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ON ENTROPY STABLE SCHEMES FOR DEGENERATE PARABOLIC

MULTISPECIES KINEMATIC FLOW MODELS

RAIMUND BÜRGERA, PAUL E. MÉNDEZA, AND CARLOS PARÉSB

Abstract. Entropy stable schemes for the numerical solution of initial value problems of nonlinear,
possibly strongly degenerate systems of convection-diffusion equations were recently proposed in
[S. Jerez, C. Parés, Entropy stable schemes for degenerate convection-diffusion equations, SIAM J.
Numer. Anal. vol. 55 (2017) pp. 240–264]. These schemes extend the theoretical framework by
[E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I,
Math. Comp. vol. 49 (1987) pp. 91–103] to convection-diffusion systems. They arise from entropy
conservative schemes by adding a small amount of viscosity to avoid spurious oscillations. It is
demonstrated that this formulation can naturally be extended to initial-boundary value problems
with zero-flux boundary conditions in one space dimension, including an explicit bound on the
growth of the total entropy. The main condition for feasibility of entropy conservative or stable
schemes for a given model is that the corresponding first-order system of conservation laws possesses
a convex entropy function and corresponding entropy flux, and that the diffusion matrix multiplied
by the inverse of the Hessian of the entropy is positive semidefinite. These assumptions are satisfied
by certain diffusively corrected multiclass kinematic flow models of arbitrary size that describe traffic
flow or the settling of dispersions and emulsions, where the latter application gives rise to zero-flux
boundary conditions. Numerical examples illustrate the behavior and accuracy of entropy stable
schemes for these applications.

1. Introduction

1.1. Scope. This work concerns numerical schemes for systems of degenerate convection-diffusion
equations in one space dimension of the form

ut + f(u)x =
(
K(u)ux

)
x
, x ∈ I ⊂ R, t ∈ R+, (1.1)

where I = R or I is a bounded interval, u = (u1, . . . , uN )T : I × R+ → Ω ⊂ RN is the vector
of unknown functions of position x and time t, f = (f1, . . . , fN )T is a given flux vector, and
K(u) ∈ RN×N is a semipositive definite diffusion matrix defined in Ω. We allow that K(u) = 0
on a set of u-values of positive N -dimensional measure, so (1.1) is, in general, strongly degenerate.
Equation (1.1) is equipped with the initial condition

u(x, 0) = u0(x), x ∈ I; (1.2)
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if I is bounded, that is I = [0, L] with L > 0, then we impose, in addition, the zero-flux boundary
condition (

f(u)−K(u)ux

)∣∣
x=0

= 0,
(
f(u)−K(u)ux

)∣∣
x=L

= 0. (1.3)

For the problem (1.1), (1.2), whose solutions are in general discontinuous, Jerez and Parés [1]
devised so-called entropy stable finite difference schemes. These schemes extend the concept of
entropy stable methods for systems of conservation laws due to Tadmor [2]. Such schemes capture
correctly the appearance and propagation of shocks but may induce strong oscillations close to
them, so some artifical viscosity needs to be added in such a way that the resulting numerical
becomes entropy stable (i.e., the entropy satisfies a system of differential inequalities arising from a
spatially discrete but continuous in time entropy inequality). It was shown in [1] that a necessary
condition for such a method to be feasible for (1.1) is that the first-order system of conservation
laws

ut + f(u)x = 0 (1.4)

has a convex entropy function η = η(u) and entropy flux g = g(u), for which the entropy inequality

η(u)t + g(u)x ≤ 0

is valid (in the sense of distributions) for solutions of (1.4) [3]. It is well known that for N ≥ 3,
the existence of an entropy pair (η, g) for the first-order system (1.4) is an exceptional property
since the gradient of g, denoted by gu and which we assume to be a column vector, the gradient
of the entropy function, ηu, and the Jacobian of f , denoted by fu, must satisfy the compatibility
condition

gT
u = ηT

ufu. (1.5)

Such an entropy pair exists, however, in the exceptional case fu is symmetrizable. In fact, the
existence of an entropy pair and the computation of an entropy-conservative flux is a general
limitation for the application of entropy-stable methods in the context of systems of conservation
laws. Nevertheless, there are many real real-world models for which entropy pairs and entropy
conservative numerical fluxes are available, including Euler and related systems, shallow water and
related systems, and some multiphase fluid models (see, e.g., [4–8]). In fact, an application to the
SW model was considered in [1].

As was derived in [1], the specific limitation in the case of problems with a diffusion term is
the additional requirement of positive definiteness of the matrix in entropy variables. Thus, the
class of convection-diffusion problems to which the scheme developed in [1] can actually be applied,
seems fairly narrow, but it does include a class of diffusively corrected applicative kinematic flow
models [9–11], for instance of vehicular traffic or of polydisperse sedimentation. These models
can be expressed by (1.1) on a bounded interval I with an arbitrarily large number N of species.
It is therefore the purpose of this paper to demonstrate that the entropy stable schemes of [1]
can successfully be applied to these models, under modifications due to the presence of boundary
conditions but maintaining the principal property of entropy stability.

1.2. Related work. To put this paper further into the proper perspective, we mention that a large
number of references to the well-posedness and numerical analysis of (1.1) are provided in [1]. How-
ever, the existence and uniqueness of entropy solutions of (1.1), and the convergence of numerical
methods have so far only be established in the scalar case (N = 1); important contributions in this
direction include [12–18] (this list is far from being complete). This state of matters is in agreement
with the well-known lack of corresponding results for general first-order systems of conservation
laws (1.4) considering that (1.1) reduces to (1.4) wherever K = 0. That said, we mention that
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degenerate convection-diffusion systems (1.1) arise in a number of applications such as multiclass
vehicular traffic [9–11, 19–21], settling of polydisperse solid-liquid suspensions [10, 11, 22, 23], set-
tling of dispersions of droplets and emulsions [24–26], and chromatography [27,28]. In particular, in
these applications systems of convection-diffusion equations (rather than scalar equations) arise be-
cause one wishes to describe the segregation of different classes of units of the disperse phase (cars,
particles, droplets, etc.), with the consequence that the number of species N in these applications
can be arbitrarily large. These applications motivate the interest in developing efficient solvers
for the numerical solution of (1.1), (1.2) or (1.1)–(1.3) even if there is no closed well-posedness
theory for these systems. Common numerical schemes are based on a space discretization which
can be finite volumes or discontinuous Galerkin methods [29], while the time discretization could
be fully explicit or IMEX (see for example [10, 11, 26]). On the explicit side, a well-known scheme
is the Kurganov-Tadmor (KT) central scheme, improved later by the related Kurganov-Tadmor
high-resolution central difference schemes [30]. The original KT scheme was proposed alongside
high-order convex combinations of Runge Kutta time stepping. The latter concept was developed
further on, resulting in the so called Strong Stability preserving Runge-Kutta Methods (SSPRK).
These schemes allow for a high-order time discretization while preserving the strong stability prop-
erties of first-order Euler time stepping, which makes them attractive for solving hyperbolic partial
differential equations by the method of lines [31].

