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Centro de Investigación en
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counterpart.
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1 Introduction

1.1 Scope

This work is related to numerical methods for the solution of the autonomous system

of ordinary di↵erential equations (ODEs)

u0(t) = f
�
u(t)

�
, t 2 (t0, T ],

u(t) = (u1(t), . . . , uM (t))T, f(u) = (f1(u), . . . , fM (u))T,
(1.1)

where derivatives of a vector of univariate scalar functions are understood component-

wise, posed along with initial data

u(t0) = u0.

Taylor series methods are nowadays an established alternative for the numerical

solution of problems modelled by initial value problems of ODEs. The idea is to com-

pute approximations to the solution of the ODE for the next time instant using a

Taylor polynomial of the unknown. The resulting methods are conceptually simple, as

the expressions required for the iteration are exactly computable (i. e., with no error)

from the equation, and the truncation error is governed by the error term of the Taylor

formula, so that the order of accuracy of the global error of the method corresponds

to the degree of the Taylor polynomial used. Explicit Taylor methods are obtained by

computing the Taylor polynomial centered on the current time instant, while their im-

plicit counterparts correspond to Taylor polynomials centered on a future time instant.

In these cases, an auxiliary system of nonlinear equations has to be solved to compute

the solution at the next time step. Implicit Taylor methods are often used in the lit-

erature to solve problems where explicit methods have strong stability restrictions, in

particular sti↵ systems of ODE. Combinations of implicit and explicit steps have also

been considered to improve stability or accuracy [5, 9].

Altogether, Taylor methods are both di�cult to implement (because the compu-

tation of the terms involved in the Taylor series requires intensive symbolic calculus)

and computationally expensive, especially the implicit versions, because of the need of

solving the auxiliary equations.

In this work we present a simplification of the implicit Taylor method, based on the

work developed by Baeza et al. in [2] for the explicit Taylor method. This approximation

inherits the benefits of the explicit version in terms of easiness of implementation and

performance. Moreover, the implicit character of the method requires the resolution of

an auxiliary system of equations, commonly performed by means of Newton’s method,

which requires the computation of the system Jacobian. We show that the system that

arises from the approximate version is simpler to implement and faster to solve than

the one arising from the exact implicit Taylor method.

1.2 Related work

As we have stated, the e↵ective computation of the derivatives in the Taylor polynomial

is one of the critical points for the numerical implementation of Taylor methods, for

both explicit and implicit versions, because it is an over-elaborate task, computationally
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expensive and problem dependent. As a result, recently, several authors have attempted

to design simplified versions of the Taylor schemes.

For instance, in [6] the authors propose an alternative based in a numerical approx-

imation of the derivatives of f in ODEs of the form u

0 = f(u) for the explicit Taylor

method up to fourth order and in [7] for the implicit version up to fifth order. Later on,

in [2], a procedure to obtain a numerical approximation of f(u) = f � u was presented

to generate arbitrarily high order Taylor schemes, inspired in an approximate Cauchy-

Kovalevskaya procedure developed for the numerical solution of systems of conservation

laws in [10], which simplifies the exact version presented in [8]. The method presented

in [2] relies on the approximated computation of the terms that appear in the Taylor

polynomials, in terms of function evaluations only, avoiding the explicit computation

of the derivatives, leading to a method which is simple to implement and outperforms

its exact counterpart for complex systems.

1.3 Outline of the paper.

The work is organized as follows: In Section 2 the basic facts about the exact Taylor

methods are reviewed. A general procedure to generate Taylor schemes of arbitrarily

high accuracy order through Faà di Bruno’s formula [4] is described, as well as its cor-

responding approximated version presented in [2]. Section 3 is devoted to the detailed

description of a novel proposal of implicit Taylor methods involving an approximate

version of these schemes, following an idea akin to the explicit case [2]. An e�cient way

to implement the Newton iteration required to update the solution with the implicit

methods, both exact and approximate, is also described. Section 4 stands for several nu-

merical experiments in which the approximated version of the implicit Taylor methods

is compared against its exact counterpart, as well as against the approximate explicit

version. Finally, in Section 5 some conclusions are drawn.

2 Taylor methods

2.1 Preliminaries

The (explicit) R-th order Taylor methods are based on the expansion of the unknown

function

u(t+ h) = u(t) + hu0(t) +
h

2

2
u00(t) + · · ·+ h

R

R!
u(R)(t) +

h

R+1

(R+ 1)!
u(R+1)(⇠), (2.1)

with ⇠ belonging to the open interval I(t, t+ h) defined by t and t+ h, valid provided

u1, . . . , uM 2 CR(Ī(t, t + h)) and u(R+1) is bounded in I(t, t + h), where Ī(t, t + h)

denotes the closure of I(t, t + h). Consider an equally spaced set of N + 1 points

tn = t0 + nh, 0  n  N , h = T/N . Dropping the last term in (2.1) and taking t = tn

one obtains the approximation

u(tn + h) = u(tn+1) ⇡ u(tn) + hu0(tn) +
h

2

2
u00(tn) + · · ·+ h

R

R!
u(R)(tn). (2.2)
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Then (1.1) can be used to write

u(k)(tn) =
�
f(u)

�(k�1)
(tn) =

dk�1

dtk�1

�
f(u(t))

�����
t=tn

, 1  k  R. (2.3)

Consequently, the first step to apply Taylor methods is to compute these derivatives

up to an appropriate order.

