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IMPLICIT-EXPLICIT SCHEMES FOR NONLINEAR NONLOCAL EQUATIONS WITH

A GRADIENT FLOW STRUCTURE IN ONE SPACE DIMENSION

RAIMUND BÜRGERA,∗, DANIEL INZUNZAA, PEP MULETB, AND LUIS MIGUEL VILLADAC

Abstract. Nonlinear convection-diffusion equations with nonlocal flux and possibly degenerate diffusion

arise in various contexts including interacting gases, porous media flows, and collective behavior in biology.
Their numerical solution by an explicit finite difference method is costly due to the necessity of discretizing a

local spatial convolution for each evaluation of the convective numerical flux, and due to the disadvantageous

Courant-Friedrichs-Lewy (CFL) condition incurred by the diffusion term. Based on explicit schemes for such
models devised in [J.A. Carrillo, A. Chertock, Y. Huang, Commun. Comput. Phys. vol. 17 (2015) pp. 233–

258] a second-order implicit-explicit Runge-Kutta (IMEX-RK) method can be formulated. This method

avoids the restrictive time step limitation of explicit schemes since the diffusion term is handled implicitly,
but entails the necessity to solve nonlinear algebraic systems in every time step. It is proved that this method

is well defined. Numerical experiments illustrate that for fine discretizations it is more efficient in terms

of reduction of error versus CPU time than the original explicit method. One of the test cases is given by
a strongly degenerate parabolic, nonlocal equation modelling aggregation [F. Betancourt, R. Bürger, K.H.

Karlsen, Commun. Math. Sci. vol. 9 (2011) pp. 711–742]. This model can be transformed to a local partial

differential equation that can be solved numerically easily to generate a reference solution for the IMEX-RK
method, but is limited to one space dimension.

1. Introduction

1.1. Scope. This paper is concerned with numerical methods for a nonlinear nonlocal equations with a
gradient flow structure of the type

ut +∇ ·
(
u∇(W ∗ u)

)
= ∇ ·

(
u∇(H ′(u))

)
, x ∈ Rd, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ Rd, (1.2)

where u(x, t) ≥ 0 is an unknown probability distribution function or population density, W (x) is an interac-
tion potential, which is assumed to be symmetric, and H(u) is a density of internal energy. This equation is
a reduced variant of a more general equation (including an additional term) studied in [1]. Equations such
as (1.1) appear in various contexts such as interacting gases, porous media flows and collective behavior in
biology (see Section 1.2 and [1] for references). Clearly, if W = 0, and H(u) = u log u−u or H(u) = um, the
classical heat equation and porous medium/fast diffusion equation are recovered, respectively [2]. The func-
tion W is related to the interaction energy (see below), and may be as singular as the Newtonian potential
in the chemotaxis system [3] or as smooth as W (x) = |x|α with α > 2 in granular flow [4].
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In the present paper, we limit the discussion to the case of d = 1 space dimension, for which (1.1), (1.2)
reduce to

ut = F [u]x, x ∈ R, t > 0; F [u] = u(H ′(u)−W ∗ u)x, (1.3)

u(x, 0) = u0(x), x ∈ R. (1.4)

Here the notation F [u] = F [u(·, t)] means that the flux F depends on u(·, t) as a function of x as a whole,
and we recall that (

W ∗ u(·, t)
)
(x) =

∫
R
W (y)u(x− y, t) dy =

∫
R
W (x− y)u(y, t) dy.

Although the available mathematical theory does not allow us to be conclusive about the existence,
uniqueness and well-posedness of the solution of such convection-diffusion equations, it is plausible to perform
simulations with appropriate numerical methods. Explicit schemes for hyperbolic first-order conservation
laws are widely used in many applications nowadays. Although they can be rather slow for some steady-state
computations, due to CFL stability restrictions on the time step size, their use for unsteady computations
is deemed as practical in many situations. When diffusion terms are present, one can resort to an implicit
treatment of these terms to overcome the drastic step size stability restrictions imposed by their alternative
explicit treatment. It is the purpose of the present work to demonstrate the benefits of using an implicit-
explicit (IMEX) scheme for the efficient solution of (1.3), (1.4) under specific assumptions on the diffusive
term. It is shown that the proposed scheme is more efficient, in terms of error reduction versus CPU time,
than the explicit scheme of [1].

1.2. Related work. Equation (1.1), or some specific case of it, arises in many contexts including interacting
gases [5], granular flows [6], flow in porous media [7,8], and collective behavior in biology [9] (see these papers
and [1] for further references). The one-dimensional model (1.3), (1.4) can also be understood as a model of
the aggregation of populations by the following reasoning [10]. Assume that u is the density of the population
(e.g., of animals) under study, and consider the equation

ut +

(
−k
[∫ x

−∞
u(y, t) dy −

∫ ∞
x

u(y, t) dy

]
u

)
x

= A(u)xx, x ∈ R, t > 0. (1.5)

Here k > 0 is a constant, and the convective term models that an animal will move to the right (respectively,
left) if the total population to its right is larger (respectively, smaller) than to its left. The aggregation
mechanism is balanced by nonlinear diffusion described by the term A(u)xx, known as density-dependent
dispersal in mathematical ecology [10], where A(u) =

∫ u
0
a(s) ds and a(u) ≥ 0 is a given diffusion function

Properties of (1.5) under various assumptions on the regularity of a were studied in [10–16]. As in [10, 11]
we allow that a(u) may vanish on u-intervals of positive length, so (1.5) may be strongly degenerate. To see
that (1.5) is an example of (1.3), we first rewrite (1.5) as

ut + (uW̃ ∗ u)x = A(u)xx (1.6)

with the odd kernel W̃ (x) = −k sgn(x). Equation (1.6) becomes a one-dimensional example of (1.1) if
we observe that W̃ ∗ u = W ′ ∗ u, where W ′ denotes the derivative of W , if we choose the even kernel
W (x) = k|x|+ C, where C is a constant and the function H is given by

H(u) =

∫ u

0

∫ r

0

a(s)

s
dsdr

(where possibly further restrictions on the function u 7→ a(u) need to be imposed so that H is well defined).
The particular interest in this degenerate nonlocal aggregation equation arises from the numerical method
for its solution constructed in [10], where the general equation

ut +

(
Φ′
(∫ x

−∞
u(y, t) dy

)
u

)
x

= A(u)xx (1.7)
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is analyzed. If the function Φ is chosen such that Φ′(q) = −k(2q−C0), where C0 =
∫
R u0(x)dx, the equation

(1.5) is obtained. The key observation here is that the primitive q(x, t) :=
∫ x
−∞ u(y, t)dy is a solution of the

following initial value problem for a local PDE:

qt + Φ(q)x = A(qx)x, x ∈ R, t > 0; q(x, 0) = q0(x) :=

∫ x

−∞
u0(ξ) dξ, x ∈ R. (1.8)

Thus, by solving the local problem (1.8) numerically, and transforming back the numerical solution to u, we
may conveniently generate a reference solution (for this particular aggregation model) that does not involve
a discretization of the convolution but that can be used to assess the performance of the numerical scheme
developed herein that solves (1.3) directly, and in particular does involve calculating the convolution in every
time step. See Section 3.4 for further details.