1.3. Outline of the paper. The remainder of this paper is organized as follows. In Section 2
we summarize from [1] the construction of entropy stable schemes for (1.1) but extending the
discussion to the zero-flux initial-boundary value problem (IBVP) (1.1)–(1.3). Specifically, we
discuss in Section 2.1 properties of the continuous problem, and motivate a global entropy inequality
for solutions of (1.1)–(1.3). With the goal is to design numerical methods for (1.1), we treat in
Section 2.2 the spatial discretization of that equation in the interior of the domain and derive an
entropy-conservative numerical flux. The resulting semi-discrete scheme is equipped with a small
amount of extra viscosity to prevent oscillations, as is detailed in Section 2.3. Then, in Section 2.4,
we outline the numerical scheme that arises from the previous discussion if we wish to solve the
zero-flux IBVP (1.1)–(1.3). Results include a time-continuous, spatially discrete entropy inequality.
The treatment of Sections 2.2 to 2.4 presupposes that an entropy conservative numerical flux is
given, for which we provide in Section 2.5 a sample definition that follows Tadmor [2], and which
is utilized in the numerical examples. In Section 3 we outline two applicative models to which
the entropy stable schemes are applied, namely in Section 3.1 a diffusively corrected multi-class
version of the well-known Lighthill-Whitham-Richards model (DCMCLWR model) that gives rise
to the initial value problem (1.1), (1.2), and in Section 3.2 a model of settling of dispersions of
droplets and colloidal particles that motivates the IBVP (1.1)–(1.3). Both problems are introduced
along with the corresponding entropy conservative numerical flux. Numerical examples for both
applicative models are introduced in Section 4, starting with a description of the time discretization
and the computation of approximate numerical errors for all cases (in Section 4.1). Examples 1 to 4
(Sections 4.2 to 4.5) deal with the DCMCLWR traffic model, and Examples 5 and 6 (Sections 4.6
and 4.7) are related to the settling model. Conclusions of this study are provided in Section 5.

2. Entropy stable schemes

2.1. Preliminaries. If there exists a vector-valued function K : Ω → RN such that Ku = K,
where Ku denotes the Jacobian of the function K, then the system (1.1) can be written in the form

ut + f(u)x = K(u)xx.
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This is always the case for scalar equations if we define

K(u) :=

∫ u

0
K(ξ) dξ.

Let us suppose that the system of conservation laws obtained by dropping the viscous term, i.e.,
(1.4), is equipped with an entropy pair (η, g) consisting of an entropy function η and an entropy
flux g such that η, g : Ω → R, η is strictly convex, and (1.5) holds. We then define the so-called
entropy variables v as in [32], namely v(u) := ηu(u). Then, in order to study the evolution of
the entropy for a solution of (1.1), let us first express the diffusion term in terms of the entropy
variables. Clearly, (

K(u)ux

)
x

=
(
K̂(v)vx

)
x
, (2.1)

where we define

K̂(v) := Kη−1
u,u, (2.2)

where ηu,u is the Hessian matrix of η. The matrix on the left-hand side of (2.1) is evaluated at
u = η−1

u (v). Once the diffusion term rewritten, we multiply (1.1) by the vector of entropy variables
v to obtain

0 = vTut + vTfu(u)ux − vT
(
K̂(v)vx

)
x

= η(u)t + g(u)x −
(
vTK̂(v)vx

)
x

+ vT
x K̂(v)vx.

Therefore, if the matrix K̂ is positive semidefinite, i.e.

wTK̂(v)w ≥ 0 for all w ∈ RN , (2.3)

the following entropy inequality is satisfied:

η(u)t + g(u)x −
(
vTK̂(v)vx

)
x
≤ 0. (2.4)

In the case that I = R and we consider the initial value problem (1.1), (1.2) under the additional
assumption that u→ 0 when x→ ±∞, then the total entropy decreases, i.e.,

d

dt

∫
R
η(u) dx ≤ 0.

(This also includes the case of a finite interval I with solution u that is compactly supported in I at
all times.) On the other hand, considering the IBVP (1.1)–(1.3) and assuming that u and v have
well defined traces at the boundaries x = 0 and x = L, which we denote by u(0, t) and u(L, t),
as well as that the boundary condition (1.3) is well defined in the sense of traces, we can argue
as follows. Integrating (2.4) over I, utilizing that K̂(v)vx = K(u)ux and the boundary condition
(1.3), we get

d

dt

∫
R
η(u) dx+ g

(
u(L, t)

)
− g
(
u(0, t)

)
≤
(
vTK̂(v)vx

)∣∣
x=L
−
(
vTK̂(v)vx

)∣∣
x=0

=
(
vTK(u)ux

)∣∣
x=L
−
(
vTK(u)ux

)∣∣
x=0

= v(L, t)Tf
(
u(L, t)

)
− v(0, t)Tf

(
u(0, t)

)
.

In terms of the so-called entropy potential function ϕ := vTf − g, we get

d

dt

∫
R
η(u) dx ≤ ϕ

(
u(L, t)

)
− ϕ

(
u(0, t)

)
. (2.5)

Note that the function ϕ, and therefore the right-hand side of (2.5), do not depend on the particular
choice of the diffusion matrix K(u).
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Remark 2.1. We emphasize that the requirement that the matrix K̂ defined by (2.2) should be
positive semidefinite is the most severe restriction of the applicability of the approach. In fact, for
a general positive semidefinite matrix K = K(u), the product Kη−1

u,u is, in general, not positive
semidefinite unless K and η−1

u,u or equivalently, K and ηu,u possess the same set of eigenvectors.
That latter property is, however, valid if the diffusion term can be expressed as K(u) = k(u)I,
where k(u) ≥ 0 is a scalar function and I is the N ×N identity matrix. Then

K̂(v) = k(u)η−1
u,u (2.6)

is indeed positive semidefinite, since ηu,u is positive definite. Therefore, in this case, (2.4) holds.

