξ)| satisfies
d

dt
Tr (Aρt) = Tr

(
A

(
G (t) ρt + ρtG (t)∗ +

3∑
`=1

L`ρtL
∗
`

))
∀A ∈ L (h)

ρ0 = %

, (46)
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as well as the relation (23).

Second, we will prove that (21) has at most one Np-weak solution provided that

the initial condition is Np-regular. Suppose that (46) holds. Taking A = |y〉〈x| in (46)

we get

d

dt
〈x, ρty〉 = 〈G (t)∗ x, ρty〉+ 〈x, ρtG (t)∗ y〉+

3∑
`=1

〈L∗`x, ρtL∗`y〉 (47)

for all x, y ∈ D (Np). Relation (47) coincides with (20) with At, G (t), L1, L2 and L3

replaced by ρt, G (t)∗, L∗1, L∗2 and L∗3. This suggests us to apply Theorem 4.3 to (47) in

order to prove the uniqueness of the solution of (46). To this end, we next deduce that

the linear stochastic Schrödinger equation

Yt (ξ) = ξ +

∫ t

0

G (s)∗ Ys (ξ) ds+
3∑
`=1

∫ t

0

L∗` Ys (ξ) dW `
s (48)

satisfies Hypothesis 4 with C = Np.

Now, we check Hypothesis 4 with G (t), L1, L2 and L3 replaced by G (t)∗, L∗1, L∗2
and L∗3. Take C = Np. Since a† is relatively bounded with respect to N , using analysis

similar to that in the second paragraph we can check that G (t)∗ = iH (t)− 1
2

∑3
`=1 L

∗
`L`

satisfies Condition H4.1 of Hypothesis 4 with G (t) substituted by G (t)∗, as well

as Condition H4.2 holds with L` (t) replaced by L
∗
1 =

√
2κa†, L∗2 =

√
γ (1− d)σ+,

L∗3 =
√
γ (1 + d)σ−. On D we have

G (t)∗ + (G (t)∗)
∗

+
3∑
`=1

(L∗`)
∗ L∗` =

3∑
`=1

(L`L
∗
` − L∗`L`)

= 4κ2I + 2γ2
(
1 + d2

)
σ3,

which gives Condition H4.4. For any x ∈ D,

2<
〈
N2px, iH (t)x

〉
=

∑
k∈Z+,η=±

2<
(
α (t)x (k, η)x (k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

) (49)

and 〈
x,

(
L1N

2pL∗1 −
1

2
L∗1L1N

2p − 1

2
N2pL∗1L1

)
x

〉
=

∑
k∈Z+,η=±

2κ |x (k, η)|2
(
(k + 1)2p+1 − k2p+1

)
.

(50)

Since L2, L3 are bounded operators with conmute with N2p, using (49) and (50) yields

2<
〈
N2px,G (t)∗ x

〉
+

3∑
`=1

‖NpL∗`x‖
2 ≤ K (t) ‖Npx‖2

and hence Condition H4.3 holds. By Theorem 4.4, (48) has a unique strong Np-solution

whenever ξ ∈ L2
C (P, h). It follows from Theorem 4.3 that (47) has at most one solution
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%t ∈ L (h) satisfying %0 = %. Thus, (21) has a unique Np-regular solution, which is equal

to ρt := E |Xt (ξ)〉 〈Xt (ξ)|.

5.2.4. Proof of Theorem 4.6

Proof of Theorem 4.6. In the sequel, G (t), H (t), L1, L2, L3 are described by (42). From

the proof of Theorem 4.5 it follows that (14) has a unique strong Np-solution Xt (ξ) for

any initial datum ξ ∈ L2
Np (P, h). In order to establish (24a) we apply Theorem 4.1 of

[36] to obtain

Tr (aρt) = Tr (aρ0) +
3∑
`=1

∫ t

0

E 〈L`Xs (ξ) , aL`Xs (ξ)〉 ds

+

∫ t

0

(
E
〈
a†Xs (ξ) , G (s)Xs (ξ)

〉
+ E 〈G (s)Xs (ξ) , aXs (ξ)〉

)
ds.

(51)

Therefore, t 7→ Tr (aρt) is a continuous function. Suppose that x ∈ D. Since a conmutes

with σ3 and σ±, using
[
a, a†

]
= I we deduce that〈

a†x,−iH (s)x
〉

+ 〈−iH (s)x, ax〉 = 〈x, i [H (s) , a]x〉

=
〈
x,
[
iω a†a− α (t) a† + α (t)a, a

]
x
〉

= 〈x, (−iω a+ α (t))x〉

and
3∑
`=1

〈
x,

(
L?`aL` −

1

2
aL?`L` −

1

2
L?`L`a

)
x

〉
=

〈
x,

(
L?1aL1 −

1

2
aL?1L1 −

1

2
L?1L1a

)
x

〉
= −κ 〈x, ax〉 .

Because D is a core for N , we obtain that for all x ∈ D (N),

〈
a†x,G (s)x

〉
+ 〈G (s)x, ax〉+

3∑
`=1

〈L`x, aL`x〉 = 〈x,− (κ+ iω) ax+ α (t)x〉 .

Then, from (51) it follows that

Tr (aρt) = Tr (aρ0) +

∫ t

0

(− (κ+ iω) Tr (aρs) + α (s)) ds,

which leads to (24a).

Fix η = − or η = 3. According to (46) we have

d

dt
Tr (ρtσ

η) = Tr

(
ση

(
G (t) ρt + ρtG (t)∗ +

3∑
`=1

L`ρtL
∗
`

))
,
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and so applying Theorem 3.2 of [35] we deduce that

d

dt
Tr (ρtσ

η) = Tr

(
ρt

(
σηG (t) +G (t)∗ ση +

3∑
`=1

L∗`σ
ηL`

))

= Tr

(
ρt

(
−i [ση, H (t)] +

3∑
`=1

(
L∗`σ

ηL` −
1

2
σηL∗`L` −

1

2
L∗`L`σ

η

)))
= Tr

(
−iρt

[
ση,

ω

2
σ3 + i

(
β (t)σ− − β (t)σ+

)])
+

3∑
`=2

Tr

(
ρt

((
L∗`σ

ηL` −
1

2
σηL∗`L` −

1

2
L∗`L`σ

η

)))
.

Now, we use the commutation relations[
σ+, σ−

]
= σ3,

[
σ3, σ+

]
= 2σ+,

[
σ−, σ3

]
= 2σ−

to derive (24b) and (24c).

Finally, we deal with (25). Using Theorem 4.1 of [36] yields

Tr (Nρt) = Tr (Nρ0) +

∫ t

0

E (2 < 〈NXs (ξ) , G (s)Xs (ξ)〉) ds

+
3∑
`=1

∫ t

0

E
〈
N1/2L`Xs (ξ) , N1/2L`Xs (ξ)

〉
ds.

(52)

For all x ∈ D we have

2 < 〈Nx,G (t)x〉+
3∑
`=1

〈
N1/2L` x,N

1/2L` x
〉

=

〈
x,

(
i [H (t) , N ] +

3∑
`=1

(
1

2
[L∗` , N ]L` +

1

2
L∗` [N,L`]

))
x

〉
=
〈
x,
(
−
[
α (t) a† − α (t)a,N

]
+ κ

[
a†, N

]
a+ κ a† [N, a]

)
x
〉
,

and so

2 < 〈Nx,G (t)x〉+
3∑
`=1

〈
N1/2L` x,N

1/2L` x
〉

=
〈
x,
(
α (t) a† + α (t)a− 2κN

)
x
〉

(53)

since
[
N, a†

]
= a† and [a,N ] = a. By D is a core for N , (53) holds for all x ∈ D (N),

and hence (52) gives

Tr (Nρt) = Tr (Nρ0) +

∫ t

0

(
2<
(
α (t)E 〈Xs (ξ) , aXs (ξ)〉

)
− 2κE 〈Xs (ξ) , NXs (ξ)〉

)
ds,

which implies

Tr (Nρt) = Tr (Nρ0) +

∫ t

0

(
2<
(
α (s) Tr (aρs)

)
− 2κ Tr (Nρs)

)
ds.

The continuity of α (t), Tr (aρt) and Tr (Nρt) yields (25).
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5.2.5. Proof of Theorem 4.7

Lemma 5.3. For any ρ ∈ C2×2 we define

La? (%) = − iω

2

[
σ3, %

]
+ γ(1− d)

(
σ−% σ+ − 1

2
σ+σ−%− 1

2
% σ+σ−

)
+ γ(1 + d)

(
σ+% σ− − 1

2
σ−σ+%− 1

2
% σ−σ+

)
+
[
β̄σ− − βσ+, ρ

]
,

with d, ω ∈ R, γ > 0 and β ∈ C. Consider the linear ordinary differential equation
d

dt
ρat = La? (ρat ) ∀t ≥ 0

ρa0 = %
, (54)

where ρat ∈ C2×2. Then, for all t ≥ 0 we have

Tr (|ρat − Tr (%) %a∞|) ≤ 4 exp (−γ t) (‖%‖F + |d Tr (%)|) ,

where ‖%‖F stands for the Frobenius norm of %, and %a∞ is as in Theorem 4.7.

Proof. Decomposing ρat in the canonical basis of C2×2 we obtain

ρat = α++ (t) |e+〉 〈e+|+ α+− (t) |e+〉 〈e−|+ α−+ (t) |e−〉 〈e+|+ α−− (t) |e−〉 〈e−| ,

where α±± (t) and α±∓ (t) belong to C. Then

d

dt
ρat = La? (ρat ) = α++ (t)La? (|e+〉 〈e+|) + α+− (t)La? (|e+〉 〈e−|)

+ α−+ (t)La? (|e−〉 〈e+|) + α−− (t)La? (|e−〉 〈e−|) .

Computing explicitly La? (|e±〉 〈e±|) and La? (|e±〉 〈e∓|) yields

d

dt
α++ (t) = −β̄ α+− (t)− β α−+ (t)− γ (1− d)α++ (t) + γ (1 + d)α−− (t)

d

dt
α−− (t) = β̄ α+− (t) + β α−+ (t) + γ (1− d)α++ (t)− γ (1 + d)α−− (t)

d

dt
α+− (t) = − (γ + iω)α+− (t) + β α++ (t)− β α−− (t)

d

dt
α−+ (t) = (−γ + iω)α−+ (t) + β̄ α++ (t)− β̄ α−− (t)

.