Concerning numerical methods for (1.1), we mention that finite element approximations have been pro-
posed in the literature which are positivity preserving and entropy decreasing at the expense of constructing
them by an implicit discretization in time but continuous in space [17]. We also mention that Carrillo,
Chertock, and Huang [1] consider (1.3) adding the term V (x) which represents a confinement potential, i.e.,

ρt(x) = (ρ (H ′(ρ) + V (x)−W ∗ ρ)x)
x
. (1.9)

This a variant of (1.3) and has been extensively studied during the last fifteen years. In both cases of (1.3)
and (1.9), the numerical methods studied for these equations are explicit schemes for convection-diffusion
equations. In fact, Carrillo et al. [1] propose both one- and two-dimensional finite volume schemes for
(1.1) and prove their positivity preserving and entropy dissipation properties along with error estimates and
convergence results. These schemes follow a method of lines and are explicit by the choice of explicit SSP
Runge-Kutta ODE integrators.

Although in [1] the detailed stability restriction for the proposed method, which implies that ∆t ∝ ∆x2,
is not made apparent, in the experiments section we will show that it is indeed required. This restriction
stems from the explicit treatment of the diffusive term, so this motivates the main goal of our work, which
is to propose an implicit-explicit Runge-Kutta method (IMEX-RK method) that treats the diffusive term
implicitly and the convective term explicitly. To explain the main idea, we consider the problem

du

dt
= C(u) + D(u), (1.10)

which is assumed to represent a method-of-lines semi-discretization of (1.1), where u = u(t) is a spatial
discretization of the solution and C(u) and D(u) are discretizations of the convective and diffusive terms,
respectively. Assume, for simplicity, that the spatial mesh width is ∆x > 0. Then the stability restriction on
the time step ∆t that explicit schemes impose when applied to (1.10) is very severe (∆t must be proportional
to the square ∆x2 of the grid spacing), due the presence of D(u). Implicit treatment of both C(u) and D(u)
would remove any stability restriction on ∆t. However, the upwind nonlinear discretization of the convective
terms contained in C(u) that is needed for stability, makes its implicit treatment extremely involved. In
fact, after the pioneering work of Crouzeix [18], numerical integrators that deal implicitly with D(u) and
explicitly with C(u) can be used with a time step restriction dictated by the convective term alone. These
schemes, apart from having been profusely used in convection-diffusion problems and convection problems
with stiff reaction term [19, 20], have been used recently to deal with stiff terms in hyperbolic systems with
relaxation [21–25]. Finally, we mention that many authors have proposed IMEX-RK scheme for the solution
of semidiscretized PDEs [19,21,26–30].

1.3. Outline of the paper. The remainder of this work is organized as follows. In Section 2 we introduce
the numerical scheme. We use the method of lines to obtain a spatial semi-discretization of (1.3) in form of
a system of ordinary differential equations (ODEs) that involves a clear definition of convective and diffusive
numerical fluxes (Section 2.1). In particular the convective term is discretized via MUSCL extrapolation
applied to an upwind scheme, as introduced in [1]. Then, in Section 2.2, we demonstrate that an explicit
first-order (Euler) time discretization leads to a positivity preserving scheme (Theorem 2.1). In Section 2.3
we briefly motivate the advantage of using IMEX-RK time integrators for the problem at hand, and in
Section 2.4 we specify the particular IMEX-RK time integrators used to solve the system of ODEs that
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represents the spatial discretization. The implementation of this scheme requires the solution of nonlinear
algebraic equations in each time step. The existence of a unique solution of these equations is a consequence of
a fixed-point theorem that is proved in Section 2.4 (Theorem 2.2). For the special case of the simplest IMEX
scheme, namely the Euler IMEX scheme, this result entails that the whole scheme is positivity preserving,
as is shown in Theorem 2.3. In Section 3 the presented numerical results (Examples 1 to 4) indicate that
in most circumstances the IMEX-RK scheme is significantly more efficient in reduction of error versus CPU
time than the explicit scheme developed in [1]. These and other conclusions are summarized in Section 4.

2. Numerical method

2.1. Spatial discretization. For the one-dimensional equation (1.3) we consider a spatial domain Ω =
(−L,L) large enough so that the solution is compactly supported in it. We also consider a subdivision of Ω
into M cells Cj = [xj−1/2, xj+1/2] of a uniform size ∆x with xj = −L + (j − 1/2)∆x, j ∈ {1, . . . ,M},
xj±1/2 = xj ±∆x/2, and denote by uj(t) an approximation to the solution cell average on Cj , i.e.,

uj(t) ≈
1

∆x

∫ xj+1/2

xj−1/2

u(x, t) dx.

To obtain a semi-discrete finite volume scheme, (1.3) is first integrated over the j-th cell to give

d

dt

(∫ xj+1/2

xj−1/2

u(x, t) dx

)
= F [u(·, t)](xj+1/2)− F [u(·, t)](xj−1/2).

We divide this equation by ∆x and approximate the terms F̂j±1/2(t) ≈ F [u(·, t)](xj±1/2) by some numerical
flux function F̂ with arguments chosen among the variables ul within some finite stencil around j,

F̂j+1/2(t) = F̂
(
uj−p(t), . . . , uj+q(t)

)
.

Then the final semidiscrete scheme takes the form of the following system of ODEs for uj (notice that the
signs are reversed with respect to the standard notation in conservation laws):

u′j(t) =
F̂j+1/2(t)− F̂j−1/2(t)

∆x
. (2.1)

For our separate treatment of convective and diffusive terms, we split F [u] as follows:

F [u] = uH ′′(u)ux − u(W ∗ u)x = K(u)x − u(W ∗ u)x, K ′(u) = uH ′′(u), (2.2)

where we assume the following properties of K:

K is at least twice continuously differentiable,

K(0) = 0,

K ′(u) ≥ 0,K ′′(u) ≥ 0 for u ∈ (0,∞),

K(u) = uL(u), with L continuous in [0,∞).

(2.3)

In particular, K(u) ≥ 0 for u ≥ 0.
Now we approximate both terms in (2.2) separately, omitting the dependence of quantities on t ≥ 0 for

sake of simplicity. The diffusive term is approximated by standard second-order three-point finite differences:

K(u)x(xj) ≈
K(uj+1)− 2K(uj) +K(uj−1)

∆x2
=

1

∆x

(
F̂ d
j+1/2 − F̂

d
j−1/2

)
, F̂ d

j+1/2: =
K(uj+1)−K(uj)

∆x
.