2.2 Faà di Bruno’s formula

The evaluation of high-order derivatives of the function t 7! (f � u)(t), which arise in

(2.2), is greatly simplified by Faà di Bruno’s formula, as stated in [2]. To this end, we

recall that for a multi-index s = (s1, . . . , sr) 2 Nr
0, one defines |s| := s1 + · · ·+ sr and

 
r

s

!
:=

r!

s1!s2! · · · sr! .

Moreover, for r 2 N we define an index set

Pr :=

(
s 2 Nr

0

�����

rX

⌫=1

⌫s⌫ = r

)
,

and (Dsu)(t) to be a matrix of size M ⇥ |s| whose (s0+ s1+ · · ·+ sj�1+ i)-th column

is given by

�
(Dsu)(t)

�
s0+s1+···+sj�1+i

=
1

j!

dj

dtj
u(t), i = 1, . . . , sj , j = 1, . . . , r. (2.4)

Finally, we denote by f

(k) •A the action of the k-th order derivative tensor of f on a

M ⇥ k matrix A = (Aij):

f

(k) •A :=

MX

i1,...,ik=1

@

k
f

@ui1 · · · @uik
(u)Ai1,1 · · ·Aik,k.

Proposition 1 (Faà di Bruno’s formula [4]) Assume that the functions f : RM !
R and u : R ! RM

are r times continuously di↵erentiable. Then

dr

dtr
f

�
u(t)

� ⌘ �
f(u)

�(r)
(t) =

X

s2Pr

 
r

s

!
⇥�
f(u)

�(|s|) • (Dsu)
⇤
(t). (2.5)

Proposition 1 applies to just one scalar function f , so to obtain all components

of, say, (f(u))(k)(tn) in (2.3), we must apply (2.5) to each of the components of f =

(f1, . . . , fM )T. Clearly, the matrix Dsu is the same for all these components.
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2.3 Explicit Taylor methods

The derivatives (f(u))(k�1) can be evaluated by using Faà di Bruno’s formula (2.5)

(see [2] for more details), leading to an expression of u(k)(tn) in terms of u(tn) and

derivatives of f , namely

u(k)(tn) = Gk

⇣
u(tn),

�
f(u)

�
(tn),

�
f(u)

�0
(tn), . . . ,

�
f(u)

�(k�1)
(tn)

⌘

= ˜Gk

�
u(tn)

�
.

(2.6)

Replacing the derivatives u(k)(tn) in (2.2) by (2.6), we obtain the expression

u(tn+1) ⇡ TR(u(tn), h) = u(tn) +
RX

k=1

h

k

k!
˜Gk

�
u(tn)

�
. (2.7)

The R-th order Taylor method, denoted by TR(un, h), is then obtained by replacing

the exact values of the solution u(tn) and u(tn+1) by their corresponding approxima-

tions in (2.7), denoted by un and un+1, respectively:

un+1 = TR(un, h) = un +

RX

k=1

h

k

k!
u
(k)
n , u

(k)
n := ˜Gk(un). (2.8)

From (2.1) and (2.8) we infer that the local truncation error is given by

EL =
h

R+1

(R+ 1)!
u(R+1)(⇠),

so that EL = O(hR+1) as long as u(R+1) is bounded in [t0, T ], resulting in a global

error O(hR).

3 Implicit Taylor methods

3.1 Exact implicit Taylor methods

Implicit Taylor methods are based on approximating u(tn) by means of the Taylor

polynomial of u centered at tn+1:

u(tn) ⇡ TR
�
u(tn+1),�h

�
, (3.1)

so that the value of un+1 ⇡ u(tn+1) is determined as solution of the nonlinear system

of algebraic equations

un = TR(un+1,�h). (3.2)

In the easiest case, with R = 1, one gets the implicit Euler method. As in the case

of explicit Taylor methods, the expressions of u(k)(tn+1) that appear in (3.1) can

be expressed as functions of u(tn+1) and the derivatives of f . As an example, the

second-order implicit Taylor method is given by

un = un+1 � hf(un+1) +
h

2

2

✓
@f
@u

(un+1)f(un+1)

◆
, (3.3)

where @f/@u = (@fi/@uj)1i,jM is the functional matrix of f(u). In what follows,

the family of methods based on (3.2) will be referred to as exact implicit Taylor methods

since they are based on exact expressions of the derivatives of f .
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3.2 Approximate Implicit Taylor methods