Adding the first two equations we get

α++ (t) + α−− (t) = α++ (0) + α−− (0) = Tr (%) , (55)

and so subtracting the first two equations we deduce that

d

dt
(α++ (t)− α−− (t)) = −2β̄ α+− (t)− 2β α−+ (t)

− 2γ (α++ (t)− α−− (t)) + 2γd Tr (%) .
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Therefore

d

dt

α++ (t)− α−− (t)

α+− (t)

α−+ (t)

 = A

α++ (t)− α−− (t)

α+− (t)

α−+ (t)

+

 2γd Tr (%)

0

0

 , (56)

with A =

−2γ −2β̄ −2β

β −γ − iω 0

β̄ 0 −γ + iω

 .

Solving explicitly (56) givesα++ (t)− α−− (t)

α+− (t)

α−+ (t)

 = exp (At)

α++ (0)− α−− (0)

α+− (0)

α−+ (0)

− A−1

 2γd Tr (%)

0

0


+ A−1 exp (At)

 2γd Tr (%)

0

0

 .

Calculating A−1

 2γd Tr (%)

0

0

 we obtain

α++ (t)− α−− (t)

α+− (t)

α−+ (t)

− d Tr (%)

γ2 + ω2 + 2 |β|2

 γ2 + ω2

β (γ − iω)

β̄ (γ + iω)


= exp (At)

α++ (0)− α−− (0)

α+− (0)

α−+ (0)

− d Tr (%)

γ2 + ω2 + 2 |β|2

 γ2 + ω2

β (γ − iω)

β̄ (γ + iω)

 .

(57)

Consider v ∈ C3,3 and M =

 1 0 0

0 2 0

0 0 2

. Then

d

dt
〈exp (At) v,M exp (At) v〉 = 〈exp (At) v, (A?M +M A) exp (At) v〉

= −4γ ‖exp (At) v‖2 ≤ −2γ〈exp (At) v,M exp (At) v〉,

and hence for all t ≥ 0,

‖exp (At) v‖2 ≤ 〈exp (At) v,M exp (At) v〉 ≤ exp (−2γ t) 〈v,M v〉 ≤ 2 exp (−2γ t) ‖v‖2 .

From (57) it follows∥∥∥∥∥∥
α++ (t)− α−− (t)

α+− (t)

α−+ (t)

− d Tr (%)

γ2 + ω2 + 2 |β|2

 γ2 + ω2

β (γ − iω)

β̄ (γ + iω)

∥∥∥∥∥∥
≤
√

2 exp (−γ t)

∥∥∥∥∥∥
α++ (0)− α−− (0)

α+− (0)

α−+ (0)

∥∥∥∥∥∥+
|d Tr (%)|

√
γ2 + ω2√

γ2 + ω2 + 2 |β|2


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≤ 2 exp (−γ t)


∥∥∥∥∥∥∥∥∥


α++ (0)

α−− (0)

α+− (0)

α−+ (0)


∥∥∥∥∥∥∥∥∥+ |d Tr (%)|

 .

Using (55) we deduce that

Tr

(∣∣∣∣ρat − Tr (%)

2

(
1 0

0 1

)
− d Tr (%)

γ2 + ω2 + 2 |β|2

(
(γ2 + ω2) /2 β (γ − iω)

β̄ (γ + iω) − (γ2 + ω2) /2

)∣∣∣∣)

≤
√

2

∥∥∥∥∥∥∥∥

α++ (t)

α−− (t)

α+− (t)

α−+ (t)

− Tr (%)

2


1

1

0

0

− d Tr (%)

γ2 + ω2 + 2 |β|2


(γ2 + ω2) /2

− (γ2 + ω2) /2

β (γ − iω)

β̄ (γ + iω)


∥∥∥∥∥∥∥∥

≤ 4 exp (−γ t)


∥∥∥∥∥∥∥∥∥


α++ (0)

α−− (0)

α+− (0)

α−+ (0)


∥∥∥∥∥∥∥∥∥+ |d Tr (%)|

 .

Lemma 5.4. Suppose that
(
ρft

)
t≥0

is the N-weak solution to
d

dt
ρft = Lf?

(
ρft

)
∀t ≥ 0

ρf0 = %
, (58)

where % ∈ L+
1 (`2 (Z+)) is a N-regular density operator and

Lf? (ρ) =
[
− (κ+ iω) a†a+

(
αa† − ᾱa

)
, ρ
]

+ 2κ a ρa†

with κ > 0, α ∈ C and ω ∈ R. Then

Tr
(∣∣∣ρft − %f∞∣∣∣) ≤ 2e−κt

(√
Tr (%N) + |α| /

√
κ2 + ω2

)
∀t ≥ 0,

where e (ζ) is defined by Notation 3.1.

Proof. Consider the unitary Weyl operator W (u) defined by

W (u) e (z) = exp
(
− |u|2 /2− ūz

)
e (z + u) ∀z ∈ C,

where u ∈ C and e (·) is given by Notation 3.1 (see, e.g., [46]). Applying the well-known

relations

W (u)W (−u) = I, W (u) aW (−u) = a− uI, W (u) a†W (−u) = a† − ūI

we obtain W (u) a†aW (−u) = a†a − ua† − ūa + |u|2. Take v = α/ (κ+ iω). For any

ξ ∈ L2
N (P, h), W (−v)E |ξ〉〈ξ| W (v) = E |W (−v) ξ〉〈W (−v) ξ| and

E
(
‖N W (−v) ξ‖2) ≤ ‖W (−v)‖2 E

∥∥(a†a− va† − v̄a+ |v|2
)
ξ
∥∥2 ≤ K (|v|)E

(
‖ξ‖2

N

)
.
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Hence, the application ρ 7→ W (−v) ρW (v) preserves the property of being N -regular.

For all x in the domain of a†a we have
√

2κ a x = W

(
α

κ+ iω

)
L̃W

(
− α

κ+ iω

)
x

and

− (κ+ iω) a†a x+
(
αa† − ᾱa

)
x = W

(
α

κ+ iω

)
G̃W

(
− α

κ+ iω

)
x,

where L̃ =
√

2κ a+
√

2κ v I and

G̃ = − (κ+ iω) a†a− 2κᾱ

κ− iω
a+ |α|2

(
1

κ− iω
− 2κ

κ2 + ω2

)
I.

This gives

Lf? (ρ) = W (v) G̃W (−v) ρ+ ρW (v) G̃∗W (−v)

+W (v) L̃W (−v) ρW (v) L̃∗W (−v) ,
(59)

for any N -regular density operator ρ.

Choose ρ̃t = W (−v) ρft W (v). Then, the density operator ρ̃t is N -regular. Using

(59) we obtain that (ρ̃t)t≥0 is the N -weak solution to
d

dt
ρ̃t = L̃? (ρ̃t) ∀t ≥ 0

ρ̃0 = W (−v) %W (v)
, (60)

where L̃? (ρ) = G̃ ρ+ ρ G̃? + L̃ ρ L̃?. A computation yields〈
ej, L̃? (ρ) ej

〉
= −2κj 〈ej, ρ ej〉+ 2κ (j + 1) 〈ej+1, ρ ej+1〉 ∀j ≥ 0

whenever % is a N -regular density operator. Applying (60) we deduce that the functions

ϕj (t) := 〈ej, ρ̃t ej〉 satisfy

ϕ′j (t) = −2κjϕj (t) + 2κ(j + 1)ϕj+1 (t) , (61)

which are the Kolmogorov equations for a pure-death process. In case ϕj(0) = δjn for

all j ≥ 0, the solution of (61) is

ϕj (t) =


(
n

j

)
e−2κ jt

(
1− e−2κt

)n−j
if 0 ≤ j ≤ n

0 if j > n

.

Therefore, 〈e0, ρ̃t e0〉 = ϕ0 (t) =
∑

n≥0 ϕn (0) (1− e−2κt)
n
.

According to [30] we have Tr (|ρ̃t − |e0〉 〈e0||) ≤ 2 (1− 〈e0, ρ̃te0〉)1/2. Using that

ϕn (0) ≥ 0 and
∑

n≥0 ϕn (0) = 1 we obtain

0 ≤ 1− 〈e0, ρ̃te0〉 =
∑
n≥1

ϕn (0)
(
1−

(
1− e−2κt

)n) ≤ e−2κt
∑
n≥1

nϕn (0) ,
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because 1− (1− x)n ≤ nx for any n ∈ N and x ∈ [0, 1]. Hence

Tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt

(∑
n≥0

〈n en, ρ̃0 en〉

)1/2

= 2e−κt

(∑
n≥0

〈N en, ρ̃0 en〉

)1/2

,

and so

Tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt (Tr (ρ̃0N))1/2 = 2e−κt (Tr (%W (v)N W (−v)))1/2

(see, e.g., Theorem 3.2 of [35]). Then

Tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt
(
Tr
(
%
(
N − va† − v̄a+ |v|2

)))1/2
. (62)

Due to % = E |ξ〉〈ξ| for certain ξ ∈ L2
N (P, h),∣∣Tr

(
% a†
)∣∣ = |E〈a ξ, ξ〉| ≤

√
E |a ξ|2

√
E |ξ|2 =

√
E |a ξ|2 =

√
E〈N ξ, ξ〉 =

√
Tr (%N)

and

|Tr (% a)| =
∣∣E〈a† ξ, ξ〉∣∣ ≤√E |a ξ|2 =

√
Tr (%N)

(see, e.g., Theorem 3.2 of [35]). From (62) we deduce that

Tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt
(√

Tr (%N) + |v|
)
,

and consequently

Tr
(∣∣∣ρft −W (v) |e0〉 〈e0|W (−v)

∣∣∣) = Tr (|W (v) (ρ̃t − |e0〉 〈e0|)W (−v)|)

≤ ‖W (v)‖ ‖W (−v)‖Tr (|ρ̃t − |e0〉 〈e0||)

= Tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt
(√

Tr (%N) + |v|
)
.

Since W (v) e0 = W (v) e (0) = exp
(
− |v|2 /2

)
e (v),

W (v) |e0〉 〈e0|W (−v) = exp
(
− |α/ (κ+ iω)|2

) ∣∣∣∣e( α

κ+ iω

)〉〈
e

(
α

κ+ iω

)∣∣∣∣ .
Proof of Theorem 4.7. The solution of (54) is denoted by ρat (%), and we write

(
ρft

)
t≥0

for the semigroup N -solution of the quantum master equation (58) (see [35] for details).

Due to ρ0 is N -regular,

ρ0 = E |ξ+ ⊗ e+ + ξ− ⊗ e−〉〈ξ+ ⊗ e+ + ξ− ⊗ e−|

with ξ± ∈ L2
N (P, h), and so

ρ0 = %++ ⊗ |e+〉 〈e+|+ %+− ⊗ |e+〉 〈e−|+ %−+ ⊗ |e−〉 〈e+|+ %−− ⊗ |e−〉 〈e−| , (63)

where ρηη̃ = E |ξη〉〈ξη̃|. Since the right-hand term of (21) is equal to Lf? ⊗ I (ρt) + I ⊗
La? (ρt), where La? and Lf? are described by Lemmata 5.3 and 5.4, from (63) we obtain

ρt = ρft (%++)⊗ ρat (|e+〉 〈e+|) + ρft (%+−)⊗ ρat (|e+〉 〈e−|)
+ ρft (%−+)⊗ ρat (|e−〉 〈e+|) + ρft (%−−)⊗ ρat (|e−〉 〈e−|) .