Regarding the convective term, the flux can be expressed as

uv[u], v[u] = z[u]x, z[u] = W ∗ u. (2.4)

We use MUSCL reconstructions [31] and standard upwind techniques to obtain the convective numerical
flux. One first constructs piecewise linear polynomials in each cell Cj , namely

ũj(x) = uj + σj(x− xj), x ∈ Cj , (2.5)
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and computes right and left point values, uR
j and uL

j , at the cell respective interfaces xj+1/2 and xj−1/2, by

uR
j = ũj

(
x−j+1/2

)
= uj +

∆x

2
σj , uL

j = ũj
(
x+
j−1/2

)
= uj −

∆x

2
σj . (2.6)

These values will be second-order accurate provided the slopes σj are at least first-order accurate approxima-
tions of the partial derivative ux(x, ·). To ensure that the point values (2.6) are both second-order accurate
and nonnegative, the slopes σj in (2.5) are calculated as follows. First, the centered difference approxima-
tion σj = (uj+1 − uj−1)/(2∆x) is used for all j. Then, if a reconstructed point value at a cell boundary
becomes negative (i.e., either uR

j < 0 or uL
j < 0), we correct the corresponding slope σj using a slope limiter,

which guarantees that the reconstructed point values are nonnegative as long as the cell averages uj are
nonnegative. In the numerical experiments in [1] this is achieved by using a minmod limiter as follows:

σj =


uj+1 − uj−1

2∆x
if uj ≥

|uj+1 − uj−1|
4∆x

,

θminmod

(
uj+1 − uj

∆x
,
uj − uj−1

∆x

)
otherwise,

where the standard minmod function is defined as

minmod(z1, z2) :=

{
sgn(z1) min{|z1|, |z2|} if sgn(z1) = sgn(z2),

0 otherwise,

and the parameter θ ∈ (0, 2] is used to control the numerical viscosity of the resulting scheme. The value
θ = 2 is used for the numerical examples in [1], and we adopt it in all our numerical examples.

To approximate v[u](xj+1/2), we first use a second-order finite difference formula

z[u]x(xj+1/2) ≈ z[u](xj+1)− z[u](xj)

∆x
, (2.7)

followed by discrete approximations of the convolutions (W ∗u)(xj), taking into account that u is compactly
supported in (−L,L), given by

(W ∗ u)(xj) = z[u](xj) ≈ z̃[u]j = z̃[u∗j−s, . . . , u
∗
j+s] = ∆x

s∑
l=−s

Wlu
∗
j−l, (2.8)

where we define

u∗l :=

{
ul if 1 ≤ l ≤M ,

0 otherwise,

where Wl = W (l∆x), and the width of the convolution stencil s = s∆x is computed to retain second-order
accuracy. Clearly, the computational bottleneck in this procedure is the discrete convolution in (2.8). This
is a classical problem in scientific computing that is effectively evaluated using fast convolution algorithms,
mainly based on Fast Fourier Transforms [32]. These techniques are applied here within the IMEX-RK
version as well as within the explicit methods of [1].

To recap, the following approximation, obtained from (2.7) and (2.8),

v[u](xj+1/2) = z[u]x(xj+1/2) ≈ vj+1/2 = ṽ[u]j+1/2 =
z̃[u]j+1 − z̃[u]j

∆x
, (2.9)

yields, in an upwind manner, the convective numerical flux associated with the cell interface xj+1/2, namely

F̂ c
j+1/2 = uj+1/2vj+1/2, where uj+1/2 =

{
uR
j if vj+1/2 ≥ 0,

uL
j+1 if vj+1/2 < 0,

(2.10)

which we can write in closed form as

F̂ c
j+1/2 = uR

j v
−
j+1/2 + uL

j+1v
+
j+1/2, (2.11)
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where v+
j+1/2 := max{vj+1/2, 0} and v−j+1/2 := min{vj+1/2, 0}. We set

F̂j+1/2 = −F̂ c
j+1/2 + F̂ d

j+1/2

compatibly with the splitting (2.2), so that (1.10) with u = (u1, . . . , uM )T, C(u) = (C1(u), . . . , CM (u))T and
D(u) = (D1(u), . . . ,DM (u))T and (2.1) can be written as

u′j(t) = Cj(u) +Dj(u), Cj(u) := −
F̂ c
j+1/2 − F̂

c
j−1/2

∆x
, Dj(u) :=

F̂ d
j+1/2 − F̂

d
j−1/2

∆x
, j = 1, . . . ,M.

(2.12)

It is worth pointing out that the original reference scheme in [1] is obtained through this procedure by taking
z[u] = H ′(u) +W ∗ u in (2.4) and F̂j+1/2 = F̂ c

j+1/2.

2.2. A property of an explicit time discretization. The ODEs that form the semi-discrete scheme (2.1)
need to be integrated numerically using a stable and accurate ODE solver. In all their numerical examples,
Carrillo et al. [1] use the third-order strong stability preserving Runge-Kutta (SSP-RK) ODE solver [33].
The resulting scheme preserves positivity of the computed cell averages uj , as stated in [1, Theorem 2.1]. Its
proof is based on the forward Euler integration of (2.1), but it remains valid if the forward Euler method is
replaced by a higher-order SSP-ODE solver [33], whose time step can be expressed as a convex combination
of several forward Euler steps. For our scheme we can prove the following result, which is an analogue
of [1, Theorem 2.1], following the lines stated therein.

Theorem 2.1. If K is increasing and convex in [0,∞), uj+1/2 in (2.10) is nonnegative, and the CFL
condition

∆t

(
maxj |vj+1/2|

∆x
+

maxj K
′(uj)

∆x2

)
≤ 1

2
(2.13)

is satisfied, then the explicit Euler method applied to the semi-discrete scheme (2.12) yields a fully discrete
positivity preserving scheme, i.e.,

E(u)j := uj +
∆t

∆x

(
F̂j+1/2 − F̂j−1/2

)
≥ 0. (2.14)

Proof. Since for j = 1, . . . ,M (uL
j + uR

j )/2 = uj and there exists ûj+1/2 such that

K(uj+1)−K(uj) = K ′(ûj+1/2)(uj+1 − uj),
by (2.11) and (2.12) the inequality (2.14) can be written as

E(u)j =
uL
j + uR

j

2
+

∆t

∆x

(
−uR

j v
+
j+1/2 − u

L
j+1v

−
j+1/2 + uR

j−1v
+
j−1/2 + uL

j v
−
j−1/2

)
+

∆t

∆x2

(
K(uj+1)− 2K(uj) +K(uj−1)