2.2. Entropy conservative numerical method. We first consider the case of the initial-value
problem (1.1), (1.2) on a standard spatial mesh defined by cells Ij := [xj−1, xj), where xj = j∆x,
∆x = L/M for some integer M , and uj(t) denotes the cell average of u(·, t) on Ij . We will first
discretize (1.1) in the interior of the computational domain, and handle the boundary conditions
in Section 2.4. To this end, we first consider an entropy-conservative (EC) numerical flux F j+1/2,
i.e. a numerical flux satisfying

[v]Tj+1/2F j+1/2 = [ϕ]j+1/2, (2.7)

where we employ the following notation to denote the average and jump of any variable ω:

[ω]j+1/2 := ωj+1 − ωj , ω̄j+1/2 := (ωj + ωj+1)/2.

Tadmor [2] showed that if the numerical flux F j+1/2 satisfies (2.7), then the solution of the semidis-
crete method for (1.4),

u′j(t) = − 1

∆x
(F j+1/2 − F j−1/2),

where ·′ ≡ d · /dt satisfies the equality

η(u)′j(t) = − 1

∆x
(Gj+1/2 −Gj−1/2)

for some numerical entropy flux Gj+1/2 consistent with g. Once an EC numerical flux (for (1.4))
has been chosen, we propose the following semidiscrete method for (1.1):

u′j(t) = − 1

∆x

(
F j+1/2 − F j−1/2

)
+

1

∆x2

(
K̂j+1/2[v]j+1/2 − K̂j−1/2[v]j−1/2

)
, (2.8)

where
K̂j+1/2 = K̂(v̄j+1/2). (2.9)

Let us show that a semidiscrete counterpart of (2.4) is satisfied. Multiplying (2.8) from the left by
vT
j yields

η(u)′j(t) = − 1

∆x
vT
j (F j+1/2 − F j−1/2) +

1

∆x2
vT
j

(
K̂j+1/2[v]j+1/2 − K̂j−1/2[v]j−1/2

)
.

The following identities are obtained by straightforward algebraic manipulations:

vT
j F j+1/2 = v̄T

j+1/2F j+1/2 −
1

2
[v]Tj+1/2F j+1/2,

vT
j F j−1/2 = v̄T

j−1/2F j−1/2 +
1

2
[v]Tj−1/2F j−1/2,

vT
j K̂j+1/2[v]j+1/2 = v̄T

j+1/2K̂j+1/2[v]j+1/2 −
1

2
[v]Tj+1/2K̂j+1/2[v]j+1/2,

vT
j K̂j−1/2[v]j−1/2 = v̄T

j−1/2K̂j−1/2[v]j−1/2 +
1

2
[v]Tj−1/2K̂j−1/2[v]j−1/2.

(2.10)
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From (2.7) we now conclude that

vT
j

(
F j+1/2 − F j−1/2

)
= v̄T

j+1/2F j+1/2 − v̄T
j−1/2F j−1/2 −

1

2

(
[ϕ]j+1/2 + [ϕ]j−1/2

)
= v̄T

j+1/2F j+1/2 − v̄T
j−1/2F j−1/2 + ḡj+1/2 − ḡj−1/2

− (vTf)j+1/2 + (vTf)j−1/2,

while in light of (2.3) we get

vT
j

(
K̂j+1/2[v]j+1/2 − K̂j−1/2[v]j−1/2

)
≤ v̄T

j+1/2K̂j+1/2[v]j+1/2 − v̄T
j−1/2K̂j−1/2[v]j−1/2. (2.11)

We arrive at the semi-discrete entropy inequality

η(u)′j(t) +
1

∆x
(Gj+1/2 −Gj−1/2)

− 1

∆x2

(
v̄T
j+1/2K̂j+1/2[v]j+1/2 − v̄T

j−1/2K̂j−1/2[v]j−1/2

)
≤ 0,

(2.12)

where the following numerical entropy flux is obviously consistent with (2.4):

Gj+1/2 = ḡj+1/2 + v̄T
j+1/2F j+1/2 − (vTf)j+1/2. (2.13)

2.3. Additional numerical diffusion. In regions where the diffusion matrix K vanishes, the
numerical methods (2.8) or (2.22) reduce to entropy conservative methods whose solutions may
exhibit strong oscillations near discontinuities. So to prevent these oscillations some extra numerical
diffusion has to be added, either in conservative variables or in entropy variables. Hence the
complete scheme is given by

u′j(t) = − 1

∆x

(
F j+1/2 − F j−1/2

)
+

1

∆x2

(
K̂j+1/2[v]j+1/2 − K̂j−1/2[v]j−1/2

)
+

ε

∆x2

(
[v]j+1/2 − [v]j−1/2

)
,

(2.14)

where we choose the extra viscosity

ε = α∆x (2.15)

with a suitable constant α > 0.

2.4. Discretization of the initial-boundary value problem with zero-flux boundary con-
ditions. The zero-flux IBVP (1.1)–(1.3) is discretized in space by the following variant of (2.14):

u′j(t) = − 1

∆x
(J j+1/2 − J j−1/2), j = 1, . . . ,M, (2.16)

where we implement (1.3) by setting

J j+1/2 =

F j+1/2 −
1

∆x

(
(K̂ + α∆xI)[v]j+1/2

)
for j = 1, . . . ,M − 1,

0 for j = 0 and j = M .
(2.17)

For the analysis of the entropy inequality let us again suppose that α = 0. Then the scheme (2.16),
(2.17) satisfies the semi-discrete entropy inequality (2.12) for j = 2, . . . ,M −1. On the other hand,
for j = 1 we obtain by calculations similar to (2.10)–(2.11), and utilizing (2.7) for j = 1, from

η(u)′1(t) +
1

∆x
vT

1 F 3/2 −
1

∆x2
vT

1 K̂3/2[v]3/2 = 0
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the inequality

η(u)′1(t) +
1

∆x

(
v̄T

3/2F 3/2 −
1

2
[ϕ]3/2

)
− 1

∆x2
v̄T

3/2K̂3/2[v]3/2 ≤ 0.