(64)
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Combining Tr (|e±〉 〈e∓|) = 0 with Lemma 5.3 we deduce that

Tr
(∣∣∣ρft (%±∓)⊗ ρat (|e±〉 〈e∓|)

∣∣∣) = Tr
(∣∣∣ρft (%±∓)

∣∣∣)Tr (|ρat (|e±〉 〈e∓|)|)

≤ Tr (|%±∓|) Tr (|ρat (|e±〉 〈e∓|)|) ≤ 4 exp (−γ t) Tr (|%±∓|) ,

and so

Tr
(∣∣∣ρft (%±∓)⊗ ρat (|e±〉 〈e∓|)

∣∣∣) ≤ 4 exp (−γ t) ∀t ≥ 0, (65)

because

Tr (|%±∓|) ≤ ETr (|ξ±〉〈ξ∓|) = E ‖ξ±‖ ‖ξ∓‖ ≤
√
E ‖ξ±‖2

√
E ‖ξ∓‖2 ≤ 1.

Since

Tr
(∣∣∣ρft (%±±)⊗ ρat (|e±〉 〈e±|)− Tr (%±±) %f∞ ⊗ %a∞

∣∣∣)
≤ Tr

(∣∣∣ρft (%±±)⊗ ρat (|e±〉 〈e±|)− Tr (%±±) %f∞ ⊗ ρat (|e±〉 〈e±|)
∣∣∣)

+ Tr
(∣∣Tr (%±±) %f∞ ⊗ ρat (|e±〉 〈e±|)− Tr (%±±) %f∞ ⊗ %a∞

∣∣)
= Tr

(∣∣∣ρft (%±±)− Tr (%±±) %f∞

∣∣∣)Tr (|ρat (|e±〉 〈e±|)|)

+ Tr (%±±) Tr
(
%f∞
)

Tr (|ρat (|e±〉 〈e±|)− %a∞|)

= Tr
(∣∣∣ρft (%±±)− Tr (%±±) %f∞

∣∣∣)+ Tr (%±±) Tr (|ρat (|e±〉 〈e±|)− %a∞|) ,

applying Lemmata 5.3 and 5.4 yields

Tr
(∣∣∣ρft (%±±)⊗ ρat (|e±〉 〈e±|)− Tr (%±±) %f∞ ⊗ %a∞

∣∣∣)
≤ 2
√

Tr (%±±)e−κt
√

Tr (%±±N) + Tr (%±±) e−κt
2 |α|√
κ2 + ω2

+ 4e−γt Tr (%±±) (1 + |d|)

≤ 2e−κt
√

Tr (%±±N) + Tr (%±±) e−κt
2 |α|√
κ2 + ω2

+ 4e−γt Tr (%±±) (1 + |d|) .

Now, using (64), (65), Tr (%++) + Tr (%−−) = 1 and Tr (%±±N) ≤ Tr (%0N) we get

(26).

5.2.6. Proof of Theorem 4.8

Proof of Theorem 4.8. Let % be a non-negative trace-class operator on h. According to

Lemma 7.10 of [35] we have that there exists a sequence of C-regular non-negative

operators %n such as limn→+∞Tr (|%− %n|) = 0, where C is a self-adjoint positive

operator in h. Using Theorem 4.3 of [35] yields lims→t Tr
(∣∣ρht (%n)− ρhs (%n)

∣∣) = 0,

and so

Tr
(∣∣ρht (%)− ρhs (%)

∣∣)
≤ Tr

(∣∣ρht (%)− ρht (%n)
∣∣)+ Tr

(∣∣ρht (%n)− ρhs (%n)
∣∣)+ Tr

(∣∣ρhs (%n)− ρhs (%)
∣∣)

≤ 2 Tr (|%− %n|) + Tr
(∣∣ρht (%n)− ρhs (%n)

∣∣)
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leads to

lim
s→t

Tr
(∣∣ρht (%)− ρhs (%)

∣∣) = 0. (66)

Decomposing the real and imaginary parts of an element of L1 (h) into positive and

negative parts (see, e.g., proof of Theorem 4.1 of [35]) we find that (66) holds for any

% ∈ L1 (h). Finally, applying Theorem 4.7 gives (28).

5.2.7. Proof of Theorem 4.9 Throughout the proof, for any t ≥ 0 we define

Lfull? (t) % = Lh? %+
[
α (t) a† − α (t)a+ β (t)σ− − β (t)σ+, %

]
,

where % is a linear combination of a finite number of N -regular density operators in

L1 (h).

Lemma 5.5. Suppose that α, β : [0,∞[→ C are continuous functions, and that (ρt)t≥0

is a N2-weak solution of (21). Then, for any t ≥ 0 we have

Lfull? (s) ρs −→s→t Lfull? (t) ρt and Lh? ρs −→s→t Lh? ρt,

where both limits are taken in L1 (`2 (Z+)⊗ C2).

Proof. Since ρ0 is N2-regular, there exists ξ ∈ L2
N2 (P, `2 (Z+)⊗ C2) such that ρ0 =

E |ξ〉〈ξ| (see, e.g., Theorem 3.1 of [35]). From the proof of Theorem 4.5 we have

ρt = E |Xt (ξ)〉 〈Xt (ξ)|, where Xt (ξ) is the strong N2-solution of (14) with G (t), L1,

L2, L3 given by (42). Now, applying Theorem 3.2 of [35] we obtain

Lfull? (s) ρs = E |G (t)Xt (ξ)〉〈Xt (ξ)|+ E |Xt (ξ)〉〈G (t)Xt (ξ)|

+
3∑
`=1

E |L`Xt (ξ)〉〈L`Xt (ξ)|

(see, e.g., proof of Theorem 4.4 of [35]).

Using Xt (ξ) ∈ L2
N2 (P, `2 (Z+)⊗ C2) we deduce that

Yt := Nξ +

∫ t

0

NG (s)Xs (ξ) ds+
3∑
`=1

∫ t

0

NL`Xs (ξ) dW `
s ∀t ≥ 0

is a well-defined continuous stochastic process. As N is a closed operator in `2 (Z+)⊗C2

we have Yt = NXt (ξ) for all t ≥ 0 P-a.s. (see, e.g., Proposition 4.15 of [47]). Moreover,

E
(
sups∈[0,t+1] ‖Ys‖

2) < ∞ and E
(
sups∈[0,t+1] ‖Xs (ξ)‖2) < ∞ (see, e.g., Th. 4.2.5 of

[45]). Then, using the dominated convergence theorem gives

lim
n→+∞

E ‖NXsn (ξ)−NXt (ξ)‖2 = lim
n→+∞

E ‖Ysn − Yt‖
2 = 0

and limn→+∞ E ‖Xsn (ξ)−Xt (ξ)‖2 = 0, where sn → t as n→ +∞. Therefore,

lim
s→t

E ‖Xs (ξ)−Xt (ξ)‖2
N = 0 ∀t ≥ 0. (67)
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Suppose that A,B are linear operators in `2 (Z+)⊗C2, which are relatively bounded

with respect to N . For any s, t ≥ 0,

Tr (|E |AXs (ξ)〉〈BXs (ξ)| − E |AXt (ξ)〉〈BXt (ξ)||)
≤ Tr (|E |AXs (ξ)− AXt (ξ)〉〈BXs (ξ)||) + Tr (|E |AXt (ξ)〉〈BXs (ξ)−BXt (ξ)||)
≤ E (‖AXs (ξ)− AXt (ξ)‖ ‖BXs (ξ)‖) + E (‖AXt (ξ)‖ ‖BXs (ξ)−BXt (ξ)‖)

≤
√
E
(
‖AXs (ξ)− AXt (ξ)‖2)√E

(
‖BXs (ξ)‖2)

+
√
E
(
‖AXt (ξ)‖2)√E

(
‖BXs (ξ)−BXt (ξ)‖2).

Combining (67) with sups∈[0,t+1] E
(
‖Xs (ξ)‖2

N

)
<∞ yields

Tr (|E |AXs (ξ)〉〈BXs (ξ)| − E |AXt (ξ)〉〈BXt (ξ)||) −→s→t 0. (68)

Since α, β : [0,∞[→ C are continuous functions, it follows from (68) that

t 7→ E |G (t)Xt (ξ)〉〈Xt (ξ)|+ E |Xt (ξ)〉〈G (t)Xt (ξ)|+
3∑
`=1

E |L`Xt (ξ)〉〈L`Xt (ξ)|

is a continuous function from [0,∞[ to L1 (`2 (Z+)⊗ C2). Hence

Lfull? (s) ρs −→s→t Lfull? (t) ρt in L1

(
`2 (Z+)⊗ C2

)
.

In the same manner we can see that t 7→ Lh? ρt is continuous.

Lemma 5.6. Under the assumptions of Lemma 5.5,

lim
s→t

ρs − ρt
s− t

= Lfull? (t) ρt in L1

(
`2 (Z+)⊗ C2

)
.

Proof. Let t ≥ 0. From Theorem 4.5 we get

ρt − ρs
t− s

− Lfull? (t) ρt =
1

t− s

∫ t

s

(
Lfull? (u) ρu − Lfull? (t) ρt

)
du, (69)

where s ≥ 0, s 6= t, and the integral in (69) is understood in the sense of Bochner

integral in L1 (h). According to Lemma 5.5 we have that u 7→ Lfull? (u) ρu − Lfull? (t) ρt
is continuous as a function from [0,+∞[ to L1 (`2 (Z+)⊗ C2), and so

lim
s→t

1

t− s

∫ t

s

(
Lfull? (u) ρu − Lfull? (t) ρt

)
du = 0 in L1

(
`2 (Z+)⊗ C2

)
.

Thus, the lemma follows from (69).

Lemma 5.7. Assume the hypothesis of Lemma 5.5. Then, for all t ≥ s ≥ 0 we have

ρt = ρht−s (ρs) +

∫ t

s

ρht−u

([(
α (u) a† − α (u)a

)
+
(
β (u)σ− − β (u)σ+

)
, ρu

])
du.
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Proof. Consider t > s ≥ 0. For any non-zero real number ∆ such that −s ≤ ∆ < t− s
we have

1

∆

(
ρht−(s+∆) (ρs+∆)− ρht−s (ρs)

)
+ Lh? ρht−s (ρs)− ρht−s

(
Lfull? (s) ρs

)
= ρht−(s+∆)

(
1

∆
(ρs+∆ − ρs)− Lfull? (s) ρs

)
+ ρht−(s+∆)

(
Lfull? (s) ρs

)
− ρht−s

(
Lfull? (s) ρs

)
+

1

∆

(
ρht−(s+∆) (ρs)− ρht−s (ρs)

)
+ Lh? ρht−s (ρs) .