)
=

(
1

2
+

∆t

∆x
v−j−1/2

)
uL
j +

(
1

2
− ∆t

∆x
v+
j+1/2

)
uR
j +

∆t

∆x

(
−uL

j+1v
−
j+1/2 + uR

j−1v
+
j−1/2

)
+

∆t

∆x2

(
K ′(ûj+1/2)(uj+1 − uj)−K ′(ûj−1/2)(uj − uj−1)

)
=

(
1

2
+

∆t

∆x
v−j−1/2 −

∆t

2∆x2
(K ′(ûj+1/2) +K ′(ûj−1/2))

)
uL
j

+

(
1

2
− ∆t

∆x
v+
j+1/2 −

∆t

2∆x2

(
K ′(ûj+1/2) +K ′(ûj−1/2)

))
uR
j +

∆t

∆x

(
uL
j+1v

+
j+1/2 − u

R
j−1v

−
j−1/2

)
+

∆t

∆x2

(
K ′(ûj+1/2)uj+1 +K ′(ûj−1/2)uj−1

)
≥
(

1

2
− ∆t

∆x
max
j
|vj−1/2| −

∆t

∆x2
max
j
K ′(uj)

)
uL
j +

(
1

2
− ∆t

∆x
max
j
|vj−1/2| −

∆t

∆x2
max
j
K ′(uj)

)
uR
j

≥ 0,
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where we have taken into account that K ′,K ′′ ≥ 0 to bound K ′(ûj+1/2) ≤ K ′(max(uj , uj+1)). �

The following result provides usable bounds for the velocities in (2.13).

Lemma 2.1. We have the following bounds:

|vj+1/2| ≤ ‖W‖∞ TV(u), |vj+1/2| ≤ ‖u‖∞ TV(W ),

provided that the right-hand sides are finite.

Proof. These results follow directly from the definition of vj+1/2 in (2.8) and (2.9). For instance,

vj+1/2 =

s∑
l=−s

Wl

(
u∗j+1−l − u∗j−l

)
,

immediately yields the first bound. �

2.3. Stability. A rigorous study of von Neumann stability of explicit ODE solvers applied to (2.12) or the
original scheme in [1] is not possible since the linearization of (1.3) does not have a structure amenable to
this analysis. Nevertheless, the closest scenario permitting an stability analysis would be the application of
a linear scheme to the standard convection diffusion equation

ut + γux = ηuxx, (2.15)

where γ ≈ (W ∗ u)x and η ≈ K ′(u). For some simple Runge-Kutta explicit schemes, it can be readily seen
that such schemes applied to (2.15) are stable provided

∆t
( γ

∆x
+

η

∆x2

)
≤ C1

for some constant C1. This result is coherent with (2.13) and will be illustrated in the numerics section. This
bound can be severely restrictive for fine simulations and is therefore a clear motivation for the consideration
of implicit-explicit Runge-Kutta schemes, that typically relax the latter bound to γ∆t/∆x ≤ C2, a restriction
that is fine for accuracy requirements.

2.4. Implicit-explicit Runge-Kutta schemes. For the diffusive part D(u) we utilize an implicit s-stage
diagonally implicit (DIRK) scheme with coefficients A ∈ Rs×s, b, c ∈ Rs, in the common Butcher notation,
where A = (aij) with aij = 0 for j > i. For the convective term C(u) we employ an s-stage explicit scheme
with coefficients Ã ∈ Rs×s, b̃, c̃ ∈ Rs and Ã = (ãij) with ãij = 0 for j ≥ i. We denote the corresponding
Butcher arrays by

D :=
c A

bT , D̃ :=
c̃ Ã

b̃T .

If applied to (2.12), the IMEX-RK scheme gives rise to the following algorithm, where we recall that u =
(u1, . . . , uM )T, etc.:

Algorithm 3.1: IMEX-RK scheme

Input: approximate solution vector un for t = tn
do i = 1, . . . , s

solve for u(i) the nonlinear equation

u(i) = un + ∆t

(
i−1∑
j=1

aijκj +

i−1∑
j=1

ãijκ̃j

)
+ aii∆tD

(
u(i)

)
κi ← D

(
u(i)

)
, κ̃i ← C

(
u(i)

)
enddo

un+1 ← un + ∆t

s∑
j=1

bj κj + ∆t

s∑
i=1

b̃iκ̃i

Output: approximate solution vector un+1 for t = tn+1 = tn + ∆t.
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This algorithm requires solving for each i ∈ {1, . . . , s} the nonlinear system

F (u) := u− aii∆tD(u)− r = 0, i = 1, . . . , s, (2.16)

for the unknown vector u = u(i), where the vector r is given by

r = un + ∆t

(
i−1∑
j=1

aijκj +

i−1∑
j=1

ãijκ̃j

)
. (2.17)

The following results deal with the solution of (2.16).

Theorem 2.2. Assume that K satisfies the conditions (2.3), µ > 0, c ∈ RM , and c ≥ 0, where such
inequalities for vectors and matrices are understood in the component-wise sense. Then the equation

z − µD(z) = c (2.18)

has a unique solution z ∈ RM satisfying z ≥ 0.

Proof. Equation (2.18) can be rewritten as

z +GK(z) = c, (2.19)

where the M ×M -matrix G and the M -vector K(z) are given by

G =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


, K(z) = β


K(z1)
K(z2)

...
K(zM )

 , β =
µ

∆x2
.

Let E(z) = β diag(L(z1), . . . , L(zM )), then K(z) = E(z)z. Assume that z ≥ 0. Then I + GE(z) is a
strictly diagonally dominant matrix with positive diagonal entries and non-positive off-diagonal entries, and
therefore (I +GE(z))−1 is a nonnegative matrix and it is a continuous function of z. Then, the solution of
equation (2.19) is reduced to finding fixed points of the mapping

z 7→ ϕ(z) =
(
I +GE(z)

)−1
c.

To assess existence of fixed points, we aim to apply Brouwer’s theorem to ϕ and the compact and convex
set K := {z ∈ RM | z ≥ 0 and ‖z‖1 ≤ ‖c‖1}. Clearly, (I +GE(z))−1 ≥ 0 and c ≥ 0 immediately yield
ϕ(z) ≥ 0 for all z ∈ K, so, to prove that ϕ(K) ⊆ K, there only remains to prove that∥∥ϕ(z)

∥∥
1
≤ ‖c‖1 for all z ∈ K. (2.20)

To this end, we take into account that∥∥ϕ(z)
∥∥

1
≤
∥∥(I +GE(z)

)−1∥∥
1
‖c‖1.

Thus, to establish (2.20) it is sufficient to prove that∥∥(I +GE(z)
)−1∥∥

1
≤ 1 for all z ∈ K.