Let us briefly review approximate explicit Taylor methods as described in [2]. These

methods are based on computing approximations of the derivatives in (2.2) by means

of finite di↵erences, so that u(k)(tn) is replaced by an approximation

v
(k)
h,n = u(k)(tn) +O(hR�k+1), k = 2, . . . , R,

resulting in an R-th order accurate method

vh,n+1 = vh,n +

RX

k=1

h

k

k!
v
(k)
h,n,

where the approximations v
(k)
h,n are computed as follows:

v
(0)
h,n = un,

v
(1)
h,n = f(un),

v
(k+1)
h,n = �

k,dR�k
2 e

h f
�
P k

n(h)), k = 1, . . . , R� 1,

where P k(⇢) is the M -component vector given by

P

k
n (⇢) =

kX

l=0

v
(l)
h,n

l!
⇢

l
, n = 1, . . . , N,

and �

p,q
h is the centered finite-di↵erence operator that approximates p-th order deriva-

tives to order 2q on a grid with spacing h, i.e., the one that satisfies

�

p,q
h (y) = y

(p) +O(h2q),

for a su�ciently di↵erentiable function y. (The operator �

p,q
h is understood as acting

on each component of f(P k
n(h)) separately.)

There exist constants �k,R
j so that for some integers �k,R, we can write (see [10])

v
(k+1)
h,n = h

�k
�k,RX

j=��k,R

�

k,R
j f

 
kX

l=0

(jh)l

l!
v
(l)
h,n

!
. (3.4)

Using these approximations of the derivatives, and with the notation of the previous

sections, one obtains the approximate explicit Taylor method

un+1 = T̃R(un, h). (3.5)

For instance, the second-order approximate Taylor method is based on the approxima-

tion

u(2)(tn) =
�
f(u)

�0
(tn) ⇡ 1

2h

⇣
f
�
u(tn) + hf(u(tn))

�� f
�
u(tn)� hf(u(tn))

�⌘
,

hence the method can be written as

un+1 = un + hf(un) +
h

4

⇣
f(un + hf(un)

�� f
�
un � hf(un)

�⌘
,
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i.e.,

T̃2(un, h) = un + hf(un) +
h

4

⇣
f(un + hf(un)

�� f
�
un � hf(un)

�⌘
.

The new methods advanced in this contribution, namely approximate implicit Taylor

methods are obtained by replacing h by �h and interchanging un and un+1 in (3.5):

un = T̃R(un+1,�h) := T̃R(un+1,�h).

For the case of second order, it follows that the implicit second-order approximate

Taylor method is

un = T̃2(un+1,�h) (3.6)

= un+1 � hf(un+1)� h

4

⇣
f
�
un+1 � hf(un+1)

�� f
�
un+1 + hf(un+1)

�⌘
.

3.3 Linear stability

The linear stability of a numerical scheme for initial value problems of ordinary di↵er-

ential equations is usually examined by applying it to the scalar linear equation

u

0 = �u, � 2 C, Re� < 0. (3.7)

For the sake of completeness, we consider the non-homogeneous linear ODE

u

0 = �u+ g(t), � 2 C,

with g su�ciently smooth. For the solution u of the ODE, we can establish by induction

on k that

u

(k) = �

k
u+

k�1X

j=0

�

k�j�1
g

(j)(t),

so the explicit Taylor method reads in this case as

un+1 =

RX

k=0

h

k

k!

 
�

k
un +

k�1X

j=0

�

k�j�1
g

(j)(tn)

!

= un

RX

k=0

(h�)k

k!
+

R�1X

j=0

g

(j)(tn)

�

j+1

RX

k=j+1

(h�)k

k!

= QR(h�)un +

R�1X

j=0

g

(j)(tn)

�

j+1

�
QR(h�)�Qj(h�)

�
,

where

Qj(x) =

jX

k=0

x

k

k!
.
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The implicit Taylor method is obtained by interchanging the roles of n and n + 1

and reads as

un = QR(�h�)un+1 +

R�1X

j=0

g

(j)(tn+1)

�

j+1

�
QR(�h�)�Qj(�h�)

�
,

un+1 =
1

QR(�h�)
un �

R�1X

j=0

g

(j)(tn+1)

�

j+1

✓
1� Qj(�h�)

QR(�h�)

◆
. (3.8)

In particular, for g = 0, the explicit and implicit Taylor methods of order R are given

by

un+1 = QR(h�)un (3.9)

and

un+1 =
1

QR(�h�)
un.

The exact Taylor method of order R is stable provided that |QR(h�)| < 1. Since

Re� < 0, this condition us usually satisfied on a bounded domain only (as can be

inferred from R = 1, in which case (3.9) is the explicit Euler method). On the other

hand, the exact implicit Taylor method is stable for those values of z = h� that satisfy

z 2 S :=
�
z 2 C | Re z < 0, |QR(�z)|�1

< 1
 

=
�
z 2 C | Re z < 0, |QR(�z)| > 1

 
.

As for its exact counterpart, in [3] it is shown that the approximate explicit Taylor

method applied to (3.7) is

T̃R(un, h) = QR(h�)un,

thus the implicit version is

T̃R(un,�h) = QR(�h�)�1
un,

and therefore both methods have the same stability region as their corresponding exact

versions, in particular the approximate implicit Taylor method is absolutely stable

whenever � < 0.