Since ρht−(s+∆) is a contraction acting on L1 (`2 (Z+)⊗ C2),

Tr

(∣∣∣∣ρht−(s+∆)

(
1

∆
(ρs+∆ − ρs)− Lfull? (s) ρs

)∣∣∣∣) ≤ Tr

(∣∣∣∣ 1

∆
(ρs+∆ − ρs)− Lfull? (s) ρs

∣∣∣∣) ,
and so applying Lemma 5.6 yields

Tr

(∣∣∣∣ρht−(s+∆)

(
1

∆
(ρs+∆ − ρs)− Lfull? (s) ρs

)∣∣∣∣) −→∆→0 0.

In case α (t) = β (t) ≡ 0, Lfull? = Lh? , and hence using Lemma 5.6 we deduce that Lh?
coincides with the infinitesimal generator of the strongly continuous semigroup

(
ρhu
)
u≥0

on the subset L+
1,N2 (`2 (Z+)⊗ C2), as well as

Tr

(∣∣∣∣ 1

∆

(
ρht−(s+∆) (ρs)− ρht−s (ρs)

)
+ Lh? ρht−s (ρs)

∣∣∣∣) −→∆→0 0.

The strong continuity of the semigroup
(
ρhu
)
u≥0

implies

Tr
(∣∣ρht−(s+∆)

(
Lfull? (s) ρs

)
− ρht−s

(
Lfull? (s) ρs

)∣∣) −→∆→0 0.

Therefore, 1
∆

(
ρht−(s+∆) (ρs+∆)− ρht−s (ρs)

)
+ Lh? ρht−s (ρs) − ρht−s

(
Lfull? (s) ρs

)
converges

to 0 in L1 (`2 (Z+)⊗ C2) as ∆→ 0. Thus

d

ds
ρht−s (ρs) = ρht−s

(
Lfull? (s) ρs

)
− Lh? ρht−s (ρs) = ρht−s

(
Lfull? (s) ρs

)
− ρht−s

(
Lh? ρs

)
,

and consequently

d

ds
ρht−s (ρs) = ρht−s

(
Lfull? (s) ρs − Lh? ρs

)
. (70)

The contraction property of ρht−u leads to

Tr
(∣∣ρht−s (Lfull? (s) ρs − Lh? ρs

)
− ρht−u

(
Lfull? (u) ρu − Lh? ρu

)∣∣)
≤ Tr

(∣∣ρht−s (Lfull? (s) ρs − Lh? ρs
)
− ρht−u

(
Lfull? (s) ρs − Lh? ρs

)∣∣)
+ Tr

(∣∣ρht−u (Lfull? (s) ρs − Lh? ρs
)
− ρht−u

(
Lfull? (u) ρu − Lh? ρu

)∣∣)
≤ Tr

(∣∣ρht−s (Lfull? (s) ρs − Lh? ρs
)
− ρht−u

(
Lfull? (s) ρs − Lh? ρs

)∣∣)
+ Tr

(∣∣(Lfull? (s) ρs − Lh? ρs
)
−
(
Lfull? (u) ρu − Lh? ρu

)∣∣) .
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According to Lemma 5.5 we have

lim
u→s

Tr
(∣∣(Lfull? (s) ρs − Lh? ρs

)
−
(
Lfull? (u) ρu − Lh? ρu

)∣∣) = 0.

The strong continuity of
(
ρhr
)
r≥0

yields

lim
u→s

Tr
(∣∣ρht−s (Lfull? (s) ρs − Lh? ρs

)
− ρht−u

(
Lfull? (s) ρs − Lh? ρs

)∣∣) = 0.

Then, the map s 7→ ρht−s
(
Lfull? (s) ρs − Lh? ρs

)
is continuous. By the fundamental

theorem of calculus for the Bochner integral, integrating (70) gives

ρh0 (ρt)− ρht−s (ρs) =

∫ t

s

ρht−u
(
Lfull? (u) ρu − Lh? ρu

)
du,

which is the desired conclusion.

Proof of Theorem 4.9. Since ρ0 is N -regular, ρ0 = E |ν〉〈ν| for certain ν belonging to

L2
N (P, `2 (Z+)⊗ C2) (see, e.g., Theorem 3.1 of [35]). Hence, ρt = E |Xt (ν)〉 〈Xt (ν)| (see,

e.g., the proof of Theorem 4.5). From now on, Xt (ξ) denotes the strong N -solution of

(14) with ξ ∈ L2
N (P, `2 (Z+)⊗ C2) and G (t), L1, L2, L3 given by (42).

Let prn be the orthonormal projection of `2 (Z+) ⊗ C2 onto the linear span of

e0 ⊗ e±, . . . , en ⊗ e±. As

‖prn (ν)‖2 +
∥∥N2 prn (ν)

∥∥2 ≤ ‖ν‖2 + n2

n∑
k=0

∑
η=±

|〈ek ⊗ eη, ξ〉|2 ≤ 1 + n2,

prn (ν) ∈ L2
N2 (P, `2 (Z+)⊗ C2). There exists n0 ∈ N such that E ‖prn (ν)‖2 > 0 for

all n ≥ n0, because the increasing sequence E ‖prn (ν)‖2 converges to E ‖ν‖2 = 1

as n → +∞. For any n ≥ n0 we set νn := prn (ν) /
√

E ‖prn (ν)‖2. Then, ρnt =

E |Xt (νn)〉 〈Xt (νn)| is a N2-weak solution of (21) with initial condition E |νn〉 〈νn| (see,

e.g., the proof of Theorem 4.5), and so Lemma 5.7 yields

ρnt = ρht−s (ρns ) +

∫ t

s

ρht−u

([(
α (u) a† − α (u)a

)
+
(
β (u)σ− − β (u)σ+

)
, ρnu

])
du (71)

for all t ≥ s ≥ 0 and n ≥ n0.

Combining the linearity of (14) with (45) we deduce that

E
(
‖Xu (ν)−Xu (νn)‖2

N

)
= E

(
‖Xu (ν − νn)‖2

N

)
≤ K (u)E

(
‖ν − νn‖2

N

)
for all u ≥ 0. Since N commutates with prn,∥∥∥∥√E ‖prn (ν)‖2Np ν −Npprn (ν)

∥∥∥∥2

=

(√
E ‖prn (ν)‖2 − 1

)2

‖prn (Np ν)‖2

+
(
E ‖prn (ν)‖2) ‖Npν − prn (Npν)‖2
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with p = 0, 1, and so

E
(
‖ν − νn‖2

N

)
≤

(√
E ‖prn (ν)‖2 − 1

)2

E ‖prn (ν)‖2

(
E
(
‖ν‖2)+ E

(
‖Nν‖2))

+ E
(
‖ν − prn (ν)‖2)+ E

(
‖Nν − prn (Nν)‖2) −→n→+∞ 0.

Therefore,

lim sup
n→+∞

sup
u∈[0,t]

E
(
‖Xu (ν)−Xu (νn)‖2

N

)
≤ lim

n→+∞
K (t)E

(
‖ν − νn‖2

N

)
= 0. (72)

Let A,B be linear operators in `2 (Z+)⊗C2 that are relatively bounded with respect

to N . Then

Tr (|E |AXu (ν)〉〈BXu (ν)| − E |AXu (νn)〉〈BXu (νn)||)
≤ Tr (|E |AXu (ν)− AXu (νn)〉〈BXu (ν)||) + Tr (|E |AXu (νn)〉〈BXu (ν)−BXu (νn)||)
≤ E (‖AXu (ν)− AXu (νn)‖ ‖BXu (ν)‖) + E (‖AXu (νn)‖ ‖BXu (ν)−BXu (νn)‖)

≤
√

E
(
‖AXu (ν)− AXu (νn)‖2)√E

(
‖BXu (ν)‖2)

+
√
E
(
‖AXu (νn)‖2)√E

(
‖BXu (ν)−BXu (νn)‖2).

According to (45) we have

E
(
‖Xu (νn)‖2

N

)
≤ K (u)E

(
‖νn‖2

N

)
≤ K (u)E

(
‖ν‖2

N

)
,

and so (72) yields

sup
u∈[0,t]

Tr (|E |AXu (ν)〉〈BXu (ν)| − E |AXu (νn)〉〈BXu (νn)||) −→n→+∞ 0. (73)

Since ρht−s is a contraction acting on L1 (`2 (Z+)⊗ C2),

Tr
(∣∣ρht−s (ρs)− ρht−s (ρns )

∣∣) ≤ Tr (|ρs − ρns |) ,

Tr
(∣∣∣ρht−u ([β (u)σ− − β (u)σ+, ρu − ρnu

])∣∣∣) ≤ Tr
(∣∣∣[β (u)σ− − β (u)σ+, ρu − ρnu

]∣∣∣)
≤ 2

(
|β (u)|

(∥∥σ−∥∥+
∥∥σ+

∥∥))Tr (|ρu − ρnu|) ,

and

Tr
(∣∣∣ρht−u ([α (u) a† − α (u)a, ρu − ρnu

]∣∣∣)) ≤ Tr
(∣∣∣[α (u) a† − α (u)a, ρu − ρnu

]∣∣∣) . (74)

Applying (73) we obtain

sup
u∈[0,t]

Tr (|ρu − ρnu|) = Tr (|E |Xu (ν)〉〈Xu (ν)| − E |Xu (νn)〉〈Xu (νn)||) −→n→+∞ 0.

This gives Tr
(∣∣ρht−s (ρs)− ρht−s (ρns )

∣∣) −→n→+∞ 0, and

sup
u∈[0,t]

Tr
(∣∣∣ρht−u ([β (u)σ− − β (u)σ+, ρu − ρnu

])∣∣∣) −→n→+∞ 0.
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As[
α (u) a† − α (u)a, ρu − ρnu

]
= E

∣∣∣(α (u) a† − α (u)a
)
Xu (ν)〉〈Xu (ν)

∣∣∣− E
∣∣∣(α (u) a† − α (u)a

)
Xu (νn)〉〈Xu (νn)

∣∣∣
+E

∣∣∣Xu (ν)〉〈
(
α (u) a† − α (u)a

)
Xu (ν)

∣∣∣− E
∣∣∣Xu (νn)〉〈

(
α (u) a† − α (u)a

)
Xu (νn)

∣∣∣
(see, e.g., Theorem 3.2 of [35]), using (73) and (74) we deduce that

sup
u∈[0,t]

Tr
(∣∣∣ρht−u ([α (u) a† − α (u)a, ρu − ρnu

]∣∣∣)) −→n→+∞ 0.