For this purpose, we use the auxiliary matrix

G̃ :=



1 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1


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and the notationH := I+GE(z) andM := I + G̃E(z). The same previous argument yields thatM−1 ≥ 0.
Now, for e := (1, . . . , 1)T ∈ RM it follows that eTG̃ = 0, so eTM = eT and eTM−1 = eT. If we assume
that H−1 = (η̄ij)1≤i,j≤M and M−1 = (µ̄ij)1≤i,j≤M , then this is equivalent to

M∑
i=1

µ̄ij = 1, j = 1, . . . ,M.

Furthermore, since H−1 ≥ 0, M−1 ≥ 0 and H −M = β diag(L(z1), 0, . . . , 0, L(zM )) ≥ 0 for z ∈ K and

H−1 = M−1 −H−1(H −M)M−1,

it follows that H−1 ≤M−1. This yields that

‖H−1‖1 = max
1≤j≤M

M∑
i=1

η̄ij ≤ max
1≤j≤M

M∑
i=1

µ̄ij = 1.

Applying Brouwer’s fixed point theorem to the continuous function ϕ : K → K we deduce the existence of a
fixed point of ϕ, i.e. a nonnegative solution to equation (2.18).

For uniqueness, we adapt an argument that can be found in [34] and define

Ψ(z) := β

M∑
i=1

N
(
|zi|
)
,

where N is a primitive of K, and

f(z) :=
1

2
zTA−1z + Ψ(z)− zTA−1c.

Since K(0) = K ′(0) = 0, Ψ is twice continuously differentiable. Therefore f is also twice continuously
differentiable and its gradient f ′(z) and Hessian f ′′(z) are given by the respective expressions

f ′(z)T = A−1z + β

 sgn(z1)K(|z1|)
...

sgn(zM )K(|zM |)

−A−1c, f ′′(z) = A−1 + β diag
(
K ′(|z1|), . . . ,K ′(|zM |)

)
.

Since A−1 is symmetric and positive definite and βK ′(|zi|) ≥ 0, it follows that f ′′(z) is symmetric and
positive definite, therefore f is strictly convex, so any critical point (at which f ′(z) = 0) is the unique global
minimum. Now, if z +AK(z) = c with z ≥ 0, then f ′(z) = 0 and z ∈ K, so positive solutions of (2.19)
are critical points of f , so uniqueness is proven. �

Theorem 2.3. If K satisfies the conditions (2.3), the quantities uj+1/2 in (2.10) satisfy uj+1/2 ≥ 0 for
j = 1, . . . ,M − 1 and

∆t

∆x
max
j
|vj+1/2| ≤ 1/2 (2.21)

then the Euler IMEX method

un+1 = un + ∆t
(
C(un) + D(un+1)

)
is a positivity preserving scheme.

Proof. Let bn := un + ∆tC(un). Then it follows from Theorem 2.1 with K = 0 that bn ≥ 0. Since the
equation un+1 = bn + ∆tD(un+1) can be rewritten as z −∆tD(z) = c for z = un+1, c = bn, Theorem 2.2
yields that a unique nonnegative solution z exists. This concludes the proof. �

Unfortunately, this result cannot be directly applied to higher-order RK-IMEX schemes, since there cannot
be Runge-Kutta implicit schemes in SSP form of order higher than one (see [33]), so Theorem 2.2 cannot be
in principle applied for second-order accuracy in time. We have nevertheless used Newton-Raphson method,
together with a line search algorithm (see [28]) to solve (2.16). At each step of this algorithm a tridiagonal
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system is solved. We have not experienced any troubles in solving these systems under a stability restriction
as (2.21).

3. Numerical results

3.1. Preliminaries. In the following examples, we solve (1.3) numerically for 0 ≤ t ≤ T and −L ≤ x ≤ L.
We compare numerical results obtained by the IMEX-RK scheme proposed herein with those obtained by
the explicit scheme of [1]. For each time step ∆t = ∆tn is determined by the formula

∆t

∆x
max
j

∣∣vnj+1/2

∣∣+
∆t

∆x2
max
u

∣∣K ′(u)
∣∣ = Ccfl1

(3.1)

for the explicit scheme and by

∆t

∆x
max
j

∣∣vnj+1/2

∣∣ = Ccfl2 (3.2)

for the IMEX-RK scheme. In the numerical examples we choose Ccfl1
and Ccfl2

in the respective cases as
the largest multiple of 0.05 that yields oscillation-free reference solutions.

For comparison purposes, we compute reference solutions for numerical tests with Mref = 12800 cells with
the IMEX-RK scheme for Examples 1, 2, and 3, and with the first-order scheme of [10] for Example 4 (see
Section 3.4 for a description of that scheme). We compute approximate L1 errors at different times for each
scheme as follows. We denote by (uMj (t))Mj=1 and (uref

j (t))Mref
j=1 the numerical solution at time t calculated

with M and Mref cells, respectively. We assume that R := Mref/M is an integer and compute the projection
of the reference solution ũref,M

j (t), j = 1, . . . ,M , by

ũref,M
j (t) =

1

R

R∑
k=1

uref
R(j−1)+k(t).

The approximate L1 error eM (t) associated with the numerical solution on the mesh with M cells at time t
is then given by

eM (t) :=
1

M

M∑
j=1

∣∣ũref,M
j (t)− uMj (t)

∣∣.
A numerical order of convergence can be calculated from pairs eM/2(t) and eM (t) by

θM (t) := log2

(
eM (t)/e2M (t)

)
.

In our simulations we limit ourselves to the second-order IMEX-RK scheme defined by

D :=
1/2 1/2 0
1/2 0 1/2

1/2 1/2
, D̃ :=

0 0 0
1 1 0

1/2 1/2
.

3.2. Examples 1 and 2. In Examples 1 and 2 we consider the numerical experiment proposed in [1] to
simulate and compare the numerical solution of (1.3). Example 1 corresponds to equation (1.3) where the
initial condition u0 along with the functions W and H respectively are given by

u0(x) =
1√
8π

(
exp(−0.5(x− 3)2) + exp(−0.5(x+ 3)2)

)
, W (x) =

1√
2πσ

exp

(
−|x|

2

2σ

)
, H(u) =

ν

m
um.

In Example 1 we consider the pairs (m, ν) = (1.5, 0.33), (2, 0.48), and (3, 2.6) that cover the cases 0 < m <
2, m = 2, and m > 2, respectively. The corresponding functions K ′(u), that is the nonlinear diffusion
coefficients, for these three cases are plotted in Figure 1. The simulations are run on the computational
domain [−L,L] = [−10, 10]. Numerical solutions for the final times T = 250 and T = 1250 for each of the
three parameter choices, and obtained with a relatively coarse discretization of M = 200 subintervals, are
shown in Figure 2. Table 1 displays the approximate L1 errors, corresponding convergence rates, and CPU
times for each of these pairs of parameters for a number of final times and successive discretizations. The
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u
0 0.05 0.1 0.15 0.2 0.25 0.3

K
'(
u

)

0

0.1

0.2

0.3

0.4

0.5

(m, ν) = (1.5, 0.33)

(m, ν) = (2, 0.48)

(m, ν) = (3, 2.6)

Figure 1. Example 1: nonlinear diffusion functions K ′(u) = uH ′′(u) for H(u) = (ν/m)um

for the indicated pairs (m, ν).

information of Table 1 is plotted in Figure 3 in terms of efficiency, that is, in terms of reduction of numerical
error versus CPU time.