3.4 Newton iteration

The computation of un+1 for given un using an implicit method requires the solution

of an auxiliary equation

F (un+1) = 0, (3.10)

which is often approximated by means of Newton’s method. In this section, we address

the computation of the elements required for Newton’s method for both the exact and

approximate implicit Taylor method.
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3.4.1 Exact implicit Taylor method

As an example, let us consider the scalar nonlinear problem

u

0 = u+ u

2 ) u

00 = (1 + 2u)u0 = (1 + 2u)(u+ u

2).

The second-order exact implicit Taylor method can be written as

un = un+1 � h(un+1 + u

2
n+1) +

h

2

2
(1 + 2un+1)(un+1 + u

2
n+1),

and, therefore it requires the solution of the following cubic equation:

F (un+1) := un+1�h(un+1+u

2
n+1)+

h

2

2
(1+2un+1)(un+1+u

2
n+1)�un = 0. (3.11)

In the general case, the solution of (3.10) by means of Newton’s method requires the

computation of the derivative F

0(un+1). In the case of (3.11) this is an easy task, but

in general the resulting iteration can become complicated. An option is to introduce

zk ⇡ u
(k)
n+1, k = 0, . . . , R,

and use Faà di Bruno’s formula (2.5) to get the system

un = z0 � hz1 + · · ·+ (�1)R
h

R

R!
zR,

z1 = f(z0),

zn+1 =
X

s2Pr

 
r

s

!
0

BB@

f

(|s|)
1 (z0) • ˜D

s
z

...

f

(|s|)
N (z0) • ˜D

s
z

1

CCA , r = 1, . . . , R� 1,

(see Section 2.2 for the definitions of Pr, s and
�r
s

�
), where the definition of ˜D

s
z

mimics that of Dsz in (2.4), by taking into account that zk ⇡ u(k)(t), namely

�
˜D
s
z
�
s0+s1+···+sj�1+i

=
1

j!
zj , i = 1, . . . , sj , j = 1, . . . , r.

These equations can be di↵erentiated systematically. For instance, for the case of one

scalar equation, M = 1, one gets

@z0

 
X

s2Pr

 
r

s

!
f

(|s|)(z0)D
s
z

!
=

X

s2Pr

 
r

s

!
f

(|s|+1)(z0)
⇣
z1

1!

⌘s1 · · ·
⇣
zr

r!

⌘sr
,

@zj

 
X

s2Pr

 
r

s

!
f

(|s|)(z0)D
s
z

!

=
X

s2Pr

sj

j!

 
r

s

!
f

(|s|+1)(z0)
⇣
z1

1!

⌘s1 · · ·
✓
zj

j!

◆sj�1

· · ·
⇣
zr

r!

⌘sr
.
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For this scalar case and the second-order implicit Taylor method (3.3) the system to

be solved is

0 = z0 � hz1 +
h

2

2
z2 � un,

0 = f(z0)� z1,

0 = f

0(z0)z1 � z2.

(3.12)

If we write this as F (z0, z1, z2) = 0 where the components of F = (F1, F2, F3) are

given by the right-hand side of (3.12), then the corresponding Jacobian is given by

JF (z0, z1, z2) =

2

4
1 �h h

2
/2

f

0(z0) �1 0

f

00(z0)z1 f

0(z0) �1

3

5
. (3.13)

Depending on the expression of f the Jacobian matrix may become highly complex,

even for low values of R. It is clear that, for higher order methods, the system to be

solved will be more complicated. For instance, for R = 4, it reads as:

0 = z0 � hz1 +
h

2

2
z2 � h

3

6
z3 +

h

4

24
z4 � un,

0 = f(z0)� z1,

0 = f

0(z0)z1 � z2,

0 = f

00(z0)z
2
1 + f

0(z0)z2 � z3,

0 = f

000(z0)z
3
1 + 3f 00(z0)z1z2 + z3f

0(z0)� z4,

which results in the following expression for the Jacobian matrix:

JF (z0, . . . , z4) =

2

66666666666666664

1 �h

h

2

2

h

3

6

h

4

24

f

0(z0) �1 0 0 0

f

00(z0)z1 f

0(z0) �1 0 0

f

000(z0)z
2
1 2f 00(z0)z1 f

0(z0) �1 0
+f

00(z0)z2

f

(4)(z0)z
3
1 3f 000(z0)z1 3f 00(z0)z1 f

0(z0) �1+3f 000(z0)z1z2 +3f 00(z0)z2+f

00(z0)z3

3

77777777777777775

. (3.14)

Note that the submatrix composed by the first three rows and columns of (3.14) is

exactly (3.13). It is easy to check that the Jacobian matrix corresponding to R = 3 is

the submatrix of (3.14) composed by its first four rows and columns.