Now, taking the limit as n→ +∞ in (71) we obtain (29).

5.3. Proof of Theorem 3.1

Proof of Theorem 3.1. Let (A (t) , S (t) , D (t)) be the unique global solution of (5) with

A (0) = Tr (a%), S (0) = Tr (σ−%) and D (0) = Tr (σ3%). According to Theorem 4.5 we

have that there exists a unique Np-weak solution (ρt)t≥0 to (21) with α (t) = g S (t),

β (t) = g A (t), and initial datum ρ0 = %. Applying Theorem 4.6 we deduce that the

evolutions of Tr (a ρt), Tr (σ−ρt) and Tr (σ3ρt) are governed by

d

dt
Tr (a ρt) = − (κ+ iω) Tr (a ρt) + g S (t)

d

dt
Tr
(
σ−ρt

)
= − (γ + iω) Tr

(
σ−ρt

)
+ g A (t) Tr

(
σ3ρt

)
d

dt
Tr
(
σ3ρt

)
= −4g <

(
A (t) Tr

(
σ−ρt

))
− 2γ

(
Tr
(
σ3ρt

)
− d
) . (75)

From the uniqueness of solution to (75) we find Tr (a ρt) = A (t), Tr (σ−ρt) = S (t) and

Tr (σ3ρt) = D (t), hence
d

dt
Tr (Aρt) = Tr (AL? (ρt) ρt) ∀A ∈ L (h)

ρ0 = %
. (76)

On the other hand, suppose that (ρt)t≥0 and (ρ̃t)t≥0 are families of Np-regular

operators satisfying (76) such that ρ0 = ρ̃0 = % and t 7→ Tr (a ρt), t 7→ Tr (a ρ̃t) are

continuous. Then, (ρt)t≥0 is a Np-weak solution to (21) with α (t) = g Tr (σ−ρt)

and β (t) = g Tr (a ρt), as well as (ρ̃t)t≥0 is a Np-weak solution to (21) with

α (t) = g Tr (σ−ρ̃t) and β (t) = g Tr (aρ̃t). Using Theorem 4.6 we get that

(Tr (a ρt) ,Tr (σ−ρt) ,Tr (σ3ρt)) and (Tr (a ρ̃t) ,Tr (σ−ρ̃t) ,Tr (σ3ρ̃t)) are solutions of (5)

with initial condition A (0) = Tr (a %), S (0) = Tr (σ−%) and D (0) = Tr (σ3%). Applying

Theorem 2.1 yields Tr (a ρt) = Tr (a ρ̃t), Tr (σ−ρt) = Tr (σ−ρ̃t) and Tr (σ3ρt) = Tr (σ3ρ̃t).

Now, using Theorem 4.5 we can assert that ρt = ρ̃t for all t ≥ 0.
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5.4. Proof of Theorem 3.2

Proof of Theorem 3.2. Since Tr (σ−%∞) = d+1
2
〈e+, σ

−e+〉 + 1−d
2
〈e−, σ−e−〉 = 0 and

Tr (a %∞) = 〈e0, ae0〉 = 0,

L? (%∞) %∞ = Lh? %∞,

where Lh? is defined by (22). Using the fact thatA |x〉〈y|B = |Ax〉〈B?y| for any operators

A,B in h, x ∈ D (A) and y ∈ D (B?), we obtain Lh? %∞ = 0. Hence %∞ is a stationary

state for (1), which is Np-regular for all p ∈ N.

Suppose that ω 6= 0. Let %̃ be a N -regular stationary state for (1). According

to Theorem 3.1 we have that the functions A (t) := Tr (a %̃), S (t) := Tr (σ−%̃) and

D (t) := Tr (σ3%̃) satisfy (5). From Theorem 2.1 it follows that Tr (a %̃) = Tr (σ−%̃) = 0

and Tr (σ3%̃) = d. Therefore %̃ is a stationary state for (27), and so using Theorem 4.8

we obtain that %̃ coincides with %∞.

5.5. Proof of Theorem 3.3

Lemma 5.8. Let (ρt (%))t≥0 be the N-weak solution of (21) with α (t) ≡ α ∈ C,

β (t) ≡ β ∈ C and initial datum % ∈ L+
1,N (`2 (Z+)⊗ C2). Then %f∞ ⊗ %a∞ is the unique

operator %∞ ∈ L+
1,N (`2 (Z+)⊗ C2) for which

ρt (%∞) = %∞ ∀t ≥ 0. (77)

Here, %f∞ and %a∞ are as in Theorem 4.7.

Proof. Using Lemma 5.3 we deduce that La? (%a∞) = 0. Returning to the proof of Lemma

5.4, we verify that L̃? (|e0〉 〈e0|) = 0, and so (59) leads to

Lf?
(
W

(
α

κ+ iω

)
|e0〉 〈e0|W

(
− α

κ+ iω

))
= W

(
α

κ+ iω

)
L̃? (|e0〉 〈e0|)W

(
− α

κ+ iω

)
= 0.

Since W
(

α
κ+iω

)
e0 = exp

(
−
∣∣ α
κ+iω

∣∣2 /2) e ( α
κ+iω

)
, Lf?

(
%f∞
)

= 0. Therefore,

Lf? ⊗ I
(
%f∞ ⊗ %a∞

)
+ I ⊗ La?

(
%f∞ ⊗ %a∞

)
= 0.

This gives ρt
(
%f∞ ⊗ %a∞

)
= %f∞ ⊗ %a∞ for all t ≥ 0.

Consider %∞ ∈ L+
1,N (`2 (Z+)⊗ C2) satisfying (77). Applying Theorem 4.7 yields

%∞ = lim
t→+∞

ρt (%∞) = %f∞ ⊗ %a∞ in L1

(
`2 (Z+)⊗ C2

)
.

Proof of Theorem 3.3. According to the Stone theorem we have that the self-adjoint

operator ω
2

(2N + σ3) generates the strongly continuous one-parameter unitary group(
exp

(
iω

2
(2N + σ3) t

))
t∈R. In order to describe the physical system in the interaction

picture we set

ρ̃t = exp
(

i
ω

2

(
2N + σ3

)
t
)
ρt exp

(
−i
ω

2

(
2N + σ3

)
t
)

∀t ≥ 0.
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Since N commutes with σ3, %t ∈ L+
1,N (`2 (Z+)⊗ C2) iff ρ̃t ∈ L+

1,N (`2 (Z+)⊗ C2). Hence,

%t is a N -regular free interaction solution to (1) iff

ρ̃t = ρ0 ∈ L+
1,N

(
`2 (Z+)⊗ C2

)
∀t ≥ 0. (78)

A careful computation shows that %t is a N -weak solution to (1) iff ρ̃t is a N -weak

solution to

d

dt
ρ̃t =2κ

(
a ρ̃ta

† − 1

2
a†aρ̃t −

1

2
ρ̃ta
†a

)
+ γ(1− d)

(
σ−ρ̃t σ

+ − 1

2
σ+σ−ρ̃t −

1

2
ρ̃t σ

+σ−
)

+ γ(1 + d)

(
σ+ρ̃t σ

− − 1

2
σ−σ+ρ̃t −

1

2
ρ̃t σ

−σ+

)
+ g

[
Tr
(
σ−ρ̃t

)
a† − Tr

(
σ+ρ̃t

)
a, ρ̃t

]
+ g

[
Tr
(
a†ρ̃t

)
σ− − Tr (a ρ̃t)σ

+, ρ̃t
]
.

(79)

Therefore, ρt is a N -regular free interaction solution to (1) iff ρ0 is a N -regular stationary

state for (79).

We proceed to find all N -regular stationary state for (79). To this end, we suppose

that (78) holds. According to Theorem 3.1 we have that the functions t 7→ Tr (a ρ0),

t 7→ Tr (σ−ρ0) and t 7→ Tr (σ3ρ0) satisfy (2) with ω = 0. It follows that

−κ Tr (a ρ0) + g Tr
(
σ−ρ0

)
= 0, (80a)

−γ Tr
(
σ−ρ0

)
+ g Tr (a ρ0) Tr

(
σ3ρ0

)
= 0, (80b)

2g <
(

Tr (a ρ0) Tr (σ−ρ0)
)

+ γ
(
Tr
(
σ3ρ0

)
− d
)

= 0. (80c)

Combining (80a) with (80b) we obtain

Tr (a ρ0)
(
−γκ+ g2 Tr

(
σ3ρ0

))
= 0. (81)

Then Tr (a ρ0) = 0 or g2 Tr (σ3ρ0) = γκ.

Asume Tr (a ρ0) = 0, together with (78). Then (80a) and (80c) lead to Tr (σ−ρ0) =

0 and Tr (σ3ρ0) = d. Therefore

Tr (a ρ̃t) = Tr
(
σ−ρ̃t

)
= 0 and Tr

(
σ3ρ̃t

)
= d, (82)

and so ρ0 is a N-regular stationary state for (27) with ω = 0. Theorem 4.8 gives

ρ0 = ρ∞ := |e0〉 〈e0| ⊗
(
d+ 1

2
|e+〉 〈e+|+

1− d
2
|e−〉 〈e−|

)
. (83)

On the other hand, Tr (a ρ∞) = Tr (σ−ρ∞) = 0 and Tr (σ3ρ∞) = d, as well as Lh? %∞ = 0.

Hence, ρ̃t = ρ∞ solves (79). Summarizing, ρ∞, given by (83), is the unique N -regular

stationary state for (79) satisfying Tr (a ρ0) = 0. We have found the free interaction

solution to (1):

ρt = exp
(
−i
ω

2

(
2N + σ3

)
t
)
ρ̃t exp

(
i
ω

2

(
2N + σ3

)
t
)

= exp
(
−i
ω

2

(
2N + σ3

)
t
)
ρ∞ exp

(
i
ω

2

(
2N + σ3

)
t
)
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= |e0〉 〈e0| ⊗
(
d+ 1

2
|e+〉 〈e+|+

1− d
2
|e−〉 〈e−|

)
= ρ∞. (84)

Let Tr (a ρ0) 6= 0, and suppose that (78) holds. Then, (80a) implies that g 6= 0, and

so (81) gives Tr (σ3ρ0) = γκ
g2

. Using (80c) we deduce that

|Tr (a ρ0)|2 =
γ

2κg2

(
dg2 − γκ

)
. (85)

Therefore dg2 > γκ. From the previous paragraph we conclude that the state (83)

is the unique N -regular free interaction solution to (1) whenever dg2 ≤ γκ. In case

dg2 > γκ, according to (85) we have that there exists z ∈ C with |z| = 1 such that

Tr (a ρ̃t) = z
√

γ
2κg2

(dg2 − γκ). Using (80a) we obtain

Tr
(
σ−ρ̃t

)
=
κ z

g

√
γ

2κg2
(dg2 − γκ).