A straightforward calculation and taking into account (2.13) for j = 1 reveal that

v̄T
3/2F 3/2 −

1

2
[ϕ]3/2 = G3/2 − g1 + vT

1 f1 = G3/2 + ϕ
(
u1(t)

)
,

hence we obtain

η(u)′1(t) +
1

∆x

(
G3/2 + ϕ

(
u1(t)

))
− 1

∆x2
v̄T

3/2K̂3/2[v]3/2 ≤ 0. (2.18)

For j = M we deduce by analogous arguments from

η(u)′M (t)− 1

∆x
vT
MFM−1/2 +

1

∆x2
vT
MK̂M−1/2[v]M−1/2 = 0

the inequality

η(u)′M (t)− 1

∆x

(
GM−1/2 + ϕ

(
uM (t)

))
+

1

∆x2
v̄T
M−1/2K̂M−1/2[v]M−1/2 ≤ 0. (2.19)

Let us now define

η(u)tot(t) := ∆x
M∑
j=1

η(u)j(t).

Then, summing (2.18), (2.12) for j = 2, . . . ,M − 1, and (2.19), and multiplying the result by ∆x,
we obtain the inequality

η(u)′tot(t) ≤ ϕ
(
uM (t)

)
− ϕ

(
u1(t)

)
, (2.20)

which is a discrete analogue of (2.5).

2.5. Construction of an entropy conservative (EC) numerical flux. Following Tadmor [2],
we may obtain an entropy conservative (EC) numerical flux by solving the following integral:

F j+1/2 =

∫ 1

0
f
(
u (wj + s (wj+1 −wj))

)
ds. (2.21)

Remark 2.2. An alternative way of constructing entropy stable schemes could be the following.
Suppose that, given uL and uR, there exists an approximation of ηu,u, denoted by H(uL,uR),
that satisfies the Roe-like property vR − vL = H(uL,uR)(uR − uL). We may then consider the
numerical method

u′j(t) = − 1

∆x

(
F j+1/2 − F j−1/2

)
+

1

∆x2

(
K̂j+1/2[u]j+1/2 − K̂j−1/2[u]j−1/2

)
, (2.22)

where Kj+1/2 = K̂j+1/2Hj+1/2. Here, K̂j+1/2 is given by (2.9) and Hj+1/2 = H(uj ,uj+1). The
equality

Kj+1/2[u]j+1/2 = K̂j+1/2[v]j+1/2

allows one to prove the entropy inequality (2.12) reasoning as in the previous case.



8 BÜRGER, MÉNDEZ, AND PARÉS

3. Applicative models

3.1. A diffusively corrected multi-class traffic model (DCMCLWR model). We consider
the system (1.1) with a flux function defined by

f(u) = V (u)
(
vmax

1 u1, . . . , v
max
N uN )T, (3.1)

where vmax
i is the preferential (maximum) velocity of species i (driver class i); u = u1 + · · ·+ uN is

the total density; and V is a hindrance function that is usually assumed to satisfy

V (0) = 1, V (umax) = 0, V ′(u) < 0 for 0 < u < umax,

where umax is a maximum density. We assume, furthermore, that vmax
1 > vmax

2 > · · · > vmax
N .

Under these assumptions on f , the first-order system (1.4) corresponds to the multiclass extension,
introduced in [19,33], of the well-known Lighthill-Whitham-Richards (LWR) single-class kinematic
traffic model [34,35]. An entropy pair (η, g) for this multiclass model is given by [20]

η(u) =

N∑
i=1

ui(log(ui)− 1)

vmax
i

, g(u) = V (u)
N∑
i=1

ui log(ui)− V(u), (3.2)

where V(u) is any primitive of V (u). Using v(u) := ηu(u) (see Section 2.1) we then obtain the
entropy variables w = (w1, . . . , wN )T given by

wi =
log(ui)

vmax
i

⇔ ui = exp(wiv
max
i ), i = 1, . . . , N.

In addition, the following notation will be used:

w :=
N∑
i=1

exp(vmax
i wi).

Notice that the transformation u→ w is one-to-one from (0,∞)N to RN , but is not defined when
ui = 0.

Now we associate the behavior of drivers with an anticipation distance Lmin. Then the reaction
of a driver depends on the function pi(x, t) := u(x+Lmin, t). Using a Taylor expansion of V (pi(x, t))
around u(x, t), we obtain

V (pi(x, t)) = V (u) + V ′(u)(Lmin∂xu) +O(L2
min).

Neglecting the O(L2
min) term and inserting the remaining expression into (1.1), we have

∂tui(x, t) + ∂x(ui(x, t)v
max
i V (u)) = ∂x

(
−LminV

′(u)ui(x, t)v
max
i ∂xu(x, t)

)
.

To further simplify the model we remove the dependencies on individual driver classes. Hence, we
propose to use the semipositive definite diffusion matrix

K(u) = β(u)I, (3.3)

where I denotes the N ×N identity matrix and β(u) ≥ 0 is a scalar function. Since we prefer to
work in entropy variables, following (2.6), the diffusion matrix is defined as

K̂(v) = K(u)ηu,u(u)−1 = β(w) diag
(
vmax

1 exp(vmax
1 w1), . . . , vmax

N exp(vmax
N wN )

)
. (3.4)

For this example we will use the hindrance function V (u) = 1−u due to Greenshields [36]. Replacing
this function in (3.1) and solving (2.21), we get the entropy stable numerical flux

F j+1/2 = (F1,j+1/2, . . . , FN,j+1/2)T, (3.5)
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where

Fi,j+1/2 = vmax
i

(
uj+1,i − uj,i

log(uj+1,i)− log(uj,i)
−

N∑
k=1

uj+1,kuj+1,i − uj,kuj,i
log(uj+1,kuj+1,i)− log(uj,kuj,i)

)
, i = 1, . . . , N.

(3.6)

Equations (3.4)–(3.6) complete the definition of the semi-discrete numerical scheme (2.14).

Remark 3.1. In order to get rid of the singularity of the entropy variables when one of the terms
in the log differences in (3.6) is zero or the difference is zero, we use the following third-order
approach:

log(u)− log(v) ≈ u− v
0.5(u+ v)

.