3.4.2 Approximate implicit Taylor method

For simplicity, let us start with the second-order approximate implicit Taylor method

(3.6) for the scalar case M = 1. Similarly to the exact case we introduce the unknowns

z0 = un+1, z1 = f(un+1) and

z2 =
1

2

⇣
f

�
un+1 � hf(un+1)

�� f

�
un+1 + hf(un+1)

�⌘
,
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and one gets the system of equations

0 = z0 � hz1 � h

2
z2 � un,

0 = f(z0)� z1,

0 =
1

2
f(z0 � hz1)� 1

2
f(z0 + hz1)� z2,

so that its solution gives the terms that appear in (3.6). To apply Newton’s method to

this system, the Jacobian of the system is required, and it is now given by

JF (z0, z1, z2) =

2

666666664

1 �h �h

2

f

0(z0) �1 0

1

2

�
f

0(z0 � hz1) �h

2

�
f

0(z0 � hz1) �1

�f

0(z0 + hz1)
�

+f

0(z0 + hz1)
�

3

777777775

.

3.5 General case

Let us now consider the general case of a system of M scalar ordinary di↵erential

equations. From (3.4), the approximate implicit R-th order Taylor method can be

written as

un = T̃R(un+1,�h) =

RX

k=0

(�h)k

k!
v
(k)
�h,n, (3.15)

v
(k+1)
�h,n = (�h)�k

�k,RX

j=��k,R

�

k,R
j f

 
kX

l=0

j

l(�h)l

l!
v
(l)
�h,n

!
. (3.16)

Let us denote zk = (�h)k�1vk
�h,n, so that (3.16) for k � 1 reads as:

zk =

�k�1,RX

j=��k�1,R

�

k�1,R
j f

 
z0 � h

k�1X

l=1

j

l

l!
zl

!

and (3.15) as

un = z0 � h

RX

k=1

1

k!
zk.

Define the function F = (F 0,F 1, . . . ,FM )T : R(R+1)M ! R(R+1)M by

F 0 = z0 � h

RX

k=1

1

k!
zk � un,

F k =

�k�1,RX

j=��k�1,R

�

k�1,R
j f

 
z0 � h

k�1X

l=1

j

l

l!
zl

!
� zk, k = 1, . . . , R.
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To solve F (z) = 0 by Newton’s method, we compute the Jacobian of F as the block

matrix

JF (z) =
�
F i,j(z)

�
0i,jR

, where F i,j(z) =
@F i

@zj
(z) 2 RM⇥M

.

If IM denotes the M ⇥M identity matrix, we get

F 0,0 = IM ,

F 0,l = �h

l!
IM , l = 1, . . . , R,

F k,0 =

�k�1,RX

j=��k�1,R

�

k�1,R
j f 0

 
z0 � h

k�1X

l=1

j

l

l!
zl

!
, k = 1, . . . , R,

F k,l = �h

�k�1,RX

j=��k�1,R

�

k�1,R
j f 0

 
z0 � h

k�1X

m=1

j

m

m!
zm

!
j

l

l!
,

(
l = 1, . . . , k � 1,

k = 1, . . . , R,

F k,k = �IM , k = 1, . . . , R,

F k,l = 0, l = k + 1 . . . , R, k = 1, . . . , R.

Setting �(⌫) = z(⌫+1) � z(⌫), we may write an iteration of Newton’s method as

JF (z(⌫))�(⌫) = �F (z(⌫)).

In block form and dropping ⌫, we get
2

6664

F 0,0 F 0,1 · · · F 0,R

F 1,0 F 1,1 · · · F 1,R
...

...
...

FR,0 FR,1 · · · FR,R

3

7775

0

BBB@

�0
�1
...

�R

1

CCCA
= �

0

BBB@

F 0

F 1
...

FR

1

CCCA
,

which we write in compact form as


F 0,0 F 0,1:R

F 1:R,0 F 1:R,1:R

�✓
�0
�1:R

◆
= �

✓
F 0

F 1:R

◆
. (3.17)

Since F 1:R,1:R is blockwise lower triangular with the diagonal blocks given by �IM ,

this matrix is invertible and we deduce that

�1:R = �F�1
1:R,1:R(F 1:R + F 1:R,0�0),

which, when inserted into the first equation of (3.17), yields

�0 = ��F 0,0 � F 0,1:RF�1
1:R,1:RF 1:R,0

��1�
F 0 � F 0,1:RF�1

1:R,1:RF 1:R
�
.

If we denote

A := F�1
1:R,1:RF 1:R, B := F�1

1:R,1:RF 1:R,0,

then we can write

�0 = ��F 0,0 � F 0,1:RB
��1�

F 0 � F 0,1:RA
�
, �1:R = ��A+B�0

�
.

Therefore, the system can be solved e�ciently as long as F 0,0 �F 0,1:RB is invertible.

Recall that the Newton iteration only requires the computation of f and f 0, in contrast

with the exact version, which requires the computation of all the derivatives of f up

to order R.
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4 Numerical experiments

4.1 Preliminaries

In this section, we analyze the performance of the approximate implicit Taylor (AIT)

methods described on this paper. We first compare the AIT methods with their exact

counterparts, IT methods, of the same order. We have only compared the AIT with

the IT methods for scalar equations since the implementation for systems of the IT

methods is extremely involved. For linear scalar equations the implementation for any

order is performed using (3.8). For nonlinear scalar equations, the implementation of

IT methods is complex enough for only having implemented them up to order 4.