First of all, we observe that for (m, ν) = (1.5, 0.33), the reference solution is smooth while for (m, ν) =
(2, 0.48) and (3, 2.6), the solution has “kinks” at the basis of the “peak” that is forming. Moreover, we observe
that the numerical errors produced by both the IMEX-RK and the explicit schemes roughly reduce at an
observed second-order rate of convergence, which is also the theoretical order of accuracy (both in space and
time). For a given discretization M , the explicit scheme produces significantly smaller approximate errors
than the corresponding IMEX-RK scheme for the cases (m, ν) = (1.5, 0.33) and (m, ν) = (2, 0.48), while for
(m, ν) = (3, 2.6) and M ≥ 400 the error produced by the IMEX-RK scheme are smaller than those of the
explicit scheme. While the results do not favor one or the other scheme in terms of accuracy, CPU times for
the IMEX-RK scheme are substantially smaller than for the explicit scheme. This observation gives rise to
the question of efficiency, that is to which of the schemes turns out to be more efficient in terms of reduction of
error per CPU time. Figure 3 indicates that for (m, ν) = (1.5, 0.33) and (m, ν) = (2, 0.48) the explicit scheme
is most efficient for M ≤ 800 but gained by the IMEX-RK scheme, while for (m, ν) = (3, 2.6), the IMEX-RK
scheme is most efficient in almost all instances. In fact, in light of Figure 1 and the range of solution values
attained the third case is the one that involves the highest values of K ′(u), that is where diffusion is most
dominant and therefore the gain in efficiency by using an IMEX-RK scheme instead of a comparable explicit
scheme is most significant. Related findings have been obtained for systems of convection-diffusion equations
modeling equilibrium chromatography [29].

In Example 2 we consider the same function H as in Example 1 but now choose m = 3 and ν = 1.48.
The functions W and u0 are given by

W (x) =

{
1− |x| if |x| ≤ 1,

0 otherwise,
u0(x) =

{
0.05 if x ∈ [−3, 3],

0 otherwise.

The numerical simulation are run over the computational domain [−6, 6] until final time T = 105. Numerical
results at T = 0 (the initial condition), T = 45, T = 75 and T = 105 are shown in Figure 4. Table 2
provides the corresponding approximate L1 errors, convergence rates, and CPU times, and Figure 5 shows
the efficiency plots for T = 45 and T = 75. First of all, it is interesting to note that the model predicts that
one initial block of “mass” is split into three separate portions of which the middle one disappears later and
two portions remain. For this model, the IMEX-RK scheme produces slightly larger errors but is considerably
faster than the explicit scheme, and therefore turns out significantly more efficient (see Figure 5).
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Figure 2. Example 1: numerical solutions with ∆x = 2L/M , L = 10 and M = 200 for
(top) m = 1.5, ν = 0.33, (middle) m = 2, ν = 0.48, (bottom) m = 3, ν = 2.6 at simulated
time (left) T = 250, (right) T = 1250.

3.3. Example 3. This example represents a slight modification of Example 1, namely we choose W and H
as in Example 1, but we utilize the initial function

u0(x) =
1√
8π

(
exp(−0.2(x+ 7)2) + exp(−0.2x2) + exp(−0.2(x− 7)2)

)
.

Moreover, we consider the pairs of parameter values (m, ν) = (3, 2.6) and (m, ν) = (3, 3) and with a CFL
condition (3.1) with Ccfl1

= 0.5 for the explicit scheme. The numerical results are displayed in Figures 6
and 7, the approximate errors, convergence rates and CPU times are provided in Table 3, and Figure 8
contains the efficiency plots for two of the six end times T for which the errors are measured. According to
Table 3, for (m, ν) = (3, 2.6) the IMEX-RK produces smaller errors (for M ≥ 200) and occupies less CPU
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IMEX-RK Explicit IMEX-RK Explicit
M eM θM cpu [s] eM θM cpu [s] eM θM cpu [s] eM θM cpu [s]

m = 1.5, T = 250 T = 1000
ν = 0.33 100 813.43 — 0.02 90.11 — 0.02 672.99 — 0.14 166.74 — 0.10

200 200.03 2.02 0.12 22.94 1.97 0.11 174.22 1.95 0.69 42.00 1.99 0.60
400 49.15 2.03 0.41 5.82 1.98 1.34 46.98 1.89 3.05 10.84 1.95 7.18
800 12.12 2.02 1.93 1.49 1.96 11.96 13.13 1.84 14.25 2.71 2.00 65.57

1600 2.98 2.03 8.59 0.41 1.88 103.98 3.88 1.76 64.94 0.73 1.89 562.33
T = 1250 T = 1500

100 664.34 — 0.20 166.36 — 0.12 654.96 — 0.24 165.64 — 0.15
200 174.50 1.93 0.93 41.93 1.99 0.80 174.39 1.91 1.16 41.73 1.99 1.01
400 47.18 1.89 4.25 10.87 1.95 9.53 46.60 1.90 5.46 10.72 1.96 11.88
800 13.48 1.81 19.85 2.71 2.00 87.38 13.32 1.81 25.50 2.70 1.99 109.32

1600 4.10 1.72 90.79 0.75 1.86 746.51 4.05 1.72 116.89 0.75 1.85 930.66

m = 2, T = 250 T = 1000
ν = 0.48 100 550.43 — 0.02 52.32 — 0.03 1326.63 — 0.08 170.40 — 0.10

200 125.23 2.14 0.08 53.62 -0.04 0.12 291.96 2.18 0.32 81.76 1.06 0.44
400 33.27 1.91 0.43 4.79 3.49 1.58 69.68 2.07 1.74 7.54 3.44 6.18
800 7.82 2.09 2.11 2.78 0.78 14.43 17.06 2.03 8.42 5.36 0.49 58.24

1600 1.91 2.03 9.47 0.51 2.44 125.89 4.10 2.06 38.53 1.01 2.41 507.48
T = 1250 T = 1500

100 2440.04 — 0.10 351.76 — 0.12 9490.83 — 0.13 900.67 — 0.13
200 503.08 2.38 0.40 139.83 1.33 0.55 1353.28 2.81 0.48 295.33 1.61 0.65
400 123.00 2.03 2.18 8.43 4.05 7.71 308.88 2.13 2.67 23.82 3.63 9.23
800 29.57 2.06 10.52 8.07 0.06 72.78 74.10 2.06 12.60 16.97 0.49 87.23