An alternative stable numerical algorithm used to compute the logarithmic mean when u ≈ v is
given in [37, App. B] and will be used in the second application problem.

Remark 3.2. Although we considered other forms for the hindrance function, the integral (2.21) it
is difficult to compute in general or can result in a numerically unstable flux [30]. Indeed equation
(2.21) results in a closed form only for a limited selection of functions, such as functions of the
form V (u) = (1 − u)n with n an integer. We are aware that the development of entropy stable
flows for more general forms of flow functions in multispecies kinematic flow models needs more
extensive study.

3.2. Settling of dispersions of droplets and colloidal particles. The settling of a dispersion
of droplets or that of a suspension of colloidal solid particles dispersed in a fluid can be modeled
by system of convection-diffusion equations of the form (1.1) for I = [0, L], where t is time, x is
depth, and u(x, t) is the vector of volume fractions of particles ui of class i, i = 1, . . . , N [26]. The
problem (1.1), (1.2) is completed with the zero-flux boundary condition (1.3).

Particles are characterized by their diameter di and settling velocities v1 > v2 > · · · > vN .
Moreover, we assume that the flux vector f(u) has the form

f(u) = V (u)(v1u1, . . . , vNuN )T,

where again u := u1 + · · ·+ uN . According to [25], the Stokes terminal velocities vi are given by

vi =
(ρd − ρc)gd

2
i

18µc
, i = 1, . . . , N,

where ρ and µ, respectively, denote density and viscosity, and the indices d and c respectively, refer
to the disperse or continuous phase, and in this formula g = 9.81 m/s2 is the acceleration of gravity.
A common choice for the so-called hindered settling function V (u) is given by Richardson-Zaki [38]
expression:

V (u) =

{
(1− u)nRZ if u ≤ 1,

0 if u > 1.
(3.7)

The diffusion matrix is again defined by (3.3), where β(u) = D0V (u) for some constant D0 > 0.
For the numerical examples we choose nRZ = 2, following the same procedure as in the previous
application, the numerical diffusion is given by (3.4) and the numerical flux function, obtained from
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(2.21), is now given by (3.5) with

Fi,j+1/2 = vmax
i

(
uj+1,i − uj,i

log(uj+1,i)− log(uj,i)
− 2

N∑
k=1

uj+1,kuj+1,i − uj,kuj,i
log(uj+1,kuj+1,i)− log(uj,kuj,i)

+
N∑
k=1

u2
j+1,kuj+1,i − u2

j,kuj,i

log(u2
j+1,kuj+1,i)− log(u2

j,kuj,i)

+

N∑
k,l=1
k 6=l

uj+1,kuj+1,luj+1,i − uj,kuj,luj,i
log(uj+1,kuj+1,luj+1,i)− log(uj,kuj,luj,i)

)
, i = 1, . . . , N.

(3.8)

For the computation of the logarithmic mean we use the numerically stable procedure described by
Ismail and Roe [37, Appendix B].

4. Numerical examples

4.1. Preliminaries. For the time integration in all examples, we use a second-order strong stability
preserving Runge-Kutta scheme (SSPRK2 or also known as Heun’s method), i.e. for a given a
spatial discretization h(u), the integration scheme for the system u′(t) = h(u) is given as follows,
where we assume that we wish to advance the solution from un ≈ u(tn) to un+1 ≈ u(tn+1), where
tn+1 = tn + ∆t:

u(1) = un + ∆th(un),

u(2) = u(1) + ∆th(u(1)),

un+1 =
1

2
(un + u(2)), n = 0, 1, 2, . . . .

We choose the time step ∆t at each iteration tn according to the following CFL condition:

∆t

∆x
max

1≤j≤M
ρ(fu(un

j )) +
∆t

2∆x2
max

1≤j≤M
ρ(K(un

j )) = CCFL (4.1)

where ρ(·) is the spectral radius. In all cases, we calculate the approximate total L1 error at a
given time t as follows. We assume that the spatial computational domain is subdivided into M
equal-sized cells of width ∆x, and that we calculate approximate errors by utilizing a reference
solution defined on a mesh with Mref > M cells, where we assume that R := Mref/M is an integer.
Then we calculate the projection of the reference solution onto the coarser grid,

ũref
j,i (t) =

1

R

R∑
k=1

uref
R(j−1)+k,i(t), j = 1, . . . ,M, i = 1, . . . , N, (4.2)

ans then calculate the total approximate total L1 error by summing the corresponding errors of
each species, that is,

etot
M =

1

M

N∑
i=1

M∑
j=1

∣∣ũref
j,i (t)− uMj,i(t)

∣∣. (4.3)

The corresponding (approximate) convergence rate between successive grids with discretizationsM/2
and M is given by

θM := log2(etot
M/2/e

tot
M ). (4.4)
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Figure 1. Example 1 (traffic model, non-degenerate diffusion, N = 4): (left) initial
condition (4.6), (right) reference numerical solution at simulated time t = 0.1 h
obtained by the EC scheme with α = 1.5 and Mref = 12800.

Figure 2. Example 1 (traffic model, non-degenerate diffusion, N = 4): numerical
solution at simulated time t = 0.1 h obtained by the entropy stable scheme with
M = 100 and (left) with zero extra viscosity, (right) with extra viscosity (2.15) with
α = 1.5.

4.2. Example 1 (traffic model, non-degenerate diffusion, N = 4). First, we test the en-
tropy conserving scheme on a regular grid. We consider a circular road of length L = 10 mi
and N = 4 driver classes with the velocities vmax

1 = 60 mi/h, vmax
2 = 55 mi/h, vmax

3 = 50 mi/h, and
vmax

4 = 45 mi/h, along with a uniform anticipation length of Lmin = 0.03 mi and the non-degenerate
diffusion term defined by (3.3) and

β(u) =
Lmin

N
(vmax), vmax :=

1

N

N∑
i=1

vmax
i . (4.5)

The initial traffic platoon (see Figure 1 (left)) is given by

u0(x, 0) = p(x)(0.2, 0.3, 0.2, 0.3)T, p(x) = 0.5 exp(−(x− 3)2). (4.6)

Numerical approximations are computed with CCFL = 0.25 at simulated time t = 0.1 h using
the method of lines of the semidiscretization given by the numerical flux (3.6), and the numerical
diffusion (3.4). The performances of the entropy stable (EC) scheme without and with extra
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Figure 3. Example 1 (traffic model, non-degenerate diffusion, N = 4): total en-
tropy Etot

n of the numerical solution at different mesh sizes, based on the extra
viscosity (2.15) with α = 1.5.