We compare these methods in terms of error and numerical order, using some

scalar problems. We then raise two initial-value problems for systems of equations.

For those problems, we compare the AIT methods with approximate explicit Taylor

(AET) methods of the same order [2], so as to stress the superior stability of the implicit

method. In all the numerical examples we show the numerical errors, computed with

1-norm, and the order of the numerical method, computed by

o(N) = log2 (|e(N)/e(N/2)|) ,

with e(N) standing for the numerical error for N time steps.

4.2 Examples 1 and 2: scalar equations

In Example 1 we consider the linear equation

u

0 = �5u+ 5 sin(2t) + 2 cos(2t), u(0) = 0, (4.1)

with exact solution u(t) = sin(2t). The results for IT and AIT methods for T = 1 and

orders R 2 {2, 3, 4, 5, 6} are collected in Table 1, where it can be seen that with both

methods, the expected orders of convergence are recovered in all cases. Comparing

with the IT methods, we see that the approximate version attains the expected order

faster than the exact version, but produces a slightly bigger error for coarse resolutions.

This fact is possibly due to the simplicity of the equation under consideration, which

produces a local truncation error smaller than the error corresponding to the approx-

imation of derivatives performed in the AIT method and hinders the correct order of

accuracy for the exact method whenever the step size is not small enough.

In Example 2 is we consider the more involved problem

u

0 = log

✓
u+ u

3 + u

5

1 + u

2 + u

4 + u

6

◆
, u(0) = 1, (4.2)

and compute its solution up to T = 1 for orders R 2 {2, 3, 4}. The solution computed

by the AIT method with R = 4 and a resolution of 20000 points is taken as reference

solution. We can see in Table 2 that the errors for both methods are similar and the

numerical order converges to the expected values in each case. In Figure 1 we compare

the errors obtained by each method with respect to the CPU time required to run

the algorithm. It can be seen that the performance is increasingly favorable to the

approximate method as the order increases, as expected.
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R = 2
N e(N) IT o(N) IT e(N) AIT o(N) AIT
10 2.62e-02 — 4.99e-02 —
20 9.15e-03 1.52 1.38e-02 1.85
40 2.86e-03 1.68 3.63e-03 1.93
80 8.15e-04 1.81 9.29e-04 1.97

160 2.19e-04 1.89 2.35e-04 1.98
320 5.70e-05 1.94 5.90e-05 1.99
640 1.45e-05 1.97 1.48e-05 2.00

R = 3
10 1.30e-03 — 3.37e-02 —
20 2.88e-04 2.17 6.21e-03 2.44
40 4.43e-05 2.70 9.52e-04 2.71
80 5.84e-06 2.92 1.31e-04 2.86

160 7.37e-07 2.99 1.71e-05 2.94
320 9.19e-08 3.00 2.18e-06 2.97
640 1.15e-08 3.00 2.76e-07 2.99

R = 4
10 7.55e-04 — 7.84e-03 —
20 9.43e-05 3.00 4.81e-04 4.03
40 8.42e-06 3.48 2.58e-05 4.22
80 6.27e-07 3.75 1.39e-06 4.22

160 4.26e-08 3.88 7.84e-08 4.15
320 2.78e-09 3.94 4.61e-09 4.09
640 1.77e-10 3.97 2.79e-10 4.05

R = 5
10 4.32e-05 — 4.10e-03 —
20 2.59e-06 4.06 1.50e-04 4.77
40 9.73e-08 4.73 4.87e-06 4.94
80 3.14e-09 4.95 1.54e-07 4.98

160 9.75e-11 5.01 4.86e-09 4.99
320 3.02e-12 5.01 1.53e-10 4.99
640 9.41e-14 5.00 4.78e-12 5.00

R = 6
10 1.59e-05 — 1.06e-03 —
20 5.51e-07 4.85 1.35e-05 6.29
40 1.25e-08 5.46 1.56e-07 6.43
80 2.33e-10 5.75 1.88e-09 6.38

160 3.96e-12 5.88 2.45e-11 6.26
320 6.47e-14 5.94 3.43e-13 6.16
640 9.99e-16 6.02 5.11e-15 6.07

Table 1 Example 1 (linear scalar problem (4.1)): numerical errors and orders for IT and AIT
methods.

4.3 Examples 3 and 4: systems of ODEs

We consider now two problems modelled by systems of ODEs, used in [1] to test

stability properties and accuracy. Example 3 is a sti↵ nonlinear problem given by

(
y

0 = �1002y + 1000z2,

z

0 = y � z(1 + z), t > 0;

y(0) =1,

z(0) =1,
(4.3)

known as Kaps problem, with exact solution given by

y(t) = e�2t
, z(t) = e�t

,
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R = 2
N e(N) IT o(N) IT e(N) AIT o(N) AIT
10 1.21e-03 — 1.23e-03 —
20 2.90e-04 2.06 2.93e-04 2.13
40 7.09e-05 2.03 7.12e-05 2.07
80 1.75e-05 2.02 1.76e-05 2.04