Thus, due to (78) and (79), ρ0 is a N -regular stationary state for (21) with ω = 0,

α (t) ≡ zκ
g

√
γ
2κ

(dg2 − γκ) and β (t) ≡ z
√

γ
2κ

(dg2 − γκ). Applying Lemma 5.8 gives

%0 = %∞ (z) := e
− γ

2(Cb−1)
2g2

∣∣∣∣e(zγ√Cb − 1√
2g

)〉〈
e

(
zγ
√
Cb − 1√
2g

)∣∣∣∣⊗(
1
2

(
1 + d

Cb

)
zκγ√
2g2

√
Cb − 1

z̄κγ√
2g2

√
Cb − 1 1

2

(
1− d

Cb

) ) . (86)

From Lemma 5.8 it follows that %∞ (z), given by (86), is the unique N -regular

constant solution of (21) with ω = 0, α (t) ≡ zκ
g

√
γ
2κ

(dg2 − γκ) and

β (t) ≡ z

√
γ

2κ
(dg2 − γκ).

Now, Theorem 4.6 implies

−κ Tr (ρ0 a) +
zκ

g

√
γ

2κ
(dg2 − γκ) = 0

−γ Tr
(
ρt σ

−)+ z

√
γ

2κ
(dg2 − γκ) Tr

(
ρt σ

3
)

= 0

2<
(
z

√
γ

2κ
(dg2 − γκ) Tr

(
ρtσ
−))+ γ

(
Tr
(
ρtσ

3
)
− d
)

= 0

.

This yields Tr (a %0) = z
g

√
γ
2κ

(dg2 − γκ), Tr (σ3%0) = γκ
g2

, and

Tr
(
σ−%0

)
=
κ z

g2

√
γ

2κ
(dg2 − γκ).

Therefore, %∞ (z) is a N -regular stationary state of (79).



Bifurcation analysis of a mean field laser equation 39

In case dg2 > γκ, we have proved that in addition to (83) the only N -regular

stationary states for (79) are given by (86) for any complex number z with absolute

value 1. Since

ρt = exp
(
−i
ω

2

(
2N + σ3

)
t
)
ρ̃t exp

(
i
ω

2

(
2N + σ3

)
t
)
,

all non-constant N -regular free interaction solution to (1) are:

e
− γ

2(Cb−1)
2g2

∣∣∣∣e−iωNte

(
zγ
√
Cb − 1√
2g

)〉〈
e−iωNte

(
zγ
√
Cb − 1√
2g

)∣∣∣∣⊗
e−iω

2
σ3t

(
1
2

(
1 + d

Cb

)
zκγ√
2g2

√
Cb − 1

z̄κγ√
2g2

√
Cb − 11

2

(
1− d

Cb

) ) eiω
2
σ3t,

where |z| = 1, and therefore they are

e
− γ

2(Cb−1)
2g2

∣∣∣∣e(zγ√Cb − 1√
2g

e−iωt
)〉〈

e

(
zγ
√
Cb − 1√
2g

e−iωt
)∣∣∣∣⊗(

1
2

(
1 + d

Cb

)
e−iωt zκγ√

2g2

√
Cb − 1

eiωt z̄κγ√
2g2

√
Cb − 1 1

2

(
1− d

Cb

) )
for any |z| = 1.

5.6. Proof of Theorem 3.4

Proof of Theorem 3.4. According to Theorem 3.1 we have that the evolutions of

Tr (a ρt), Tr (σ−ρt) and Tr (σ3ρt) are described by the Maxwell-Bloch equations (2).

Since Tr (a %) = Tr (σ−%) = 0, from (2) it follows that Tr (a ρt) = Tr (σ−ρt) = 0 for all

t ≥ 0. Therefore, ρt solves (27) with initial condition %, and hence ρt = ρht (%), where

ρht (%) is the N -weak solution of (27). Applying Theorem 4.8 gives (10).

5.7. Proof of Theorem 3.5

Lemma 5.9. Let C be a self-adjoint positive operator in h. Suppose that % is a C-regular

density operator in h. Consider the linear operator A : D (A) ⊂ h→ h. Then:

• Tr (|A%|) ≤
√

Tr (%A?A) whenever A,A?A ∈ L ((D (C) , ‖·‖C) , h).

• Tr (|%A|) ≤
√

Tr (%AA?) provided that A?, AA? ∈ L ((D (C) , ‖·‖C) , h).

Proof. Since % ∈ L+
1,C (h), there exists ξ ∈ L2

C (P, h) such that % = E |ξ〉〈ξ| and

E
(
‖ξ‖2) = 1 (see, e.g., Theorem 3.1 of [35]). If A,A?A ∈ L ((D (C) , ‖·‖C) , h), then

using Theorem 3.2 of of [35] we obtain

Tr (|A%|) = sup
‖B‖=1

|Tr (BA%)| = sup
‖B‖=1

|E〈ξ, BA ξ〉| ≤ E (‖ξ‖ ‖Aξ‖) ,

and so

E (‖ξ‖ ‖Aξ‖) ≤
√
E
(
‖ξ‖2)√E

(
‖Aξ‖2) =

√
E〈A?Aξ, ξ〉 =

√
Tr (%A?A),
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because E
(
‖ξ‖2) = 1. Similarly, in case A?, AA? ∈ L ((D (C) , ‖·‖C) , h) we have

Tr (|%A|) = sup
‖B‖=1

|E〈A? ξ, Bξ〉| =
√
E
(
‖A? ξ‖2) =

√
Tr (%AA?).

Lemma 5.10. Suppose that (ρt)t≥0 is a N-weak solution to (1). Consider the solution

(A (t) , S (t) , D (t)) to (5) with initial condition A (0) = Tr (a ρ0), S (0) = Tr (σ− ρ0) and

D (0) = Tr (σ3 ρ0). Then, for all t ≥ s ≥ 0 we have

Tr (|ρt − ρ∞|) ≤ Tr
(∣∣ρht−s (ρs)− ρ∞

∣∣)+ 4 |g|
∫ t

s

|S (u)|
√

Tr (ρuN) + 1 du

+ 2 |g|
(∥∥σ−∥∥+

∥∥σ+
∥∥) ∫ t

s

|A (u)| du,
(87)

where ρ∞ := |e0〉〈e0| ⊗
(
d+1

2
|e+〉〈e+|+ 1−d

2
|e−〉〈e−|

)
.

Proof. Since A (0) = Tr (a ρ0), S (0) = Tr (σ− ρ0) and D (0) = Tr (σ3 ρ0), from Theorems

2.1 and 3.1 we deduce that A (t) = Tr (a ρt), S (t) = Tr (σ−ρt) and D (t) = Tr (σ3ρt).

Hence, (ρt)t≥0 is the N -weak solution to (21) with α (t) = g S (t), β (t) = g A (t) and

initial datum ρ0. Now, Theorem 4.9 leads to

ρt = ρht−s (ρs) + g

∫ t

s

ρht−u

([(
S (u) a† − S (u)a

)
+
(
A (u)σ− − A (u)σ+

)
, ρu

])
du,

where t ≥ s ≥ 0. Therefore,

Tr (|ρt − ρ∞|) ≤ Tr
(∣∣ρht−s (ρs)− ρ∞

∣∣)
+ |g|Tr

(∣∣∣∣∫ t

s

ρht−u

([(
S (u) a† − S (u)a

)
+
(
A (u)σ− − A (u)σ+

)
, ρu

])
du

∣∣∣∣) .
Using that ρht−u is a contraction acting on L1 (`2 (Z+)⊗ C2) we obtain

Tr (|ρt − ρ∞|) ≤ Tr
(∣∣ρht−s (ρs)− ρ∞

∣∣)
+ |g|

∫ t

s

Tr
(∣∣∣[(S (u) a† − S (u)a

)
+
(
A (u)σ− − A (u)σ+

)
, ρu

])∣∣∣ du,
and so

Tr (|ρt − ρ∞|) ≤ Tr
(∣∣ρht−s (ρs)− ρ∞

∣∣)
+ |g|

∫ t

s

|S (u)|
(
Tr
(∣∣a†ρu∣∣)+ Tr

(∣∣ρu a†∣∣)+ Tr (|a ρu|) + Tr (|ρu a|)
)
du

+ |g|
∫ t

s

|A (u)|
(
Tr
(∣∣σ−ρu∣∣)+ Tr

(∣∣ρu σ−∣∣)+ Tr
(∣∣σ+ρu

∣∣)+ Tr
(∣∣ρuσ+

∣∣)) du.
As σ± are bounded operators,

Tr
(∣∣σ−ρu∣∣)+ Tr

(∣∣ρu σ−∣∣)+ Tr
(∣∣σ+ρu

∣∣)+ Tr
(∣∣ρu σ+

∣∣)
≤
(
2
∥∥σ−∥∥+ 2

∥∥σ+
∥∥)Tr (ρu) = 2

∥∥σ−∥∥+ 2
∥∥σ+

∥∥ .
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By a†a = N , a a† = N + I and Tr (ρu) = 1, applying Lemma 5.9 yields

Tr
(∣∣a†ρu∣∣)+ Tr

(∣∣ρu a†∣∣)+ Tr (|a ρu|) + Tr (|ρu a|)
≤ 2
√

Tr (ρu (N + I)) + 2
√

Tr (ρuN) ≤ 4
√

Tr (ρuN) + 1.

We thus get (87).