KT LLF EC (α = 1.5)

M etot
M θM etot

M θM etot
M θM

100 4.024e-2 — 1.445e-1 — 3.140e-2 —
200 1.524e-2 1.401 8.830e-2 0.711 1.379e-2 1.188
400 5.881e-3 1.374 5.119e-2 0.786 6.857e-3 1.008
800 4.232e-3 0.475 2.868e-2 0.836 3.212e-3 1.094
1600 3.637e-4 0.219 1.574e-2 0.866 1.369e-3 1.230
3200 3.350e-4 0.055 8.718e-3 0.853 5.476e-4 1.322

Table 1. Example 1 (traffic model, non-degenerate diffusion, N = 4): approximate
total L1 errors (etot

M ) and convergence rates (θM ) at simulated time t = 0.1.

viscosity are compared in Figure 2. Here and in Examples 2 to 4 we also verify that the method is
indeed entropy stable by plotting the following total entropy for t = tn = n∆t:

Etot
n :=

M∑
j=1

η(uj(tn))∆x,

see Figure 3 for this example. We observe that this quantity decreases in time at all discretizations,
as expected. Moreover, in this example the approximate total L1 errors were computed by using a
numerical reference solution (EC scheme with Mref = 12800, α = 1.5), and are shown in Table 1.
For comparison solutions obtained with Kurganov-Tadmor (KT) scheme and local Lax-Friedrichs
(LLF) scheme, augmented by (3.4) are also presented. With respect to the error table, we observe
that that the EC scheme exhibits convergence rates that are consistenly slightly large than one. The
smallness of the error observed for M = 3200 has to be interpreted carefully due to the proximity
to the reference solution.
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Figure 4. Example 2 (traffic model, continuous degenerate diffusion, N = 4):
reference numerical solution at simulated time t = 0.1 h obtained by the EC scheme
with α = 1.5 and Mref = 12800.

Figure 5. Example 2 (traffic model, continuous degenerate diffusion, N = 4):
numerical solution at simulated time t = 0.1 h obtained by the entropy stable scheme
with M = 100 and (left) with zero extra viscosity, (right) with extra viscosity (2.15)
with α = 1.5.

4.3. Example 2 (traffic model, continuous degenerate diffusion, N = 4). In Example 2,
under the same initial conditions as in Example 1, we test the model with the diffusion matrix
(3.3), where we define

β(u) =

0 if u ≤ uc,
Lminvmax

N
(u− uc) if u > uc,

where vmax is defined as in (4.5), and we choose uc = 0.2. The new diffusion matrix now depends
on the total density u = u1 + · · ·+ uN and vanishes when u ≤ uc, but is still a continuous function
of u. Note that since β(u) = 0 for u ≤ uc, for these u-values the method (2.8) is reduced to an
entropy conservative method for first-order systems of conservation laws that exhibits oscillations.
The resulting model is strongly degenerate and requires more extra viscosity. Figure 6 confirms
that also this example exhibits a decrease in approximate total entropy. Approximate L1-errors



14 BÜRGER, MÉNDEZ, AND PARÉS

Figure 6. Example 2 (traffic model, continuous degenerate diffusion, N = 4): total
entropy Etot

n of the numerical solution at different mesh sizes, based on the extra
viscosity (2.15) with α = 1.5.

KT LLF EC (α = 1.5)

M etot
M θM cpu[s] etot

M θM cpu[s] etot
M θM cpu[s]

100 7.846e-2 — 0.76 1.722e-1 — 0.52 6.108e-2 — 0.36
200 4.327e-2 0.859 3.00 1.166e-1 0.562 2.09 3.254e-2 0.908 1.41
400 1.749e-2 1.306 11.50 8.042e-2 0.537 8.19 1.5425e-2 1.078 5.56
800 7.710e-3 1.182 46.51 5.284e-2 0.606 32.82 9.020e-3 0.773 22.23
1600 4.011e-3 0.943 197.69 3.225e-2 0.712 134.94 5.433e-3 0.731 91.72
3200 2.707e-3 0.567 863.22 1.884-2 0.775 626.73 2.466e-3 1.139 413.56

Table 2. Example 2 (traffic model, continuous degenerate diffusion, N = 4): ap-
proximate L1 errors (etot

M ), convergence rates (θM ), and cpu times (cpu) at simulated
time t = 0.1.

for u computed by a numerical reference solution (EC scheme with Mref = 12800, α=1.5) are shown
in Table 2. That table also shows CPU times. It is worth noting that the EC scheme is the one
that executes most rapidly and produces errors that are only slightly larger in some instances that
those of the KT scheme at the same discretization. Thus, we can say that the EC scheme is the
most efficient (in terms of error reduction versus CPU time) in this case.

4.4. Example 3 (traffic model, discontinuous degenerate diffusion, N = 4). Under the
same initial conditions of Examples 1 and 3, now we test the model with the diffusion matrix (3.3)
with

β(u) =

{
0 if u ≤ uc,

Lminvmax/N if u > uc,

where vmax is still defined as in (4.5) and we choose uc = 0.2. Note that the resulting model
is strongly degenerate and requires more extra viscosity as in Example 2, but that an additional
complication comes from the fact that β, and therefore K, are now a discontinuous function
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Figure 7. Example 3 (traffic model, discontinuously degenerate diffusion, N = 4):
reference numerical solution at simulated time t = 0.1 h obtained by the EC scheme
with α = 1.5 and Mref = 12800.

Figure 8. Example 3 (traffic model, discontinuous degenerate diffusion, N = 4):
numerical solution at simulated time t = 0.1 h obtained by the entropy stable scheme
with M = 100 and (left) with zero extra viscosity, (right) with extra viscosity (2.15)
with α = 1.5.

of u. Figure 7 shows the reference solution obtained for this case, and Figure 8 displays numerical
solutions with M = 100. Entropy stability still holds, as depicted in Figure 9. The approximate
L1-errors for u computed by using a numerical reference solution (EC scheme with Mref = 12800,
α = 1.5) are shown in Table 3.