160 4.36e-06 2.01 4.36e-06 2.02
320 1.09e-06 2.00 1.09e-06 2.01
640 2.71e-07 2.00 2.71e-07 2.00

1280 6.77e-08 2.00 6.78e-08 2.00
2560 1.69e-08 2.00 1.69e-08 2.00

R = 3
10 7.52e-05 — 5.35e-05 —
20 8.75e-06 3.10 5.95e-06 3.34
40 1.05e-06 3.05 7.00e-07 3.17
80 1.29e-07 3.03 8.49e-08 3.09

160 1.60e-08 3.01 1.04e-08 3.04
320 1.99e-09 3.01 1.30e-09 3.02
640 2.49e-10 3.00 1.61e-10 3.01

1280 3.11e-11 3.00 2.01e-11 3.01
2560 3.88e-12 3.00 2.51e-12 3.00

R = 4
10 5.78e-06 — 4.93e-06 —
20 3.30e-07 4.13 2.44e-07 4.76
40 1.97e-08 4.07 1.36e-08 4.34
80 1.20e-09 4.03 8.00e-10 4.17

160 7.43e-11 4.02 4.86e-11 4.08
320 4.62e-12 4.01 3.00e-12 4.04
640 2.87e-13 4.01 1.88e-13 4.02

1280 2.33e-14 3.62 1.47e-14 4.00
2560 5.66e-15 2.04 3.77e-15 3.68

Table 2 Example 2 (nonlinear scalar problem (4.2)): numerical errors and orders for IT and
AIT methods.

which is independent of the sti↵ness parameter, k = �1000 in this case. We compare the

solution at T = 5 for the approximate implicit (AIT) and approximate explicit (AET)

methods of the same order. Both schemes recover the expected order, the implicit one

achieving it at early stages, see Tables 3 and 4. Note that the explicit scheme does not

attain good results in terms of accuracy, unless meshes with more than 2000 points are

used. The implicit scheme achieves the same error level as the explicit one with meshes

with approximately 4 times less nodes.

Finally, in Example 4 we consider the system of ODEs
8
><

>:

x

0 = �21x+ 19y � 20z,

y

0 = 19x� 21y + 20z,

z

0 = 40x� 40y � 40z, t > 0;

x(0) = 1,

y(0) = 0,

z(0) = �1,

(4.4)

also taken from [1] and whose exact solution is given by

8
>>><

>>>:

x(t) =
1

2

⇣
e�2t + e�40t(cos(40t) + sin(40t))

⌘
,

y(t) =
1

2

⇣
e�2t � e�40t(cos(40t) + sin(40t))

⌘
,

z(t) =� e�40t(cos(40t)� sin(40t)).
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IT, R=4
AIT, R=4

IT, R=3
AIT, R=3

IT, R=2
AIT, R=2
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Fig. 1 Example 2 (nonlinear scalar problem (4.2)): performance of the IT and the AIT meth-
ods.

As in the previous example, the explicit scheme needs more nodes to achieve the same

error level as the implicit scheme. For instance, the explicit scheme needs about 64

times more nodes, N = 320, to obtain the same errors that the implicit scheme attains

with N = 5, see results in Tables 5 and 6, proving that the use of the implicit scheme

is more appropriate when dealing with sti↵ problems.
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R = 2 R = 3 R = 4 R = 5 R = 6
N e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N)
5 3.56e-03 — 6.88e-04 — 1.26e-04 — 2.00e-05 — 2.66e-06 —

10 1.06e-03 1.74 1.21e-04 2.50 1.17e-05 3.42 9.50e-07 4.39 6.46e-08 5.36
20 3.02e-04 1.81 1.82e-05 2.72 9.05e-07 3.70 3.67e-08 4.69 1.26e-09 5.67
40 8.15e-05 1.89 2.52e-06 2.85 6.28e-08 3.84 1.27e-09 4.84 2.20e-11 5.83
80 2.12e-05 1.93 3.31e-07 2.92 4.13e-09 3.92 4.21e-11 4.92 3.64e-13 5.91

160 5.43e-06 1.96 4.24e-08 2.96 2.65e-10 3.96 1.35e-12 4.96 5.86e-15 5.95
320 1.37e-06 1.98 5.37e-09 2.98 1.68e-11 3.98 4.28e-14 4.97 1.00e-16 5.86
640 3.45e-07 1.99 6.76e-10 2.99 1.05e-12 3.98 1.34e-15 4.99 7.05e-18 3.82

Table 3 Example 3 (sti↵ nonlinear problem (4.3)): numerical errors and orders for AIT
method.

R = 2 R = 3 R = 4 R = 5 R = 6
N e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N)

1280 NaN — NaN — NaN — NaN — 62.7 —
2560 1.03e-07 NaN 4.60e-11 NaN 1.07e-13 NaN 1.97e-16 NaN 3.03e-19 67.49
5120 2.34e-08 2.13 5.75e-12 3.00 5.65e-15 4.24 5.98e-18 5.04 3.96e-21 6.26

10240 5.84e-09 2.00 7.18e-13 3.00 3.33e-16 4.09 1.70e-19 5.14 5.48e-23 6.18
20480 1.46e-09 2.00 8.97e-14 3.00 2.00e-17 4.05 5.00e-21 5.09 7.98e-25 6.10
40960 3.64e-10 2.00 1.12e-14 3.00 1.22e-18 4.03 1.51e-22 5.05 1.20e-26 6.05

Table 4 Example 3 (sti↵ nonlinear problem (4.3)): numerical errors and orders for AET
method.