Proof of Theorem 3.5. Combining Lemma 5.10 with Theorem 4.8 we deduce that for all

t ≥ s ≥ 0,

Tr (|ρt − ρ∞|) ≤ 12 e−γ(t−s) (1 + |d|) + 4 e−κ(t−s)
√

Tr (%sN) (88)

+ 4 |g|
∫ t

s

|S (u)|
√

Tr (ρuN) + 1 du+ 2 |g|
(∥∥σ−∥∥+

∥∥σ+
∥∥)∫ t

s

|A (u)| du,

where (A (t) , S (t) , D (t)) be the solution to (5) with A (0) = Tr (a ρ0), S (0) = Tr (σ− ρ0)

and D (0) = Tr (σ3 ρ0). From Theorems 2.1 and 3.1 we obtain A (t) = Tr (a ρt),

S (t) = Tr (σ−ρt) and D (t) = Tr (σ3ρt), and hence (ρt)t≥0 is the N -weak solution to

(21) with α (t) = g S (t), β (t) = g A (t) and initial datum ρ0. Applying Theorem 4.6

gives

Tr (ρtN) = e−2κ t Tr (ρ0N) + 2g

∫ t

0

e−2κ(t−s)<
(
S (t) Tr (ρs a)

)
ds

= e−2κ t Tr (ρ0N) + 2g

∫ t

0

e−2κ(t−s)<
(
S (s)A (s)

)
ds

≤ e−2κ t Tr (ρ0N) + |g|
∫ t

0

e−2κ(t−s) (|S (s)|2 + |A (s)|2
)
ds. (89)

Since dg2/ (γκ) < 1, according to Theorem 2.1 we have that

|A (t)|2 ≤ KA exp (−cs t) and |S (t)|2 ≤ KS exp (−cs t) , (90)

where t ≥ 0, cs =

{
2 min {κ, γ} if d < 0

(1− Cb) min {κ, γ} if d ≥ 0
,

KA =


|A (0)|2 + |S (0)|2 / |d|+ (D (0)− d)2 / (4 |d|) if d < 0

|A (0)|2 +
g2

γκ
|S (0)|2 +

g2

4γκ
(D (0)− d)2 if d ≥ 0

and KS =


|d| |A (0)|2 + |S (0)|2 + (D (0)− d)2 /4 if d < 0

4κd

γ
|A (0)|2 +

(
4κ

γ
+ 1

)
|S (0)|2 +

(
κ

γ
+

1

4

)
(D (0)− d)2 if d ≥ 0

.

Suppose that either d ≥ 0 or d < 0 with κ > γ. Then 2κ > cs and∫ t

0

e−2κ(t−u)
(
|S (u)|2 + |A (u)|2

)
du <

KA +KS

2κ− cs
(
e−cs t − e−2κ t

)
<
KA +KS

2κ− cs
e−cs t.

From (89) it follows that

Tr (ρtN) ≤
(

Tr (ρ0N) +
|g| (KA +KS)

2κ− cs

)
e−cs t. (91)
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Consider t ≥ s ≥ 0. Applying (91) we get

Tr (ρtN) ≤ Tr (ρ0N) + |g| (KA +KS) / (2κ− cs) ,

and hence (90) gives∫ t

s

|S (u)|
√

Tr (ρuN) + 1 du ≤
(

1 + Tr (ρ0N) +
|g| (KA +KS)

2κ− cs

)1/2 ∫ t

s

|S (u)| du

≤

(
2
√
KS

(
1 + Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

)1/2
)

e−cs s/2 − e−cs t/2

cs
.

Using (90) we also obtain(∥∥σ−∥∥+
∥∥σ+

∥∥) ∫ t

s

|A (u)| du ≤ 2

∫ t

s

|A (u)| du ≤ 4
√
KA

e−cs s/2 − e−cs t/2

cs
. (92)

According to (88) and (91) we have

Tr (|ρt − ρ∞|) ≤ 12 e−γ(t−s) (1 + |d|) + 4 e−κ(t−s)− cs
2
s

√
Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

+
8 |g|
cs

(√
KS

(
1 + Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

)1/2

+
√
KA

)
e−

cs
2
s.

In case d ≥ 0, taking t = 3s/2 yields

Tr
(∣∣ρ3s/2 − ρ∞

∣∣) ≤ 12 e−γs/2 (1 + |d|) + 4 e−
cs
2
s

√
Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

+
8 |g|
cs

(√
KS

(
1 + Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

)1/2

+
√
KA

)
e−

cs
2
s,

and so for all t ≥ 0,

Tr (|ρt − ρ∞|) ≤ e−
cs
3
t

12 (1 + |d|) + 4

√
Tr (ρ0N) +

|g| (KA +KS)

2κ− cs
+

8 |g|
cs

√
KA

+
8 |g|
cs

√
KS

(
1 + Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

)1/2
)
.

On the other hand, in case d < 0 with κ > γ, choosing t = 2s we deduce that

Tr (|ρ2s − ρ∞|) ≤ 12 e−γs (1 + |d|) + 4 e−κs−
cs
2
s

√
Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

+
8 |g|
cs

(√
KS

(
1 + Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

)1/2

+
√
KA

)
e−

cs
2
s,
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and consequently

Tr (|ρt − ρ∞|) ≤ e−
cs
4
t

12 (1 + |d|) + 4

√
Tr (ρ0N) +

|g| (KA +KS)

2κ− cs
+

8 |g|
cs

√
KA

+
8 |g|
cs

√
KS

(
1 + Tr (ρ0N) +

|g| (KA +KS)

2κ− cs

)1/2
)
.

for any t ≥ 0.

Now, we assume that d < 0 and κ ≤ γ. Then∫ t

0

e−2κ(t−u)
(
|S (u)|2 + |A (u)|2

)
du ≤ 2t (KA +KS) exp (−2κ t) ,

and so (89) leads to

Tr (ρtN) ≤ exp (−2κ t) Tr (ρ0N) + 2 |g| (KA +KS) t exp (−2κ t) . (93)

Since t exp (−2κ t) ≤ 1/ (2 eκ), according to (90) we have that for all t ≥ s ≥ 0,∫ t

s

|S (u)|
√

Tr (ρuN) + 1 du ≤
√
KS

√
Tr (ρ0N) +

|g| (KA +KS)

κ e

e−κ s − e−κ t

κ
.

Moreover, (92) gives

(∥∥σ−∥∥+
∥∥σ+

∥∥) ∫ t

s

|A (u)| du ≤ 2
√
KA

e−κ s − e−κ t

κ
.

Therefore, (88) yields

Tr (|ρt − ρ∞|) ≤ 12 e−γ(t−s) (1 + |d|) + 4 e−κ(t−s)
√

Tr (ρ0N) + |g| (KA +KS) / (κe)

+ 4 |g|
(√

KS

√
Tr (ρ0N) + |g| (KA +KS) / (κe) +

√
KA

)
e−κ s/κ.

Hence

Tr (|ρ2s − ρ∞|) ≤ 12 e−γs (1 + |d|) + 4 e−κs
√

Tr (ρ0N) + |g| (KA +KS) / (κe)

+ 4 |g|
(√

KS

√
Tr (ρ0N) + |g| (KA +KS) / (κe) +

√
KA

)
e−κ s/κ,

which implies

Tr (|ρt − ρ∞|) ≤ 4e−
cs
4
t

((
1 +
|g|
√
KS

κ

)√
Tr (ρ0N) +

|g| (KA +KS)

κ e

+3 (1 + |d|) +
|g|
√
KA

κ

)
.

Now, we decompose A as

A = AP + PA (I − P ) + (I − P )A (I − P ) ,
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where P is the orthogonal projection of `2 (Z+)⊗C2 onto the linear span of e0⊗ e+ and

e0 ⊗ e−, i.e., P x = 〈e0 ⊗ e+, x〉 e0 ⊗ e+ + 〈e0 ⊗ e−, x〉 e0 ⊗ e−. From (3) it follows

Tr (%∞AP ) =
+∞∑
n=0

∑
η=±

〈en ⊗ eη, %∞APen ⊗ eη〉 = 〈%∞e0 ⊗ eη, A e0 ⊗ eη〉

=
d+ 1

2
〈e0 ⊗ e+, A e0 ⊗ e+〉+

1− d
2
〈e0 ⊗ e−, A e0 ⊗ e−〉.

We can extend PA (I − P ) to the bounded linear operator

PA (I − P )x = 〈A?e0 ⊗ e+, (I − P )x〉 e0 ⊗ e+ + 〈A?e0 ⊗ e−, (I − P )x〉 e0 ⊗ e−.

Using (3) yields

Tr (%∞PA (I − P )) =
+∞∑
n=0

∑
η=±

〈%∞en ⊗ eη, PA (I − P ) en ⊗ eη〉 = 0.

Applying (11) we deduce that for all t ≥ 0,∣∣∣∣Tr (ρt (AP + PA (I − P )))− d+ 1

2
〈e0 ⊗ e+, A e0 ⊗ e+〉+

1− d
2
〈e0 ⊗ e−, A e0 ⊗ e−〉

∣∣∣∣
≤ (‖AP |+ ‖PA (I − P )|)Ksys (|g|) exp (−δsys t) . (94)

Since A and A? are relatively bounded with respect to N ,

|〈y, A y〉| =

∣∣∣∣〈y, 1

2
(A+ A?) y〉+ i〈y, i

2
(A? − A) y〉

∣∣∣∣
=

√
〈y, 1

2
(A+ A?) y〉2 + 〈y, i

2
(A? − A) y〉2 ≤ K

(
‖y‖2 + 〈y,N y〉

)
for all y ∈ D (N) (see, e.g., Theorem VI.1.38 of [44]). Therefore,

〈(I − P )x, (I − P )A (I − P )x〉 ≤ K
(
‖(I − P )x‖2 + 〈(I − P )x,N (I − P )x〉

)
≤ K 〈(I − P )x,N (I − P )x〉 = K 〈x,Nx〉

for any x ∈ D (N), and so (91) gives

Tr (ρt (I − P )A (I − P )) ≤ K Tr (ρtN) ∀t ≥ 0.

Then, using (91), (93) and (94) we obtain (12).

Appendix

A. Proof of Theorem 4.1

Lemma A.1. Let Hypothesis 2 hold, except Condition H2.4. For any ξ ∈ L2
C (P, h), we

define

L∗ (ξ, t) = E |G (t)Xt (ξ)〉〈Xt (ξ)|+ E |Xt (ξ)〉〈G (t)Xt (ξ)|

+
∞∑
`=1

E |L` (t)Xt (ξ)〉〈L` (t)Xt (ξ)| .
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Then L∗ (ξ, t) is a trace-class operator on h whose trace-norm is uniformly bounded

with respect to t on bounded time intervals; the series involved in the definition of L∗
converges in L1 (h).

Proof. By Condition H2.2, using ‖|x〉〈y|‖1 = ‖x‖ ‖y‖ and Lemma 7.3 of [35] we get

‖E |G (t)Xt (ξ)〉〈Xt (ξ)|‖1 + ‖E |Xt (ξ)〉〈G (t)Xt (ξ)|‖1

+
∞∑
`=1

‖E |L` (t)Xt (ξ)〉〈L` (t)Xt (ξ)|‖1

≤ 4E (‖Xt (ξ)‖ ‖G (t)Xt (ξ)‖) ≤ K (t)

√
E ‖ξ‖2

√
E ‖Xt (ξ)‖2

C ,

where the last inequality follows from Condition H2.1.

Applying Lemma 7.3 of [35] and Lemma 5.2 we easily obtain Lemma A.2.