4.5. Example 4 (traffic model, continuous degenerate diffusion, non-smooth initial da-
tum, N = 4). Under the assumptions of Example 2, we replace the smooth initial condition (4.6)
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Figure 9. Example 3 (traffic model, discontinuous degenerate diffusion, N = 4):
total entropy Etot

n of the numerical solution at different mesh sizes, based on the
extra viscosity (2.15) with α = 1.5.

KT LLF EC (α = 1.5)

M etot
M θM cpu[s] etot

M θM cpu[s] etot
M θM cpu[s]

100 4.742e-2 — 0.78 1.486e-1 — 0.53 3.796e-2 — 0.37
200 2.053e-2 1.207 2.97 9.143e-2 0.701 2.26 1.814e-2 1.065 1.41
400 9.797e-3 1.069 12.83 5.348e-2 0.774 8.92 9.037e-3 1.005 6.06
800 6.752e-3 0.535 55.48 3.130e-2 0.773 38.36 4.301e-3 1.071 26.06
1600 4.941e-3 0.450 350.13 1.793e-2 0.804 168.91 2.102e-3 1.033 233.55
3200 4.536e-3 0.123 1452.28 1.043e-2 0.781 984.89 1.333e-3 0.656 656.21

Table 3. Example 3 (traffic model, continuous degenerate diffusion, N = 4): ap-
proximate L1 errors (etot

M ), convergence rates (θM ), and cpu times (cpu) at simulated
time t = 0.1.

KT EC (α = 1.5) CU

M etot
M θM cpu[s] etot

M θM cpu[s] etot
M θM cpu[s]

100 1.365e-1 — 1.92 32.053* — 97.43 1.216e-1 — 1.78
200 7.765e-2 0.814 3.34 7.408-2 — 2.22 6.948e-2 0.807 4.49
400 3.751e-2 1.050 14.67 3.931e-2 0.914 10.09 3.417e-2 1.024 20.34
800 1.843e-2 1.025 59.91 2.157e-2 0.866 42.54 1.707e-2 1.001 81.32
1600 1.030e-3 0.840 219.62 1.142e-2 0.918 151.49 9.736e-3 0.811 298.57
3200 8.006e-3 0.363 963.64 6.921-3 0.722 785.65 8.562e-3 0.185 1362.84

Table 4. Example 4 (traffic model, continuous degenerate diffusion, non-smooth
initial datum, N = 4): approximate L1 errors (etot

M ), convergence rates (θM ), and
cpu times (cpu) at simulated time t = 0.2.
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Figure 10. Example 4 (traffic model, continuous degenerate diffusion, non-smooth
initial datum, N = 4): (left) initial condition (4.7), (right) reference numerical
solution at simulated time t = 0.1 h obtained by the EC scheme with α = 1.5 and
Mref = 12800.

i 1 2 3 4 5 6 7 8

20% glycerol di[µm] 201.430 140.2 99.751 68.986 48.391 34.185 23.810 6.101
φ0
i [%] 0.0859 0.6410 4.4309 7.928 4.7065 1.5710 0.5720 0.1758

50% glycerol di[µm] 417.819 291.590 202.854 143.384 100.118 68.629 48.259 33.886
φ0
i [%] 0.329 11.380 25.010 9.921 2.305 0.821 0.502 0.183

Table 5. Example 5 and 6 (settling model, discontinuous degenerate diffusion,
N = 8): droplet particle diameters di and initial concentrations φ0

i .

by the following function, corresponding to a “platoon” of traffic:

u0(x, 0) = p(x)(0.2, 0.3, 0.2, 0.3)T, p(x) =


10x for 0 < x ≤ 0.1,

1 for 0.1 < x ≤ 0.9,

−10(x− 1) for 0.9 < x ≤ 1,

0 otherwise.

(4.7)

As is shown in Figure 11 (top), this set of initial conditions causes strong oscillations near the
transition between hyperbolic and parabolic regimes. On the M = 100 mesh, these oscillations
produce artifacts that remain through time iterations even with high extra viscosity. In order
to avoid these artifacts, a finer mesh was required; Figure 11 (bottom) compares the entropy
conservative scheme solution against a solution by the KT scheme with M = 800. In Table 4
we show L1-errors for u computed by a numerical reference solution (EC scheme with α = 1.5,
Mref = 12800). The large value of the M = 100 entry for the EC scheme in that table indicates
that additional numerical viscosity was not sufficient to prevent strong oscillations (see Figure 11).
A numerical solution obtained with the less diffusive central-upwind (CU) scheme by Kurganov et
al. [39] is also presented for comparison.
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Figure 11. Example 4 (traffic model, continuous degenerate diffusion, non-smooth
initial datum, N = 4): numerical solution at simulated time t = 0.2 h (top) obtained
by the entropy stable scheme with M = 100 and (left) with zero extra viscosity,
(right) with extra viscosity (2.15) with α = 8, (bottom) with M = 800 and (left)
with the KT scheme, (right) with the entropy stable scheme with extra viscosity
(2.15) with α = 1.5.

Figure 12. Example 4 (traffic model, continuous degenerate diffusion, non-smooth
initial datum, N = 4): total entropy Etot

n of the numerical solution of the EC scheme
(extra viscosity (2.15) with α = 1.5) at different mesh sizes.
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Figure 13. Example 5 (settling model, discontinuous degenerate diffusion, N = 8):
reference solution at simulated time t = 50 calculated by the GLF scheme with
Mref = 6400.

Figure 14. Example 5 (settling model, discontinuous degenerate diffusion, N =
8): comparison of numerical solutions computed using COMP-GLF, KT and EC
(α = 1× 10−12) schemes, M = 800.

KT COMP-GLF EC(α = 1.0× 10−12)

M etot
M θM etot

M θM etot
M θM

100 2.877e-4 — 9.554e-5 — 2.187e-4 —
200 1.345e-4 1.097 4.694e-5 1.025 1.027e-4 1.090
400 6.869e-5 0.969 2.872e-5 0.709 5.313e-5 0.951
800 3.882e-5 0.823 2.215e-5 0.375 2.202e-5 1.270
1600 2.332e-5 0.735 1.880e-5 0.237 8.378e-6 1.394

Table 6. Example 5 (settling model, discontinuous degenerate diffusion, N = 8):
approximate L1 errors (etot

M ) and convergence rates (θM ) at simulated time t = 50.