1600 7.08 2.06 48.32 1.71 2.24 634.09 17.69 2.07 58.52 4.16 2.03 759.88

m = 3, T = 250 T = 1000
ν = 2.6 100 760.70 — 0.03 878.66 — 0.03 6169.47 — 0.11 3103.46 — 0.11

200 205.09 1.89 0.09 265.34 1.73 0.23 534.51 3.53 0.39 2630.90 0.24 0.75
400 84.90 1.27 0.48 147.96 0.84 2.48 100.05 2.42 1.92 1491.90 0.82 9.93
800 27.88 1.61 2.23 32.92 2.17 23.91 25.66 1.96 8.92 431.48 1.79 95.54

1600 8.31 1.75 10.07 10.62 1.63 204.71 12.86 1.00 40.69 102.78 2.07 818.11
T = 1250 T = 1500

100 280.86 — 0.13 7868.90 — 0.13 437.82 — 0.15 239.35 — 0.16
200 113.89 1.30 0.49 4804.94 0.71 0.91 146.85 1.58 0.61 72.66 1.72 1.21
400 46.04 1.31 2.44 1052.02 2.19 12.27 40.12 1.87 3.04 54.92 0.40 16.67
800 14.58 1.66 11.41 149.30 2.82 119.93 17.51 1.20 14.23 11.10 2.31 163.30

1600 5.19 1.49 51.99 29.97 2.32 1040.56 5.20 1.75 64.76 9.93 0.16 1413.58

Table 1. Example 1: approximate L1 errors (eM , figures to be multiplied by 10−6), con-
vergence rates (θM ), and CPU times (cpu).

time than the explicit scheme, while for (m, ν) = (3, 3) the same happens for sufficiently fine discretizations.
Summarizing, we can say that according to Table 3 for M ≥ 400 (but in many runs even for coarser
discretizations) the IMEX-RK scheme is more efficient than the explicit version.

3.4. Example 4. In this example we come back to the one-dimensional aggregation model outlined in
Section 1.2, and present a numerical example of (1.3), (1.4) that is also a solution to the aggregation
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Figure 3. Example 1: efficiency plots: approximate L1 errors versus CPU times for three
pairs (m, ν), corresponding to four simulated times.

equation (1.5). We consider the numerical experiment proposed in [10], and first specify the initial condition

u0(x) =


5 for 0.1 ≤ x ≤ 0.2,

8 for 0.6 ≤ x ≤ 0.7,

7 for 0.8 ≤ x ≤ 0.9,

0 otherwise,

such that C0 = 2. Then we set Φ(q) = −(1− q)2, which ensures that (1.7) recovers (1.5) (with k = 1), and
correspondingly, W (x) = |x|. Moreover, the numerical experiment of [10] stipulates the strongly degenerating
diffusion function

a(u) =

{
0 for u ≤ uc,

a0 for u > uc,
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Figure 4. Example 2: numerical solution for m = 3, ν = 1.48, ∆x = 2L/M with L = 6
and M = 800.

IMEX-RK Explicit IMEX-RK Explicit

M eM θM cpu [s] eM θM cpu [s] eM θM cpu [s] eM θM cpu [s]

T = 30 T = 45

100 969.59 — 0.03 488.36 — 0.03 1080.25 — 0.04 927.04 — 0.05
200 323.50 1.58 0.14 150.69 1.70 0.40 337.41 1.68 0.23 398.01 1.22 0.74
400 101.33 1.67 0.65 71.40 1.08 3.50 142.30 1.25 1.08 133.36 1.58 6.58
800 30.74 1.72 2.94 25.67 1.48 29.96 63.65 1.16 4.89 36.11 1.88 56.38

1600 10.91 1.49 12.40 7.01 1.87 250.92 23.69 1.43 20.63 14.33 1.33 472.33

T = 75 T = 105

100 2504.19 — 0.08 5528.90 — 0.11 1922.98 — 0.12 1343.35 — 0.17
200 456.17 4.46 0.42 2429.61 1.19 1.40 688.71 1.48 0.63 679.48 0.98 2.20
400 472.92 -0.05 1.95 952.62 1.35 12.61 210.39 1.71 2.91 100.70 2.75 20.20
800 245.74 0.94 8.78 337.33 1.50 108.16 71.85 1.55 13.15 66.79 0.59 174.81

1600 99.88 1.30 37.35 117.18 1.53 903.16 20.34 1.82 56.10 7.02 3.25 1495.84

Table 2. Example 2: approximate L1 errors (eM , figures to be multiplied by 10−6), con-
vergence rates (θM ), and CPU times (cpu) for m = 3 and ν = 1.48.

where a0 = 0.1 and uc = 10 is a critical density value.
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Figure 5. Example 2: efficiency plots based on numerical solutions for ∆x = 2L/M , with
L = 6 and M = 100, 200, 400, 800 and 1600.

The numerical scheme for the initial value problem (1.8), analyzed in [10] and which is utilized in this
example to calculate the reference solution, is defined as follows. We first set

q0
j := q0(xj) =

∫ xj

−M
u0(x) dx, (3.3)

and then utilize the explicit marching formula

qn+1
j = qnj −

∆t

∆x

[ (
h(qnj , q

n
j−1)− h(qnj−1, q

n
j )
)

−
(
A

(
qnj+1 − qnj

∆x

)
−A

(
qnj − qnj−1

∆x

))]
, j = 1, . . . ,M, n ∈ N0,

(3.4)

where ∆t and ∆x are subject to the CFL condition

∆t

∆x
max

q∈[0,C0]

∣∣Φ′(q)∣∣+
∆t

∆x2
max
u∈R

∣∣a(u)
∣∣ ≤ 1

2
, (3.5)

and h is the Engquist-Osher flux [35], a monotone numerical flux [36] consistent with Φ that is given by

h(q, r) = Φ(0) +

∫ q

0

max
{

0,Φ′(s)
}

ds+

∫ r

0

min
{

0,Φ′(s)
}

ds.

To recover u from the numerical solution of (1.8) we use the divided difference unj = (qnj+1 − qnj )/∆x which
gives a numerical method for equation (1.7) that provably converges as ∆t→ 0 to the unique entropy solution
of (1.7), (1.4) [10]. Here we employ the aforementioned scheme with Mref = 12800 to calculate a reference
solution to compare the performances of the IMEX-RK and explicit schemes.