Lemma A.2. Suppose that Hypothesis 2 hold, ξ ∈ L2
C (P, h), and A ∈ L (h). Then,

t 7→ Tr (AL∗ (ξ, t)) is continuous as a function from [0,∞[ to C, and

Tr (AL∗ (ξ, t)) = E 〈Xt (ξ) , AG (t)Xt (ξ)〉+ E 〈G (t)Xt (ξ) , AXt (ξ)〉

+
∞∑
`=1

E 〈L` (t)Xt (ξ) , AL` (t)Xt (ξ)〉 .

Here, L∗ (ξ, t) is as in Lemma A.1.

Lemma A.3. Adopt Hypothesis 2, together with ξ ∈ L2
C (P, h). Then

ρt = E |ξ〉〈ξ|+
∫ t

0

L∗ (ξ, s) ds, (A.1)

where t ≥ 0 and L∗ (ξ, s) is as in Lemma A.1; we understand the above integral in the

sense of Bochner integral in L1 (h).

Proof. Fix x ∈ h, and choose τn = inf {s ≥ 0 : ‖Xs (ξ)‖ > n}, with n ∈ N. Applying

the complex Itô formula we obtain that

〈Xt∧τn (ξ) , x〉Xt∧τn (ξ) = 〈ξ, x〉 ξ + E
∫ t∧τn

0

Lx (Xs (ξ) , s) ds+Mt, (A.2)

where

Mt =
∞∑
`=1

∫ t∧τn

0

(〈Xs (ξ) , x〉L` (s)Xs (ξ) + 〈L` (s)Xs (ξ) , x〉Xs (ξ)) dW `
s

and for any z ∈ D (C),

Lx (z, s) = 〈z, x〉G (s) z + 〈G (s) z, x〉 z +
∞∑
k=1

〈Lk (s) z, x〉Lk (s) z.
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According to Condition H2.2 we have

E
∞∑
`=1

∫ t∧τn

0

‖〈Xs (ξ) , x〉L` (s)Xs (ξ) + 〈L` (s)Xs (ξ) , x〉Xs (ξ)‖2 ds

≤ 4n3 ‖x‖2 E
∫ t∧τn

0

‖G (s)Xs‖ ds.

Therefore EMt = 0 by Condition H2.1, and so (A.2) yields

E 〈Xt∧τn (ξ) , x〉Xt∧τn (ξ) = E 〈ξ, x〉 ξ + E
∫ t∧τn

0

Lx (Xs (ξ) , s) ds. (A.3)

We will take the limit as n→∞ in (A.3). Since X (ξ) has continuous sample paths,

τn ↗n→∞ ∞. By H2.1 and H2.2, applying the dominated convergence yields

lim
n→∞

E
∫ t∧τn

0

Lx (Xs (ξ) , s) ds = E
∫ t

0

Lx (Xs (ξ) , s) ds.

Combining E
(
sups∈[0,t+1] ‖Xs (ξ)‖2) < ∞ with the dominated convergence theorem

gives limn→∞ E 〈Xt∧τn (ξ) , x〉Xt∧τn (ξ) = E 〈Xt (ξ) , x〉Xt (ξ) . Then, letting first n→∞
in (A.3) and then using Fubini’s theorem we get

E 〈Xt (ξ) , x〉Xt (ξ) = E 〈ξ, x〉 ξ +

∫ t

0

ELx (Xs (ξ) , s) . (A.4)

By Condition H2.2, the dominated convergence theorem leads to

E
∞∑
k=1

〈Lk (s)Xs (ξ) , x〉Lk (s)Xs (ξ) =
∞∑
k=1

E 〈Lk (s)Xs (ξ) , x〉Lk (s)Xs (ξ) ,

and so Lemma 7.3 of [35] yields ELx (Xs (ξ) , s) = L∗ (ξ, s)x, hence∫ t

0

ELx (Xs (ξ) , s) =

∫ t

0

L∗ (ξ, s)xds. (A.5)

Since the dual of L1 (h) consists in all linear maps % 7→ Tr (A%) with A ∈ L (h),

Lemma A.2 implies that t 7→ L∗ (ξ, t) is measurable as a function from [0,∞[ to L1 (h).

Furthermore, using Lemma A.1 we get that t 7→ L∗ (ξ, t) is a Bochner integrable L1 (h)-

valued function on bounded intervals. Then (A.4), together with (A.5), gives (A.1).

Proof of Theorem 4.1. According to Theorem 3.2 of [35] we have

AG (t) ρt = E |AG (t)Xt (ξ)〉〈Xt (ξ)| .

Since G (t) , L1 (t) , L2 (t) , . . . are closable, G (t)∗ , L1 (t)∗ , L2 (t)∗ , . . . are densely defined

and G (t)∗∗, L1 (t)∗∗ , . . . coincide with the closures of G (t) , L1 (t) , . . . respectively

(see, e.g., Theorem III.5.29 of [44]). Now, Theorem 3.2 of [35] yields AρtG (t)∗ =

E |AXt (ξ)〉〈G (t)Xt (ξ)| and

ALk (t) ρtLk (t)∗ = E |ALk (t)Xt (ξ)〉〈Lk (t)Xt (ξ)| .
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Therefore

L∗ (ξ, t) = G (t) ρt + ρtG (t)∗ +
∞∑
k=1

Lk (t) ρtLk (t)∗ , (A.6)

where L∗ (ξ, t) is as in Lemma A.1. Combining (A.6) with Lemma A.3 we get (17),

and so Tr (Aρt) = Tr (A%) +
∫ t

0
Tr (AL∗ (ξ, s)) ds for all t ≥ 0. Using the continuity of

L∗ (ξ, ·) we obtain (16).

B. Proof of Theorem 4.3

Proof. Using Itô’s formula we will prove that for all x, y ∈ D (C),

E 〈Xt (x) , AXt (y)〉 = 〈x,Aty〉 . (B.1)

This, together with Theorem 4.2, implies At = Tt (A).

Motivated by At is only a weak solution, we fix an orthonormal basis (en)n∈N of h

and consider the function Fn : [0, t]× h× h→ C defined by

Fn (s, u, v) = 〈Rnu,At−sRnv〉 ,

where Rn = n (n+ C)−1 and ū =
∑

n∈N 〈en, u〉en. Since the range of Rn is contained in

D (C),

d

ds
Fn (s, u, v) = −g (s, Rnu,Rnv) , (B.2)

with g (s, x, y) = 〈x,At−sGy〉 + 〈Gx,At−sy〉 +
∑∞

k=1 〈Lkx,At−sLky〉. We have that

t 7−→ 〈u,Atv〉 is continuous for all u, v ∈ h, and so combining CRn ∈ L (h) with

Hypothesis 3 we get the uniformly continuity of (s, u, v) 7−→ g (s, Rnu,Rnv) on bounded

subsets of [0, t]×h×h. Then, we can apply Itô’s formula to Fn

(
s ∧ τj, X

τj
s (x), X

τj
s (y)

)
,

with τj = inf {t ≥ 0 : ‖Xt (x)‖+ ‖Xt (y)‖ > j}.
Fix x, y ∈ D (C). Combining Itô’s formula with (B.2) we deduce that

Fn

(
t ∧ τj, X

τj
t (x), X

τj
t (y)

)
= Fn

(
0, X0 (x), X0 (y)

)
+ Int∧τj +Mt,

where for s ∈ [0, t]:

Ms =
∞∑
k=1

∫ s∧τj

0

〈RnX
τj
r (x) ,At−rRnLkX

τj
r (y)〉 dW k

r

+
∞∑
k=1

∫ s∧τj

0

〈RnLkX
τj
r (x) ,At−rRnX

τj
r (y)〉 dW k

r

and Ins =
∫ s

0
(−g (r, RnXr (x) , RnXr (y)) + gn (r,Xr (x) , Xr (y))) dr with

gn (r, u, v) = 〈Rnu,At−rRnGv〉+ 〈RnGu,At−rRnv〉+
∞∑
k=1

〈RnLku,At−rRnLkv〉 .
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We next establish the martingale property of Ms. For all r ∈ [0, t] we have

‖RnX
τj
r (x)‖2 ‖At−r‖2 ‖RnLkX

τj
r (y)‖2 ≤ j2 sup

s∈[0,t]

‖As‖2 ‖LkXτj
r (y)‖2 .

By H2.1 and H3.1, E
∫ t∧τj

0

∑∞
k=1

∣∣〈RnX
τj
r (x) ,At−rRnLkX

τj
r (y)

〉∣∣2 ds < ∞. Thus(∑∞
k=1

∫ s∧τj
0

〈
RnX

τj
r (x) ,At−rRnLkX

τj
r (y)

〉
dW k

r

)
s∈[0,t]

is a martingale. The same

conclusion can be draw for
∞∑
k=1

∫ s∧τj

0

〈RnLkX
τj
r (x) ,At−rRnX

τj
r (y)〉 dW k

r ,

and so (Ms)s∈[0,t] is a martingale. Hence

E
〈
RnX

τj
t (x) ,At−t∧τjRnX

τj
t (y)

〉
= 〈Rnx,AtRny〉+ EInt∧τj . (B.3)

We will take the limit as j → ∞ in (B.3). Since E
(
sups∈[0,t] ‖Xs (ξ)‖2) < ∞ for

ξ = x, y (see, e.g., Th. 4.2.5 of [45]), using the dominated convergence theorem, together

with the continuity of t 7−→ 〈u,Atv〉, we get

E
〈
RnX

τj
t (x) ,At−t∧τjRnX

τj
t (y)

〉
→j→∞ E 〈RnXt (x) , ARnXt (y)〉 .

Applying again the dominated convergence theorem yields EInt∧τj −→j→∞ EInt , and

hence letting j →∞ in (B.3) we deduce that

E 〈RnXt (x) , ARnXt (y)〉 − 〈Rnx,AtRny〉 (B.4)

= E
∫ t

0

(−g (s, RnXs (x) , RnXs (y)) + gn (s,Xs (x) , Xs (y))) ds.

Finally, we take the limit as n → ∞ in (B.4). Since ‖Rn‖ ≤ 1 and Rn tends

pointwise to I as n→∞, the dominated convergence theorem yields

lim
n→∞

E
∫ t

0

gn (s,Xs (x) , Xs (y)) ds = E
∫ t

0

g (s,Xs (x) , Xs (y)) ds.

For any x ∈ D (C), limn→∞CRnx = Cx. By ‖CRnx‖ ≤ ‖Cx‖, using the dominated

convergence theorem gives

lim
n→∞

E
∫ t

0

g (s, RnXs (x) , RnXs (y)) ds = E
∫ t

0

g (s,Xs (x) , Xs (y)) ds.

Thus, letting n→∞ in (B.4) we obtain (B.1).
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[45] C. Prévôt and M. Röckner. A concise course on stochastic partial differential equations, volume

1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007.

[46] K. R. Parthasarathy. An introduction to quantum stochastic calculus. Birkhäuser, Basel, 1992.
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