R = 2 R = 3 R = 4 R = 5 R = 6
N e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N)
5 2.74e-04 — 5.27e-05 — 1.40e-05 — 3.95e-06 — 1.04e-06 —

10 5.94e-05 2.20 9.59e-06 2.45 1.69e-06 3.05 2.70e-07 3.86 3.78e-08 4.78
20 1.52e-05 1.96 1.62e-06 2.56 1.56e-07 3.43 1.28e-08 4.39 9.10e-10 5.37
40 4.10e-06 1.89 2.42e-07 2.73 1.20e-08 3.70 4.97e-10 4.69 1.76e-11 5.68
80 1.08e-06 1.91 3.34e-08 2.86 8.32e-10 3.85 1.72e-11 4.84 3.08e-13 5.84

160 2.82e-07 1.94 4.39e-09 2.92 5.48e-11 3.92 5.69e-13 4.92 5.08e-15 5.92
320 7.22e-08 1.96 5.63e-10 2.96 3.51e-12 3.96 1.82e-14 4.96 8.15e-17 5.96
640 1.82e-08 1.98 7.12e-11 2.98 2.22e-13 3.98 5.79e-16 4.98 1.30e-18 5.96

Table 5 Example 4 (sti↵ linear problem (4.4)): numerical errors and orders for AIT method.

5 Conclusions

In this work we have reviewed the implicit Taylor methods for ODEs and showed how

they can systematically be implemented, although at the cost of di↵erentiating the

function in the ODE up to the order of the method. Using the same strategy that led

to approximate explicit Taylor methods for ODEs, that only require function evalua-

tions, we propose approximate implicit Taylor methods, whose only requirement is the

knowledge of function derivatives to build the Jacobian of auxiliary systems of non-

linear equations, to be solved by Newton’s method. We show that the novel approach

introduced in this work outperforms the exact version in terms of performance, except

for low order accuracy.
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R = 2 R = 3 R = 4 R = 5 R = 6
N e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N)
10 3.39e24 — 1.24e34 — 3.29e42 — 9.71e49 — 4.39e56 —
20 3.93e37 -43.40 4.38e50 -54.97 1.43e61 -61.91 5.80e69 -65.69 6.93e76 -67.10
40 4.11e50 -43.25 4.96e63 -43.37 1.01e72 -36.05 3.26e76 -22.42 9.30e77 -3.75
80 2.99e46 13.75 1.16e46 58.57 9.17e37 113.1 4.03e19 189.0 1.60e00 258.3

160 3.37e-03 162.6 3.41e-03 161.2 7.99e-04 136.4 2.66e-04 77.01 6.34e-05 14.62
320 7.07e-04 2.25 2.03e-04 4.07 3.46e-05 4.53 5.26e-06 5.66 6.60e-07 6.59
640 1.67e-04 2.08 1.95e-05 3.38 1.73e-06 4.32 1.29e-07 5.35 8.13e-09 6.34

1280 3.88e-05 2.10 2.15e-06 3.19 9.61e-08 4.17 3.52e-09 5.19 1.12e-10 6.18

Table 6 Example 4 (sti↵ linear problem (4.4)): numerical errors and orders for AET method.
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2

MA)

PRE-PUBLICACIONES 2018

2018-08 Gabriel N. Gatica, Bryan Gomez-Vargas, Ricardo Ruiz-Baier: Formula-
tion and analysis of fully-mixed methods for stress-assisted diffusion problems

2018-09 Jay Gopalakrishnan, Manuel Solano, Felipe Vargas: Dispersion analysis of
HDG methods

2018-10 Franco Fagnola, Carlos M. Mora: Bifurcation analysis of a mean field laser
equation

2018-11 David Mora, Iván Velásquez: A virtual element method for the transmission
eigenvalue problem
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Salgado: Numerical solution of a transient three-dimensional eddy current model with
moving conductors

2018-13 Raimund Bürger, Enrique D. Fernández Nieto, Victor Osores: A dynamic
multilayer shallow water model for polydisperse sedimentation

2018-14 Antonio Baeza, Raimund Bürger, Pep Mulet, David Zoŕıo: Weno recon-
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veda: A virtual element method for a nonlocal FitzHugh-Nagumo model of cardiac
electrophysiology

2018-16 Tomás Barrios, Rommel Bustinza: An a priori error analysis for discontinuous
Lagrangian finite elements applied to nonconforming dual mixed formulations: Poisson
and Stokes problems

2018-17 Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M.
Villada: Numerical solution of a spatio-temporal predator-prey model with infected
prey

2018-18 Javier A. Almonacid, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo
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