Numerical results are shown in Figure 9. The approximate errors, convergence rates and CPU times are
displayed in Table 4, and Figure 10 contains the corresponding efficiency plots. The results of Figure 9 alert
to the fact that solutions of this model are in general discontinuous due to the strongly degenerate nature
of the diffusion and the imposition of discontinuous initial data. In this case the ingredients of the equation
have been designed such that all “mass” (“animals”) move to the center of mass and eventually form one
single group (“herd”). We observe slight “kinks” in the solution profiles near u = uc = 10. Above this value
of density the repulsive effect of degenerate diffusion sets on, and it is precisely this effect which prevents
the model from forming unbounded densities (at least, in finite time [10]). On the other hand, it is well
known that in the presence of discontinuities the observed order of convergence is much lower than its formal
(in this case, second) order of accuracy, as can bee seen in Table 4. Nevertheless, it appears that both the
solution of the IMEX-RK and the explicit scheme converge to the reference solution produced by (3.3), (3.4),
and the IMEX-RK occupies only a fraction of the CPU time in comparison with the explicit scheme (for
instance, less than 1% for M = 1600), and therefore turns out more efficient than the explicit scheme, as is
reconfirmed by Figure 10.
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Figure 6. Example 3: numerical solution for m = 3, ν = 2.6, ∆x = 2L/M with L = 15,
and M = 800.

4. Conclusions

We have shown that a particular IMEX-RK scheme represents a serious alternative to the explicit scheme
introduced in [1] for the efficient numerical solution of the one-dimensional nonlinear nonlocal equation (1.3).
At a fixed spatial discretization the explicit scheme is more accurate in most settings. However, the gain in
CPU time (due to the less restrictive CFL condition) by the IMEX-RK scheme is in most circumstances,
and in particular for fine discretizations, so significant that the IMEX-RK scheme turns out most efficient in
terms of error reduction per CPU time. In this respect we mention that higher-order IMEX-RK schemes have
also been tested, but with less significant gains of accuracy at least for the moderately fine discretizations
used in this work. Of course, the gain of efficiency attainable by an IMEX-RK scheme depends on the
relative magnitude of the diffusion versus convection terms, a parameter that we did not vary herein since
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Figure 7. Example 3: numerical solution for m = 3, ν = 3, ∆x = 2L/M with L = 15, and
M = 800.

we insist on adopting the test cases of [1] (Examples 1 to 3) and [10] (Example 4). Future research will
furthermore address the case of two or three space dimensions, for which the extension of the IMEX-RK
approach is straightforward (apart from the more involved structure of the algebraic systems to be solved).
That said, we mention that the scenario of Example 4, and in particular the convenient computation of a
reference solution by solving a local PDE, does not have a counterpart in two or three space dimensions
since the aggregation model, outlined in Section 1.2, cannot be extended in a straightforward way to several
dimensions. This observation has been our prime motivation to analyze the one-dimensional case separately.
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IMEX-RK Explicit IMEX-RK Explicit
M eM θM cpu [s] eM θM cpu [s] eM θM cpu [s] eM θM cpu [s]

m = 3, T = 2000 T = 2200
ν = 2.6 100 25373.15 — 0.38 21792.46 — 0.63 28245.49 — 0.42 55270.59 — 0.70

200 4019.83 2.66 2.00 21466.65 0.02 8.83 16656.50 0.76 2.21 55102.84 0.00 9.67
400 1013.94 1.99 9.86 2628.76 3.03 91.53 5490.79 1.60 10.89 18401.83 1.58 100.24
800 227.43 2.16 45.09 1029.62 1.35 801.49 1289.15 2.09 49.89 6699.83 1.46 875.41

1600 76.02 1.58 194.65 267.19 1.95 6468.44 416.88 1.63 214.64 1650.75 2.02 7044.59
T = 2400 T = 2600

100 27600.67 — 0.46 80217.69 — 0.76 2900.47 — 0.50 97113.69 — 0.83
200 11820.57 1.22 2.42 80035.00 0.00 10.51 2046.62 0.50 2.65 97071.21 0.00 11.36
400 3459.49 1.77 11.94 11016.22 2.86 108.51 806.98 1.34 13.06 5338.06 4.18 118.52
800 765.42 2.18 54.73 4172.68 1.40 950.33 189.64 2.09 59.89 1459.04 1.87 1043.83

1600 244.95 1.64 235.22 1060.75 1.98 7651.39 65.09 1.54 257.04 327.07 2.16 8422.95
T = 2700 T = 2900

100 506.29 — 0.52 99018.36 — 0.86 578.80 — 0.56 99364.83 — 0.92
200 296.52 0.77 2.76 98926.90 0.00 11.78 160.35 1.85 2.98 99273.19 0.00 12.63
400 132.14 1.17 13.62 1177.50 6.39 125.50 77.46 1.05 14.73 86.15 10.17 140.78
800 32.99 2.00 62.44 287.70 2.03 1107.61 20.00 1.95 67.57 16.84 2.36 1241.75

1600 11.32 1.54 267.94 62.18 2.21 8938.30 9.20 1.12 290.11 5.94 1.50 10008.14

m = 3, T = 400 T = 600
ν = 3 100 2360.54 — 0.07 1234.68 — 0.12 12307.41 — 0.11 3938.74 — 0.18

200 588.13 2.00 0.37 507.41 1.28 1.63 1976.95 2.64 0.57 1351.61 1.54 2.45
400 192.11 1.61 1.77 126.38 2.01 16.78 475.35 2.06 2.71 503.28 1.43 25.19
800 58.33 1.72 8.34 53.63 1.24 146.45 138.80 1.78 12.65 171.59 1.55 219.82

1600 19.63 1.57 35.31 13.49 1.99 1201.02 43.02 1.69 53.03 50.80 1.76 1795.61
T = 800 T = 1000

100 9829.85 — 0.14 12258.41 — 0.23 8640.38 — 0.18 8186.72 — 0.28
200 3098.79 1.67 0.74 3561.14 1.78 3.18 2138.93 2.01 0.94 2719.87 1.59 3.98
400 800.36 1.95 3.62 1237.34 1.53 32.60 499.20 2.10 4.55 982.36 1.47 40.89
800 226.01 1.82 16.95 407.87 1.60 284.42 135.84 1.88 21.40 329.44 1.58 357.06

1600 68.59 1.72 71.10 119.90 1.77 2317.33 40.22 1.76 89.83 97.92 1.75 2904.90
T = 1000 T = 1300

100 6613.15 — 0.20 8544.06 — 0.31 834.95 — 0.24 2942.87 — 0.38
200 1750.78 1.92 1.03 2650.78 1.69 4.39 295.21 1.50 1.23 797.33 1.88 5.42
400 398.99 2.13 5.02 936.43 1.50 45.20 78.21 1.92 6.03 258.01 1.63 56.12
800 106.99 1.90 23.63 311.77 1.59 394.82 20.99 1.90 28.32 85.78 1.59 490.56

1600 31.13 1.78 99.26 92.82 1.75 3210.16 6.13 1.78 118.78 25.74 1.74 3990.47

Table 3. Example 3: approximate L1 errors (eM , figures to be multiplied by 10−6), con-
vergence rates (θM ), and CPU times (cpu).
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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