4.6. Example 5 (settling model, discontinuous degenerate diffusion, N = 8). In this
example we consider the settling of dispersions of glycerol droplets of total initial concentration 50%
in a column of biodiesel of depth L = 20 mm according to the experimental setup of [25]. The density
of biodiesel is ρc = 880 kg/m3 and that of glycerol is ρd = 1090 kg/m3. Other parameters are the
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Figure 15. Example 5 (settling model, discontinuous degenerate diffusion, N = 8):

Ẽtot,′ for EC (α = 1× 10−12) at different values of M .

Figure 16. Example 5 (settling model, discontinuous degenerate diffusion, N = 8):

Ẽtot,′ for GLF and KT Schemes at different values of M .

viscosity µc = 6.5 m Pa and the diffusivity D0 = 10−7 m2/s. We consider N = 8 droplet size classes.
The corresponding droplet diameters di and initial concentrations u0

i have been reconstructed from
droplet size histograms [26], see Table 5. We also introduce a discontinuous diffusion function β(u),
namely

β(u) =

{
0 if u ≤ uc,

D0V (u) if u > uc,

where uc is a critical density, or gel point, accounting for the onset of compression effects when
entities of the disperse phase start forming permanent contact, for which we choose uc = 0.1 in
this example. Numerical results are obtained by the entropy stable (ES), component-wise global
Lax-Friedrichs (COMP-GFL) and Kurganov-Tadmor (KT) schemes. Comparisons are made with
results produced by the GLF-COMP Scheme, the reference solution is computed on a fine grid
Mref = 6400 (see Figure 13) and all methods are integrated in time by a SSPRK22 method with
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Figure 17. Example 6 (settling model, continuous diffusion, N = 8): (left) initial
conditions and (right) reference solution computed with GLF Scheme and M = 6400
at T = 200.

KT COMP-GLF EC(α = 1.0× 10−12)

M etot
M θM etot

M θM etot
M θM

50 3.5472e-4 — 2.7353e-4 — 3.7022e-4 —
100 2.4303e-4 0.546 2.2701e-4 0.269 2.8147e-4 0.395
200 1.9425e-4 0.322 2.1157e-4 0.102 2.1254e-4 0.405
400 1.7688e-4 0.136 2.0482e-4 0.047 1.7031e-4 0.320
800 1.7687e-4 0.000 2.0384e-4 0.007 1.5841e-4 0.105

Table 7. Example 6 (settling model, continuous diffusion, N = 8): approximate
L1 errors (etot

M ) and convergence rates (θM ) for Example 6 at simulated time t = 200.

CCFL = 0.3. Observe that the numerical errors presented in Table 6, seem to indicate that the
methods are not converging to the same solution. Qualitative results comparing the state of the
system at end time, computed with each of the three methods are displayed in Figure 14.

For the present problem with its zero-flux boundary condition the growth of the total entropy is
bounded by inequality (2.5), whose analogy for the semi-discrete entropy stable scheme is (2.20).
To study whether the latter inequality is also valid in the fully discrete case, we plot for this and
the next example (Figures 15 and 20, respectively) the quantity

Ẽtot,′
n :=

∆x

∆t

M∑
j=1

(
η
(
un
j

)
− η
(
un−1
j

))
+ ϕ(un

1 )− ϕ(un
M ). (4.8)

Note that, since ϕ = vTf − g after replacing (3.1) and (3.2), we have

ϕ(u) = v(u)Tf(u)− g(u) =
N∑
i=1

V (u)
log(ui)

vi
viui −

(
V (u)

N∑
i=1

ui log(ui)− V(u)

)
= V(u).

It is interesting to observe that contrary to the other two schemes, the component-wise global
Lax-Friedrichs (COMP-GLF) scheme presents problems to preserve non-positivity of the quantity
(4.8) at early stages of the time evolution process.
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Figure 18. Example 6 (settling model, continuous diffusion, N = 8): numerical
solutions at different times, M = 200.

Figure 19. Example 6 (settling model, continuous diffusion, N = 8): numerical
solutions at different times, M = 200.

4.7. Example 6 (settling model, continuous diffusion, N = 8). Now we consider the settling
of a dispersion of 20% glycerol with a continuous diffusion function β. We suppose the initial
concentration (scaled by a factor 1.5) is present only in the top half of the column as is shown
in the left plot of Figure 17. Numerical approximations where computed using GFL, KT and EC
schemes. In all cases CCFL = 0.1 iss used, and for the EC scheme a value α = 10−12 is chosen.
Qualitative results comparing results for different times are shown in Figures 18 and 19.
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Figure 20. Example 6 (settling model, continuous diffusion, N = 8): Ẽtot,′(t) for
EC (α = 1× 10−12) at different values of M .

Numerical errors and convergence rates can be found on Table 7. All errors are computed against
a numerical reference solution obtained with GFL scheme, CFL = 0.01 and a mesh of Mref = 6400.

5. Conclusions

Entropy stable schemes for the numerical solution of initial value problems of nonlinear, possibly
strongly degenerate systems of convection-diffusion equations proposed in [1] have been extended
to initial-boundary value problems with zero-flux boundary conditions in one space dimension,
including an explicit bound on the growth of the total entropy.

The numerical examples presented herein show that these schemes can be successfully used for
the approximation of solutions in a class of diffusively corrected multiclass kinematic flow models.
They also confirm the theoretical bounds for entropy in both cases, zero-flux boundary conditions
and periodic boundary conditions. Furthermore, the results of Examples 2, 3 and 4 demonstrate
that entropy stable schemes have a competitive computational efficiency compared with other
common numerical schemes, when used on diffusively corrected multiclass kinematic flow models,
like the traffic model and the polydisperse sedimentation model presented here. Although errors and
errors rates are comparable with the other tested methods (Kurganov-Tadmor and component wise
Global Lax Friedrichs) for coarser cell partitions, because of the differences on finer cell partitions
we cannot entirely confirm that the methods converge to the same solution. This shortcoming is
exacerbated by the lack of a well-posedness theory for (1.1) in the strongly degenerate case. It is
therefore a topic requiring more careful study in future research.

We acknowledge that the current form of the schemes make them difficult to apply to more
general real life problems. Their main limitation is the requirement of a diffusion matrix K(u)
such that the product Kη−1

u,u is positive definite, and the difficulty to obtain stable numerical fluxes
from relation (2.21). We are currently investigating alternatives to relax these restrictions.
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